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Abstract

Nowadays Spiking Transformers have exhibited
remarkable performance close to Artificial Neu-
ral Networks (ANNs), while enjoying the in-
herent energy-efficiency of Spiking Neural Net-
works (SNNs). However, training Spiking Trans-
formers on GPUs is considerably more time-
consuming compared to the ANN counterparts,
despite the energy-efficient inference through neu-
romorphic computation. In this paper, we inves-
tigate the token sparsification technique for ef-
ficient training of Spiking Transformer and find
conventional methods suffer from noticeable per-
formance degradation. We analyze the issue and
propose our Sparsification with Timestep-wise
Anchor Token and dual Alignments (STATA).
Timestep-wise Anchor Token enables precise
identification of important tokens across timesteps
based on standardized criteria. Additionally, dual
Alignments incorporate both Intra and Inter Align-
ment of the attention maps, fostering the learning
of inferior attention. Extensive experiments show
the effectiveness of STATA thoroughly, which
demonstrates up to ∼1.53× training speedup and
∼48% energy reduction with comparable perfor-
mance on various datasets and architectures.

1. Introduction
Spiking Neural Networks (SNNs), considered the third gen-
eration of Neural Networks (Maass, 1997), hold immense
promise due to their low power consumption, event-driven
nature, and alignment with biological principles (Roy et al.,
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2019). The neurons in SNNs, inspired by biological coun-
terparts, produce sparse and discrete events through the
emission of binary spikes, facilitating communication with
post-synaptic neurons (Krestinskaya et al., 2019). Due to
the event-driven nature, SNNs offer a distinct advantage
over Artificial Neural Networks (ANNs) in terms of energy
efficiency (Furber et al., 2014; Merolla et al., 2014; Pei
et al., 2019), which becomes particularly beneficial to edge
computing scenarios where resources are constrained.

Recently, the pioneer Spiking Transformer (Zhou et al.,
2023b) successfully introduced the Transformer-style ar-
chitecture design to SNNs. Following this, there has been
a growing emergence of Spiking Transformers (Yao et al.,
2023a; Zhou et al., 2023a), gradually narrowing the per-
formance gap between Spiking Transformers and the ANN
counterparts (Dosovitskiy et al., 2020) on various datasets.
However, despite the energy-efficient inference achieved
through neuromorphic computation, the training of Spik-
ing Transformer is significantly more time-consuming com-
pared to its corresponding ANN-Transformer counterpart
due to the incorporation of an additional temporal dimension.
For instance, training a Spiking Transformer on ImageNet
requires even thousands of GPU hours, demanding substan-
tial computational resources and time. In addition to the
inefficient training, these Spiking Transformers always rely
on larger and more complex models to attain superior task
performance, resulting in increased energy consumption
during inference compared to traditional SNNs.

To enhance the energy and computational efficiency in
SNNs, researchers have made some efforts through various
methods. One of the most effective approaches to enhance
computational efficiency is sparsification, commonly known
as pruning (Chen et al., 2022; Yin et al., 2023). Nevertheless,
existing pruning methods for SNNs primarily focus on en-
hancing inference efficiency, while paying less attention to
the efficiency of the training process. Some pruning works
(Chen et al., 2021c; Kim et al., 2022) typically require a con-
siderable amount of additional training time and iterations
to obtain the pruned network, which can even result in in-
creased training overhead. Other sparsification works utilize
unstructured pruning to achieve greater energy savings for
the inference phase. However, unstructured sparsification
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relies on specific hardware to achieve efficient computation,
thereby limiting its ability to accelerate the training process
of SNNs on most GPUs. This raises a crucial question:
Can sparsification techniques accelerate the training of a
high-performance Spiking Transformers?

In this paper, we initially evaluate several conventional met-
rics for token sparsification within the current Spiking Trans-
former framework. However, we find that these metrics
inevitably result in performance degradation. We analyze
that the performance degradation mainly stems from two
factors: 1. Failure to capture semantic information. 2. Lack
of standardized and consistent evaluation of importance. To
tackle these challenges, we propose the approach called
Sparsification with Timestep-wise Anchor Token and dual
Alignments (STATA), which introduces the concept of the
Anchor Token for objective identification of the informative
tokens during token sparsification of Spiking Transformer.
Then we utilize the attention information of Anchor Token
across different timesteps to determine whether each token
should be pruned or retained. Specifically, the computa-
tional cost of the additional Anchor Token can be negligible
compared with that of numerous original tokens. Moreover,
we directly obtain the importance rankings of tokens based
on the inherent computations of the Self-Attention module,
resulting in minimal costs. Then, to tackle the disparities
in attention map quality and foster the improvement of in-
ferior attention maps, we propose dual Alignments, which
incorporate both Intra-Alignment and Inter-Alignment to en-
hance the poor attention across timesteps, heads, and layers.
Finally, our STATA not only demonstrates efficiency in both
training and inference stages of the Spiking Transformer,
but also maintains a comparable level of performance.

