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Abstract

Differentially private in-context learning (DP-ICL) has recently become an active
research topic due to the inherent privacy risks of in-context learning. However,
existing approaches overlook a critical component of modern large language model
(LLM) pipelines: the similarity search used to retrieve relevant context data. In
this work, we introduce a DP framework for in-context learning that integrates
nearest neighbor search of relevant examples in a privacy-aware manner. Our
method outperforms existing baselines by a substantial margin across all evaluated
benchmarks, achieving more favorable privacy-utility trade-offs. To achieve this,
we employ nearest-neighbor retrieval from a database of context data, combined
with a privacy filter that tracks the cumulative privacy cost of selected samples to
ensure adherence to a central differential privacy budget. Experimental results on
text classification and document question answering show a clear advantage of the
proposed method over existing baselines.

1 Introduction

In-context learning (ICL) (Brown et al., 2020) is a popular way to tailor a generic language model’s
response to a specific context/domain. A typical ICL pipeline involves first preparing a guiding
prompt that contains several task related examples, such as question-answer pairs, and then asking
the language model to generate a response for the query, conditioned on the examples provided. A
key feature of ICL is that it does not involve compute heavy operations of updating model weights
and typically API or prompt-only access to LLM is sufficient.

Privacy risks in LLMs due to memorization are well known (Zhang et al., 2023; Carlini et al.,
2023; Ippolito et al., 2023). One line of research deals with leakage in fine-tuning (Yu et al., 2024;
Li et al., 2022) or pretraining (Carlini et al., 2019). Another line of research attempts to recover
training records using clever prompt engineering (Davison et al., 2019; Jiang et al., 2020; Nasr et al.,
2025). Specifically for ICL, Duan et al. (2024); Wen et al. (2024); Duan et al. (2023) have proposed
membership inference attacks to detect the membership of a test data point in a private prompt.

Differentially Private In-Context Learning (DP-ICL) is an active area of research, currently being
explored along two parallel directions:

* DP Synthetic example generators (Tang et al., 2024; Gao et al., 2025; Amin et al., 2024):
These methods generate synthetic examples token-by-token by privately releasing the mean
logits from several partitions sensitive examples. The next token with the largest weight
is selected as the next token. The generated examples can be used as demonstrations in
multiple downstream ICL tasks without incurring additional privacy costs. While one-time
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privacy costs is an attractive feature, these methods are computationally expensive and
rely on logit outputs from the LLMs, which may not be easily available in many scenarios.
Moreover, experiments in these works are limited to simpler tasks such text classification
and information extraction.

 Pay-per-use (Wu et al., 2024): The private set of examples is partitioned into k shards, each
of which is associated with a given prompt. The model generates one response for each of
the £ shards. For text classification, the final output is released via private voting using the
shard responses. For text generation problems, the private responses are aggregated in either
keyword or embedding space and released privately. LLM is then asked to provide the final
response based on the top keywords or mean embeddings. While the privacy cost scales
with the number of test queries answered, the method is easy to parallelize, does not require
access to logits and has the capacity to generate very high-quality responses in a wide range
of tasks. Our work improves on this method.

A related line of work, often referred to as private prediction, studies how to obtain differentially
private predictions from non-private models (Dwork and Feldman, 2018; Papernot et al., 2018;
Bassily et al., 2018; Zhu et al., 2020, 2023). Methods in this class typically perturb model outputs
or the voting scores, and some of them also use k-nearest-neighbor (kNN) search (Zhu et al., 2020,
2023). Interestingly, both the DP Synthetic Example Generators the Pay-per-use methods can be
viewed as instances of this broader private prediction framework: they provide privacy guarantees
only at the prediction stage, while reusing non-private models. However, KNN methods have not yet
been incorporated into the DP-ICL setting, which has unique characteristics due to the compositional
and prompt-based nature of in-context learning.

The methods by Wu et al. (2024) use Poisson sampling to select the examples for the shards. While
sampling amplifies the privacy protection, it can pick examples unrelated to the test query. It has been
well-documented (Lu et al., 2022; Agrawal et al., 2023; Boliicii et al., 2023) that the output of ICL
is sensitive to the examples used, and randomly sampled examples can lead to increased prediction
uncertainty, potentially resulting in worse performance compared to 0-shot predictions. Therefore,
example selection has emerged as an important research direction in ICL (Dong et al., 2024).

We also emphasize, that the embedding based kNN search of demonstrations is a standard component
in information retrieval systems such as those designed for retrieval augmented generation (RAG) (Liu
et al., 2022) and can be easily plugged into an existing ICL pipeline. Surprisingly, we are unaware of
any work on DP-ICL that uses kNN indexing despite their popularity.

1.1 Our contributions

* Through use of privacy filters (Feldman and Zrnic, 2021), we integrate nearest neighbor
search into existing DP-ICL framework by Wu et al. (2024). The modified solution composes
prompts with k-nearest neighbors of each test point instead of randomly sampled examples
like in the baseline methods by Wu et al. (2024) and Tang et al. (2024).

* As atheoretical contribution, we provide a fully adaptive J-approximate RDP analysis of so
called individual RDP filters.

* We carry out experiments on text classification and question answering on benchmark
datasets with LLMs such as Llama3.3-70B-it and Gemini-1.5-flash-8B. Our experiments
clearly show that the overall privacy-utility trade-off is drastically improved with KNN.

2 DP-ICL with kNN

We give the required background on DP and the problem setting of ICL in Appendix Section B. Our
method is based on the basic primitives of report-noisy-max with Gaussian noise (RNM-Gaussian)
and DP keyword space aggregation (DP-KSA) that are also the building blocks of the baseline
methods by Wu et al. (2024). Those methods are described in detail in Appendix Section C. We next
describe how to combine those methods with kNN nearest neighbor search of examples.



