Refining Packing and Shuffling Strategies for Enhanced Performance in
Generative Language Models

Anonymous ACL submission

Abstract

Packing and shuffling tokens is a common prac-
tice in training auto-regressive language models
(LMs) to prevent overfitting and improve effi-
ciency. Typically documents are concatenated
to chunks of maximum sequence length (MSL)
and then shuffled. However setting the atom
size, the length for each data chunk accompa-
nied by random shuffling, to MSL may lead to
contextual incoherence due to tokens from dif-
ferent documents being packed into the same
chunk. An alternative approach is to utilize
padding, another common data packing strat-
egy, to avoid contextual incoherence by only
including one document in each shuffled chunk.
To optimize both packing strategies (concate-
nation vs padding), we investigated the optimal
atom size for shuffling and compared their per-
formance and efficiency. We found that match-
ing atom size to MSL optimizes performance
for both packing methods (concatenation and
padding), and padding yields lower final per-
plexity (higher performance) than concatena-
tion at the cost of more training steps and lower
compute efficiency. This trade-off informs the
choice of packing methods in training language
models '.

1 Introduction

Dataset shuffling removes underlying chronologi-
cal or thematic order in the original dataset, which
reduces the risk of overfitting and improves model
generalizability (Nicolae et al., 2016; Shen et al.,
2020; Zhong et al., 2023). For example, training
a classifier for cats versus dogs with a dataset con-
taining 5,000 images of each can lead to bias if the
dataset is not shuffled. If the first 5,000 gradient
updates are solely from cat images, the model de-
velops a "cat bias," making inference on dogs prob-
lematic. This issue can be avoided by interleaving
cat and dog images, and this process of shuffling

!The codebase available on github: https://anonymous.
4open.science/r/data-shuffling-3A4D/README.md

datasets prior to training machine learning models
has become a standard approach.

Although shuffling facilitates unbiased learn-
ing by providing independent samples, the opti-
mal packing approach for data shuffling in genera-
tive language model remains unclear (Press, 2019;
Abdou et al., 2022). For GPT models (Radford
et al., 2019), the commonly used PyTorch Dat-
aloader class concatenates and packs documents
into chunks of a fixed size (usually MSL) before
shuffling (hereafter referred to as ’concat’). An-
other approach, the padding method, shuffles doc-
uments after padding them to a fixed size. Both
methods achieve the goal of generating fixed-length
sequences, but it is still an open question which
method is more effective for GPT models.

In terms of packing methods for language mod-
els, the appropriate shuffling unit size remains un-
certain. For some modeling tasks, like the visual
classification mentioned above, we can shuffle the
training data in units of one or a few images. How-
ever, since training datasets for language models
consist of documents or sequences with varying
lengths, selecting the appropriate shuffling unit size
is challenging. For conciseness in later discussions,
we define the unit of data length used in the shuf-
fling process as "atom size".

We hypothesize that shuffling data in an atom
size of MSL is best since the contextual informa-
tion within each shuffling chunk is maximized.
Specifically, transformers approximate the next to-
ken distribution given the previous context. This
context would be disrupted when the atom size is
smaller than the MSL, as unrelated contextual frag-
ments are concatenated together. In addition, the
context of consecutive sequences would be depen-
dent when the atom size is larger than the MSL,
thus introducing correlation and bias. Therefore,
using the MSL as the shuffling unit preserves both
integrity and randomness of the training data.

Our experiments confirmed that packing and

https://anonymous.4open.science/r/data-shuffling-3A4D/README.md
https://anonymous.4open.science/r/data-shuffling-3A4D/README.md

shuffling data in atom sizes of MSL optimizes per-
formance for both concat and padding methods. We
also showed that padding results in better model
performance than concat, albeit at the cost of effi-
ciency due to more training steps.

