
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS UNDERSTANDING GATED LINEAR RECUR-
RENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear Recurrent Neural Networks (RNNs) have attracted attention for their mem-
ory and computational efficiency. In particular, gated linear RNNs enable non-
linear transformations through gating mechanisms while still maintaining linear
time complexity by removing hidden states from them. However, the impact of
the gate mechanisms and such removal of hidden states from them remains un-
explored. Here we empirically investigate the impact of these gating mechanisms
and find that gate values near zero or one highly depend on hidden states, leading
to unintended distribution shifts of gate values when hidden states are removed in
gated linear RNNs. Based on our findings, we propose an approach to mitigate
the distribution shifts, which empirically improves performance on long-sequence
modeling tasks.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the dominant architecture for sequence modeling.
Despite its empirical success, their self-attention mechanism has a fundamental limitation in model-
ing long sequences because their computational complexity scales quadratically with respect to the
sequence length. Linear recurrent neural networks (RNNs) have attracted attention because of their
memory and computational efficiency as an alternative to transformers. Linear RNNs have linear
dependencies on previous hidden states, which enables us to use parallel computation such as convo-
lution, parallel scan algorithms, improving the computational efficiency of RNNs. To date, various
linear RNN variants have been proposed (Gu et al., 2022a;b; Smith et al., 2023; Orvieto et al., 2023;
Qin et al., 2023), demonstrating the efficacy on modeling long sequences on benchmarks.

Gating mechanisms have demonstrated their effectiveness in RNNs for capturing long-range de-
pendencies by enabling selective memory updates and maintaining gradient stability through gates.
Specifically, LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung et al., 2014) have been
successful on sequence modeling tasks. In particular, gated linear RNNs can incorporate nonlin-
ear transformations through gating, while it is possible to achieve parallel computation since gate
mechanisms are input-dependent (Gu & Dao, 2024; Qin et al., 2023; De et al., 2024; Feng et al.,
2024). However, gated linear RNNs remove hidden states from their gate mechanisms to maintain
linear recurrence. Since the impact of this removal has not been thoroughly explored, it may lead to
undesirable results.

In this paper, we empirically investigate the impact of removing hidden states from the gate mech-
anisms to understand their dynamics in gated linear RNNs. We find that gate values near zero or
one highly depend on hidden states, while inputs contribute broadly to gate values across the entire
range from zero to one. As a result, a distribution shift of gate values occurs when hidden states
are removed from the gates, where the frequency of gate values near zero or one decreases. This
distribution shift is not desirable as large gate values close to one are necessary to capture long-
term dependencies. To mitigate this distribution shift, we propose a simple approach that applies
the Gumbel-Softmax trick (Maddison et al., 2017; Jang et al., 2017; Li et al., 2018) for initializa-
tion of bias terms of gates. Experiments show our proposed algorithm improves performance on
long-sequence modeling tasks.

Our contributions are summarized as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We empirically investigate the impact of removing hidden states from gating mechanisms
on gated linear RNNs and find that this causes an unintended distribution shift of gate
values.

• We introduce a new bias initialization method to mitigate the distribution shift.
• We evaluate our proposed initialization and show its effectiveness compared to various bias

initializations on sequence modeling tasks.

2 UNDERSTANDING GATING DYNAMICS OF GATED LINEAR RNNS

We empirically investigate the gating dynamics of gated linear RNNs. We first introduce settings
of our empirical studies including models and tasks, followed by highlighting the difference of the
gate distribution between the gated linear and nonlinear RNNs. By analyzing distributions of gate
values, we show that removing hidden states leads to the shift of distributions.

2.1 GATED LINEAR AND NONLINEAR RNNS

We introduce linear RNNs and gated linear RNNs. We focus on multi-layer models commonly used
in linear RNNs (Orvieto et al., 2023; Qin et al., 2023). Linear RNNs are variants of RNNs which do
not have any nonlinear activation functions. Given a sequence X = (x0, . . . ,xt, . . . ,xT), where its
t-th element is a d-dimensional vector, xt ∈ Rd, hidden states of linear RNNs are computed with
linear recurrence as follows:

ht = Wihht−1 +Wixxt, (1)
where Wih,Wix ∈ Rd×d are weight matrices, ht ∈ Rd is a vector of hidden states, and ht−1 ∈ Rd