The main contributions of this work are threefold:

• We explore various token sparsification metrics in Spik-
ing Transformers, then introduce our Timestep-wise
Anchor Token for accurate token sparsification based
on attention, mitigating the sharp performance drop.

• To further enhance the pruning accuracy of inferior
attention in terms of timestep, head, and layer, we pro-
pose dual Alignments, which include Intra-Alignment
and Inter-Alignment of attention maps for training.

• Extensive experiments and ablation studies demon-
strate the efficacy of our STATA in enhancing the train-
ing and inference efficiency of various Spiking Trans-
formers while maintaining competitive performance.

2. Related Work
2.1. Spiking Neural Networks

The key distinction between Spiking Neural Networks
(SNNs) and traditional Artificial Neural Networks (ANNs)

lies in their utilization of discrete spikes instead of contin-
uous decimal values for information processing and trans-
mission. Spikes are typically generated by spike neurons,
such as Izhikevich neuron (Izhikevich, 2003) and Leaky
Integrate-and-Fire (LIF) neuron (Wu et al., 2018). Due to
the non-differentiability of spikes, the performance of SNNs
is influenced to some extent. To enhance performance, a
lot of works lift the performance of SNNs by incorporating
advanced architectures from ANNs, such as ResNet-like
SNNs (Hu et al., 2021a; Fang et al., 2021a; Zheng et al.,
2021; Hu et al., 2021b; Yao et al., 2023b), Spiking RNNs
(Lotfi Rezaabad & Vishwanath, 2020) and Spiking GNNs
(Zhu et al., 2022b).

2.2. Spiking Transformers

Recently, there has been a growing interest in Transformer-
like SNN, i.e. Spiking Transformer. Spikeformer(Li et al.,
2022) proposed to combine the architecture of Transformer
to SNNs, but this model is not a pure SNN due to the pres-
ence of numerous floating-point multiplication, division,
and exponential operations, which are not suitable for neu-
romorphic computation. Spikformer (Zhou et al., 2023b)
first introduces the innovative Spiking Self Attention (SSA),
which achieves energy-efficient self-attention in SNNs and
shows good performance with low energy consumption.
Subsequently, Spike-driven Transformer (Yao et al., 2023a)
further enhances the efficiency of Spiking Self Attention and
rearranges residual connections to ensure spikes are binary.
Additionally, Spikingformer (Zhou et al., 2023a) improves
upon the full binary spike architecture, enhancing gradient
backpropagation and achieving higher performance.

2.3. Sparsification of SNNs

Numerous approaches have been developed to enhance the
efficiency of neural networks, including sparsification(He
et al., 2018; Zhao et al., 2022), quantization(Wang et al.,
2019; Chen et al., 2021b; Yue et al., 2022; Xiao et al., 2023),
and distillation(Chen et al., 2023a; Guo et al., 2023), etc.
Among these, sparsification provides a prospect of mitigat-
ing the computing and storage overhead in neural networks.
It can be applied to various components, such as weights(Xu
et al., 2022), data(Sorscher et al., 2022; Zhuge et al., 2024),
and gradients(Perez-Nieves & Goodman, 2021). Recently,
many studies have investigated the sparsification of SNNs
to enhance their efficiency. Current research mainly focuses
on the sparsity of SNN weights. Notable approaches include
using the magnitude-based method (Yin et al., 2021; Chen
et al., 2021c), integrating classic optimization tools with the
SNN training method (Deng et al., 2021a), removing weak
weights based on threshold (Chen et al., 2023b), and explor-
ing the lottery ticket hypothesis in SNNs(Kim et al., 2022),
etc. However, current sparsification methods of SNNs pri-
marily concentrate on enhancing inference energy efficiency,
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while paying less attention to the time-consuming training
process on GPU caused by the introduction of temporal
dimension in SNN. Some pruning methods (Chen et al.,
2021c; Kim et al., 2022) even require extended training
time and iterations to attain pruned networks, resulting in
significant additional training costs.