2 Method

2.1 Model Pretraining Setting

We pretrained GPT-2 124M models (Radford
et al., 2019) on WikiText with each packing
method—concat or padding—across various atom
sizes and MSLs. Table 1 shows different configura-
tions tested. We used Alibi(Press et al., 2021) as a
positional encoding that introduces no additional
learnable parameters, such that all models have
the same total parameter size regardless of their
MSLs. One observation in padding is that models
have different step sizes, which is discussed in Ap-
pendix A.9. Models were trained for 2 epochs on 1
NVIDIA A100 GPU. Appendices A.1, A.3, A4,
and A.5 provide details on dataset and filtering,
specific implementations for data packing methods,
an explanation for parameter sizes with Alibi, and
an justification for the step size, respectively.

2.2 Evaluation and Comparison Metric

We used final perplexity and perplexity ranking
to determine the optimal atom size for both pack-
ing methods (concat or padding) across 3 MSLs,
resulting in 28 experiments overall. Detailed calcu-
lations for final perplexity and perplexity ranking
are explained in Appendix A.6. Under each MSL,
we compared concat and padding models by final
perplexity, learning efficiency (perplexity at given
steps) and step size efficiency (steps per epoch).
Table 1 lists MSL and atom size choices, with jus-
tifications provided in Appendix A.2.

MSL Atom Size Choice for Both Concat and Padding.

32 8,16, 32, 64, 128
64 16, 32, 64, 128, 256
128 32, 64, 128, 256

Table 1: MSL and atom size choices

3 Results

3.1 Concat Experiments

We found that atom sizes smaller or larger than
MSL increased perplexity, indicating that MSL is
indeed the optimal atom size for concat. Figure 1(a)

shows the training perplexity of concat models
with different atom sizes s € {0.25MSL, 0.5MSL,
IMSL, 2MSL, 4MSL} when MSL is 64. Among
all atom sizes, 0.25SMSL (purple) and 0.5MSL (red)
obviously lead to higher perplexity (worse perfor-
mance). Although the differences in perplexity
among 4MSL (blue), 2MSL (orange) and 1MSL
(green) are minimal, IMSL consistently had lower
perplexity (better performance) than 2MSL and
4AMSL. Figure 1(b) shows the training perplexity
of the second epoch as an example. Table 2 shows
final perplexity and perplexity ranking respectively.
The model using 1MSL as the atom size has the
lowest final perplexity (118.08) and highest aver-
age ranking (1.05), indicating optimal performance.
Experiments with MSL = 32, 128 yielded similar
results, as detailed in Appendix A.8.

Atom Size Final Perplexity = Perplexity Ranking
Concat Padding Concat Padding
0.25MSL 207.04 175.33 5.00 5.00
0.5MSL 157.39 13443 4.00 4.00
IMSL 118.08 102.82 1.05 1.18
2MSL 119.66 104.46 1.96 2.03
4MSL 121.18 105.85 2.99 2.79

Table 2: Comparison of final perplexity values and aver-
age perplexity rankings across different atom sizes for
concat and padding models when MSL is 64.

3.2 Padding Experiments

For padding, we found that atom sizes smaller
or larger than MSL increased perplexity, confirm-
ing MSL as the optimal atom size. Figure 2(a)
shows the training perplexity of padding models
with atom sizes s € {0.25MSL, 0.5MSL, IMSL,
2MSL, 4MSL} when MSL is 64. It takes different
training steps for different padding models to fin-
ish 1 epoch, as mentioned in Section A.9. Similar
to the concat experiments, 0.25MSL (purple) and
0.5MSL (red) lead to higher perplexity, while differ-
ences between 4MSL (blue), 2MSL (orange) and
IMSL (green) are subtle. We found that IMSL con-
sistently had lower perplexity compared to 2MSL
and 4MSL. Figure 2(b) shows the second epoch’s
training perplexity, where 1MSL started with the
highest perplexity but improved to perform better
(lower perplexity) than 2MSL and 4MSL by the
end of training. Table 2 presents the final per-
plexity and perplexity ranking. The model with
atom size of IMSL has the lowest final perplexity
(102.82) and highest average ranking (1.18), in-
dicating optimal performance. Experiments with