is that of the previous hidden states. Gated linear RNNs (Qin et al., 2023; Feng et al., 2024; Gu &
Dao, 2024) enable nonlinear transformations through gating mechanisms while maintaining linear
recurrence. To focus on the dynamics of gating mechanisms, we use the minimal gated linear RNN
defined as follows:

zt = σ(Wzxxt + bz), (2)
x̃t = Wixxt + bh, (3)
ht = zt ⊙ ht−1 + (1− zt)⊙ x̃t, (4)

where Wzx ∈ Rd×d is a weight matrix, zt is an update gate, σ(·) denotes the sigmoid activation
function, x̃t denotes the transformed input, bz,bh ∈ Rd are bias terms, and ⊙ denotes element-wise
multiplication. In the same way, the minimal gated nonlinear RNN can be introduced as follows,
which includes hidden states in the sigmoid function:

zt = σ(Wzxxt +Wzhht−1 + bz), (5)
x̃t = Wixxt + bh, (6)
ht = zt ⊙ ht−1 + (1− zt)⊙ x̃t, (7)

where Wzh ∈ Rd×d is a weight matrix.

2.2 SYNTHETIC TASKS

We use two synthetic tasks for sequence modeling. In these synthetic tasks, we used 3-layer RNNs,
where the size of hidden states was set to 128, and the dimension of embedding was set to 128. We
trained models for 50K steps using AadmW optimizer with a learning rate of 0.0001 and a batch
size of 64.

The copying task (Arjovsky et al., 2016) aims to evaluate the memorization ability to capture long-
term dependencies. The input sequence consists of M memorizing tokens, T dummy tokens, and
M output tokens. The task requires to memorize the first M tokens and output the same of the first
M tokens on the last M steps. From N tokens (0, 1, . . . , N − 1), the first M tokens are randomly
set from (1, . . . , N − 2), the middle T dummy tokens are set to 0, and the last M output tokens
are set to N − 1. We set N = 10, M = 10, and T = 500, resulting in total sequence length 520.
Following (Gu et al., 2020), we compute the loss for the output tokens and use UGI (Gu et al., 2020)
which initializes biases whose post-activation values follow a uniform distribution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

200000

1st layer

0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

200000

2nd layer

0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

200000
3rd layer

0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

200000

250000

300000

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

1.25

1.50

1e6

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

1e6
0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

200000
1st layer

0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

2nd layer

0.0 0.2 0.4 0.6 0.8 1.00

50000

100000

150000

200000
3rd layer

0.0 0.2 0.4 0.6 0.8 1.00

200000

400000

600000

800000

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
1e6

0.0 0.2 0.4 0.6 0.8 1.00.00
0.25
0.50
0.75
1.00
1.25
1.50

1e6

Figure 1: Gate distributions of the gated linear RNN (left panel) and the gated nonlinear RNN (right
panel) across layers on the copying task. The top row shows distributions before training, and bottom
row shows those after training.

0.2 0.4 0.6 0.80

50000

100000

150000

200000

250000

300000
1st layer

0.3 0.4 0.5 0.6 0.70

50000

100000

150000

200000

250000
2nd layer

0.35 0.40 0.45 0.50 0.55 0.600

50000

100000

150000

200000

250000

3rd layer

0.0 0.2 0.4 0.6 0.8 1.00

200000

400000

600000

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

1e6

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0
1e6

0.2 0.4 0.6 0.80

50000

100000

150000

200000

250000

300000
1st layer

0.3 0.4 0.5 0.6 0.70

50000

100000

150000

200000

250000

2nd layer

0.4 0.5 0.60

50000

100000

150000

200000

250000

300000
3rd layer

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

1.25

1.50

1e6

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

1e6

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5
1e6

Figure 2: Gate distributions of the gated linear RNN (left panel) and the gated nonlinear RNN (right
panel) across layers on the selective copying task. The top row shows distributions before training,
and bottom row shows those after training.

The selective copying task (Jing et al., 2019; Gu & Dao, 2024) is a variant of the copying task.
It requires memorizing tokens at varying positions, while the copying task requires memorizing
the first M tokens. For considering the effect of bias initialization, we used standard initialization
for bias, which is a sampling from a uniform distribution U [−1/

√
d, 1/

√
d] in this task. We set

N = 16,M = 16, and T = 500, resulting in total sequence length 532.

