
Refining Packing and Shuffling Strategies for Enhanced Performance in
Generative Language Models

Anonymous ACL submission

Abstract

Packing and shuffling tokens is a common prac-001
tice in training auto-regressive language models002
(LMs) to prevent overfitting and improve effi-003
ciency. Typically documents are concatenated004
to chunks of maximum sequence length (MSL)005
and then shuffled. However setting the atom006
size, the length for each data chunk accompa-007
nied by random shuffling, to MSL may lead to008
contextual incoherence due to tokens from dif-009
ferent documents being packed into the same010
chunk. An alternative approach is to utilize011
padding, another common data packing strat-012
egy, to avoid contextual incoherence by only013
including one document in each shuffled chunk.014
To optimize both packing strategies (concate-015
nation vs padding), we investigated the optimal016
atom size for shuffling and compared their per-017
formance and efficiency. We found that match-018
ing atom size to MSL optimizes performance019
for both packing methods (concatenation and020
padding), and padding yields lower final per-021
plexity (higher performance) than concatena-022
tion at the cost of more training steps and lower023
compute efficiency. This trade-off informs the024
choice of packing methods in training language025
models 1.026

1 Introduction027

Dataset shuffling removes underlying chronologi-028

cal or thematic order in the original dataset, which029

reduces the risk of overfitting and improves model030

generalizability (Nicolae et al., 2016; Shen et al.,031

2020; Zhong et al., 2023). For example, training032

a classifier for cats versus dogs with a dataset con-033

taining 5,000 images of each can lead to bias if the034

dataset is not shuffled. If the first 5,000 gradient035

updates are solely from cat images, the model de-036

velops a "cat bias," making inference on dogs prob-037

lematic. This issue can be avoided by interleaving038

cat and dog images, and this process of shuffling039

1The codebase available on github: https://anonymous.
4open.science/r/data-shuffling-3A4D/README.md

datasets prior to training machine learning models 040

has become a standard approach. 041

Although shuffling facilitates unbiased learn- 042

ing by providing independent samples, the opti- 043

mal packing approach for data shuffling in genera- 044

tive language model remains unclear (Press, 2019; 045

Abdou et al., 2022). For GPT models (Radford 046

et al., 2019), the commonly used PyTorch Dat- 047

aloader class concatenates and packs documents 048

into chunks of a fixed size (usually MSL) before 049

shuffling (hereafter referred to as ’concat’). An- 050

other approach, the padding method, shuffles doc- 051

uments after padding them to a fixed size. Both 052

methods achieve the goal of generating fixed-length 053

sequences, but it is still an open question which 054

method is more effective for GPT models. 055

In terms of packing methods for language mod- 056

els, the appropriate shuffling unit size remains un- 057

certain. For some modeling tasks, like the visual 058

classification mentioned above, we can shuffle the 059

training data in units of one or a few images. How- 060

ever, since training datasets for language models 061

consist of documents or sequences with varying 062

lengths, selecting the appropriate shuffling unit size 063

is challenging. For conciseness in later discussions, 064

we define the unit of data length used in the shuf- 065

fling process as "atom size". 066

We hypothesize that shuffling data in an atom 067

size of MSL is best since the contextual informa- 068

tion within each shuffling chunk is maximized. 069

Specifically, transformers approximate the next to- 070

ken distribution given the previous context. This 071

context would be disrupted when the atom size is 072

smaller than the MSL, as unrelated contextual frag- 073

ments are concatenated together. In addition, the 074

context of consecutive sequences would be depen- 075

dent when the atom size is larger than the MSL, 076

thus introducing correlation and bias. Therefore, 077

using the MSL as the shuffling unit preserves both 078

integrity and randomness of the training data. 079

Our experiments confirmed that packing and 080

1

https://anonymous.4open.science/r/data-shuffling-3A4D/README.md
https://anonymous.4open.science/r/data-shuffling-3A4D/README.md