Training Perplexity with Concat for MSL = 64 (Both Epoch)

Language Perplexity

0 2000 4000 6000 8000 10000 12000 14000

(a) Full Training Perplexity. The models with atom
sizes of 0.5SMSL (red) and 0.25MSL (purple) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

Training Perplexity with Concat for MSL = 64 (Second Epoch)

Atom Size
—— amsL

2Ms1
200 — IMsL

180 \

160

Language Perplexity

140

Step
(b) Second Epoch Perplexity. Initially, the model with
atom size of 2MSL (orange) has higher perplexity than
the other two. IMSL (green) consistently maintains the
lowest perplexity in the second epoch.

Figure 1: Comparisons across concat models with different atom sizes when MSL is 64. Smaller or larger atom
sizes than IMSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity at the

end of 2 epochs, indicating the best performance.

Training Perplexity with Padding for MSL = 64 (Both Epoch)

1000

Language Perplexity

Step
(a) Full Training Perplexity. The models with atom
sizes of 0.5SMSL (red) and 0.25MSL (purple) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

Training Perplexity with Padding for MSL = 64 (Second Epoch)

Language Perplexity

Step
(b) Second Epoch Perplexity. Initially, the model with
atom size of IMSL (green) shows higher perplexity than
the other two. IMSL continuously decreases and achieves
the lowest perplexity by the end of the second epoch.

Figure 2: Comparisons across padding models with different atom sizes when MSL is 64. Smaller or larger atom
sizes than MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity at the

end of 2 epochs, indicating the best performance.

MSL is 32 or 128 yielded similar results (See Ap-
pendix A.8. for details).

3.3 Comparison between Padding and Concat

Although the padding method resulted in lower
final perplexities (better performance) than concat,
it has lower learning efficiency (higher perplexity
at given steps) and step size efficiency (more steps
per epoch). Table 3 compares the total step size
and final perplexity for concat and padding models
when the atom size matches the MSL, showing that
padding models have larger step sizes and lower
final perplexity than concat models across MSLs.
Additionally, Figure 3 shows the step-wise per-
plexity comparison for concat (blue) and padding
(orange) models when the atom size matches the
MSL (for clearer visualization, the first 2,000 steps
are discarded due to high perplexity in all plots).

Again, we see that padding has lower final perplex-
ities while concat has smaller training step sizes.

MSL Batch Size Step Size Final Step Perplexity
Concat Padding Concat Padding
32 256 28120 31816 91.01 87.22
64 256 14058 17308 110.45 99.79
128 128 14056 20496 102.42 82.55

Table 3: Comparison of total step size and final perplex-
ity for concat and padding models under atom size =
MSL, highlighting smaller step sizes and lower perplex-
ities.

4 Discussion

4.1 Language Coherence and Bias

Matching MSL and atom size optimizes packing
(padding and concat) by reducing language inco-
herence within a sequence and bias. Using an atom

Training Perplexity with Both Packing for MSL = 32 (Both Epoch)

‘Training Perplexity with Both Packing for MSL = 64 (Both Epoch)

‘Training Perplexity with Both Packing for MSL = 128 (Both Epoch)

(a) MSL = 32.

(b) MSL = 64.

(c) MSL = 128.

Figure 3: Step-wise comparison of perplexity between padding and concat models under different MSLs (the first
2,000 steps discarded due to high perplexity). Padding (orange) has lower final perplexities (better performance)
while concat (blue) has smaller training step sizes over 2 epochs.

size smaller than MSL causes language incoher-
ence, as it forces unrelated shuffling chunks to get
merged into one sequence, damaging the contex-
tual completeness of each sequence. Conversely,
atom size larger than MSL brings bias by splitting
shuffling chunks across multiple consecutive se-
quences, creating unintended correlations between
these sequences.

4.2 TImplication of the Trade-off Between
Performance and Efficiency

ML practitioners’ choice of packing methods may
be informed by the trade-off between performance
and efficiency. With limited amount of data,
padding triumphs because it brings higher perfor-
mance; with limited time, concat is preferable be-
cause it packs each epoch in fewer steps, leading
to higher efficiency.