2.3 EMPIRICAL OBSERVATIONS OF GATING DISTRIBUTIONS

We empirically compare gate distributions between the minimal gated linear RNN and the minimal
gated nonlinear RNN.

Figure 1 shows gate distributions of both models on the copying task. Before training, these distri-
butions range from zero to one in all layers due to the UGI initialization. After training, distributions
largely change for both models, and gate values are concentrated at zero or one in the second and
the third layers. However, the trend is different for the first layer; gate values of the minimal gated
linear RNN are broadly distributed across the range from zero to one, while those of the minimal
gated nonlinear RNN are concentrated at zero or one.

Next, we examine gate distributions on the selective copying task. Results are shown in Figure 2.
Before training, gate distributions of both models are distributed around 0.5 in all layers due to the
standard initialization unlike UGI distribution. After training, gate values are again concentrated
at zero or one in the second and the third layers for both models. Similar to the copying task, this
concentration effect is not strong for the first layer of the minimal gated linear RNN, while the
concentration also happens in the minimal gated nonlinear RNN.

2.4 GATE DISTRIBUTION SHIFT

Next, to examine the effect of hidden states, we illustrate and compare gate values zt, pre-activation
values from inputs Wzxxt and hidden states Wzhht−1 of the minimal gated nonlinear RNN given
in equation 5, and post-activation values through the sigmoid function as shown in Figure 3. We
can see that hidden states after sigmoid activation (colored in orange) are distributed close to zero or
one. In contrast, inputs after sigmoid activation (colored in light blue) are broadly distributed across
the range from zero to one. This distribution shift occurs only in the first layer as layers except for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.0 0.5 1.00

250000

500000

750000
1st layer

0.0 0.5 1.00.0

0.5

1.0
1e6 2nd layer

0.0 0.5 1.00.0

0.5

1.0

1.5
1e6 3rd layer

0.0 0.5 1.00

200000

400000

0.0 0.5 1.00.0

0.5

1.0

1e6

0.0 0.5 1.00.0

0.5

1.0

1.5 1e6

10 0 100

100000

200000

300000

20 0 200

100000

200000

300000

50 00

200000

400000

zt ht xt

0.0 0.5 1.00.0

0.5

1.0

1.5
1e6 1st layer

0.0 0.5 1.00.0

0.5

1.0

1.5

1e6 2nd layer

0.0 0.5 1.00

1

2

1e6 3rd layer

0.0 0.5 1.00.0

0.5

1.0

1.5
1e6

0.0 0.5 1.00.0

0.5

1.0

1e6

0.0 0.5 1.00

1

2
1e6

40 20 0 200

200000

400000

50 0 500

250000

500000

750000

50 0 500

200000

400000

zt ht xt

Figure 3: Gate distributions for each layer after training (top), distributions after sigmoid activation
for transformed hidden states and inputs after training (middle), and distributions before sigmoid
activation for transformed hidden states and inputs after training (bottom). The left panel is for the
copying task and right panel is for the selective copying task. Colors mean gate distributions (blue),
distributions of hidden states (orange), and distributions of inputs (light blue).

the first layer mitigate the distribution shift due to implicitly containing hidden states from previous
layers through gates.

These results indicate that the distribution shift occurs when we remove hidden states. This could
be attributed to the information gap between hidden states and inputs. Hidden states have sufficient
information for learning parameters on the gate due to preserving information until the (t − 1)-th
step. In contrast, inputs do not have sufficient information because they have information at only
current t-th step. Since gated linear RNNs cannot use hidden states into their gate mechanisms to
maintain linear recurrence, this distribution shift is likely to occur implicitly, which may lead to
undesirable outcomes.

3 MITIGATING GATE DISTRIBUTION SHIFT BY GUMBEL-SOFTMAX TRICK
FOR BIAS INITIALIZATION

To mitigate the distribution shift caused by removal of hidden states in gated linear RNNs, we
propose to apply the Gumbel-Softmax trick (Li et al., 2018) to bias initialization.

