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Abstract—In order to determine the overall health of an
individual, hand grip strength has emerged as a reliable and
widely used indicator of muscular and functional health. How-
ever, the conventional devices for measuring grip strength, such
as dynamometers, require direct interaction with a bulky external
device. In this work, we propose a novel, cost-effective approach
to estimate grip strength using bio-acoustic signals captured from
the forearm via a compact armband equipped with low-power
MEMS microphones. Our method performs well on grip strength
classification with an accuracy of 93.33%, and as a proof of
concept, demonstrates a promising direction for non-invasive grip
strength estimation.

Index Terms—grip strength estimation, bioacoustic sensing

I. INTRODUCTION

In recent years, hand grip strength (HGS) has emerged as
an important biomarker of health, where lower values are
associated with an increased risk of cardiovascular diseases,
type-2 diabetes, kidney and liver issues, stroke, sarcopenia and
osteoporotic fractures [1]. Prior studies also suggest that lower
HGS is linked to a higher risk of developing psychosomatic
disorders, mainly depression and anxiety [3]. In addition to
its strong correlation with the onset of various diseases, HGS
is also widely used among athletes, mainly in sports where
gripping and controlled force application is critical, such as
golf, hockey, rock climbing, weightlifting, racket sports, to
improve performance and reduce the risk of injury [2].

Among the methods commonly used to estimate hand grip
strength (HGS), most involve interaction with an external
sensing device. The dynamometer, the most widely used tool
for measuring grip strength, requires individuals to exert force
on its handle, converting this mechanical pressure into a
readable force value displayed in kilograms or pounds. The
Jamar hydraulic dynamometer, widely considered the gold
standard for measuring HGS, is most commonly used in
clinical assessments. Other types, such as pneumatic and strain
gauge dynamometers, are used in specific contexts [4], while
mechanical (spring-type) dynamometers with digital displays
are commonly employed in general settings. However, these
devices need precise positioning, frequent calibration, and
can give unreliable readings if used incorrectly, making them
impractical for routine or long-term use. To address these
limitations, some recent works have explored wearable devices
to estimate grip strength, trying to offer a compact and user-
friendly alternative to traditional dynamometers. These include

glove-based or ring-based designs that use force-sensitive
resistors (FSRs) [5], light sensors [6] or capacitive force
sensors [8]. The existing works using surface EMG sensors
[9]-[11] typically attach the EMG patches at specific locations
on the forearm to measure grip strength. On the other hand,
wristband or armband designs aim to estimate grip strength
indirectly by capturing muscle activity or skin deformation,
offering a more general and less intrusive solution. Wang et
al. [7] introduced a flexible deformation sensor for measuring
the grip strength. However, the glove/ring-based methods are
constrained by user-specific customized design, surface EMG
depends on skin characteristics, and deformable sensor-based
approaches face material durability concerns, which together
pose challenges for long-term use.

In our work, we explore the feasibility of estimating grip
strength leveraging bioacoustic signals at the forearm by
mounting MEMS microphones on the muscle belly near the
elbow to capture vibrations from muscle activity. The forearm
muscles primarily consist of extrinsic and intrinsic muscles.
Extrinsic muscles, which originate in the forearm, are the main
contributors to grip strength. Intrinsic muscles, on the other
hand, originate within the wrist and hand and are important for
precision and coordination, but do not significantly contribute
to grip strength.

The key contributions of our work are summarized as
follows:

o We propose a novel method to estimate hand grip strength
through passive sensing of bioacoustic signals generated
by muscle activity during gripping using MEMS micro-
phones.

o Our wearable device consists of a self-contained armband
that is comfortable to wear, offers a snug fit, and main-
tains performance regardless of occlusion or varying skin
characteristics.

o We design compact, cost-effective, and low-power sen-
sors to effectively capture muscle vibrations as acoustic
signals on the skin surface.

II. METHODOLOGY
A. Anatomical Considerations for Sensor Mounting

Previous studies have primarily focused on sensing muscle
activity using EMG methods [10], targeting two major mus-
cles on the radial side of the forearm: flexor carpi radialis



Fig. 1. Tllustration of forearm muscles involved in hand gripping, depicting
(a) FCR (b) ECRL (c) FCU muscles.

(FCR) and extensor carpi radialis longus (ECRL), to determine
optimal sensor placement. These muscles contribute to grip
strength by stabilizing the wrist through coordinated flexion
and extension, which enhances the efficiency of the finger
flexors. In addition to these, we also consider the flexor carpi
ulnaris (FCU), a superficial and robust muscle on the ulnar side
that plays a key role in wrist stabilization during gripping. To
capture vibration signals, we mount two MEMS sensors near
FCR and ECRL, and two more around FCU.

