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ABSTRACT

One aspect of learning to learn concerns the development of compositional knowl-
edge structures that can be flexibly recombined in a semantically meaningful
manner to analogically solve related problems. We focus on learning to learn
one-shot/few-shot generation and classification tasks of handwritten character
trajectories, as described in the Omniglot challenge. We show that solving the
challenge becomes possible, by suitably fostering a generative LSTM network to de-
velop well-structured, compositional encodings, which can be quickly reassembled
into new, unseen but related character trajectories. This is a major improvement
compared to the original approach, which explicitly provided character components.
We believe that the development of similarly compressed, compositional structures
may also be highly useful to address related learning to learn challenges in other
dynamic processing, prediction, and control domains.

1 INTRODUCTION

Since the introduction of the first connectionism models, it has been debated whether artificial
neural networks were able to develop compositional representations (Hupkes et al., 2020). With
our investigations of their inner working mechanisms, we show that generative long short-term
memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) are able to develop representations of
components and to recombine them in a new but compositionally meaningful manner, which in turn
shapes future learning.

We build on Partee’s (1995) definition of compositionality from linguistics: “The meaning of a whole
is a function of the meanings of the parts and of the way they are syntactically combined.” When
children learn new concepts, for example, the concept of a ‘bird’, they only need very few examples
in order to generalize to other types of birds. One explanation for this efficient learning is that, when
viewing, for example, a blackbird, children decompose it into its components, like wings, beak, feet
etc. (Gopnik, 2019). As a result, they recognize these components in other blackbirds, and even other
bird species, resulting in the correct classification of ‘bird’. Furthermore, children can rearrange these
components in creative ways, imagine new blackbirds, or even invent fictitious bird types that only
exist in their imagination.

For machine learning systems, on the other hand, the ability to learn new concepts fast with little
training samples is still a major challenge, which the field of learning to learn tries to tackle. Therefore,
the demand to include compositional capabilities into machines becomes more and more apparent
(Franklin et al., 2020; Gopnik, 2019; Lake et al., 2017). Battaglia et al. (2018) even go as far as
to ‘suggest that a key path forward for modern AI is to commit to combinatorial generalization as
a top priority’. In order to motivate researchers to investigate how human-like efficient learning
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based on compositionality, causality, and learning to learn can be realized within machine learning
algorithms, the Omniglot challenge has been introduced six years ago (Lake et al., 2015). It consists
of the following generation and classification tasks of handwritten character trajectories: (i) one-shot
regeneration of a character, (ii) one-shot generation of concept variants, (iii) one-shot classification,
and (iv) few-shot generation of new concepts. In the same work, Lake et al. (2015) provided a model
with a general idea on how to draw a character, by providing basic motor components, like half circles
or straight lines, using Bayesian program learning. Since the release of the Omniglot challenge, many
researchers from Google DeepMind, the MIT, and other universities, including Geoffrey Hinton and
Josh Tenenbaum, aimed at solving the challenge without providing such basic components (Edwards
& Storkey, 2016; Eslami et al., 2016; Feinman & Lake, 2020; George et al., 2017; Gregor et al., 2016;
Hewitt et al., 2018; Lake et al., 2015; Rezende et al., 2016; Shyam et al., 2017; Snell et al., 2017;
Vinyals et al., 2016). In a summary about the progress on the Omniglot challenge within the last
years, Lake et al. (2019) concluded that models’ performance on one-shot classification has been
largely improved (Shyam et al., 2017; Snell et al., 2017; Vinyals et al., 2016), whereas the progress on
the other tasks was very limited. Various generated examples of the same concept or of new concepts
were either very similar or too dissimilar, so that one could not recognize them any more (George
et al., 2017; Hewitt et al., 2018; Rezende et al., 2016). In other cases, only one task was tackled and
no model was able to perform all the tasks at once (Edwards & Storkey, 2016; Eslami et al., 2016;
Gregor et al., 2016). What seemed promising for solving the Omniglot challenge, though, was putting
strong inductive biases about compositional structures into the models (Fabi et al., 2020; Feinman &
Lake, 2020; Lake et al., 2015). In their overview article, Lake et al. (2019) encourage the inclusion of
causality (by applying sequential instead of pictorial data), learning to learn, and compositionality
into more neurally-grounded architectures that can perform all instead of just some of the tasks. We
are aware that learning to learn definitions diverge, which is why we adopt the understanding of Lake
and colleagues who suggest that “the model ‘learns to learn’ (Harlow, 1949; Braun et al., 2010) by
developing hierarchical priors that allow previous experience with related concepts to ease learning
of new concepts (Kemp et al., 2007; Salakhutdinov et al., 2012).”

