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Abstract
The burgeoning computational demands for train-
ing large language models (LLMs) necessitate
efficient methods, including quantized training,
which leverages low-bit arithmetic operations to
reduce costs. While FP8 precision has shown po-
tential, leveraging FP4 remains challenging due
to inherent quantization errors and limited repre-
sentation capability. Based on the Transformer
architecture, we present an FP4 training scheme
for LLMs, overcoming these obstacles through
mixed-precision quantization strategies tailored
for different modules and training stages. This
allows us to apply the precision level suitable
to distinct components within the model, ensur-
ing that multi-head attention and linear layers
are handled appropriately. Our pretraining recipe
ensures stability in backpropagation by incorpo-
rating fine-grained quantization methods with a
target precision training schedule. Experimental
results demonstrate that our FP4 training scheme
achieves accuracy comparable to BF16 and FP8,
with smaller theoretical computational cost. With
the advent of next-generation hardware support-
ing FP4, our method sets the foundation for effi-
cient ultra-low precision training.

1. Introduction
Recent advancements in large language models, including
GPT (Radford, 2018; Floridi & Chiriatti, 2020; Achiam
et al., 2023), DeepSeek (Liu et al., 2024), Llama (Touvron
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et al., 2023) and OPT (Zhang et al., 2023), have demon-
strated strong generalization capabilities across various
tasks (Stiennon et al., 2020; Alexey, 2020). Among these
advancements, pretraining on large-scale unlabeled data has
proven to be critical for ensuring model performance (Rad-
ford, 2018; Dong et al., 2019). Increasing the model size
and the dataset scale can enhance performance (Kaplan
et al., 2020; Hoffmann et al., 2022), but this improvement
comes with significant computational costs. To address this,
numerous methods have been proposed to accelerate the
pretraining process (Duan et al., 2024).Particularly, low-
precision computation serves as an efficient acceleration
technique. This approach quantizes the inputs of compu-
tationally intensive operators to a specified low-bit width,
leveraging low-bit arithmetic units to speed up training.

Previous research on low-precision training has primarily
focused on deep learning models. However, these methods
do not fully consider the characteristics of large language
model pre-training, which has unique training methods and
model architectures. The good news is that next-generation
hardware will support FP4 and FP8 format (Nvidia). Studies
like (Peng et al., 2023; Micikevicius et al., 2022b; NVIDIA;
Fishman et al., 2024; Xi et al.) have demonstrated the capa-
bility of 8-bit computation for LLM pretraining. However,
the application of FP4 tensor cores in LLM pretraining re-
mains unexplored. Compared to INT4, FP4 offers a larger
numerical representation space, making it possible to further
reduce the bit width in large-scale model pretraining. How-
ever, the limited number of bits in FP4 format introduces
significant quantization errors, making the application of
FP4 to pretraining highly challenging.

From the perspective of LLM structure, it has been observed
that different modules and computational components ex-
hibit varying levels of sensitivity. Given the critical role of
the multi-head attention (MHA) mechanism in the Trans-
former architecture, it is imperative to implement specific
strategies to ensure the accuracy of attention modules. As
the volume of data continues to grow, the gradient values
tend to decrease, making FP4 quantization more prone to un-
derflow, thus hindering parameter updates. Based on these
observations, we propose a novel FP4 mixed-precision large
language model pretraining recipe. Specifically, we lever-
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Figure 1. (a) shows the proportion of computational overhead for the main computation components of a transformer block when using
the LLaMA 7B configuration with a sequence length of 4K. (b) shows the distribution of activations and gradients after the GPT-large
model has been trained to approximately 10B tokens. (c) shows the heatmap of attention scores when using different training strategies.
(d) and (e) illustrate our training scheme, which will be detailed in Section 3.

age a per-block quantization strategy and employ different
quantization approaches across modules and training stages
to enable FP4 model training. The approaches enable better
exploitation of the computational improvements brought by
future hardware advancements.

In this paper, we explored the use of FP4 precision in lan-
guage model pretraining and, for the very first time, pro-
posed an effective mixed precious pretraining strategy. First,
considering the distinct requirements of different modules,
we applied tailored quantization strategies to preserve the
precision of MHA execution. Second, as backpropagation
has shown high sensitivity to precision, we employed finer-
grained quantization methods to ensure accurate parameter
updates during the backward pass. Finally, we adopted a
2-stage target precision training schedule to eliminate the
impact of quantization noise on the model.