3. Preliminaries
Spiking Neuron As the basic unit of SNNs, the spiking
neuron receives the resultant current and accumulates mem-
brane potential. This potential is then compared with the
threshold to determine whether a spike should be generated.
In our work, we consistently use LIF spike neurons. The
dynamic model of LIF is described as:

H[t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset )) , (1)

S[t] = Θ (H[t]− Vth) , (2)

V [t] = H[t](1− S[t]) + Vreset S[t], (3)

where τ is the membrane time constant, and X[t] is the
input current at time step t. When the membrane potential
H[t] exceeds the firing threshold Vth, the spike neuron will
trigger a spike S[t]. Θ(v) is the Heaviside step function
which equals 1 for v ≥ 0 and 0 otherwise. V [t] represents
the membrane potential after the trigger event which equals
H[t] if no spike is generated, and otherwise equals to the
reset potential Vreset .

Spiking Transformer As an emerging SNN model, the
Spiking Transformer first process the input image I by:

X = MP(SN(BN((Conv2d(I))))) (4)

where I ∈ RT×C×H×W , T , C, H , and W refer to the
timesteps, channels, height, and width, respectively. The
BN, Conv2d and MP represent the batch normalization
layer, 2D convolution layer and max-pooling, respectively.
SN refers to the spiking neuron. After this processing , I
is split and transformed into an image patches sequence
X ∈ RT×N×D. Then the patches sequence are used to
compute query (Q), key (K), and Value (V ) through the cor-
responding linear transform and spiking neuron as follows:

Q = SNQ (BN (XWQ)) , (5)

K = SNK (BN (XWK)) , (6)

V = SNV (BN (XWV )) , (7)

where Q,K, V ∈ RT×N×D. WQ, WK , WV are corre-
sponding learnable weights for query, key and value. SNQ,
SNK , SNV are spiking neurons for Q,K and V , respec-
tively. Then the most fundamental component of Spiking

Transformer, i.e. Spiking Self Attention (SSA) is computed
as below:

SSA(Q,K, V ) = SN
(
QKTV ∗ s

)
(8)

where s serves as a scaling factor to control the magnitude
of the output results as mentioned in Spikformer (Zhou et al.,
2023b).

After being processed by the Spiking Transformer encoder,
which comprises multiple Spiking Self-Attention (SSA) and
Feed-forward Network (FFN) layers, the resultant features
are forwarded through a Global Average Pooling (GAP) and
a classification head for prediction.

4. Methodology
In this section, we highlight the limitations of several com-
monly used metrics for token sparsification in the current
Spiking Transformer. Then we propose Sparsification with
Timestep-wise Anchor Token and dual Alignments (STATA)
to efficiently train the Spiking Transformer. Firstly, we in-
troduce the Timestep-wise Anchor Token into the spiking
transformer structure, enabling an accurate assessment of
the importance among tokens for sparsification. Subse-
quently, we devise dual Alignments for training, including
Intra-Alignment and Inter-Alignment for attention maps,
which further enhance the performance.

Image SSA Timestep1 Timestep2 Timestep3 Timestep4 T-avg

Figure 1. Comparison of the attention maps between Spiking Self
Attention (SSA) and our STATA method on ImageNet. We average
the value of SSA in original Spiking Transformer to demonstrate
the attention maps of SSA. Meanwhile, we demonstrate the at-
tention maps of STATA across different timesteps. Furthermore,
T-avg shows the average attention map among timesteps in our
STATA. The attention maps obtained from STATA better reflect the
foreground regions, which is crucial for identifying and preserving
the informative tokens in sparsification.

4.1. How to prune tokens in Spiking Transformer

In the current Spiking Transformers, images are split into to-
kens with multiple timesteps. These tokens are then fed into
a sequence of Spiking Self Attention (SSA) and Feed For-
ward Networks (FFN) for processing. A direct strategy to
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accelerate the training process of the Spiking Transformer
is reducing the number of tokens. However, identifying
which tokens to be pruned among multiple timesteps poses
a non-trivial challenge within the current Spiking Trans-
former framework. As illustrated in Table 1, we have tried
several pruning metrics for token sparsification in Spik-
ing Transformer (Zhou et al., 2023a) on CIFAR100. We
perform token sparsification directly based on the ranking
scores derived from these metrics, and maintain their train-
ing overhead comparable. Nevertheless, these metrics result
in noticeable performance degradation.