In this paper, we present a way to solve the Omniglot challenge on our own sequential drawing
instead of pictorial dataset. Thereby, we do not provide basic motor primitives, but we foster their
development within an LSTM-based model. We incorporate the ability to recombine previously
learned components in a meaningful manner when confronted with new concepts to accelerate their
learning.

2 MODEL AND ONE-SHOT INFERENCE MECHANISM

In order to solve the Omniglot challenge’s tasks, we applied a generative RNN as shown in Figure 1.
This RNN consists of a variable-sized input layer, a linear latent embedding layer with 100 neurons,
a recurrent generator module with 100 LSTM units (Hochreiter & Schmidhuber, 1997), and a linear
output layer with two neurons. The input layer represents particular characters in form of one-hot
encoded vectors. Each input neuron projects its activity onto the next layer with its own set of weights.
Thus, a concept indicator induces a specific activity pattern within the latent code layer. This code,
which can be seen as the motor program encoding of the network, seeds and continuously shapes the
unfolding dynamics within the recurrent generator. Eventually, the hidden dynamics are mapped onto
the output layer, generating a change in x and y position at every timestep.

During training with 440 trajectories of the first half of the Latin alphabet (“a” to “m”) that we had
recorded ourselves, the model learned to generate trajectories out of one-hot encoded inputs. Since the
examples per character varied, the training resulted in the generation of average characters. Because
the goal of this training was not the perfect regeneration of the characters“a” to “m”, but rather the
emergence of compositional representations, we decided for only 10 training epochs and a batch size
of 1. When tackling the Omniglot challenge, the tasks should be solved with very few examples,
which is why, after training, the model was presented with one example of a new character (“n” to
“z”). If it had learned components during training as expected, it should be able to reassemble these
representations compositionally in order to generate new trajectories. Therefore, when presented with
new characters, we allowed only the first weights into the first feedforward layer (cf. blue weights
in Figure 1) to adapt for 1 000 iterations per character. This should re-arrange the already learned
representations of components, leaving the remaining parts of the network, including the recurrent
layer, untouched.
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Figure 1: Illustration of the one-shot inference mechanism. Only the blue weights that map the
concept indicator (here of the new concept “n”) onto a generative latent code are trained. The other
parts of the network remain unchanged. Thus, if dynamical primitives are indeed learned from
previously shown concepts, this mechanism should reassemble them to generate the new trajectory.

(a) Pre-trained model plus one-shot
inference mechanism

(b) one-shot inference mechanism
on untrained model (no training
from “a” to “m”)

(c) Pre-trained model (on “a” to
“m”) without one-shot inference
mechanism (on “n” to “z”)

Figure 2: Human handwritten (blue) and regenerated trajectories (black)

The generative LSTM models augmented with the one-shot inference mechanism were able to
regenerate new character trajectories, which have not been part of the training set and of which
only one example was presented (cf. Figure 2a). Applying the one-shot inference mechanism
on a previously untrained model (no training from “a” to “m”) did not lead to readable character
generations (Figure 2b), showing how important the training was and supporting our hypothesis that
sequence components are learned that can later on be recombined in a compositional manner. It led to
even worse results than the trained model on “a” to “m”, without the one-shot inference mechanism
on “n” to “z” (Figure 2c), showing that the one-shot inference mechanism cannot be viewed as a
generic training of the network. Rather, it compositionally rearranges previously encoded sequence
dynamics.