2. Related Work
Low-precision training enhances deep learning efficiency by
reducing computational costs. Many existing studies focus
on the training of deep neural networks (DNNs) (Wang et al.,
2018; Chmiel et al., 2023; Sun et al., 2019; Xi et al., 2023;
Fu et al., 2021), whose architecture and performance differ
from LLM pre-training. In the context of low-precision train-
ing for large model pre-training, some progress has been
made in FP8. For example, (Micikevicius et al., 2022b) in-

troduced new FP8 floating-point formats (E4M3 and E5M2),
and (Fishman et al., 2024) extends FP8 to trillion-token
large-scale model pretraining. In terms of FP4 training,
(Wang et al., 2025) improved FP4 computational precision
using a differentiable quantization estimator and outlier
clamping and compensation strategy. However, most exist-
ing methods fail to fully account for the varying sensitivity
to precision across different model modules.

3. Methods
Our objective is to maximize the efficiency of low-precision
computations based on the characteristics of LLMs. As
shown in Fig.1(a), the computational cost of three key com-
ponents in a transformer model is analyzed, with FFN ac-
counting for 57%. Considering both the computational cost
and impact on performance, we meticulously design three
corresponding training schemes: 3.1 Attention-protected
Neighbor Linear, 3.2 Gradient-sensitive Linear, and 3.3
Target Precious Training Schedule. These schemes fully
leverage hardware acceleration while keeping precision loss
within an acceptable range during training.

3.1. Attention-protected Neighbor Linear

As the core component of the Transformer model, the atten-
tion mechanism is highly sensitive to precision. Quantiza-
tion errors introduced by low-precision training can accu-
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mulate over time, eventually disrupting the function of the
attention mechanism. As shown in Fig. 1(c), an undisturbed
attention mechanism identifies tokens 0, 3, 6, and 9 as more
important. However, under FP4 training, the result becomes
nearly uniformly distributed, preventing the model from
distinguishing which tokens are significant. This makes
it difficult for the model to differentiate the importance of
tokens, thereby affecting the convergence speed.

To ensure the proper functioning of the attention mechanism
and enable the model to correctly evaluate the importance of
each token, we employ FP8 precision for the computation
of QKV and the output projection to ”protect” the accurate
execution of the attention mechanism, as shown in Fig. 1(d).

3.2. Gradient-sensitive FFN Linear

Weight gradient computation is more sensitive to errors com-
pared to forward computation, due to the fact that both gra-
dients and activations contribute to the error. For gradients,
since many values are around 0.02, especially as training
progresses and gradient magnitudes decrease, underflow is
likely to occur. As can be seen in the left of Fig.1(b), there
is an 8.6% difference between FP4 and FP8/FP16, thus re-
quiring a more accurate representation. For activations, we
observe that underflow occurs approximately 18% of the
time between FP4 and FP8/FP16. This is largely due to the
relatively large range of values, as can be seen in the right
of Fig. 1(b). Therefore, a more accurate representation is
also needed. Additionally, optimizers use the gradients to
update model parameters. Based on the above discussion,
for the weight gradient computation of model weights, we
adopt FP8 precious computation, as shown in the bottom
left corner of Fig.1(e).

Furthermore, for the activation gradient computation (the
top right corner of Fig.1(e)), we find that quantizing gradi-
ents significantly impacts the convergence of model train-
ing. There is always a nonlinear operation between the
linear layers, which requires more precise numerical rep-
resentations. Furthermore, quantization errors accumulate
iteratively through the chain rule during backpropagation,
ultimately hindering the convergence of model training.

Lastly, in our experiments, we observed that quantization
noise increases as the model size and the amount of data
grow (a detailed explanation can be found in Appendix
B). This occurs because, when the model reaches a certain
level of accuracy, coarse-grained low-precision tensors can
no longer currently represent the parameter space and in-
put information. Therefore, we adopt a more conservative
quantization approach to maintain stable training in forward
computation. As shown in the top left corner of Fig.1(e). To
ensure efficient hardware implementation, we use per-block
quantization strategies where the block size is set to 128.