The performance degradation primarily arises from the in-
ability of these metrics to effectively identify and retain
important tokens in the training of the Spiking Transformer.
Additionally, We attribute this issue to two factors:
(a). Failure to capture semantic information. We con-
sider the foreground region of an image to be important, as it
always carries abundant semantic information and category-
specific details. However, random sampling fails to distin-
guish between the foreground and background, resulting
in the loss of numerous important tokens. Moreover, the
l1-norm metric is also inadequate in capturing semantic
information and identifying the foreground region.

Without fuse
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Figure 2. Illustration of Timestep-wise Anchor Token for token
sparsification. This sparsification component is plug-and-play and
the computational cost is negligible.

(b). Lack of standardized and consistent criteria of im-
portance. As for Spiking Self Attention (SSA) in the
original Spiking Transformer, it possesses the ability to
capture semantic information. However, it may still not
serve as a good criterion. This is because the values of Self
Attention are influenced by the similarity between tokens.
Consequently, tokens located in the background region may
exhibit high attention values if there are numerous other to-
kens in the background region that are similar to them. This
phenomenon is illustrated in Figure 1, where the attention
maps of SSA fail to accurately identify the foreground. In
the SSA-based method, we recognize that the importance
score of each image token is determined collectively by

the other image tokens. It is evident that different tokens
employ inconsistent criteria when assigning scores. Hence,
there is a need for a standardized scoring method to ensure
consistency.

Token Pruning
Metric

Top-1
Accuracy (%)

Training Time
Overhead

Original 79.98 100%
Random 78.35 ∼67%
l1-norm 78.51 ∼67%

SSA 78.47 ∼67%

Table 1. Different metrics for token sparsification in the current
Spiking Transformers all lead to significant performance degrada-
tion. Original: the original model without any pruning. Random:
randomly pruning token across timesteps. l1-norm: applying l1-
norm to rank and prune tokens. SSA: ranking and pruning tokens
based on the averaged value of Spiking Self Attention (SSA) across
all image tokens.

4.2. Sparsification with Timestep-wise Anchor Token

To consistently compare each token across different
timesteps, we introduce the timestep-wise anchor token
to accurately extract important foreground regions across
each timestep. Under the Spiking Transformer (Zhou
et al., 2023b) paradigm, we denote the input image as
I ∈ RT×C×H×W . The image is first split to several to-
kens X ∈ RT×N×D, where N = p2, D = C × H

p × W
p .

Then we add our Anchor Token at the beginning position
to obtain new patches sequence X ∈ RT×(N+1)×D. Then,
each token is mapped to one vector through a linear layer
with weights W ∈ RD×D′

, where D′ is the hidden dimen-
sion. We denote the i-th token in the j-th timestep as Xj

i

and introduce the Anchor Token in the j-th timestep to be
Xj

0 . Then, we can calculate the importance score of the
image tokens in timestep j by Anchor Token as follows:

Aj = Eh

[
Qj

0K
j⊤
1: · s

]
(9)

where Eh means taking the average attention value of mul-
tiple heads (Vaswani et al., 2017). Qj

0 means the query
vector of the Anchor Token in timestep j, which can be
calculated by Qj

0 = SNQ(BN(Xj
0WQ)) and WQ refers to

the learnable weights for the query. Kj
1: is the key matrix of

timestep j excluding the first row (Anchor Token), which is
calculated as Equation (6). s serves as a scaling factor.

As the Anchor Token calculates importance score separately
for each timestep, we refer to it as the Timestep-wise Anchor
Token (TAT). The main rationale behind the timestep-wise
design is rooted in the inherent temporal nature of the Spik-
ing Transformer. Hidden tokens at different timesteps may
exhibit distinct characteristics, which may require differ-
ent treatment. It is also worth noting that these importance
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scores can be obtained by directly extracting the spiking
self-attention tensor that corresponds to the anchor token
in the 0-th row. This process does not incur any additional
computational or storage overhead.

After obtaining the importance scores of the tokens, we can
selectively divide the tokens into two sets, i.e., informative
set I and non-informative set N , where I mainly includes
the tokens with larger importance score and N is composed
of the remaining tokens. We introduce γ = |I|

|I|+|N | to
control the sparsity. As depicted in Figure 2, the sparsi-
fication module is seamlessly integrated into the Spiking
Transformer framework, and we use PI to denote the set of
insert locations for this module.