5 Related Work

Shuffle in PyTorch. While the DatalLoader class in
PyTorch shuffles data in concatenated chunks of a
fixed atom size (usually MSL) to maximize training
efficiency, our work explored multiple atom sizes
(4MSL, 2MSL, 1IMSL, 0.5MSL and 0.25MSL) as
well as padding as an alternative packing method
to optimize training performance.

Data Shuffling Strategies for Context Preser-
vation. Zhao et al. (Zhao et al., 2024) focused
on intra-document causal attention mask as a pack-
ing strategy. In this strategy, documents are con-
catenated into chunks with fixed length, and the
likelihood of each token is only conditioned on the
previous tokens from the same document within the
chunk. This is similar to padding because attention
score is only calculated for intra-document tokens,
but each token may not have full attention to other
tokens in the same document since one document
may be packed into different chunks. This method

improves efficiency by saving padding tokens, but
may suffer from contextual incompleteness.

6 Conclusion

Our experiments using different packing meth-
ods with different atom sizes and MSLs show
that matching atom size with maximum sequence
length (MSL) optimizes packing performance (con-
cat and padding). This finding underscores the
importance of aligning atom size with MSL during
data shuffling to optimize language model training.
We also found that padding yields lower final
perplexity (higher performance) than concat at the
cost of more training steps and lower efficiency.
This trade-off guides packing choices in training
models: padding is preferable when data is scarce,
while concat is preferable when time is limited.

Limitations and Future Work.

* Our initial exploration showed MSL as the
optimal atom size for packing and shuffling
in GPT-2 124M models trained on WikiText.
Future work using datasets with longer doc-
ument lengths and other model architectures
will further extend our findings.

* Our preliminary findings show that padding
optimizes performance with limited amount
of data. Specifically, we set MSL smaller
than document lengths to avoid large amounts
of padding tokens. However, this approach
might not be practical in all settings, prompt-
ing future studies to explore padding’s efficacy
when MSL exceeds document lengths.

References

Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and
Anders Sggaard. 2022. Word order does matter and
shuffled language models know it. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6907-6919.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Bogdan Nicolae, Carlos Costa, Claudia Misale, Kostas
Katrinis, and Yoonho Park. 2016. Towards memory-
optimized data shuffling patterns for big data analyt-
ics. In 2016 16th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CC-
Grid), pages 409-412. IEEE.

Ofir Press. 2019. Partially shuffling the training

data to improve language models. arXiv preprint
arXiv:1903.04167.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Min Shen, Ye Zhou, and Chandni Singh. 2020. Mag-
net: push-based shuffle service for large-scale data
processing. Proceedings of the VLDB Endowment,
13(12):3382-3395.

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon
Tworkowski, Wei Liu, Piotr Mitos$, Yuxiang Wu, and
Pasquale Minervini. 2024. Analysing the impact
of sequence composition on language model pre-
training. arXiv preprint arXiv:2402.13991.

Tianle Zhong, Jiechen Zhao, Xindi Guo, Qiang Su, and
Geoffrey Fox. 2023. Rinas: Training with dataset
shuffling can be general and fast. arXiv preprint
arXiv:2312.02368.

A Appendix
A.1 Dataset and Filtering

We conducted our studies on the generative lan-
guage model training using the WikiText dataset
(Merity et al., 2016), chosen for its generalizability.
Specifically, we used the WikiText-103-raw subset,

Distribution of Sample Lengths (N=10,000)

800 M

) “-{'

: —l
&£ 400 ‘ ‘ ‘—l
200 ‘ ‘

I,

0 200 400 600 800
Length

Figure 4: The distribution of tokenized sequence lengths
in WikiText-103-raw with 10,000 random samples. The
dataset mostly consists of short paragraphs with length
0 to 200.

which comprises approximately 1.81M rows and
over 100M words derived from filtered Wikipedia
content. Notably, the dataset mostly consists of
short paragraphs: Figure 4 shows the distribution
of tokenized sequence lengths using 10,000 ran-
domly sampled rows from the dataset.