3.3. Target Precious Training Schedule

When using low-precision training throughout the entire
process, there tends to be a performance gap between the
low-precision model and the FP16 model, as shown in Fig.2.
The validation loss curves exhibit a parallel trend. Although
the gap between the two curves is very small, the difference
in downstream tasks, such as wikitext perplexity (PPL),
can be more pronounced, reaching up to approximately 6.3
compared to the model trained with FP16. This is likely
due to compromises the model makes to adapt to the noise
introduced by quantization during low-precision training.
To address this issue, we employ a Target Precious Train-
ing Schedule, which involves two stages: continuing the
FP4 pretraining process with FP16 for a short period. This
accounts for only 5% to 10% of the total training steps,
allowing the model to return to an ideal state.
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Figure 2. Loss curve for the Target Precious Training Schedule.

4. Experiment
In this section, we evaluate the proposed FP4 training
method across language models of various sizes. The de-
tailed model training configurations and hyperparameter
settings are provided in Appendix B. Section 4.1 presents
the main results, showcasing the model’s performance on
downstream tasks. Section 4.2 presents the ablation study
to demonstrate the effectiveness of our training method.

4.1. Main Result

We validate the proposed FP4 pretraining method on two
large language models, using the widely adopted GPT-2 and
LLaMA architectures. The GPT-2 and LLaMA models are
pretrained on the RedPajama-WikiText (Weber et al., 2025)
dataset within the Megatron framework and evaluate their
text generation capabilities on wikiText(Merity et al., 2016).
Additionally, we assess their natural language understanding
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Table 1. Comparison of FP4 and FP16 Training Results
Model Method Val Loss Val PPL Text Gen Natural Language Understanding (GLUE)

WikiText cola sst2 mrpc stsb rte wnli qnli mnli qqp

2*GPT2 125M Ours 1.706 5.507 50.98 0.2663 0.8704 0.7549 / 0.8322 / 0.7936 0.7681 / 0.7658 0.5704 0.3380 0.8473 0.7554 / 0.7705 0.8777 / 0.8403

FP16-baseline 1.705 5.503 50.14 0.2290 0.8796 0.7647 / 0.8395 / 0.8021 0.7798 / 0.7808 0.5884 0.3099 0.8548 0.7613 / 0.7695 0.8799 / 0.8437

2*GPT2 335M Ours 1.549 4.705 37.62 0.2565 0.8899 0.7647 / 0.8362 / 0.8004 0.8159 / 0.8122 0.6029 0.2535 0.8611 0.7798 / 0.7874 0.892 / 0.8572

FP16-baseline 1.556 4.739 38.39 0.3002 0.8819 0.7745 / 0.8419 / 0.8082 0.8266 / 0.8298 0.6209 0.1831 0.8726 0.7799 / 0.7889 0.8929 / 0.8508

2*GPT2 774M Ours 1.431 4.181 30.01 0.3473 0.9002 0.7745 / 0.8472 / 0.8108 0.8305 / 0.8336 0.6498 0.2676 0.8742 0.7995 / 0.808 0.8984 / 0.8656

FP16-baseline 1.430 4.178 28.36 0.3708 0.8922 0.7794 / 0.8454 / 0.8124 0.8347 / 0.8353 0.6498 0.2254 0.8911 0.8078 / 0.813 0.9012 / 0.8683

abilities on the GLUE(Wang, 2018) benchmark.

We train approximately 10B tokens on GPT-2-small and
GPT-2-mid and around 25B tokens on GPT-2-large. The
final validation loss and validation perplexity (PPL) are
presented in Table 1, showing that the pretraining results
obtained with our method exhibit almost no performance
difference compared to models trained using FP16. In ad-
dition to training loss, the downstream task performance of
the same pretrained models demonstrates that the average
accuracy of FP4-trained models is comparable to that of
FP16-trained models.

4.2. Ablation Study

We aim to investigate the effect of the module-wise pretrain-
ing method introduced in Section 3. For this ablation study,
we train the LLaMA2-125M model on approximately 5B
tokens. The results in the table indicate that different mod-
ules exhibit varying levels of robustness to low precision.
Additionally, we compute the theoretical computation cost
for these methods and observe that our approach achieves
a lower theoretical computation cost (see Appendix B for
details) while maintaining higher performance.