shuffling data in atom sizes of MSL optimizes per-081

formance for both concat and padding methods. We082

also showed that padding results in better model083

performance than concat, albeit at the cost of effi-084

ciency due to more training steps.085

2 Method086

2.1 Model Pretraining Setting087

We pretrained GPT-2 124M models (Radford088

et al., 2019) on WikiText with each packing089

method—concat or padding—across various atom090

sizes and MSLs. Table 1 shows different configura-091

tions tested. We used Alibi(Press et al., 2021) as a092

positional encoding that introduces no additional093

learnable parameters, such that all models have094

the same total parameter size regardless of their095

MSLs. One observation in padding is that models096

have different step sizes, which is discussed in Ap-097

pendix A.9. Models were trained for 2 epochs on 1098

NVIDIA A100 GPU. Appendices A.1, A.3, A.4,099

and A.5 provide details on dataset and filtering,100

specific implementations for data packing methods,101

an explanation for parameter sizes with Alibi, and102

an justification for the step size, respectively.103

2.2 Evaluation and Comparison Metric104

We used final perplexity and perplexity ranking105

to determine the optimal atom size for both pack-106

ing methods (concat or padding) across 3 MSLs,107

resulting in 28 experiments overall. Detailed calcu-108

lations for final perplexity and perplexity ranking109

are explained in Appendix A.6. Under each MSL,110

we compared concat and padding models by final111

perplexity, learning efficiency (perplexity at given112

steps) and step size efficiency (steps per epoch).113

Table 1 lists MSL and atom size choices, with jus-114

tifications provided in Appendix A.2.115

MSL Atom Size Choice for Both Concat and Padding.

32 8, 16, 32, 64, 128
64 16, 32, 64, 128, 256
128 32, 64, 128, 256

Table 1: MSL and atom size choices

3 Results116

3.1 Concat Experiments117

We found that atom sizes smaller or larger than118

MSL increased perplexity, indicating that MSL is119

indeed the optimal atom size for concat. Figure 1(a)120

shows the training perplexity of concat models 121

with different atom sizes s ∈ {0.25MSL, 0.5MSL, 122

1MSL, 2MSL, 4MSL} when MSL is 64. Among 123

all atom sizes, 0.25MSL (purple) and 0.5MSL (red) 124

obviously lead to higher perplexity (worse perfor- 125

mance). Although the differences in perplexity 126

among 4MSL (blue), 2MSL (orange) and 1MSL 127

(green) are minimal, 1MSL consistently had lower 128

perplexity (better performance) than 2MSL and 129

4MSL. Figure 1(b) shows the training perplexity 130

of the second epoch as an example. Table 2 shows 131

final perplexity and perplexity ranking respectively. 132

The model using 1MSL as the atom size has the 133

lowest final perplexity (118.08) and highest aver- 134

age ranking (1.05), indicating optimal performance. 135

Experiments with MSL = 32, 128 yielded similar 136

results, as detailed in Appendix A.8. 137

Atom Size Final Perplexity Perplexity Ranking
Concat Padding Concat Padding

0.25MSL 207.04 175.33 5.00 5.00
0.5MSL 157.39 134.43 4.00 4.00
1MSL 118.08 102.82 1.05 1.18
2MSL 119.66 104.46 1.96 2.03
4MSL 121.18 105.85 2.99 2.79

Table 2: Comparison of final perplexity values and aver-
age perplexity rankings across different atom sizes for
concat and padding models when MSL is 64.

3.2 Padding Experiments 138

For padding, we found that atom sizes smaller 139

or larger than MSL increased perplexity, confirm- 140

ing MSL as the optimal atom size. Figure 2(a) 141

shows the training perplexity of padding models 142

with atom sizes s ∈ {0.25MSL, 0.5MSL, 1MSL, 143

2MSL, 4MSL} when MSL is 64. It takes different 144

training steps for different padding models to fin- 145

ish 1 epoch, as mentioned in Section A.9. Similar 146

to the concat experiments, 0.25MSL (purple) and 147

0.5MSL (red) lead to higher perplexity, while differ- 148

ences between 4MSL (blue), 2MSL (orange) and 149

1MSL (green) are subtle. We found that 1MSL con- 150

sistently had lower perplexity compared to 2MSL 151

and 4MSL. Figure 2(b) shows the second epoch’s 152

training perplexity, where 1MSL started with the 153

highest perplexity but improved to perform better 154

(lower perplexity) than 2MSL and 4MSL by the 155

end of training. Table 2 presents the final per- 156

plexity and perplexity ranking. The model with 157

atom size of 1MSL has the lowest final perplexity 158

(102.82) and highest average ranking (1.18), in- 159

dicating optimal performance. Experiments with 160

2



(a) Full Training Perplexity. The models with atom
sizes of 0.5MSL (red) and 0.25MSL (purple) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

(b) Second Epoch Perplexity. Initially, the model with
atom size of 2MSL (orange) has higher perplexity than
the other two. 1MSL (green) consistently maintains the
lowest perplexity in the second epoch.

Figure 1: Comparisons across concat models with different atom sizes when MSL is 64. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity at the
end of 2 epochs, indicating the best performance.

(a) Full Training Perplexity. The models with atom
sizes of 0.5MSL (red) and 0.25MSL (purple) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

(b) Second Epoch Perplexity. Initially, the model with
atom size of 1MSL (green) shows higher perplexity than
the other two. 1MSL continuously decreases and achieves
the lowest perplexity by the end of the second epoch.

Figure 2: Comparisons across padding models with different atom sizes when MSL is 64. Smaller or larger atom
sizes than MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity at the
end of 2 epochs, indicating the best performance.