Before tokenization or shuffling the WikiText
dataset, we removed blank rows and short title rows
that contained limited context information. We fil-
tered out rows with fewer than 50 words. This
filtered 55.62% rows (2.45% words) in the training
set and 53.86% rows (2.33% words) in the valida-
tion set. The training and validation corpus size
after filtering are 98,937,698 and 208,893 words
respectively.

Before feeding dataset to models, we prepro-
cessed the sequences by tokenization and packing.
We first used GPT2TokenizerFast (Radford et al.,
2019)to tokenize all sequences in parallel, then
used one of the two packing methods (padding and
concat) with shuffling to ensure that all sequences
could be batched in MSL.

A.2 Choices of MSL and Atom Size Explained

We set MSL = 32, 64, 128 to keep it smaller than
document lengths and save wasteful padding to-
kens. Atom sizes were chosen to follow a geomet-
ric progression relative to MSL, set at 0.25MSL,
0.5SMSL, 1IMSL, 2MSL, 4MSL. However, when
MSL = 128, we did not test on an atom size of 4
MSL = 512 because of wasteful padding tokens.

We also adjusted batch sizes based on MSL: 256
for MSLs of 32 and 64, and 128 for MSL = 128.
These batch size selections were made to optimize
GPU memory usage.

ST T -

| spiit | siit | st

63+ 63+ 4+ 63+ | | Tail w/ | . 63+
EOS EOS EOS o EOS o
L)
T

| shutne

63+ 63+ 63+
EOS EOS EOs AR

1 Split

DR EEEEE - s

Figure 5: Illustration of packing steps of padding, when
MSL is 32 and atom size is 64. The "tail" subsequence
contains fewer tokens than the specified atom size and
is padded to meet the MSL requirement, ensuring con-
sistency in sequence length.

ly Arranged Sub:

A.3 Concat and Padding Details

Padding. This method focuses on padding to gen-
erate sequences with lengths equal to MSL. The
steps are shown in Figure 5. Each input document
was segmented into smaller subsequences of length
(atom size - 1) with an <EOS> token placed at the
end. The role of the <EOS> token is to inform
the model that the current sequence has ended. To
maintain consistency in sequence length and en-
sure efficient batch processing, the tail end of any
subsequence that does not meet the requirement of
MSL would be padded. For example, in the case
of MSL = 64, a sequence of length 130 (L = 130)
would be segmented into 2 subsequences of length
64 (each with 63 word tokens and an <EOS> token
at the end), then a tail subsequence composed of
4 word tokens and 60 padding tokens. We used
<EOS> as the padding token for simplicity of the
special token set. All resulted subsequences have a
length of MSL regardless of the original sequence
length.

Next, all subsequences were randomly shuffled
with random seed set to 42. During this process,
any underlying chronological or thematic order in
the original dataset should be removed.

After shuffling, the subsequences were either
merged or split to align with the predefined MSL.
When atom size is less than MSL, we merged sub-
sequences; when atom size is larger than MSL,
we split subsequences. Finally, when atom size
equals MSL, we kept the shuffled subsequences
unchanged. For example, in the case where MSL is
32 and atom size is 64, we split every subsequences
to get 2 final subsequences of length 32 to feed to
the model.

Coves s P s e]
t t t
we @ @ @

l Concatenate

Concatenated Sequence

l Split

nnnn

| shutne & spiit

AEEEEEA

Figure 6: Illustration of packing steps of concat, with
MSL of 32 and atom size of 64.

Split Subsequences

Final Subsequences

Notably, when atom size is larger than MSL, we
do not pad every tail end to atom size, but to MSL
instead as shown in figure 5. This is because all
subsequences will be split into size of MSL after
shuffling. If we pad tail end to atom size instead
of MSL, we will produce some training sequences
that are completely composed of padding tokens.
For example, when MSL is 32 and atom size is
128, if we pad a document of 35 tokens to an atom
size of 128, we will yield a subsequence with 35
word tokens and 93 padding tokens, which will
lead to completely meaningless training samples
after split.