2.1 Retrieval of Most Similar Examples

Instead of retrieving examples via subsampling, we combine the RNM-Gaussian and DP-KSA
mechanisms with retrieval of the £ most similar examples from the sensitive dataset X. A similar
approach is taken by Zhu et al. (2023) for private prediction, though not in combination with in-
context learning. Specifically, for each query ¢, we construct the retrieved set R(X) by selecting
the k elements z; € X most similar to ¢ under a chosen similarity metric. The sampled set is then
partitioned into M disjoint batches Bi, ..., By for in-context prompting.

2.2 Retrieval with Limited Sensitivity

The challenge with kNN retrieval is how to carry out the privacy accounting. The required tool is
given by the individual RDP accounting (Feldman and Zrnic, 2021). To this end, we also require
from the retrieval function R that its output can change at most by one element in case we change the
dataset X by one element. More formally, the output of the LLM A consist of the retrieval and the
DP-ICL algorithm. So we can think of it as a composition A = M o R, where M is the DP-ICL
mechanism (e.g., DP-KSA) that takes as an input the set of batches { By, ..., By}, and R(X) is the
retrieval algorithm that fetches the batches from the input dataset X .

Mathematically, we say that R is stable under single-element change if, whenever X ~ X', the
outputs differ by at most two elements: |[R(X) \ R(X")| + |R(X’) \ R(X)| < 2. In order to limit
the sensitivity of the aggregation happening in the mechanism .4, we require this property from the
retrieval R. In this work, we focus on the FLAT index for simplicity, as it performs a full exhaustive
search and trivially satisfies the mentioned stability property. Extending our proposed method to
approximate indexing like IVF or HNSW is a compelling avenue for future work. For example, DP
k-means methods (Chang et al., 2021) could be used to implement IVF search, incurring an additional
privacy cost while still meeting the stability requirements of the retrieval.

2.3 Individual RDP Accounting for DP-ICL with kNN

The rigorous privacy accounting for DP-ICL with kNN retrieval can be carried out using an individual
(ar, €)-RDP privacy filter that keeps track of individual privacy losses and drops from the analysis
the data elements for which the cumulative privacy loss is about to cross the pre-determined budget
€max (Feldman and Zrnic, 2021). To this end, we first give the following definitions.

Define Sub(S, z;) as the set of datasets obtained from S by substituting the data element z; by
another data element, i.e.,

Sub(S, zi) = {8 | §" = (9\ {z:}) U{a}, j € X}

The individual J-approximate («, €)-RDP privacy filter is described in the pseudocode of Algorithm 1.
Notice that in each step t, the adaptively chosen mechanism A; is of the form A; = M o R;, where
the retrieval function R; depends adaptively on the query ¢, chosen at iteration ¢. IL.e., the data
elements that are used by the DP-ICL mechanism M at step ¢, depend on the query and the set of
data elements that still have their privacy budget left. When using the DP-KSA algorithm, we fix the
iteration-wise failure probability d;. However, it could also be chosen adaptively.

The following result is our main theoretical result and is proven in Appendix B.3. It can be seen
as a generalization of the RDP filtering result of (Thm. 4.5 Feldman and Zrnic, 2021) and of the
d-approximate zCDP filtering result of (Thm. 1 Whitehouse et al., 2022).

Theorem 1 (Privacy Filter for J-approximate Rényi Differential Privacy). Let K € 7 define the
maximum number of compositions and let {M;} 1 | be an adaptively chosen sequence of randomized
mechanisms, where each M is §;-approximate («, €;(«))-RDP for some « > 1. Let expax () > 0

and dmax > 0 define the privacy budgets. Then, a privacy filter that halts when either Zz:_ll &i >
Emax (@) or ZiT;ll 8; > Omax ensures that, the composed mechanism M) = (./\/ll, R ./\/lK) is

Omax-approximate €max(a)-RDP.

Similarly, as from the general RDP filters follow results for individual filters (Feldman and Zrnic,
2021), from the general filtering result of Thm. 1 it trivially follows that Algorithm 1 is iS dyax-
approximate (o, €max )-RDP. This privacy guarantee can be then converted to a (e, §)-DP guarantee
using the conversion formula given in Appendix Eq. (B.1).



Algorithm 1 Adaptive composition A7) with Rényi filter

: Input: Dataset X, and privacy budget (€max, Omax)-
: Set the active set of data elements to be the whole dataset: S = X.
cfort=1,....,Tdo
for all data entries z; € S do
Compute individual d;-approximate RDP parameters for the chosen mechanism 4;. Le.,

DRy

D= sup D% (At(a@*l),5)||At(a<t*1>,s')) .
S’eSub(S,x;)

a

end for
Update the set S of active data elements:

t . t
—J. § : (@) § .
S = {xz j=1 5]‘ < €max; =1 52 < 5max} .

Compute a; = A;(a1.4-1,5)
end for
10: Return (ay,...,ar)

~

° %

3 Experimental Results

3.1 Text Classification

We first evaluate our kNN-based DP-ICL method on public benchmark text classification datasets
AGNews (Zhang et al., 2015) and TREC (Voorhees, 2004). For simplicity, we set the privacy parame-
ters such that each sample is used only once. Consistent with Wu et al. (2024), our implementation
utilizes 10 shards, each featuring 4 demonstrations. The exact prompt used has been provided in
Appendix.

For the nearest neighbor search, we use the “all-MiniLM-L6-v2” model to produce embeddings of
unit length with dimension 384. We use FLAT indices for retrievals, which are constructed using
FAISS library (Douze et al., 2024).