3.1 BIAS INITIALIZATION WITH GUMBEL-SOFTMAX TRICK

The Gumbel-Softmax trick (Maddison et al., 2017; Jang et al., 2017), leveraged by Li et al. (2018),
is given as follows:

G(α, τ) = σ

(
α+ log(u)− log(1− u)

τ

)
, (8)

where α ∈ R is a parameter, τ > 0 is a temperature parameter, u ∼ U [0, 1] is sampled from the
uniform distribution. We apply this trick to bias initialization of the first layer in equation 2; that is,
the bias term bz is sampled as

bz ∼ σ−1G(α, τ). (9)

Following Gu et al. (2020), we sample u from U [1/d, 1 − 1/d] instead of U [0, 1] for numerical
stability to avoid log(0) = − inf . Using the above Gumbel-Softmax trick, we can initialize gate
biases whose post-activation values become close to zero or one, which is crucial as hidden states
contribute to gate values near zero or one. We can therefore expect that the unintended distribution
shit we have observed in Figure 3 can be avoided through this initialization. Moreover, we can op-
timize the balance between zero and one through τ and α while maintaining a bimodal distribution.
Note that we apply this initialization to only the first layer as the distribution shift occurs only in the
first layer as discussed in Section 2.4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ST
UGI
chrono
LB
Gumbel-Gate
Gumbel-ST
Gumbel-UGI

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ST
UGI
chrono
LB
Gumbel-Gate
Gumbel-ST
Gumbel-UGI

Figure 4: Performances on the copying task. The dummy sequence length is 1000 (left) or 2000
(right).

0.25 0.50 0.75
0.0

0.5

1.0

1e6 ST

0.0 0.5 1.0
0

5

1e5 UGI

0.8 0.9 1.0
0

1

1e7 Chrono

0.25 0.50 0.75
0.0

0.5

1.0
1e6 Lower Bound

0.0 0.5 1.0
0

5

1e5Gumbel-Gate

0.0 0.5 1.0
0

2

1e6 Gumbel-ST

0.0 0.5 1.0
0

2

1e6 Gumbel-UGI

0.25 0.50 0.75
0.0

0.5

1.0

1e6

0.0 0.5 1.0
0

1

1e6

0.0 0.5 1.0
0

1

1e7

0.5 1.0
0

1

1e6

0.0 0.5 1.0
0

5

1e5

0.0 0.5 1.0
0

2

1e6

0.0 0.5 1.0
0

2

1e6

Figure 5: Gate distributions before (top) and after (bottom) training for each method in the first layer
on the copying task with the dummy sequence length 2000

Gumbel-Softmax trick for bias initialization is a generalization of the UGI (Gu et al., 2020), which
corresponds to the case when α = 0.0 and τ = 1.0 in the Gumbel-Softmax trick. We can see this
from the definition since σ−1(x) = logit(x) = log

(
x/(1− x)

)
and it follows that

G(0, 1) = σ(log u− log(1− u)) = σ
(
log

(u

1− u

))
= σ(logit(u)) = u. (10)

3.2 PARAMETER SETTING OF GUMBEL-SOFTMAX INITIALIZATION

We discuss how to set two parameters τ and α in the Gumbel-Softmax trick. When τ is 0, the
resulting distribution can be considered as an approximation of Bernoulli distribution (Li et al.,
2018), where the distribution of gate values is sharp. Moreover, when τ and α are 1.0 and 0.0,
respectively, the distribution can be considered as an approximation of the Uniform distribution. We
therefore use τ = 0.5 as a default setting in our proposed approach because 0.5 can moderately
optimize the distribution of gate values through the parameter α. We will validate the effect of τ in
experiments.

Regarding α, it pushes gate values towards one as it increases. Large gate values are essential
for modeling long-sequence tasks. However, when gate values are extremely concentrated at one,
hidden states are not properly updated. When α is 0.0 and τ is 0.5, most gate values are distributed
around at zero or one. Therefore, the model with (α, τ) = (0.0, 0.5) is expected to capture long-
term dependencies while maintaining the ability to memorize new inputs. Therefore we use α = 0.0
in our proposed initialization. We will validate the impact of α in experiments.

4 EMPIRICAL EVALUATION OF OUR PROPOSAL: BIAS INITIALIZATION WITH
GUMBEL-SOFTMAX TRICK

We evaluate our proposed approach (denoted as “Gumbel” in figures and tables) in practical settings
and datasets. In following tasks, we use 6 layer models, which are also used in literature (Orvieto
et al., 2023; Qin et al., 2023). We compare our proposed initialization with standard initialization
(ST), chrono initialization (Tallec & Ollivier, 2018), and UGI (Gu et al., 2020). The parameter Tmax

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy ST

UGI
chrono
LB
Gumbel-Gate
Gumbel-ST
Gumbel-UGI

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy ST

UGI
chrono
LB
Gumbel-Gate
Gumbel-ST
Gumbel-UGI

Figure 6: Performances on the selective copying task. The dummy sequence length is 1000 (left) or
2000 (right).