4.3. Intra-Alignment of attention

According to Figure 1, it can be observed that there exist
noticeable variations in the quality of the attention maps
across the timestep dimension. A similar phenomenon also
emerges in the head dimension due to the nature of multi-
head design (Vaswani et al., 2017). However, excessive
variations are not desirable, as inferior attention may fail
to accurately identify important tokens. On the one hand,
excessive variations across timesteps hinder the effective-
ness of the token identification and sparsification process
described in Section 4.2. On the other hand, as the timestep-
wise attention map is derived by averaging attention across
heads, significant disparities among the heads also have a
detrimental effect on the timestep-wise attention map, which
hampers the accurate sparsification of tokens. To address
these issues, we propose Intra-Alignment of attention dur-
ing the training phase, which uses the superior attention
map to supervise the inferior ones. Specifically, the Intra-
Alignment consists of two dimensions: timestep and head.
In terms of timestep alignment, we first partition the atten-
tion maps based on the timestep dimension and sort them
according to the lp-norm (Liu et al., 2017)(p = 2). Subse-
quently, we leverage the top half of the attention maps to
facilitate the learning of the bottom half ones. Similarly, in
terms of head alignment, we partition, sort, and align the
attention maps based on the head dimension. Finally, we
choose to align the attention maps located in the position set
Pa, and the intra-layer alignment loss can be formulated as:

Lintra =
1

K

K∑
i=1

(
D(ϕ̃Ti , ϕ̂Ti) +D(ϕ̃Hi , ϕ̂Hi)

)
=

1

K

K∑
i=1

(
∥ϕ̃Ti − ϕ̂Ti∥2 + ∥ϕ̃Hi − ϕ̂Hi∥2

)
,

(10)

where K = |Pa| denotes the number of positions for Intra-
Alignment, D(·) represents the distance function (we utilize
l2 loss in our case), ϕ̃Ti and ϕ̂Ti refer to the bottom half

and the top half attention maps, respectively, based on the
timestep dimension. Similarly, ϕ̃Hi and ϕ̂Hi represent the
ones based on the head dimension. Since the number of
timesteps and heads is small, it is worth noting that our Intra-
Alignment does not significantly increase training time and
incurs no additional cost during inference.

Algorithm 1 STATA
Input: Spiking Transformer model f(·), training dataset

T , Anchor Token X0, location sets PI , Pa, Pr, number
of transformer layers L, Timestep T .

1: for (x, y) ∈ T do
2: X = patchify(x)
3: for k in 0, . . . , L− 1 do
4: X = SSAk(X)
5: if k ∈ PI then
6: for j in 1, . . . , T do
7: ranking tokens according to Equation (9)
8: end for
9: else if k ∈ Pa then

10: collect attention map ϕTk and ϕHk for Intra-
Alignment loss Lintra in Equation (10)

11: else if k ∈ Pr then
12: collect attention map ϕk for computing Inter-

Alignment loss Linter in Equation (11)
13: end if
14: X = FFNk(X)
15: end for
16: obtain final loss as Equation (12) to backpropagate
17: end for
Output: Token pruned Spiking Transformer fp(·)

4.4. Inter-Alignment of attention

In addition to the quality variations within the attention map
of a layer, there are also variations in the attention maps
across different layers. Inspired by (Wolchover, 2018; Chen
et al., 2021a), which suggests that deep features always
capture more semantic visual concepts than shallow ones,
we introduce the attention alignment among layers, which
utilizes the attention maps derived from deep layers to en-
hance the attention ability of shallow layers. We select the
attention maps of layers located in the position set Pr, and
the loss of Inter-Alignment among Layers can be written as:

Linter =
1

Γ

∑
i∈Pr

∑
j∈Pr,j>i

D (Ti (ϕi) , Tj (ϕj))

=
1

Γ

∑
i∈Pr

∑
j∈Pr,j>i

∥Ti (ϕi)− Tj (ϕj)∥2 , (11)

where Γ denotes the number of pair loss, l2 distance is
used for function D(·), ϕ refers to the attention map and
the transformation function T is utilized to process the at-
tention maps. Specifically, interpolation is employed to
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Methods Architecture OPs (G) Energy (mJ) TimeStep Acc (%)

Hybrid training (Rathi et al., 2020) ResNet-34 - - 250 61.48
TET (Deng et al., 2021b) SEW-ResNet-34 - - 4 68

Spiking ResNet (Hu et al., 2021a) ResNet-34 65.28 59.295 350 71.61
ResNet-50 78.29 70.934 350 72.75

STBP-tdBN (Zheng et al., 2021) Spiking-ResNet-34 6.5 6.393 6 63.72

SEW ResNet (Fang et al., 2021a)
SEW-ResNet-50 4.83 4.89 4 67.78
SEW-ResNet-101 9.3 8.913 4 68.76
SEW-ResNet-152 13.72 12.891 4 69.26