We carry out the classification experiments using the open-source model OPT-1.3B by Meta that
is also available on the Huggingface platform (Wolf et al., 2019). The predictions are generated
deterministically. Figure 1 shows the mean test accuracies for an experiment, where we pick 200
randomly sampled test samples for the AGNews and TREC datasets, respectively, for different values
of ¢, when § = 10~®. The results for each ¢ are means of 5 independent runs, and the error bars
depict 1.96 times the standard deviation, giving the asymptotic 95% confidence interval. We exclude
the zero-shot results from Figure 1 as they were highly unsatisfactory when using OPT-1.3B: we
were able to achieve approximately 58% test accuracy for AGNews whereas the results for TREC
were close to random guessing. We remark that the test accuracies for the baseline method and for
the zero-shot are similar as in (Wu et al., 2024) that uses the GPT-3 Babbage model which also has
approximately 1.3B parameters. Figure 1 also includes the "nearest neighbor only (dummy)", where
RNM-Gauss is run directly on a histogram formed using the counts of the nearest neighbors’ labels.

Notice that on the TREC example of Fig. 1, the performance of DP-ICL with kNN deteriorates as
¢ decreases towards 0.5. This can be explained by the fact that as the DP are those of a Gaussian
mechanism with sensitivity v/2, for ¢ = 0.5 the required noise scale is approximately 10 which equals
the number of shards (number of votes), which already significantly randomizes the predictions.
Naturally, this could be remedied by using more shards.

3.2 Document Question Answering

We next compare the methods on the task of questions answering, on two datasets:

Federated version of DocVQA (Tobaben et al., 2024): This dataset was curated for a competition
organized at NeurIPS 23. Each dataset record contains a triplet of the form (image, question, answer).
Each image is a sensitive invoice with confidential details (e.g. payer/payee names, invoice amount,
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Figure 1: Mean test accuracies for 200 randomly sampled test samples. Left: AGNews text classifica-
tion task with 4 classes, averaged over 5 experiments. Right: TREC text classification task with 6
classes, averaged over 5 experiments.

purpose). The original task was to answer multiple questions on each image with limited information
leakage. The scope of this work is limited to textual ICL. Therefore, we proxy each image with OCR
tokens supplied in the same dataset. We decode and concatenate those tokens to form text sentences
ignoring their original position in the image. As concatenated sentences may not form a cohesive
paragraph this makes it a challenging dataset.

SQUAD v1.1 (Rajpurkar et al., 2016): This is a standard reading comprehension dataset, consisting
of questions posed on Wikipedia articles. The records are triplets of the form (paragraph, question,
answer).

Both DP-KSA and DP-KSA-KNN satisfy record-level DP which protects presence of a single
triplet (document, question, answer). However, both datasets contain multiple questions for each
image/paragraph. Therefore, we randomly sample a single question-answer pair for each paragraph
and assume that each record belongs to a single user.

We continue to use the all-MiniLM-L6-v2 model for embeddings. For DP-KSA-kNN method, we
build FLAT index with the text paragraphs using FAISS library.

Dataset Federated DocVQA | SQUAD
Demonstration Set 69,785 18,891
Test Query Set 100 100

Table 1: Comparison of dataset sizes between Federated DocVQA and SQUAD.

Language models used: The comparison of distribution of prompt lengths for both datasets is shown
in Figure 3 of Appendix. We use Llama3.3-70B-it and Gemini-1.5-flash-8B and fix the temperature
parameter to 0.7 in our API calls for both models. However, we did not observe much variance in the
responses due to ‘to-the-point nature’ of the questions.

Accuracy metrics: Our performance metrics include standard Rouge and Bleu scores. We have
described the metrics for completeness in Table 2 in Appendix. All metrics range from O to 1. Higher
scores imply a higher degree of similarity between two answers.

Experimental Results: Figure 2 shows plots for document QA task for 4-shot ICL with shard
sizes 10 and 20 for several €’s. Plots for the other two (model,dataset) combinations are given in
Appendix J. We use the same randomly sampled 100 test queries for all methods and €’s. We also
include 0-shot responses (obtained without any demonstrations) computed with the same number
of shards. Outperforming this baseline is important for any method to justify the use of private
demonstrations. Points with € = oo correspond to non-private version of KSA and KSA-kNN.

The main high-level observation across both figures is that most metrics have higher values for the
Llama model compared to Gemini. We also note that DP-KSA remains less sensitive to €’s, whereas,
DP-KSA-kNN improves in many cases specially for high €’s. Figure 4 in Appendix show additional
results.



docvqa, #shards=10, gemini-1.5-flash-8b  docvqa, #shards=20, gemini-1.5-flash-8b

0.62 4 x 0-shot baseline 0.62 4 squad, #shards=10, Llama_33_70b squad, #shards=20, Llama_33_70b
0.60 { =#= DP-KSA 0.60 X 0-shot baseline
059 7 == DP-KSA-KNN 5| 0597 —— DP-KSA
0.57 0.57 0.71 { 4= pp-ksaknn” 07117
0.56 0.56 y \
e 0.70 ¢ 0.70 ¢
0.54 0.54 <
0.53 0.53 0.69 0.69 _\/\—’

0.43 4
0.42 4
0.41
0.40 1
0.39 A1

ANLS

K

ANLS

0.43 A

6o -NA\'
0.41 N

0.40 -
0.39 4

exact match
cooo oo
wwww [V
¥eayw 83
Ly
:
o o oo o o
W www w B
s o © o
Ly
<7
K
exact match