3 TACKLING THE OMNIGLOT CHALLENGE

To generate new variants of a character concept, after having applied the one-shot inference mech-
anism, we added normally-distributed noise with a scale between 0.009 and 0.15 onto the one-hot
encoded input vectors. The generation was successful and various variants per character can be
viewed in Figure 3a. For the classification task, instead of a one-hot encoded input, the network got
a zero vector of length 26 for every timestep. The error between the generated and the trajectory
of the presented variant was calculated and the gradient was backpropagated onto the input vector,
which was then passed forward through the network again. This was repeated 10 000 times for every
variant. The highest input activation represented the network’s classification. If tested on the variants
of Figure 3a, the mechanism classified 96, 7% correctly (88 out of 91 characters led to the highest
activation at the correct position in the input vector). Looking at the three mistakes more closely,
they were not even implausible (e.g., the second “u” was classified as an “f”). For the last generation
task of new concepts, the model was confronted with blended input vectors that indicated which
character should be included into the mixture to which extent. The results can be seen in Figure 3b
and show no abrupt changes, but very smooth blendings between two characters, supporting our
hypothesis of compositionality. In short, the generative LSTM model, together with the one-shot
inference mechanism, was able to solve the tasks of the Omniglot challenge. This is impressive,
since previous attempts to solve the Omniglot challenge used large amounts of background alphabets,
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(a) Generating character variants
(black) out of the original one (first
row).
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(b) Generation of new concepts
through blended input vectors.

Figure 3: Generation tasks of the Omniglot challenge

complex algorithms, and often tackled only one instead of all tasks (Lake et al., 2019; Rezende et al.,
2016; Edwards & Storkey, 2016).

4 ANALYSIS OF THE LSTM HIDDEN STATES

In order to further investigate our hypothesis that solving the Omniglot challenge was possible
because the initial training led to representations of general components of characters in the hidden
states of the LSTM layer, we analyzed the respective LSTM cell and hidden states when generating
characters “n” to “z”. The analysis we used was t-distributed stochastic neighbour embedding (t-SNE)
(Hinton & Roweis, 2003; van der Maaten & Hinton, 2008) with 1 000 iterations. Via a gradient-based
procedure, t-SNE projects the relations between data points from a high dimensional space onto a
two-dimensional space. For visualizing the corresponding trajectory parts, clustering was applied
with 2 as the maximum distance between two points to be considered as in the same neighborhood.
Furthermore, for a point to be considered as a core point, 5 samples needed to be in a neighborhood.

The 2d-representations of the cell states are clearly clustered with respect to their corresponding
character (Figure 4a). Thus, the c-states might be an important indicator for the network to stay
in this attractor and generate this one character. Focusing on the “w”, the spiral consists of almost

(a) Projection into 2d space of cell states when
generating different characters. The numbers represent
the corresponding timesteps.

(b) Hidden states h. The trajectory parts corresponding
to the timesteps of each cluster formed by t-SNE are
drawn in black with a cross marking their beginning.
The respective trajectory plots are centered on the first
respective cluster position. Note that the size of the
trajectory parts is not representative.

Figure 4: Results of the t-SNE analysis of the cell and hidden states.
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two circles, reflecting two very similar hidden state activation patterns, representing the downwards
and upwards movement, which is present two times in the “w”. Other components shared between
characters can also be identified in close proximity, like the half circle and downwards stroke in “q”
and “y”, or the stroke from bottom to top in “r” and “p” that look very similar in the current trajectory
variants. The projection of the hidden states h onto the 2d space identifies clear character components,
since the end of one sequence represents a significant change in the hidden values from one timestep
to another. It is important to note though that the network forms its own representations that might
differ from components humans would identify. Nevertheless, most often similar components led to
sequences in close proximity (Figure 4b). For example, on the left, there is a group of bottom to top
trajectory parts, curves in specific directions are clustered next to each other, and the “u” encoding in
the middle reflects the fact that it is generated by two very similar components, which are encoded in
the almost overlapping red circles. This speaks for our hypothesis that components are represented in
the LSTM hidden states.