Spikformer(Zhou et al., 2023b) Spikformer-8-768 22.09 21.48 4 74.81

Random Token Spikformer-8-768 10.62 11.11 4 70.13
SSA-based Spikformer-8-768 10.64 11.12 4 70.45

STATA (ours) Spikformer-8-768 10.70 11.16 4 74.03

Table 2. Experiments on ImageNet. We compared STATA with other pruning-based training acceleration strategies, all of which maintain
the similar acceleration ratios. OPs refers to Synaptic Operations (SOPs) in SNN and Floating-point Operations (FLOPs) in ANNs.
Energy represents the average theoretical energy consumption.
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Figure 3. Illustration of dual Alignments which include Intra-
Alignment and Inter-Alignment of attention maps. To illustrate,
we simply depict two layers’ attention, labeled as Shallow Self-
Attention (in the shallow layer) and Deep Self-Attention (in the
deep layer). We illustrate the item used for calculating the Intra-
Alignment loss Lintra and Inter-Alignment loss Linter . T-wise
means Timestep-wise division, H-wise means head-wise division.

align and match the attention maps of different sizes. It
is important to note that ϕj in Equation (11) is detached
during back-propagation. Due to the number of related lay-
ers and the dimension of the attention maps are small, the
computational burden associated with this loss term can be
disregarded. Finally, we employ the following loss to train
the token-pruned Spiking Transformer:

L = LCE (fθ;x, y) + αLintra + βLinter , (12)

where LCE represents cross entropy loss, fθ refers to the
Spiking Transformer model f with parameter θ. α and β
are hyper-parameters. x and y are sample and label, respec-
tively. By employing the aforementioned design, we can
efficiently train the Spiking Transformer as Algorithm 1 and
subsequently obtain a token-pruned Spiking Transformer
for efficient inference.

5. Experiments
5.1. Setups

Models and datasets We evaluate our method, Sparsifi-
cation with Timestep-wise Anchor Token and dual Align-
ments (STATA), using three Spiking Transformers: Spik-
former (Zhou et al., 2023b), Spike-driven Transformer (Yao
et al., 2023a) and Spikingformer (Zhou et al., 2023a). In
certain cases, we denote the corresponding Spiking Trans-
former with B blocks and D dimension as ST-B-D. As for
datasets, to demonstrate the superior performance of our
method in terms of accuracy, training costs, and inference
efficiency, we conduct experiments on various datasets in-
cluding static datasets CIFAR-10/100 (Krizhevsky, 2009),
ImageNet (Deng et al., 2009) and neuromorphic datasets
CIFAR10-DVS (Li et al., 2017) and DVS128 Gesture (Amir
et al., 2017).

Implementation The experimental setup follows (Zhou
et al., 2023b). For the ImageNet dataset, the size of the
input image is set to 224 × 224, and the image is divided
into 196 patches. We utilize the AdamW optimizer and
perform training on 8 GPUs, with a batch size of 128, over
a total of 310 training epochs. Standard data augmentation
techniques, such as random augmentation, mixup, are also
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employed during the training process. As for CIFAR10/100,
the input size is set to 32 × 32, and each image is divided
into 64 patches. We conduct the training on a single GPU
using a batch size of 192. The timestep is set to 4 and
the training epoch is 310, which are consistent with that of
ImageNet. For neuromorphic datasets CIFAR10-DVS and
DVS128 Gesture, the image size is set to 128 × 128, the
patch size is 16 × 16, and the timestep is 16. For token
sparsification, we insert the token sparsification module
every 3 blocks, beginning from the block-(L/3), where L is
the number of layers. The alignment location sets Pa and Pr

are defined as {0, L/3 + 1, L− 1}. The factor α and β are
set to 1e− 2. All experiments are conducted on RTX-3090
GPUs

9
Figure 4. Ablation study of different γ. Top: impact of γ on CI-
FAR100 Top-1 Accuracy. Bottom: impact of γ on the memory
consumption during training.

5.2. Token Sparsification of Spiking Transformers

Comparison with traditional pruning methods on Im-
ageNet. For the purpose of comparison, we evaluate
several pruning-based training acceleration strategies, in-
cluding Random Token and SSA-based methods, based on
the Spikformer on the ImageNet dataset. Random Token
refers to the random selection and pruning of tokens. SSA-
based represents pruning tokens dependent on the average
of the original Spiking Self Attention (SSA). We ensure
that the training speedup remains approximately consistent
(∼1.53×) across these methods. As demonstrated in Ta-
ble 2, the traditional pruning methods encounter noticeable
performance degradation on ImageNet. In contrast, our
method achieves a significant improvement compared to
the other pruning-based training acceleration methods. Fur-
thermore, we evaluate the inference efficiency using OPs

(Merolla et al., 2014) and theoretical energy consumption.
Our STATA can achieve ∼52% OPs reduction and ∼48%
energy reduction compared to the original model, demon-
strating the improved inference efficiency of our method.