L

0.67 0.67 -
0.65 - 0.65 -
— i i
o 0% 064 ~ 0.78 0.78 -
2 062 1 0.62 - 1]
e %61 061 1 £ 0.77 1 0.77 1
e 038 ] ° b——-\/\,_..,
0.58 43¢ 0.58 'L-h-—m 0.76 - 0.76
0.4 0.45 T T T T T T T T T T
0.47 - 0.47 - 0.59 - 0.59 -
?‘, 0.45 0.45 o 0.58 1 0.58 -
D 0.44 0.44 4 [ 0.57 | 0.57 4
3 0.43 0.43 - = V4 : v
= 0424 0.42 4 o 0.56 1 0.56
0.55 - 0.55 gttt

0.78 0.78
0.77

X
0.76

0.75 0.75

0.77 4
0.76

rouge-|

oo o o o
u o o o o
33 % & 2
K I
oo o o o
o o oc o
©wo N B ~
(<
rouge-|
ﬁ

0.38 0.38
0.37 4 0.37 4 ] i
_ 036 03 0.31 0.31
2 0357 035 1  0.30 1 0.30 ¢
0 0.34 9 0.34 re) »
0.29 A 0.29 4
0.32 1% 0.32 1
0.31 0.31 0.28 A1 0.28 -
2 4 6 8 o 2 4 6 8 ©o 2 4 6 8 o 2 4 6 8
& & & &

Figure 2: Left: A comparison of DP-KSA and DP-KSA-KNN on a 4-shot Q&A task on the docVQA
dataset using Gemini-1.5-flash-8B. Right: A comparison of DP-KSA and DP-KSA-kNN on a 4-shot
Q&A task on the SQUAD dataset using the Llama 3.3-70B-It model. The averages are computed
over individual metrics for 100 test queries. The higher number indicates a higher degree of similarity
between algorithm’s final response and ground truth. We see that the proposed method (DP-KSA-
kNN) is superior compared to the baseline (DP-KSA).

4 Conclusions

In this work, we integrate nearest neighbor search based indexing into an existing DP-ICL framework.
This is obtained by using the so called fully adaptive privacy analysis and individual differential
privacy filters. Our experiments on private text classification and private question answering tasks
show the substantial advantage of our approach. Our method clearly outperforms the 0-shot and
also the DP baseline method by Tang et al. (2024) despite not having the privacy amplification by
subsampling as the method by Tang et al. (2024). Interesting research directions in this topic include
building DP-ICL solutions utilizing alternative sample indexing and retrieval methods, such as those
based on hierarchical clustering like k-means or hierarchical navigable small worlds (HNSW).
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A Further Related Literature

Private in-context learning is typically applied to tasks such as text classification, question answering,
and summarization. It often relies on techniques that privatize the counts of output tokens, using
either additive noise mechanisms or top-k mechanisms (Tang et al., 2024; Wu et al., 2024). There
are data-adaptive refinements of the methdod by Tang et al. (2024), given by Gao et al. (2025), and
recently also by Amin et al. (2024) who use the accurate concentrated differential privacy accounting
presented in (Cesar and Rogers, 2021) for the exponential mechanism to improve the privacy-utility
trade-offs. Recent paper (Koga et al., 2024) considers a DP RAG method, however does not seem to
incorporate the ranking of the augmenting samples into the DP mechanism. Several papers consider
a version of exponential mechanism tailored for private top-k selection (Gillenwater et al., 2022)
called jointEM. Recently, faster version of jointEM has been proposed by Hao and Zhang (2024).
Another work that is close to our work is that by Zhu et al. (2023) who also consider individual
privacy accounting and kNN similarity search for private prediction although in a way that is not
directly applicable to existing DP-ICL methods.

A.1 Existing Indexing Methods for Similarity Search
Commonly used nearest neighbor search methods used in ICL and RAGs include

* FLAT, Brute-force search where all vectors are stored and compared exhaustively. Suitable
for small datasets but not scalable for large-scale search.

e IVF (Inverted File Index) Partitions the dataset into clusters (Voronoi cells) using the k-
means algorithm. During a search, only a subset of clusters is probed to reduce computation.
Efficient but requires careful tuning of the number of clusters

* HNSW (Hierarchical Navigable Small World) Graph-based indexing where points are
connected in a proximity graph. Provides fast nearest neighbor search with logarithmic
complexity.

These are the main methods of the widely used similarity search libraries Faiss (Facebook Al
Similarity Search) (Johnson et al., 2019; Douze et al., 2024) and Milvus (Wang et al., 2021; Guo
et al., 2022). As outlined by Douze et al. (2024), vector search systems must navigate trade-offs
between search accuracy, speed, and memory consumption, which depend heavily on dataset size,
vector dimensionality, and the chosen index architecture. Indexing methods like FLAT, IVF and
HNSW can be deployed on both CPU and GPU hardware, providing flexibility to optimization in
different application contexts.

B Problem Setting and Background

B.1 In-Context Learning

We have a private dataset X = (z1,22,--- ,on) € XN of demonstrations, where z; € [N] consists
of the content (e.g. an article for classification or a tuple of text description and a related question
for QA task) and possibly some ground truth (e.g. label, answer, text summary). We also have a
prompt only access to a pretrained (autoregressive) language model LM with a large enough context
window. We also have a function R that retrieves a subset of X as few-shot examples. Given a query
content ¢ (e.g. news article), we aim to generate the answer tokens A (e.g. class label, answer to a
question) argmax 4 LM(A|R(X) + ¢) in a differentially private manner. The sign ‘+’ denotes the
concatenation operation. Specifically, we want to use X to learn the mapping between x’s and y’s
and improve over 0-shot prediction argmax 4 LM (A|g) for an unknown query g. We further assume
that client and ICL server interact only once for a single query, and LM does not retain previous
interactions with the same client.