0.25 0.50 0.75
0.0

0.5

1.0
1e6 ST

0.0 0.5 1.0
0.0

0.5

1.0
1e6 UGI

0.8 0.9 1.0
0.0

0.5

1.0

1e7 Chrono

0.25 0.50 0.75
0.0

0.5

1.0

1e6 Lower Bound

0.0 0.5 1.0
0

5

1e5Gumbel-Gate

0.0 0.5 1.0
0

1

2

1e6 Gumbel-ST

0.0 0.5 1.0
0

1

2

1e6 Gumbel-UGI

0.0 0.5 1.0
0

1

2
1e6

0.0 0.5 1.0
0

1

2

1e6

0.0 0.5 1.0
0

5

1e6

0.0 0.5 1.0
0

2

1e6

0.0 0.5 1.0
0

2

1e6

0.0 0.5 1.0
0

2

4
1e6

0.0 0.5 1.0
0

2

4

1e6

Figure 7: Gate distributions before (top) and after (bottom) training for each method in the first layer
on the selective copying task with the dummy sequence length 2000.

of chrono initialization was set to the whole sequence length. We also compare gate modifications,
including lower bounds (LBs) for gate values (Qin et al., 2023) and Gumbel-Gate (Li et al., 2018)
which pushes gate values towards zero or one. We use PyTorch’s default parameters1 for LB without
additional initialization because we found improved performance in our experiments. We apply
Gumbel-Gate to the first layer to validate the effect of applying bias initialization in the first layer.
Following Li et al. (2018), we set the parameter τ of Gumbel-Gate to 0.9.

4.1 SYNTHETIC TASKS

To evaluate the ability of capturing long-term dependencies, we extend the dummy sequence length
to 1000 and 2000. We trained models for 100K steps using the same settings as in Section 2.2. In
synthetic tasks, we applied Gumbel-Softmax trick to the first layer and applied two initializations to
other layers: standard initialization (Gumbel-ST) and UGI (Gumbel-UGI). We also applied Gumbel-
Gate to the first layer and standard initialization to other layers. We conducted experiments with
three different random seeds.

Copying task. Figure 4 shows the mean accuracies and standard deviation across 3 random seeds on
the copying task for various initializations and methods, and Figure 5 shows gate distributions un-
der various initializations and methods with the dummy sequence length N of 2000. Our proposed
initializations achieved optimal performances at both 1000 length and 2000 length. Although UGI
and Gumbel-Gate achieved optimal performances at the dummy length 1000, their performance de-
graded when the dummy length is 2000. This is why their gate values are broadly distributed across
the range zero or one unlike our proposed initializations as shown in Figure 5. Chrono initializa-
tion requires many steps to increase accuracy, and chrono initialized biases are concentrated at one
across all layers as shown in Figure 5. This suggests that gates values under chrono initialization in
all layers are too high to update hidden states, which does not occur in our proposed methods. Re-
garding LB, it achieved near optimal performances at the dummy length 1000, which suggests that
lower bounding of gate values enables the model to capture long-term dependencies compared to ST.

1https://docs.pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

However, convergence of LB is slow because it struggles to optimize parameters when initializations
do not works well, resulting in the degraded performance at the dummy length 2000.