B. Hardware

The main sensing element consists of MEMS microphone
ICS-43434, a bottom-port microphone with a form factor of
35 x 2.65 x 098 mm (L x W x H). These microphones
are housed within 3D-printed shell consisting of foam lay-
ers in-between, designed to enhance the robustness towards
external noise. The four microphones are connected to the
MCU (Teensy 4.1) through a connector board using FPC
cables. The microphones along with the shell are attached
to a magnetic wristband, where the position and placement
of the microphones can be adjusted based on the user arm
width. The MCU and the battery are enclosed in a 3D-printed
casing which is attached to an elastic band that can be secured
with Velcro. Although the armband design is currently not
optimized for low power, the sensing system is inherently low
power, with each MEMS microphone consuming around 1.17
mW in normal operational mode.

C. Signal Processing and Feature Extraction

The recorded audio signals from the armband are truncated
or zero padded to obtain signals of equal lengths of 6 seconds.
These signals are sampled at a sampling rate of 22050 Hz
and are split into segments of 0.5 seconds. Spectrograms are
computed for the individual segments, with the number of FFT
set to 400 and a hop length of 160. The idea behind splitting
the audio signals into segments is to get spectrograms of
reasonable dimension, while also capturing the details within
each segment. The obtained spectrograms are converted to
decibel scale, and the spectrograms from all four microphones
are stacked, creating a four-channel input to the deep learning
model.
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Fig. 2. Wristband design involving MEMS sensor enclosed within the sensor
mount along with MCU and battery unit.

D. Model Architecture

We evaluate and compare the performance of three different
model architectures using input audio spectrograms. The first
architecture consists of a two-layer convolutional encoder
applied to the spatial dimensions, followed by a single-layer
LSTM operating on the temporal dimension. The resulting fea-
ture representation is concatenated with metadata and passed
through fully connected layers to generate the final prediction.
This particular model was trained for 100 epochs to achieve
optimal results.

The second architecture retains the same overall structure,
with the primary difference lying in how the metadata is
integrated. Instead of direct concatenation, the metadata is
first passed through an embedding layer, and the resulting
representation is then concatenated with the output of the
LSTM before being fed into the fully connected layers.
This modification led to faster convergence, with the model
stabilizing after approximately 30 epochs.

The third architecture employs a U-Net framework to
process spatial dimensions, with skip connections between a
compact two-block encoder-decoder to preserve fine-grained
information. This is followed by a temporal modeling stage
using an LSTM, whose output is concatenated with embedded
metadata features. The combined representation is then used
to generate the final predictions. For training the above-
mentioned models, the Adam optimizer was used with a learn-
ing rate of 5 x 1073, and the L1 loss function was employed.
All the models were trained on a personal laptop equipped
with an NVIDIA GTX 1660 Ti GPU (6 GB memory).

III. EXPERIMENT

Experiments were conducted on 5 participants (3 male and
2 female), aged between 20-30, with 15 trials for each partic-
ipant. These trials included weak and normal grip strengths
depending on their age and gender. The participants were
asked to sit comfortably on a chair, placing their arm on the
armrest at a 90° angle at the elbow. This has been the standard
way of measuring grip strength. The subjects are instructed
to hold the dynamometer in their dominant hand, with the
armband being attached to the forearm.
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Fig. 3. Left: Data collection setup using the armband and dynamometer with
the forearm positioned at a 90° elbow angle. Right: Variation in grip strength
values across different participants.
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To analyze the grip strength using data collected from
multiple subjects, we use box plots to visualize the variability
across individuals and identify patterns in muscle performance.
This helps detect outliers and assess consistency within each
subject. From Fig. 3, we observe that Subjects 2 and 5 exhibit
stronger grip overall, while Subject 2 showing the highest
variability and Subject 5 demonstrating consistent strength.
Subjects 1 and 4 fall towards the lower end, with Subject 4
displaying a few outliers. This highlights the diversity of our
subject pool in terms of both strength levels and variability,
which is essential for developing models that generalize well
across different populations.

IV. RESULTS AND DISCUSSION

The hand dynamometer typically reports grip strength in
kilograms or pounds, along with a discrete category indicat-
ing the level of grip classified as weak, normal, or strong.
These categories are determined based on the subject’s age
and gender, which are essential for calibrating the device.
Categorizing grip strength provides meaningful insight into
whether an individual’s strength falls within the expected
range, rather than focusing solely on numerical values, which
can be convenient for regular monitoring without having to
check which category the measurement belongs to. In our
study, all participants exhibited both weak and normal grip
strength, at different times with approximately equal repre-
sentation. To avoid class imbalance, we excluded data from
one participant predominantly consisting of the weak class,
leaving a dataset of 5 subjects. The dataset comprised training
and testing data split in an 80-20 ratio, with a total of 75 trials.
We evaluated two models: a two-layer LSTM model trained
on audio spectrograms, and a CNN-LSTM hybrid model. The
LSTM model achieved a classification accuracy of 73.33%,
while the CNN-LSTM model reached 93.33%, with only one
misclassification out of 15 trials. Both models were trained for
20 epochs using binary cross-entropy (BCE) loss.