B.2 Differential Privacy

We say input sets X and X' are neighbours if we get one by substituting one element in the other
(denoted X ~ X).

A mechanism M is (e, §)-DP if its outputs are (e, §)-indistinguishable for neighbouring datasets.
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Definition 2. Lete > 0and § € [0,1]. Mechanism M : X™ — O is (g,0)-DP if for every pair of
neighbouring datasets X, X', every measurable set E C O,

P(M(X) € E) < e“P(M(X') € E) + .

We will also use the Rényi differential privacy (RDP) (Mironov, 2017) which is defined as follows.
Rényi divergence of order o € (1, c0) between two distributions P and @ is defined as

1 Pt)\"
D, (P||Q) = ——1 ks £) dt.
Pl = e [ (3] @
By continuity, we have that lim,,_,1+ D, (P]|Q) equals the KL divergence K L(P||Q).

Definition 3. We say that a mechanism M is («, €)-RDP, if for all neighbouring datasets X, X', the
output distributions M(X) and M(X') have Rényi divergence of order « less than ¢, i.e.,

max { Do (M(X)[|[M(X")), Da (M(X')[|M(X))} < e.

Certain applications, like the Propose-Test-Release framework we consider, require a relaxation of
RDP that allows a small probability of failure. To address this, we consider a J-approximate version
of RDP, which extends the definition to account for a negligible additive failure probability 4.

Definition 4. We say a randomized algorithm M is §-approximately («,e(«))-RDP with order
a > 1, if for all neighboring dataset X, X', there exist events E (depending on M(X)) and E'
(depending on M(X")) such that Pr[E] > 1 — 6 and Pr[E’'] > 1 — 6, and we have

Da(M(D)|E | M(D")|E') < e.

We remark that in the application of text classification, we use the common RDP accounting, and for
question answering, we need to use the J-approximate RDP.

B.3 {§-Approximate RDP

We next review some of the properties of the J-approximate RDP (see, e.g., Bun and Steinke, 2016;
Papernot and Steinke, 2022).

First, recall that a randomized algorithm M : X™ — ) is §-approximately («, €)-Rényi differentially
private if, for all neighbouring pairs of inputs X, X’ € X", it is («, £)-RDP except for a set of
measure at most §. The definition is given more formally as follows.

Definition 5. We say a randomized algorithm M is §-approximately («,e(«))-RDP with order
a > 1, if for all neighboring dataset X, X', there exist events E (depending on M(X)) and E'
(depending on M(X")) such that Pr[E] > 1 — 6 and Pr[E’'] > 1 — 6, and we have

Do(M(D)|E | M(D')|E') < <.

If M is §-approximate (v, €)-RDP, we also shortly denote it as
D(M(2)[M(2)) < e.

Some basic properties of approximate RDP are as follows (see, e.g., Appendix E, Papernot and
Steinke, 2022):

* (&,9)-DP is equivalent to §-approximate (oo, £)-RDP.
* (e,0)-DP implies §-approximate (v, 3e2c)-RDP for all o € (1, 00).
« $-approximate (v, e)-RDP implies (&, §)-DP for

5=5+6Xp((0‘_1)(é_5))-(1—1)a_1. (B.1)

« «

* J-approximate (v, €)-Rényi differential privacy is closed under postprocessing.
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 If M, is 61-approximately (v, £1)-Rényi differentially private and Mo is do-approximately
(r,e2)-Rényi differentially private, then their composition is (6; + 2 )-approximately
(a,e1 + €2)-RDP.

The following is a tailored subsampling amplification result for J-approximate RDP mechanisms,
given by Wu et al. (2024). We need it for evaluating the privacy guarantees of the baseline method.
Theorem 6 (Privacy amplification by Poisson subsampling for approximate RDP, Wu et al. (2024)).
Let M be a mechanism satisfying 6-approximate («, epy())-RDP. Let Mgy, denote the mechanism
that applies M to a Poisson subsample of the data with sampling probability ~y. Then:

M, satisfies §'-approximate (o, egup())-RDP

where 0’ = 6 and eg () equals the tightest possible amplification bound for an €y (a)-RDP

y(1-6)
5

mechanism under Poisson sampling, with amplification rate adjusted to =
5

C Baseline DP-ICL Methods

We next describe the baseline private aggregation methods by Wu et al. (2024) upon which our
approach builds. They adopt the Gaussian Report Noisy Max (RNM), introduced by Zhu and Wang
(2022), as one of the mechanisms for privately selecting class labels in classification tasks. For
document question answering, where outputs are open-ended and higher dimensional, they operate in
a lower-dimensional keyword space, using private mechanisms to identify salient content at the token
level. The following two sections describe both methods in detail.

C.1 RNM-Gaussian Mechanism for Text Classification

The RNM-Gaussian mechanism M, adds independently sampled Gaussian noise to each bin of the
voting histogram h € R¥ over class labels, where the histogram has global sensitivity A = /2 (since
a change in one example—query pair affects at most two bins). Specifically:

hi = h; + N(0,62), foralli=1,... k,
and the privatized response is obtained via:

M(h) = arg max h;.

When making T private predictions this way, setting 0 = /27 In(1.25/5)/e ensures that the
sequence of outputs satisfies (¢, ¢)-differential privacy (Dwork and Roth, 2014). More accurate
privacy bounds can be obtained via RDP or by using so called privacy profiles (Balle and Wang,
2018). In this work, we use RDP for privacy accounting.