Selective copying. Figure 6 and 7 shows the mean accuracies and standard deviation across 3 ran-
dom seeds and gate distributions, respectively, on the selective copying task for various models with
the dummy sequence length N of 2000. All models achieved near optimal performance when the
dummy length is 1000, and our initializations and UGI and chrono initialization achieved near opti-
mal performances at both length of 1000 and 2000. Unlike the copying task, this task also requires
to capture multi-timescale dependencies because of varying memorizing tokens. According to this
requirement, gated values of our proposed initializations are also distributed near zero in addition
to one compared to the copying task as shown in Figure 7. Additionally, standard initialization
achieved better performances than the copying task. UGI achieved optimal performances at both
length of 1000 and 2000 because initialized biases are widely distributed between zero and one.
Since UGI can optimize gate values compared to the copying task, the gate distribution became
more binary-like distribution as shown in Figure 7. LB also improved performances at both length
of 1000 and 2000 compared to the copying task. However, the convergence of LB is slow, which
is the same trend with the copying task. Gumbel-Gate achieved nearly optimal performance, while
it was not better performance than our proposed initializations because gate values are widely dis-
tributed between zero and one unlike our proposed approaches as shown in Figure 7. From these
results, our proposed initializations, which encourage a binary-like distribution of gate values in the
first layer, are shown to be effective for long-sequence modeling.

4.2 LANGUAGE MODELING

Table 1: Performances measured by the perplexity
for the language modeling task on the WikiText-
103 dataset (lower is better). Chrono initialization
failed to converge because the loss function con-
tinuously increased after 7K steps.

Method Valid Test

ST 35.94 36.99
Chrono – –
UGI 33.87 34.78
LB 40.19 41.31
Gumbel-Gate 33.74 35.06
Gumbel-UGI (proposed) 33.93 34.70

Next we evaluate our proposed initialization
with a language modeling task on the WikiText-
103 dataset. This task evaluates the ability of
capturing multi-timescale dependencies. Mod-
els are trained for 50K using AdamW opti-
mizer using an inverse-square-root learning rate
scheduler with a peak learning rate of 0.0005,
warmup-steps of 4000, betas of (0.9, 0.98),
weight decay of 0.0, sequence length of 2048,
and a batch size of 16. The size of hidden states
was set to 2048 with drop rate of 0.1, and the
dimension of embedding was set to 2048 with
drop rate of 0.3. We use the GPT-2 tokenizer
from the Hugging Face Library (Wolf et al.,
2020). In the language modeling task, we ap-
plied Gumbel-Softmax trick and Gumbel-Gate
to the first layer and UGI to other layers.

Table 1 shows performances on the WikiText-103 dataset, measured by the perplexity (lower is
better). Our proposed initialization has comparable performance to UGI and Gumbel-Gate, which
demonstrates that our proposal is also able to capture multi-timescale dependencies while maintain-
ing the ability of capturing long-term dependencies. Also, our model mitigate overfitting compared
to UGI and Gumbel-Gate because our gate values are more close to zero or one, resulting in a flatter
loss surface. These results are consistent with the previous study (Li et al., 2018). Chrono initial-
ization failed to converge because the loss function continuously increased after 7K steps. This may
be attributed to high initial biases. LB is not better than ST due to overfitting to training data. This
could be caused by additional parameters of lower bounds.

4.3 SENSITIVITY ANALYSIS

We analyze the sensitivity of the parameters α and τ used in our proposed bias initialization. In the
sensitivity analysis, we applied Gumbel-Softmax trick to the first layer and standard initialization to
other layers.

First, we examine the effect of α. Figure 8 shows the mean accuracies and standard deviation across
3 random seeds for three settings of α ∈ {0.0, 3.0, 5.0} on the copying and selective copying tasks,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

= 0.0
= 3.0
= 5.0

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

= 0.0
= 3.0
= 5.0

Figure 8: Performances when α varies on the copying task (left) and the selective copying task
(right). The length of dummy sequences is 2000 in both tasks.

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3
1e6 = 0.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1e7 = 3.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5
1e7 = 5.0

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

1e6

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00
1e7

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5
1e7

0.0 0.2 0.4 0.6 0.8 1.00

1

2

1e6 = 0.0

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

1e7 = 3.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5
1e7 = 5.0

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4
1e6

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

1e7

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5
1e7

Figure 9: Gate distributions at the first layer under different alpha for the copying task (left panel)
and the selective copying task (right panel) with the dummy sequence length 2000.

respectively. Moreover, Figure 9 illustrates gate distributions for the same settings of α on both
tasks. As we can see, every α eventually achieves the optimal performance in both tasks. However,
the convergence with α = 5.0 is slower in both tasks because gated values are too high to store new
inputs as shown in Figure9.