Methods Acc
(%)

Mem
(GB)

Training
Speedup

Energy
(mJ)

Original 79.98 18.74 1× 1.29
SSA-based 78.47 12.10 1.48× 0.70

STATA 79.86 12.16 1.48× 0.71

Table 3. Experiments on accuracy and comprehensive efficiency
comparison of Spiking Transformer on CIFAR100.

Comparison with different Spiking Transformers on CI-
FAR10/100 and neuromorphic Datasets. To further
evaluate the effectiveness of our methods among different
architectures of Spiking Transformers, we apply our token
sparsification approach to Spikformer(Zhou et al., 2023b),
Spike-driven Transformer (Yao et al., 2023a) and Spiking-
former (Zhou et al., 2023a). As illustrated in Table 4, our
STATA demonstrates considerable performance across dif-
ferent Spiking Transformers not only on static datasets such
as CIFAR10/100, but also on neuromorphic datasets includ-
ing CIFAR10-DVS and DVS128 Gesture. These results
highlight the transferability of our method across different
architectures of Spiking Transformers.

We also present a comprehensive analysis of the efficiency
of our STATA method on Spikingformer from multiple
perspectives, as shown in Table 3. Our STATA method
maintains considerable efficiency in terms of training speed,
training memory consumption, and inference energy con-
sumption, which is comparable to the efficiency achieved
by SSA-based pruning. However, our approach exhibits a
noticeable accuracy advantage over the SSA-based method.
Moreover, when compared to the original Spiking Trans-
former, our STATA method demonstrates superior efficiency
in both the training and inference phases.

5.3. Ablation Study

Influence of different γ. Since γ governs the sparsity in
our work, we aim to evaluate the influence of various values
of γ from multiple perspectives. We investigate five γ con-
figurations: {0.2, 0.4, 0.6, 0.8, 1.0}, with γ = 1.0 represent-
ing the original Spikingformer. Our experiments are con-
ducted based on two Spikingformer architectures, namely
ST-4-384 and ST-4-256, using the CIFAR100 dataset. As de-
picted in Figure 4, when γ < 0.8, the accuracy of both two
models steadily improves with the growth of γ and reaches
the peak at γ = 0.8. It is noteworthy that our sparsification
method can even enhance the model performance compared
with the original model in the case of γ = 0.6 and 0.8. In
terms of memory consumption during training, a decrease
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Methods Architecture
CIFAR10 CIFAR100 CIFAR10-DVS DVS128 Gesture

T Acc T Acc T Acc T Acc

Rollout (Kugele et al., 2020) VGG-11 - - - - 48 66.8 240 97.2
Hybrid training (Rathi et al., 2020) VGG-11 125 92.2 125 67.9 - -

Dspike (Li et al., 2021) ResNet-19 6 94.3 6 74.2 10 75.4 10 -
STBP-tdBN (Zheng et al., 2021) ResNet-19/17 4 92.9 4 70.9 10 67.8 10 96.9

PLIF (Fang et al., 2021b) Spike-based BP 8 93.5 8 70.9 20 74.8 20 97.6
TA-SNN (Yao et al., 2021) CNN-based SNN - - - - 10 72 60 98.6
DSR (Meng et al., 2022) ResNet-19 20 95.4 20 78.5 20 77.3 20 -
TCJA (Zhu et al., 2022a) VGGSNN - - - - 10 80.7 20 99

Spikformer (Zhou et al., 2023b) Spikformer 4 95.2 4 77.9 16 80.9 16 98.3
Spike-driven T (Yao et al., 2023a) Spike-driven T 4 95.6 4 78.4 16 80.0 16 97.9∗

Spikingformer (Zhou et al., 2023a) Spikingformer 4 95.8 4 80.0 16 81.4 16 98.6

STATA (ours)

Spikformer 4 95.0 4 77.7 16 80.7 16 98.3
Spike-driven T 4 95.4 4 78.1 16 79.7 16 97.6
Spikingformer 4 95.8 4 79.9 16 81.2 16 98.6

Table 4. Experiments on different Spiking Transformers. Note that our STATA uses less training resources. Compared to the original
Spiking Transformers, our STATA can achieve comparable performance with up to ∼1.5× training acceleration, ∼36% memory reduction
and ∼45% energy saving. ∗ denotes our reproduction. We evaluate not only on static datasets CIFAR10/100, but also on the neuromorphic
dataset CIFAR10-DVS and DVS128 Gesture.