C.2 Keyword Space Aggregation (KSA) for Document Question Answering

In the document question answering task, the output A of the LLLM consists of natural language
tokens (e.g., answers or summaries), rather than a fixed class label. To enable private aggregation in
this higher-dimensional output space, we adopt the Keyword Space Aggregation (KSA) method. This
approach reduces the complexity of the aggregation by projecting responses into a lower-dimensional
token space and performing differentially private selection over salient tokens.

Given a query content g, a retrieval function R obtains M disjoint subsets of the private dataset X
and construct M in-context prompts. Le., the retrieved set of batches R(X) = {B;},, where each
disjoint batch B; contains a number of data points. For each prompt, the output is sampled from the
language model:
0;(q) :=1LM(q + By),

where O;(q) is the natural language answer generated by the model for the i-th prompt. These outputs
are then tokenized to form a frequency histogram h € R” over the vocabulary V of size D, where
each count h; corresponds to the number of outputs in which token ¢ appears:

hy=|{i:tokent € O;(¢) }|, t=1,...,D.

To privately identify the most relevant semantic content, a differentially private mechanism is applied
to select the top-k tokens from the histogram h. Depending on the vocabulary size D, they consider
the following approach.
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Propose-Test-Release (PTR). When D is large or unbounded, a PTR mechanism first privately
tests whether the frequency gap h(x) — h(x 1) exceeds a threshold. If the test passes, the top-K
tokens are released exactly. To determine K privately, one can also perform a noisy argmax:

arg max (hx) = he))

where h ;) denotes the k-th largest entry in h.

The selected keywords {t1, ..., tx } are then incorporated into a follow-up prompt that guides the
language model to generate a coherent final answer. For example, we use a structured template such
as:

Using the following keywords, answer the question
concisely: t1, to, ..., tg.

An alternatively, exponential mechanism (EM) can also be used to release top keywords, however we
found the privacy-utility trade-offs of the PTR-based method superior in our experiments compared
to EM-based method.

This procedure ensures that the final output reflects the aggregated knowledge across demonstrations,
while differential privacy is guaranteed through token-level mechanisms. The KSA method thus
enables private, scalable, and semantically meaningful aggregation in the document QA setting.

C.3 Privacy Amplification via Subsampling

Wau et al. (2024) use Poisson subsampling as the retrieval method R to select demonstration, and to
amplify privacy guarantees. For each query ¢, for the retrieved set of batches R (X ), each example
z; € X is included independently with probability ~, and partition the sampled set into M disjoint
batches for in-context prompting. This reduces the likelihood of any individual contributing to the
final output, leading to improved privacy bounds. In particular, if the aggregation mechanism is
(e, 9)-DP, then the overall mechanism with subsampling satisfies approximately (e, yd)-DP, under
standard amplification results. The accurate privacy accounting can be carried out either using
subsampling results for RDP (Appendix Thm. 6).

RNM-Gaussian with subsampling: After subsampling and constructing the class histogram #,

Gaussian noise is added as before: h; = h; + N(0,0?), with the final output arg max; h; satisfying
improved privacy due to subsampling.

KSA with subsampling: In the QA setting, we apply the same subsampling step before generating
outputs O;(q) and aggregating tokens into the histogram h. The top-K selection (via PTR) is then
performed on the reduced set, benefiting from the same privacy amplification.

Our main contribution is to replace the existing ‘R of random subsampling with a kNN-based
retrieval of the most relevant examples from the database. While this approach sacrifices the privacy
amplification benefits of subsampling, it significantly improves the quality of the generated outputs.
As aresult, we can tolerate higher noise levels in the aggregation step, ultimately yielding a better
overall privacy—utility trade-off.

The combination of kNNs and individual RDP has also been used in (Zhu et al., 2023) for private
classification with kNN search. However, we consider a completely different and a much broader
task of ICL. The method (Zhu et al., 2023) cannot be applied to generative tasks such as question
answering. Despite KNN’s popularity in non-private ICL/RAG pipelines, no prior work on DP-ICL
has considered employing it.

D Propose-Test-Release
In this Section, we give background details on the propose-test-release (PTR) which is also part of
the baseline method Wu et al. (2024) and which forms also the basis of our DP-KSA-kNN method.

The main idea of DP-KSA implemented with PTR paradigm is that, for the task of releasing the
top-k indices of a voting histogram, if H (k) — H(k + 1) > 2, then the top-k indices are exactly the
same for all neighboring datasets. Thus, we can release them without additional noise in that case. To
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ensure this, a DP test of the gap H (k) — H(k + 1) has to be carried out. This whole PTR procedure
is depicted in Algorithm 2.

Algorithm 2 TopKwithPTR

Require: % — number of top tokens to release; H — histogram of token counts; § — failure probability

1: dp < H(k) — H(k+1)

2 dy max(2,dy) + N(0,40%) — ®71(1 — §;0,20)
3: if dj, > 2 then

4:  return exact top-k tokens

5. else

6:  return Terminate (or fallback to zero-shot learning)
7: end if

The utility can be further optimized, by selecting & that maximizes the gap H(k) — H(k+ 1) ina
privacy-preserving way using the exponential mechanism. This is depicted in Algorithm 3.

Algorithm 3 FindBestK

Require: H — histogram of token counts
I: fork=1to N —1do
2: dp+ Hk)—H(k+1)
3: end for
4: return arg maxy, (di + r(k) + Gumbel(4/¢))

For Algorithm 2, we have the following privacy guarantee given in (Thm. 11, Wu et al., 2024).