Next, we primarily consider τ by comparing combinations varying τ and α. Figure 10 shows the
mean accuracies and standard deviation across 3 random seeds on varying (τ, α) on the copying
and selective copying tasks, and Figure 11 shows gate distributions of various initializations and
methods on the copying task at the dummy sequence length N = 2000. When τ is 0.2, gate values
are extremely concentrated at zero or one as shown in Figure 10. Therefore, it is difficult to adjust
the distribution of gate values through α. For example, in the copying task, the model cannot solve
this task regardless of whether α is 0.0 or 3.0. In contrast, when τ is 0.9, the distribution differs
significantly between 0.0 and 3.0 as shown in Figure 11. This makes it difficult to choose the best
parameter because the distribution is sensitive to α. For example, in the copying task, the model
with (τ, α) = (0.9, 0.0) cannot solve the task while the model with (τ, α) = (0.9, 3.0) achieves the
optimal performance.

5 RELATED WORK

5.1 LINEAR RECURRENT MODELS

Linear recurrent models have achieved competitive performance as an alternative to transformers on
modeling long-sequence tasks. Many variants of linear RNNs, including GILR (Martin & Cundy,
2018), S4 (Gu et al., 2022a), S5 (Smith et al., 2023), LRU (Orvieto et al., 2023), Griffin (De et al.,
2024), and HGRN (Qin et al., 2023), have proven to be able to capture long-term dependencies.
Recently, new types of linear recurrent models (Katharopoulos et al., 2020) emerged based on lin-
ear attentions. They address the limitation of the expressiveness of linear RNNs. Several studies
have explored gated linear recurrent models with linear attention, such as DeltaNet(Schlag et al.,
2021; Yang et al., 2024b), Gated Linear Attention (Yang et al., 2024a), Mamba2 (Dao & Gu, 2024),
HGRN2 (Qin et al., 2024), Gated Delta Network (Yang et al., 2025), and RWKV (Peng et al., 2024;

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

100

Ac
cu

ra
cy

= 0.2, = 0.0
= 0.2, = 3.0
= 0.5, = 0.0
= 0.5, = 3.0
= 0.9, = 0.0
= 0.9, = 3.0

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

100

Ac
cu

ra
cy

= 0.2, = 0.0
= 0.2, = 3.0
= 0.5, = 0.0
= 0.5, = 3.0
= 0.9, = 0.0
= 0.9, = 3.0

Figure 10: Performances when (τ, α) varies on the copying task (left) and the selective copying task
(right). The length of dummy sequences is 2000 in both tasks.

0.0 0.2 0.4 0.6 0.8 1.00

2

4

1e6 = 0.2

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3
1e6 = 0.5

0.0 0.2 0.4 0.6 0.8 1.00

200000

400000

600000

800000
= 0.9

0.0 0.2 0.4 0.6 0.8 1.00

2

4

1e6

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

1e6

0.0 0.2 0.4 0.6 0.8 1.00

200000

400000

600000

800000

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5
1e7 = 0.2

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1e7 = 0.5

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6
1e6 = 0.9

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1e7

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00
1e7

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

1e6

Figure 11: Gate distributions at the first layer under different τ with α = 0.0 (left) and α = 3.0
(right) for the copying task with the dummy sequence length 2000.

2025), which have demonstrated competitive performance on modeling long-sequence tasks. In the
context of these linear RNN studies, we focus on optimizing their gate mechanisms.

5.2 OPTIMIZATION FOR GATE VALUES OF RNNS

Efficient optimization for gate mechanisms is crucial for RNNs. Standard initialization struggles
to optimize gate values because gradients through gates vanish when gate values are close to zero
or one. In nonlinear RNNs, Tallec & Ollivier (2018) introduced a bias initialization so that gate
values become high values to capture long-term dependencies. Li et al. (2018) introduced Gumbel-
Gate which pushes gate values towards zero or one by replacing the sigmoid activation function
with the Gumbel-Gate. Gu et al. (2020) introduced a combination of the gate mechanism and bias
initialization to push gate values close to zero or one. ON-LSTM (Shen et al., 2019) explicitly orders
neurons to capture dependencies with different time scales. In linear RNNs, HGRN (Qin et al.,
2023) is inspired by ON-LSTM (Shen et al., 2019) and introduces lower bounds for gate values.
The lower bound increases monotonically from input to output layers, enabling storing information
with different time scales at different layers. However, previous studies have not unrevealed the
impact of removing hidden states from gate mechanisms in linear RNNs. We investigate this impact
and explore effective optimization for their gate mechanisms.