Concat. While the padding method handles dif-
ferent sequence lengths with padding tokens, the
concat method employs a concatenating and split-
ting process. The steps are shown in Figure 6. In
this approach, we firstly concatenate all sequences
together to obtain an extremely long sequence inter-
leaved with <EOS> tokens. Then we split the long
sequence into subsequences according to atom size,
shuffled them, and adjusted them to fit the max-
imum context length by merging or splitting as
needed.

The two methods reflect different strategies to
achieve the goal of generating fixed-length se-
quences for model training. The default method for
GPT models is concat, but we hope to test whether
padding outperforms concat in terms of efficiency
and model performance. Our experiments in Sec-
tion 3 would show that padding had better model
performance than concat with the cost of lower ef-
ficiency. Since our experiments on shuffling atom
size would focus on optimizing model performance,
we decided to employ padding during those experi-
ments.

A.4 Total Parameter Size

When we experiment on models with different
MSL, it is important to control the parameter size
across all models. In the vanilla GPT-2 Small ar-
chitecture, different MSLs lead to different param-
eter sizes. This is because the positional encoding
layer’s parameter size has a positive linear relation-
ship with maximum context length. To eliminate
this difference, we decide to replace the positional
encoding with Attention with Linear Biases (Al-
ibi) (Press et al., 2021), which is a non-parametric
positional encoding algorithm that biases attention
scores in accordance with the distance between
tokens. This algorithm was originally designed
to improve the processing of long sequences in
language models and to reduce the computational
load associated with longer inputs. However, our
smaller-scale model with shorter maximum context
lengths did not benefit from these advantages. In-
stead, we focused on one particular characteristic
of Alibi: it does not introduce additional trainable
parameters, unlike the default positional encoding
in the GPT-2 architecture. As a result, the total
parameter size of all models trained in our experi-
ments were fixed to 124M.

A.5 Total Step Size

Our objective is to schedule and use computational
resources in ways that minimize training time and
adhere to optimal training practices. We estimate
the optimal number of tokens for training based
on the estimation table from Chinchilla (Hoffmann
et al., 2022). The table indicates that a model with
400M parameters requires 8B tokens, so our 124M-
parameter model will need (124/400) x 8 = 2.48B
tokens. Then we divided this number by batch size
and maximum context length to calculate the opti-
mal step size for training. However, due to limita-
tions in computational resources, it would take us
one day to train one model on the optimal number
of tokens. In this case, we decided to run two full
epochs (114,400,095 word tokens per epoch) for
all experiments instead, bringing the perplexity to
nearly convergence in 2 to 3 hours on one GPU
(NVIDIA Tesla V100-PCIE-32GB).

A.6 Detailed Calculation of Final Perplexity
and Perplexity Ranking

After evaluating with perplexity, we compared all
models based on their average perplexity ranking
and final perplexity value. Here, we need to be

careful of how to calculate these two comparison
metrics in detail.

We chose to calculate the comparison metrics by
epochs rather than training steps due to variations
in the number of word tokens learned at each step
in padding models. For ranking, we divided the
last epoch into 100 segments, each covering 0.01
of an epoch, calculated the average perplexity for
all models within each segment, and ranked them.
We then averaged the rankings from all 100 ranges
as our final ranking. For the final perplexity value,
we selected the last range (0.99 epoch - 1.00 epoch)
and calculated its average perplexity.

A.7 Exponential Moving Average (EMA)

We use Exponential Moving Average (EMA) to
visualize smooth perplexity curves for our mod-
els. EMA computes a weighted average of past
data points, with exponentially decreasing weights
that effectively smooth out fluctuations in original
perplexity values. Specifically, EMA is computed
iteratively using the following formula:

Si=a-y+(1—a)- S

where S; represents the smoothed perplexity at
step t, y; is the observed perplexity at step ¢, and
« is the smoothing parameter. « is designed to
dynamically adjust based on changes in training
steps At:

oy = min(v/a, 0.999)4¢

where At is always 1 since training step is a dis-
crete variable. Therefore, the smoothing parameter
remains constant during the process.