Theorem 7 (TopKwithPTR Privacy Guarantee). Let H be the histogram of a set of i.i.d. samples
Sfrom a bounded-support distribution. Let H (k) denote the k-th largest value in H, and suppose we
want to release the top-k indices of H only if H(k) — H(k + 1) > 2. Define

di, == max(2,di) + N(0,402%) — &~ (1 — 6,0, 20),
where ®~1(-; 0, 20) is the inverse CDF of a Gaussian distribution with mean 0 and standard deviation

20. Then the mechanism that releases the top-k indices if di, > 2 satisfies d-approximate (a7 507 )-
RDP forall o > 1.

The following privacy guarantee is a standard result for the exponential mechanism, based on the
"Gumbel max trick" which means that the implementation of the exponential mechanism is equivalent
to running report noisy max with properly scaled additive Gumbel distributed noise (Remark 3.1,
Dwork and Roth, 2014). In practice, when using FindBestK for DP-KSA, we set k.« = 30 and
kmin = 15.

Theorem 8 (FindBestK Privacy Guarantee). Let d, := H(k) — H(k+ 1) fork=1,...,N — 1,
and define r(k) to be a regularizer such that r(k) = —oo for k > kpax or k < kmin, and r(k) =0
otherwise. Then the mechanism

arg max (di + r(k) + Gumbel(4/z))

satisfies e-differential privacy.

E Fully Adaptive 6-Approximate RDP Accounting (Proof of Thm 1)

Theorem 9 (Privacy Filter for 6-Approximate Rényi Differential Privacy). Let K € Z. define the
maximum number of compositions and let {Mi}fil be an adaptively chosen sequence of randomized
mechanisms, where each M is §;-approximate («, €;(«))-RDP for some « > 1. Let expax () > 0
and 6ymax > 0 define the privacy budgets. Then, a privacy filter that halts when either

T+1 T+1

Z €; > Emax(a) or Z 0; > Omax
i=1 i=1
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ensures that, the composed mechanism M) = (M1, oo, M K) IS Omax-approximate €pmax(Q)-
RDP.

Proof. We use here the notation used in (Feldman and Zrnic, 2021). For n € [K] and for two
neighboring datasets X and X', denote
v ™ = (g1 ),
MM (X) = (My(X,e1), Ma(M1(X), X, €2), ..., My (My(X), ..., M_1(X), X, €2)),
P(M™(X) = y™) \"
PM™)(X7) = y("))> ’

Loss™ (y™; X, X' o) = (

and

(n—1) = @
Lossn(y(");X, X/,Oz) _ (]P)(Mn(y , X, En) yn) > .

P(Mp(y=Y, X" e,) = yn)
Since &,, depends only on y("~1) (not directly on the dataset), by the Bayes rule we have that
Loss™ (y™: X, X' a) = Loss™ ™V (y™1: X, X, ) - Loss, (y™; X, X', ).

We next analyze the J-approximate RDP of the fully adaptive composition, using similar techniques
as used in the proof of (Thm. 3.1, Feldman and Zrnic, 2021). In the RDP integrals below, y(%) is
distributed according to M) (X"), and by "with probability at least 1-" we mean that the given
RDP bound holds except with probability at most & over the randomness of M) (X").

Straightforward calculation then shows that

. PMU () = 515) \*
YOI 3of ) ei<emax and 3278 8 <max ]P’(M(K) (X)) = y(K))

K K
=E, 0 |Loss™ (y ) X, X', a)| Y " &; < emax with probability at least 1 — » ~6; > 1 — (smaxl
=1 i=1
K-—1 K-—1
:Ey(m Loss(K)(y(K); X, X' a)lex < Emax — Z €; with probability at least 1 — dx > 1 — dpax + Z 5,»]
=1 =1

=E, 1 Eyy [LOSS(KI) (yED, X, X', o) - Lossk (y5); X, X', )

K-1 K—1
ek < Emax — Z €; with probability at least 1 — 05 > 1 — dpax + Z 51]
i=1 i=1

This implies that

P(ME)(X) = yF)\ @
Ey(KHZf{:l £i<emax and 305 6; <Omax P(ME)(X') = y(K)

K—1
<E,x-1 [Loss<K—1>(y<K—1>; X, X', oz)} (0D (emax—2I5 <0) yith probability at least 1 — dpmax + » _ ;
i=1

Continuing, and using the fact that

E, -1 [Loss(Kfl) (y(K*I); X, X', a)]

=E,x-2Ey,_, |:LOSS(K_2) (y =Y. X X' a)Lossg 1 (y 5~V X, X’,a)} ,

we have that

P(ME) (X)) = yF))\*
Ey(KM S K ei<emaxand 3K | §;<Omax P(M(K) (X’) _ y(K))
<o [Loss ™ (550, X, X, a)Lossie 1 (355 X, X', )| (@D (e =TI )

K-2
with probability atleast 1 — dpmax + Y _ 0
=1
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since
E

YK -1 {LOSSK—1<ZJ(K71); X, X', og)} < elaDex—
with probability at least 1 — dx 1.

Next, continuing integration mechanism by mechanism, we inductively see that with probability at
least 1 — dmax, We have that

K (KN @
oo [(EMEC0 =N
v | \Bm@ ) = y@) ) | =
The conditions ZlK:{l €; < Emax and Zfsl'l 0; < dmax hold by construction of the filter. O

F Example LLM Prompt: Template Used for 4-Shot Text Classification

Instruction: Classify each article into one of the following categories
separated by comma: classl, class2, .., class_k.

Article: {demo text 1}, Class: {classl} \n

Article: {demo text 2}, Class: {classl} \n

Article: {demo text 3}, Class: {class2} \n

Article: {query text 3}, Class:

G Example LLM Prompt: Template Used for 4-Shot QA

For question answering task,we used the following prompt template. The bracketed terms (e.g.,
{demo textl})indicate placeholders for specific data.