6 CONCLUSION

In this paper, we have empirically investigated the gate dynamics of gated linear RNNs. In particular,
we have analyzed the impact of removing hidden states from their gate mechanisms. We have
shown that distribution shifts unintentionally occur due to such removal of the hidden states. To
mitigate this issue, we have introduced a simple way of applying the Gumbel-Softmax trick to bias
initialization without requiring architectural changes. Experimental results show that our proposed
initialization significantly improves performance on long-sequence modeling tasks. These results
suggest that not only architecture design but also the optimization for gate mechanisms is crucial in
gated linear RNNs.

LLM usage: We used LLMs to polish our texts to choose suitable words and correct grammars.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
Proceedings of The 33rd International Conference on Machine Learning, 2016.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research. PMLR, 2024.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and
Caglar Gulcehre. Griffin: Mixing gated linear recurrences with local attention for efficient lan-
guage models. arXiv preprint arXiv:2402.19427, 2024.

Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimirsadeghi.
Were RNNs all we needed?, 2024. URL https://arxiv.org/abs/2410.01201.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
Proceedings of the Conference on Language Modeling, 2024.

Albert Gu, Caglar Gulcehre, Tom Paine, Matt Hoffman, and Razvan Pascanu. Improving the gating
mechanism of recurrent neural networks. In Proceedings of the 37th International Conference on
Machine Learning, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022a.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. In Advances in Neural Information Processing Systems, 2022b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-Softmax. In
International Conference on Learning Representations, 2017.

Li Jing, Caglar Gulcehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, and Yoshua
Bengio. Gated orthogonal recurrent units: On learning to forget. Neural Computation, 31(4):
765–783, 2019.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 5156–5165. PMLR, 2020.

Zhuohan Li, Di He, Fei Tian, Wei Chen, Tao Qin, Liwei Wang, and Tie-Yan Liu. Towards binary-
valued gates for robust LSTM training. In Proceedings of the 35th International Conference on
Machine Learning, 2018.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
International Conference on Learning Representations, 2018.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In Proceedings
of the 40th International Conference on Machine Learning, 2023.

10

https://arxiv.org/abs/2410.01201

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, Kranthi Kiran GV, Satyapriya Kr-
ishna, Ronald McClelland Jr., Niklas Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song,
Haoqin Tu, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Jian Zhu, and Rui-Jie Zhu. Eagle
and Finch: RWKV with matrix-valued states and dynamic recurrence. In Proceedings of the
Conference on Language Modeling, 2024.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin, Ji-
axing Liu, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan Wilce,
Johan S. Wind, Tianyi Wu, Daniel Wuttke, and Christian Zhou-Zheng. RWKV-7 “goose” with
expressive dynamic state evolution. In Proceedings of the Conference on Language Modeling,
2025.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for se-
quence modeling. In Advances in Neural Information Processing Systems, 2023.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
HGRN2: Gated linear RNNs with state expansion. In Proceedings of the Conference on Language
Modeling, 2024.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In Proceedings of The 38rd International Conference on Machine Learning, 2021.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. Ordered neurons: Integrating
tree structures into recurrent neural networks. In International Conference on Learning Repre-
sentations, 2019.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling. In International Conference on Learning Representations, 2023.

Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In International
Conference on Learning Representations, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Proceedings of the 41st International Conference
on Machine Learning, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear trans-
formers with the delta rule over sequence length. In Advances in Neural Information Processing
Systems, 2024b.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving Mamba2 with
delta rule. In International Conference on Learning Representations, 2025.

11

https://arxiv.org/abs/1910.03771

	Introduction
	Understanding gating dynamics of gated linear RNNs
	Gated Linear and Nonlinear RNNs
	Synthetic Tasks
	Empirical Observations of Gating Distributions
	Gate Distribution Shift

	Mitigating Gate Distribution Shift by Gumbel-Softmax Trick for Bias Initialization
	Bias Initialization with Gumbel-Softmax trick
	Parameter Setting of Gumbel-Softmax Initialization

	Empirical Evaluation of Our Proposal: Bias Initialization with Gumbel-Softmax Trick
	Synthetic Tasks
	Language Modeling
	Sensitivity Analysis

	Related Work
	Linear Recurrent Models
	Optimization for Gate Values of RNNs

	Conclusion