Attention Linear FFN Linear FP4 Linear’ Backward Training loss Val loss Val ppl Computation cost

FP4 FP4 FP4 2.2659 1.7828 5.9467 57.1%
FP4 FP8 FP8 2.2211 1.7543 5.7798 69.6%
FP8 FP4 FP4 2.2562 1.7549 5.7831 60.7%
FP8 FP4 FP8 2.2225 1.7415 5.7062 66.1%
FP16 FP16 FP16 2.1998 1.7097 5.5273 100%

Table 2. Ablation studies about different precious on different mod-
ules

2* 2*Attention 2*FFN 2*FFN Backward 2*Target Precious 2*Val loss 2*Val ppl 2*Computation
Cost

3*Llama 1B FP8 FP4 FP8 no 1.3505 3.8596 67.5%
FP8 FP4 FP8 yes 1.3311 3.7855 69.7%
FP16 FP16 FP16 - 1.3296 3.7797 100%

3*Llama 125M FP8 FP4 FP8 no 1.6851 5.3933 68.2%
FP8 FP4 FP8 yes 1.6622 5.2670 71.4%
FP16 FP16 FP16 - 1.6567 5.2424 100%

Table 3. Ablation studies about target precious training schedule

Furthermore, to demonstrate the effectiveness of the 2-stage

training schedule, we conducted the following ablation ex-
periment, using the same experimental setup as in Section
4.1. The results in the table highlight the importance of the
2-stage training schedule for large-scale model pretraining.

5. Conclusion
We propose an FP4 pre-training scheme for modern large
language models. Based on the sensitivity analysis of com-
putational modules and training stages, we adopt a tailored
training recipe according to the position of linear modules,
together with a Target Precious Training schedule, to en-
sure stable convergence. Experimental results show that
FP4-based training achieves comparable validation loss and
downstream task accuracy to traditional FP16 training while
reducing computational costs by 30%. Additionally, our
ablation studies confirm the importance of adaptive quanti-
zation strategies across different model modules and training
stages, providing new insights for the further development
of low-precision training techniques and efficient training
of large language models on next-generation hardware.

6. Limitation
First, due to computational resource limitations, our method
has not been validated on larger models and larger datasets
to demonstrate its effectiveness. Investigating such scal-
ability remains a critical direction for future research. In
addition, since the model adopts a simulated FP4 approach,
it is unable to obtain an accurate increase in training effi-
ciency. Lastly, for the sensitive computational components,
we employed a simple strategy to ensure numerical pre-
cision. In future work, we will explore more customized
approaches to enable a broader range of computations to
utilize FP4.
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A. FP4 Quantization
Quantization is the process of converting a data type with
more bits (e.g., 32- or 16-bit floating points) into another
data type with fewer bits (e.g., 4-bit floating points). In inte-
ger quantization, the real-valued variable XR is quantized
to an integer XINT with the following formula:

XINT = α

⌊
Clip

(
XR

α
,Qmin, Qmax

)⌉
(1)

Similar to integer quantization, in float point quantization,
scaling and clipping of the values are required before quan-
tization, as follows.

Qmax = −Qmin = (2− 2−m)22
e−b−1 (2)

Q̃max = αQmax (3)

X ′
R = Clip

(
XR, Q̃min, Q̃max

)
(4)

Where the min/max value range of signed floating-point
quantization can be calculated from Eq. (2), and the scaling
factor α determines the quantization granularity. Thus, we
can determine the upper and lower bounds of floating-point
quantization and perform the clip operation accordingly.