Read the text: {demo textl}
Answer the question with at most 4 words: {demo questionl}
Do not provide a Yes/No answer: {demo answerl}

Read the text: {demo text2}
Answer the question with at most 4 words: {demo question2}
Do not provide a Yes/No answer: {demo Answer2}

Read the text: {demo text3}
Answer the question with at most 4 words: {demo question3}
Do not provide a Yes/No answer: {demo Answer3}

Read the text: {demo text4d}
Answer the question with at most 4 words: {demo questioné}
Do not provide a Yes/No answer: {demo Answerd}

Read the text: {query text}

Answer the question with at most 4 words: {query question}
Do not provide a Yes/No answer:
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H Description of Evaluation Metrics

Metric

Description

ANLS (Average Normalized
Levenshtein Similarity)

Based on the Levenshtein (edit) distance, which measures the minimum
number of single-character edits needed to convert one string into another.
More lenient than usual ROUGE metrics and allows partial credit for
semantically correct approximate answers. This was a key metric in
the NeurIPS 2023 competition that introduced the federated DocVQA
dataset (Tobaben et al., 2024).

Exact Match

The fraction of test queries with final LM responses exactly matching the
ground truth answer. Considered important in QA tasks as most answers
tend to be at most 3 words.

ROUGE-1

Measures the overlap of unigrams (individual words) between the LM
response and the ground truth answer. Counts the number of words in
the prediction that also appear in the ground truth.

ROUGE-2

Measures the overlap of bigrams between the LM response and the
ground truth answer. Captures more contextual similarity than ROUGE-
1.

ROUGE-L

Captures sentence-level structure similarity by finding the longest se-
quence of words appearing in both LM response and ground truth in the
same order.

BLEU (Bilingual Evaluation
Understudy)

Computes the proportion of n-grams (1 to 4) in the LM response that
appear in the ground truth. The final score is the geometric mean of n-
gram precision multiplied by a penalty term for overly concise answers.

Table 2: Description of evaluation metrics used in QA tasks.

I Distributions of Number of Tokens for Q&A tasks

Frequency

Distribution of 4-shot prompt lengths

4007 Fed docVQA
300 4 Squad
200 -
100

0

2000 4000 6000 8000
number of tokens

Figure 3: The distributions of number of tokens in the 4 shot prompts (created using demonstration
and test examples) when # shards= 20 for two datasets. The prompts for the fed docVQA dataset are
longer due to verbose nature of the images, hence many more ocr extracted tokens.
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J Further Experimental Results for Q&A tasks

docvqa, #shards=10, Llama_33_70b docvqa, #shards=20, Llama_33_70b
057 4 x O-Shot baseline 057 squad, #shards=10, gemini-1. squad, gemini-1.!
0.56 - === DP-KSA 0.56 0.74 4 X 0-shot baseline 0.74
) g--’gi ]=¥— DP-KSA-KNN g-:i q 0.73 { =#%= DP-KSA 0.73 4
<Z( 023 053 1 ©} 0.72 | =%= DP-KSA-KNN 0.72 4
0.52 0.52 Z 0714 0.71 4
0.51 0.51 < 070 1 0.70 1
< P< 0.69 0.69 4
T T T T T T T T T T 0.68 ¢ 0.68 P<
T T T T T T T T T T
< 035 0.35 1 0.47 4 0.47
S 0.34 A 0.34 -
© (.33 0.33 4 S 0.44 0.44 4
E 0.32 0.32 4 g 0.42 - 0.42
9 031 0.31 o 0.40 o 0.40 -
X 5 0.38 0.38
X < % 0.36 0.36 1
o % ¢
T T T T T T T T T T 0.34 0.34 4
0.63 4 0.63 4 T T T T T T T T T T
o 0.61 0.61 1 0.80 0.80
" 0.60 - 0.60 i
) . —~ 0.79 0.79 4
o 059 7 0.59 @
3 9987 0.58 o 0.78 0.78
2 057 1 057 3 0974
oss 2 0. 077 ¥
=22 X 0.55 P 0.76 ¢
T T T T T T T T T T 076 7
T T T T T T T T T T
0.43 A 0.43
0.42 - 0.42
~ 0.55 0.55 -
& 0.40 4 0.40 ]
o 0.39 0.39 @ 0.54 0.54 -
3 038 1 0.38 4 2
e 3 0.53 0.53 4
0.36 0.36 = >
0.35 1 ¢ 0.35 5¢ 0.52 % 0.52 4
T T T T T T T T T T
T T T T T T T T T T
0.63 0.63
0.79 4 0.79 4
_ 0614 0.61 4
& 0.60 0.60 — 0.78 0.78 4
o 0.59 0.59 4 S
: o 0.77 i
3 0.58 1 0.58 =] 0.77
= 0574 0.57 © 0.76 ~ 0.76
0.55 3¢ 0.55 ¢ 0.75 1 0.75
T T T T T T T r r r T T T T T T T T T T
0.31 A 0.31 A 0.34 0.34 4
0.30 4 030 4 0.33 4 0.33 4
- i 029 5 0321 0.32 4
o 029 : D 0311 0.31
O 0.28 0.28 1 )
0.27 4 0.27 0.29 0.29 4
28 -x\i——“\.___. 028 .
X X 0.27 - 0.27 47~
T T T T T T T T T T T T T T T T T T T T
o 2 4 6 8 o 2 4 6 8 o 2 4 6 8 o 2 4 6 8
& & & &

Figure 4: A comparison of DP-KSA and DP-KSA-kNN for average Q&A task metrics. Left: docVQA
dataset using Llama 3.3-70B-It. Right: SQUAD dataset using Gemini-1.5-flash-8B.
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