A.8 Concat and Padding Results under MSL
=32 and 128

Concat. See Figure 7, Figure 8 for detail.

Padding. See Figure 9, Figure 10 for detail.
A.9 Step Size Differences in Padding

As mentioned in Section 3.2, models with different
atom sizes have different training steps due to the
differing amounts of padding tokens in the training
sequences. In specific, we added padding tokens to
the dataset in two ways.

(a) By the End of Each Subsequence. As men-
tioned in Appendix A.3, documents are split to
subsequences with an <EOS> token added to their
ends. In our case, the <EOS> is the same as the
padding token.

5o Training Perplexity with Coneat for MSL = 32 (Both Epoch)

2000

1750

.+ 1500

ty

ge Perplex

& 1000

Langu

0 5000 10000 15000 20000 25000

(a) Full Training Perplexity. The models with atom
sizes of 0.5SMSL (red) and 0.25MSL (purple) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

Final Perplexity with Concat, MSL = 32

222.14

140 135.82
120
100 91.21 9230 93.16
80
IMSL 2MSL 4MSL 0.5MSL 025MSL
Atom Size

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(222.14),
while model with atom size of IMSL has the lowest final
perplexity value(91.21) for 2 epochs.

Training Perplexity with Concat for MSL = 32 (Second Epoch)

Language Perplexity

Step
(b) Second Epoch Perplexity. Models with atom size
of 4MSL (blue) has higher perplexity than the other two.
IMSL (green) consistently maintains the lowest perplexity
in the second epoch.

Average Perplexity Ranking with Concat, MSL = 32

5.00

3.00

Average Ranking
“ .

1.00

IMSL 2MSL 4MSL 0.5MSL 0.25MSL
Atom Size

(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking(5), while
model with atom size of IMSL has the lowest perplexity
ranking(1) for 2 epochs.

Figure 7: Comparisons across concat models with different atom sizes when MSL is 32. Smaller or larger atom
sizes than IMSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

(b) By the End of Tails. During the splitting
process, we produce some end tails which do not
completely fill an atom size as shown in figure 5.
Padding tokens are added to those tails to make
sure that they have lengths equal to the atom size.

Smaller atom sizes will have more padding to-
kens from source (a) than larger atom sizes because
they have larger numbers of subsequences. Larger
atom sizes will have more padding tokens from
source (b) because we need more padding tokens
for the end tails to fulfill the length requirement.

A.10 License for GPT-2

GPT-2 used a Modified MIT License, which can
be seen on this: https://github.com/openai/
gpt-2/blob/master/LICENSE. We only use GPT-
2 for research, which is consistent to its intended
use.

https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE

Training Perplexity with Both Packing for MSL = 128 (Both Epoch)

Atom Size
— 2msL
IMSL
—— 05MSL
—— 025MSL

g

Language Perplexity

200

Step
(a) Full Training Perplexity. The models with atom
sizes of 0.25MSL (red) and 0.5MSL (green) have higher
perplexity than the others. IMSL (orange) stabilizes at a
low perplexity after an initial drop.

Final Perplexity with Concat, MSL = 128

159.81

Value

129.89

112.59
110.31

IMSL 2MSL 0.5MSL 025MSL
Atom Size

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(159.81),
while model with atom size of IMSL has the lowest final
perplexity value(110.31) for 2 epochs.

Training Perplexity with Concat for MSL = 128 (Second Epoch)

200 \ Atom Size
— 2wms1
IMSL

Language Perplexity

7000 8000 9000 10000 11000 12000 13000 14000
Step

(b) Second Epoch Perplexity. Initially, the model with
atom size of IMSL (orange) shows higher perplexity than
2MSL (blue). IMSL continuously decreases and achieves
the lowest perplexity by the end of the second epoch.