After scaling and clipping, we can quantize the real value
into a specific data format. Unlike INT quantization,
floating-point numbers have different quantization levels
for different values. Therefore, we first need to determine
the quantization step size:

α̃ = 2−b̃ = 2−b · α (5)

v =

{
2⌊log2 |X′

R|/α̃⌉−m if ⌊log2 |X ′
R|/α̃⌉ ≥ 1

21−m otherwise
(6)

Here, the quantization level v is determined by x′
R/α̃, after

which the floating-point number can be quantized following
the format of Eq. (8). A detailed explanation can be found
in (Micikevicius et al., 2022a; Liu et al., 2023). Finally, the
quantization formula can be expressed as follows:

XFP = α̃ · v ·
⌊
X ′

R

α̃ · v

⌉
(7)

B. Training Detail
We conducted our experiments on the Megatron (Shoeybi
et al., 2019) framework and evaluated downstream perfor-
mance using the transformers (Wolf et al., 2020) and lm-
evaluation-harness (Gao et al., 2024), ensuring standardized
and reproducible benchmarking. Hyperparameters remain
consistent across precision settings for fair comparison. The
learning rate follows a warm-up and cosine decay schedule,

with the warm-up phase spanning 0.15% of total steps and
the learning rate gradually decreasing to 10% of its peak
over the remaining 90%. The peak learning rate is 1×10−4,
with a weight decay of 0.1 for Llama models. For GPT mod-
els, the peak learning rate is set to 6× 10−4, with a weight
decay of 0.1 For the Adam optimizer, we use β1 = 0.9,
β2 = 0.95, and ϵ = 1× 10−8. For llama models, the input
sequences are fixed at 2048 tokens, and the batch size is 512,
comprising approximately 1M tokens. For GPT models, the
input sequences are fixed at 1024 tokens, and the batch size
is 480, comprising approximately 0.5M tokens, detail model
config can be found in Table 4.

Parameter GPT-125M GPT-335M GPT-774M LLaMA-125M LLaMA-1B

Layers 12 24 36 12 48
Hidden Size 768 1024 1280 768 1280
Activation Function GELU GELU GELU SwiGLU SwiGLU
Normalization LayerNorm LayerNorm LayerNorm RMSNorm RMSNorm
FFN Hidden Size 3072 4096 5120 3072 3392
Sequence Length 1024 1024 1024 2048 2048
Attention Heads 12 16 20 12 20

Table 4. GPT and LLaMA Model Configurations

We quantize all the linear layers in the MLP and attention
module to target precious, and leave multi-head attention
and activation function in FP16 by employing FlashAtten-
tion (Dao et al., 2022). The master copy of the weights is
kept in FP32. We quantize linear layers’ inputs to target
precious prior to each matmul, but leave layernorm’s weight
and bias to floating-point since they are relatively small.

For the calculation of theoretical computation cost, we first
separately count the forward and backward computation
amounts for each part of a Transformer block (consider-
ing only computations related to matrix multiplications, as
these account for more than 95% of the total computation).
Then, based on the assumptions that FP8 achieves twice the
computation speed of FP16 and FP4 achieves four times
the computation speed of FP16, we compute the theoretical
time required for each matrix multiplication. Finally, we
obtain the theoretical computation cost for each method.

Since the quantized weight w̃ is an estimate of w, We di-
rectly use a straight-through estimator (Bengio et al., 2013)
directly passes the gradient of w̃ to w:

∇wL(w̃)← ∇w̃L(w̃).

In our experiments, we found that different models have
varying precision requirements. For the GPT-125M model,
applying a per-token and per-channel FP4 quantization strat-
egy for both forward computation and weight gradient com-
putation is feasible. The final results are shown in Table
1. The use of per-token and per-channel quantization is de-
signed to better align with matrix multiplication rules, allow-
ing for efficient implementation on accelerators. However,
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for the GPT-335M model, the per-token and per-channel
FP4 quantization strategy becomes ineffective as the data
volume increases. In this case, switching to per-block FP4
quantization for weight gradient computation enables train-
ing to proceed, with the final results also presented in Table
1. For the GPT-770M model, the quantization strategy used
for GPT-335M becomes ineffective as training progresses.
At this point, modifying the forward computation to use per-
block FP4 quantization while increasing the precision of
weight gradient computation to FP8 ensures stable training.
Additionally, we validated the feasibility of the GPT-770M
quantization strategy (as we discuss in Section 3) on the
LLaMA-125M and LLaMA-1B models. It can be antici-
pated that as model size and data volume continue to grow,
the precision requirements for model training will become
increasingly stringent(Kumar et al., 2024). Ensuring that
FP4 can support long-term, large-scale pretraining of large
models remains a key direction for our future work.
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