5 CONCLUSION

The Omniglot challenge can be solved with a generative LSTM model without providing it any
knowledge about specific motor components. During training on some characters, the model formed
representations of components that it could recombine with the help of the one-shot inference
mechanism when it was confronted with new characters, facilitating future learning. By visualizing
the hidden states of the LSTM cells, we found evidence that such compositional structures developed
within the hidden states, making the mechanisms within the model more explainable. Even though
future work could implement learning to learn more explicitly, e.g., by training another network
to generate the one-shot weights or by including a suitable meta-objective (Finn et al., 2017), we
believe that learning to learn is realized in the sense that the gradient signal—that is the learning
signal—is directly shaped by the previously learned representations, thus advancing pure transfer
learning approaches. With respect to the no-free lunch theorem (Wolpert & Macready, 1997), we are
making the assumption that all dynamic patterns can be suitably compressed into characteristic latent
encodings, which then tap into the learned, compositional, recurrent structures.

Ultimately, this research is a step towards bringing specific Machine Learning architectures towards
closer resemblance to human cognitive mechanisms, by introducing compositionality as an inductive
bias into a simple LSTM network.
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A APPENDIX

A.1 APPLYING THE ORIGINAL OMNIGLOT DATASET

The Omniglot data was originally pictorial data containing 50 alphabets, with 20 variants per character
(Lake et al., 2015). To include stronger forms of compositionality and causality, Lake et al. (2019)
added a sequential stroke dataset, for which 20 Amazon Mechanical Turk participants traced the
pictures of the original characters. The introduction of the Omniglot dataset and the Omniglot
challenge, as well as the further introduction of the sequential dataset was of tremendous importance
for the Machine Learning community. Nevertheless, we want to criticize the sequential dataset in
a certain regard. On the left handside of Figure 5, there are two examples of “a” and “beta” with
the different strokes highlighted in different colors. It becomes apparent that the characters were
not naturally drawn with a pen, but traced with a computer mouse, leading to “a”s and “beta”s
that are composed of three or four different and rather arbitrary strokes instead of just one, which
would resemble a natural writing movement. This problem might be even larger for unknown
alphabets, about the generation of which the Amazon Mechanical Turk participants had no background
knowledge. It was most problematic for alphabets with a manifold of different strokes instead of just
a few, which is illustrated by the heterogeneous stroke orders of the first character of the Japanese
alphabet (cf. right handside of Figure 5).

Because of these shortcomings, we applied the new dataset of handwritten character trajectories of the
Latin alphabet in the main paper. With this, we wanted to ensure that the characters were produced by
experts of the alphabet, that they were generated freely instead of tracing previously drawn characters,
leading to consistent, natural, and correct trajectories. Furthermore, instead of a rather imprecise
computer mouse, the participants of the new dataset used a dedicated pen on a touch-sensitive surface,
making their writing more realistic. Furthermore, the 20 variants of the Omniglot dataset are very
similar, whereas the new dataset provides more natural variability in 440 examples per character from
10 different subjects, including script and print characters.

Figure 5: Examples of the sequential Omniglot dataset provided by Lake et al. (2019). Colors
represent consecutive strokes in the following order: red, green, blue, purple, turquoise. Note how “a”
and “beta” as well as the first character of the Japanese Hiragana alphabet are drawn with unusually
many strokes and in an inconsistent sequential manner.
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Figure 6: Original (blue) and regenerated (black) character trajectories of second half of the Greek
(top), Balinese (center), and Burmese (bottom) alphabets, after being trained on the respective first
halves.

Figure 7: Original (blue) and regenerated (black) character trajectories of the Greek, when trained on
the Latin alphabet.

Nevertheless, we also applied our network architecture to the sequential Omniglot dataset (Lake
et al., 2019). To do this, we transformed the trajectory data into difference values of x and y positions.
We furthermore deleted the information about when a new stroke ended in order not to prime the
network, but to let it develop its own compositional representations. Because of the shortcomings of
the sequential Omniglot dataset described above, which are worse in characters that are composed of
lots of different strokes, we selected alphabets that are complex, but originally not composed of too
many strokes.