Average Perplexity Ranking with Concat, MSL = 128
4.00

3.00

2.00

Average Ranking
B

0.5

0.0

IMSL. 2MSL 0.5MSL 0.25MSL
Atom Size

(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (4), while
model with atom size of 1MSL has the lowest perplexity
ranking (1) for 2 epochs.

Figure 8: Comparisons across concat models with different atom sizes when MSL is 128. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

Training Perplexity with Padding for MSL = 32 (Both Epoch)

2500 Atom Size
— amsL
2MSL

g

anguage Perplexity

2 1000

500

Step
(a) Full Training Perplexity. The models with atom
sizes of 2MSL (orange) and 0.5MSL(red) have higher
perplexity than the others. IMSL (green) stabilizes at a
low perplexity after an initial drop.

Final Perplexity with Padding, MSL = 32

200 196.83

123.65

9.72
8556 $6.89 89.72

IMSL 2MSL AMSL 0.5MSL 0.25MSL
Atom Size

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (196.83),
while model with atom size of IMSL has the lowest final
perplexity value (85.56) for 2 epochs.

Training Perplexity with Padding for MSL = 32 (Second Epoch)

130

Language Perplexity

Step
(b) Second Epoch Perplexity. The models with atom
size of 4MSL (blue) has higher perplexity than the other
two. IMSL (green) has the lowest perplexity at the end of
second epoch.

Average Perplexity Ranking with Padding, MSL = 32
5.00

3.00

Average Ranking
“

1.10

IMSL. 2MSL 4MSL 0.5MSL 0.25MSL
Atom Size

(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of 1MSL has the lowest perplexity
ranking (1.1) for 2 epochs.

Figure 9: Comparisons across padding models with different atom sizes when MSL is 32.Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

10

- Training Perplexity with Padding for MSL = 128 (Both Epoch)

Atom Size
— 2msL
1750 IMSL
—— 05MSL
—— 025MSL

500

2

Language Perplexity
H S

(a) Full Training Perplexity. The model with atom sizes

of 0.25MSL (red) has higher perplexity than the others.

IMSL (orange) stabilizes at a low perplexity after an initial
drop.

Final Perplexity with Padding, MSL = 128

146.95

Value

110.18

90 87.97

IMSL 2MSL 0.5MSL 025MSL
Atom Size

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (146.95),
while model with atom size of IMSL has the lowest final
perplexity value (86.20) for 2 epochs.

Training Perplexity with Padding for MSL = 128 (Second Epoch)

Language Perplexity

100

10000 12000 14000 16000 18000 20000
Step

(b) Second Epoch Perplexity. Initially, the model with
atom size of 2MSL (blue) and 1MSL(orange) have similar

perplexity. 1IMSL (orange) has the lowest perplexity at
the end of second epoch.

Average Perplexity Ranking with Padding, MSL = 128
4.00

3.00

Average Ranking
B

0.5

0.0

IMSL. 2MSL 0.5MSL 0.25MSL
Atom Size

(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (4), while
model with atom size of 1MSL has the lowest perplexity
ranking (1.23) for 2 epochs.

Figure 10: Comparisons across padding models with different atom sizes when MSL is 128. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

11

	Introduction
	Method
	Model Pretraining Setting
	Evaluation and Comparison Metric

	Results
	Concat Experiments
	Padding Experiments
	Comparison between Padding and Concat

	Discussion
	Language Coherence and Bias
	Implication of the Trade-off Between Performance and Efficiency

	Related Work
	Conclusion
	Appendix
	Dataset and Filtering
	Choices of MSL and Atom Size Explained
	Concat and Padding Details
	Total Parameter Size
	Total Step Size
	Detailed Calculation of Final Perplexity and Perplexity Ranking
	Exponential Moving Average (EMA)
	Concat and Padding Results under MSL = 32 and 128
	Step Size Differences in Padding
	License for GPT-2