For grip strength estimation, we assess the performance of
different model architectures on the input audio data using
regression metrics, root mean squared error (RMSE) and
coefficient of determination R2. RMSE measures the average
prediction error, where lower values indicate more accurate
estimates. R? indicates how much of the variation in the
target variable is explained by the model, where higher values
indicate a better fit. From Fig. 4 we can observe that Model 1

has the highest RMSE and lowest R? values (RMSE = 6.6894,
R?=0.3246), while Model 2 performs better than Model 1 with
an RMSE of 5.938 and R? of 0.4678. However, we can notice
that Model 3 has the lowest RMSE of 5.68 and highest R?
of 0.5130. The overall range of grip strength values in the
dataset spans approximately from 17 kg to 50 kg. Considering
the large variation in the experimental measurements, the
predicted RMSE of 5.68 kg from a model trained on the entire
dataset reflects reasonable performance.
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Fig. 4. Overall comparison of model performance using RMSE and R?
metrics.

Fig. 5 shows the variation of RMSE among different
subjects for each model architecture. Model 3 is the most
robust, with consistently lower or comparable RMSE across
all subjects. Model 1 on the other hand, lags behind, indicating
weaker generalization.
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Fig. 5. Comparison of model performance across all subjects based on RMSE
values.

To test the robustness of our armband-based system, which
relies on acoustic sensing, we evaluated its performance under
varied environmental conditions with different noise levels.
This was done to assess how external acoustic interference
impacts the predictions. In addition to the normal setting,
we considered two indoor and outdoor scenarios. For indoor
noise tests, we included background jazz saxophone music and
ambient noise from a busy café. For the outdoor setting, we
tested with noise from heavy rain and thunder, as well as traffic
on a busy road. In all the cases, the subject was approximately
0.7 meters from the noise source, and the noise level was
measured near the subject. Fig. 6 shows that the model output
is unaffected by most noise conditions, with RMSE values
comparable to the normal setting. We also tested the armband
under the clothing and found that the performance does not
degrade despite the occlusion.



TABLE I
DIFFERENT NOISE SOURCES CONSIDERED FOR ROBUSTNESS TESTS.

[ Environment [ Noise source

Noise level (dB) |

Controlled environment 32.1
Indoor setting Background music 60.8

Busy café 65.1
Outdoor setting Heavy rain with thunder- | 62.5

storm

Busy road 70.6

RMSE

normal clothing heavy busy
setting music rain road

Fig. 6. Robustness evaluation of the system across different noise environ-
ments and with the armband worn under clothing.

V. RELATED WORKS

Bioacoustic sensing in humans has been applied across a
wide range of medical and biometric contexts. Prior studies
have investigated the possibility of noninvasive monitoring of
various bodily functions through bioacoustic signals. Some of
these include the detection of cardiovascular abnormalities or
diseases, respiratory illnesses, sleep disorders by monitoring
the tracheal sounds, and gastrointestinal disorders [12]. Ad-
ditionally, bioacoustic signals have been leveraged to detect
vocal disorders [13], assess swallowing difficulties (dysphagia)
[14], and identify bone-related abnormalities by capturing the
knee joint sounds [15]. More recently, multichannel acoustic
spectroscopy has demonstrated the ability to capture dis-
tinct acoustic transmission patterns for each finger, enabling
highly accurate biometric authentication based on the internal
anatomical and material characteristics of the hand [16].

VI. CONCLUSION

In this work, we introduced a novel passive sensing ap-
proach for capturing bio-acoustic signals from forearm muscle
activity to classify and estimate hand grip strength. The
proposed armband is cost-effective, comfortable to wear, and
incorporates small, low-power sensing elements. As a proof
of concept, the prototype achieves a classification accuracy of
93.33% and demonstrates promising results for grip strength
estimation. With further improvements, it has the potential to
become a convenient and compact tool for monitoring hand
grip strength.

Bioacoustic signals vary across individuals due to differ-
ences in muscle composition and may require a user-specific
model fine-tuned on a small amount of data from each new
user to achieve optimal performance. Although each MEMS
microphone features a small form factor and low power con-
sumption, the entire armband design can be further optimized

to reduce size and the overall power usage. While our current
study includes five subjects aged between 20-30, future work
will involve expanding the participant pool to cover a broader
age range, particularly focusing on older individuals.
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