When tackling the omniglot challenge most researchers applied 30 or more background alphabets
for training (e.g., Hewitt et al., 2018; Rezende et al., 2016). Since humans do not need so many
background alphabets and since most of the components are already represented in very few alphabets,
we hypothesized that our compositional approach does not need training on that many character
concepts. Therefore, we decided to train on only one alphabet, giving us the additional opportunity to
perform experiments with different alphabet combinations, that either do or do not share components.
Nevertheless, it must be mentioned that the variants of one character concept are unnaturally similar
in the Omniglot dataset, whereas humans are confronted with more varying examples (as represented
in the new dataset used in the main paper).

First, we tested whether the LSTM model and the one-shot inference mechanism also perform well
on single alphabets of the Omniglot dataset. Therefore, we trained the models on the first half of the
Greek, the Balinese, or the Burmese alphabet for 500 epochs. Then, we provided 2000 iterations of
the one-shot inference mechanism per character of the second half of these alphabets. Even though
in this experiment, the network was only trained on 20 similar variants instead of 440 varying ones
per character, the results for the one-shot regeneration of the characters of the second half of these
alphabets look quite promising, as can be seen in Figure 6, as well as in the Dynamic Time Warping
(DTW) distances: 0.356 (Greek), 0.378 (Balinese), 0.241 (Burmese).

Next, we tested whether the model could also use previously learned components of another alphabet.
Therefore we selected two alphabets of the original Omniglot dataset which share components: We
trained the model on the Latin alphabet for 500 epochs and then presented it with one variant of each
character of the Greek alphabet. Together with the one-shot inference mechanism (2000 iterations per
character), the model was able to regenerate most of the characters well with a DTW value of 0.329
(cf. Figure 7).

To investigate further whether recombining previously learned compositional representations leads
to the success in learning new characters efficiently, we selected alphabets of the original Omniglot
dataset for training and test with similar or differing components. For 500 epochs, we trained the
generative LSTM network on the Burmese, Greek, or Latin alphabet, or the first half of the Balinese
alphabet and tested its performance when confronted with one variant of the characters of the Balinese
alphabet. Since the components of the first and the second half of the Balinese alphabet should be the
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(a) Training on first half of the Ba-
linese alphabet provided all neces-
sary components leading to best
regeneration.

(b) Training on the Burmese alphabet provided most necessary
components leading to good regeneration.

(c) Training on the Latin alphabet did not provide all necessary
components leading to worse regeneration.

(d) Training on the Greek alphabet provides even less components
leading to worst regeneration.

Figure 8: Original (blue) and regenerated (black) character trajectories of the Balinese alphabet,
trained on the first half of the Balinese, or the whole Burmese, Latin, or Greek alphabet.

most similar, we expected best performance for this combination, followed by the Burmese-Balinese
combination, since their characters share lots of components. Not so many components are shared
between the Balinese and the Latin, or Greek alphabets, which is why we expected worst performance
here, assuming our compositionality hypothesis is true. Supporting our hypothesis, the one-shot
inference mechanism led to the best performance for training on the first half of the Balinese alphabet
(Figure 8a), followed by the Burmese (Figure 8b), Latin (Figure 8c), and Greek (Figure 8d) alphabet
(DTW distances: 0.378 vs. 0.384 vs. 0.427 vs. 0.509)

The model together with the one-shot inference mechanism was able to generate most of the characters
of the second half of various different Omniglot alphabets when having been trained on the first
half. It was further able to generate characters of one alphabet when it had been trained on an
alphabet with shared components. This is impressive because we applied only one instead of many
background alphabets and used the sequential, somewhat erroneous instead of the formerly mostly
applied pictorial dataset (in order to foster stronger forms of causality). Supporting our hypothesis
that during training, compositional representations are formed, which can later on be recombined
when confronted with new characters, the regeneration performance decreased when trained and
tested on alphabets that do not share similar components.
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