TAT Intra
Align

Inter
Align

Top-1
Acc (%)

Top-5
Acc (%)

/ / / 78.31 93.82
AT / / 78.98 94.05
✓ / / 79.23 94.11
✓ ✓ / 79.58 94.19
✓ ✓ ✓ 79.86 94.28

Table 5. Ablation study of each proposed component in STATA on
CIFAR100. We use random token pruning as the baseline. TAT
refers to Timestep-wise Anchor Token, while AT is Anchor Token
without timestep-wise. Intra Align and Inter Align refers to Intra-
Alignment loss and Inter-Alignment loss during training.

in the value of γ is associated with a reduction in memory
usage. When γ = 0.2, our STATA method achieves ∼36%
memory reduction during training, while still maintaining
performance comparable to the original model. Moreover,
the ST-4-384 model with γ = 0.2 sparsification demonstrates
enhanced memory efficiency compared to the original ST-4-
256 model.

Effectiveness of each proposed component. To illustrate
the contribution of each component, we conduct the ablation
study on the CIFAR100 based on Spikingformer(Zhou et al.,
2023a). We establish a baseline using random token prun-
ing and gradually introduce each component of the STATA
framework. As depicted in Table 5, the incorporation of
Anchor Token brings about a significant performance im-
provement by effectively identifying important tokens. Ad-
ditionally, the Timestep-wise Anchor Token (TAT) indeed

enhances the model performance through its finer-grained
identification at the timestep level. With respect to the dual
Alignments, both Intra-Alignment and Inter-Alignment con-
tribute to further improving the model performance.

γ Top-1 Acc (%) OPs Ratio Power Ratio

original 79.98 100% 100%

0.8 80.65 82.72% 84.91%
0.6 80.19 72.99% 75.46%
0.4 79.98 63.69% 66.58%
0.2 79.86 54.87% 57.92%

Table 6. Experiments on the inference efficiency of STATA with
multiple γ configurations. We illustrate the ratio of our method
in terms of OPs and Power ratio compared to the original Spiking
Transformer model.

5.4. Efficiency evaluation

Training efficiency on acceleration ratio and memory.
To demonstrate the training efficiency of our proposed
method, we conduct a series of experiments to evaluate the
training speedup and memory consumption. Specifically,
we investigate the performance of ST-4-384 on CIFAR100
and ST-8-768 on ImageNet based on Spikingformer archi-
tecture, considering different values of pruning ratio factor
γ. As illustrated in Figure 5, the training acceleration ra-
tio increases as the value of γ decreases. Notably, when
γ = 0.2, the speedup ratio reaches ∼1.6× on ImageNet
and ∼1.48× on CIFAR100. Additionally, it is important to
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highlight that the ImageNet model ST-8-768 demonstrates
a higher acceleration ratio compared to the CIFAR model
ST-4-384.
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Figure 5. Training speedup ratios on different Spiking Transformer
architectures and pruning ratio factor γ. We present the acceler-
ation ratios based on ST-4-384 for CIFAR-100 and ST-8-768 for
ImageNet.

Inference efficiency on energy. In addition to the train-
ing efficiency, our STATA model also demonstrates energy
efficiency during inference. To evaluate this aspect, we
conduct experiments using the Spikingformer-4-384 and
evaluate its performance on the CIFAR100 test dataset by
measuring the OPs and Power ratio. Then, we compare
our STATA method with the original Spiking Transformer
model to analyze the OPs ratio and Power ratio. The results
are presented in Table 6. As shown in it, our STATA method
achieves a significant reduction both in computational com-
plexity and energy consumption compared to the original
Spiking Transformer. Specifically, our method can save
approximately 45% of the original model’s OPs and 42% of
its energy consumption.

6. Conclusion
In this paper, we propose Sparsification with Timestep-wise
Anchor Token and dual Alignments (STATA) as a novel
approach to simultaneously enhance the efficiency of both
training and inference in the Spiking Transformers. STATA
is a versatile method that can be seamlessly integrated with
various Spiking Transformer architectures. By leverag-
ing the low-cost Timestep-wise Anchor Token and dual
Alignments, our method achieves outstanding efficiency in
both training and inference phases while maintaining per-
formance comparable to the original model.
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