MSL is 32 or 128 yielded similar results (See Ap-161

pendix A.8. for details).162

3.3 Comparison between Padding and Concat163

Although the padding method resulted in lower164

final perplexities (better performance) than concat,165

it has lower learning efficiency (higher perplexity166

at given steps) and step size efficiency (more steps167

per epoch). Table 3 compares the total step size168

and final perplexity for concat and padding models169

when the atom size matches the MSL, showing that170

padding models have larger step sizes and lower171

final perplexity than concat models across MSLs.172

Additionally, Figure 3 shows the step-wise per-173

plexity comparison for concat (blue) and padding174

(orange) models when the atom size matches the175

MSL (for clearer visualization, the first 2,000 steps176

are discarded due to high perplexity in all plots).177

Again, we see that padding has lower final perplex- 178

ities while concat has smaller training step sizes. 179

MSL Batch Size Step Size Final Step Perplexity
Concat Padding Concat Padding

32 256 28120 31816 91.01 87.22
64 256 14058 17308 110.45 99.79
128 128 14056 20496 102.42 82.55

Table 3: Comparison of total step size and final perplex-
ity for concat and padding models under atom size =
MSL, highlighting smaller step sizes and lower perplex-
ities.

4 Discussion 180

4.1 Language Coherence and Bias 181

Matching MSL and atom size optimizes packing 182

(padding and concat) by reducing language inco- 183

herence within a sequence and bias. Using an atom 184

3



(a) MSL = 32. (b) MSL = 64. (c) MSL = 128.

Figure 3: Step-wise comparison of perplexity between padding and concat models under different MSLs (the first
2,000 steps discarded due to high perplexity). Padding (orange) has lower final perplexities (better performance)
while concat (blue) has smaller training step sizes over 2 epochs.

size smaller than MSL causes language incoher-185

ence, as it forces unrelated shuffling chunks to get186

merged into one sequence, damaging the contex-187

tual completeness of each sequence. Conversely,188

atom size larger than MSL brings bias by splitting189

shuffling chunks across multiple consecutive se-190

quences, creating unintended correlations between191

these sequences.192

4.2 Implication of the Trade-off Between193

Performance and Efficiency194

ML practitioners’ choice of packing methods may195

be informed by the trade-off between performance196

and efficiency. With limited amount of data,197

padding triumphs because it brings higher perfor-198

mance; with limited time, concat is preferable be-199

cause it packs each epoch in fewer steps, leading200

to higher efficiency.201

5 Related Work202

Shuffle in PyTorch. While the DataLoader class in203

PyTorch shuffles data in concatenated chunks of a204

fixed atom size (usually MSL) to maximize training205

efficiency, our work explored multiple atom sizes206

(4MSL, 2MSL, 1MSL, 0.5MSL and 0.25MSL) as207

well as padding as an alternative packing method208

to optimize training performance.209

Data Shuffling Strategies for Context Preser-210

vation. Zhao et al. (Zhao et al., 2024) focused211

on intra-document causal attention mask as a pack-212

ing strategy. In this strategy, documents are con-213

catenated into chunks with fixed length, and the214

likelihood of each token is only conditioned on the215

previous tokens from the same document within the216

chunk. This is similar to padding because attention217

score is only calculated for intra-document tokens,218

but each token may not have full attention to other219

tokens in the same document since one document220

may be packed into different chunks. This method221

improves efficiency by saving padding tokens, but 222

may suffer from contextual incompleteness. 223

6 Conclusion 224

Our experiments using different packing meth- 225

ods with different atom sizes and MSLs show 226

that matching atom size with maximum sequence 227

length (MSL) optimizes packing performance (con- 228

cat and padding). This finding underscores the 229

importance of aligning atom size with MSL during 230

data shuffling to optimize language model training. 231

We also found that padding yields lower final 232

perplexity (higher performance) than concat at the 233

cost of more training steps and lower efficiency. 234

This trade-off guides packing choices in training 235

models: padding is preferable when data is scarce, 236

while concat is preferable when time is limited. 237

238

Limitations and Future Work. 239

• Our initial exploration showed MSL as the 240

optimal atom size for packing and shuffling 241

in GPT-2 124M models trained on WikiText. 242

Future work using datasets with longer doc- 243

ument lengths and other model architectures 244

will further extend our findings. 245

• Our preliminary findings show that padding 246

optimizes performance with limited amount 247

of data. Specifically, we set MSL smaller 248

than document lengths to avoid large amounts 249

of padding tokens. However, this approach 250

might not be practical in all settings, prompt- 251

ing future studies to explore padding’s efficacy 252

when MSL exceeds document lengths. 253

4



References254

Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and255
Anders Søgaard. 2022. Word order does matter and256
shuffled language models know it. In Proceedings257
of the 60th Annual Meeting of the Association for258
Computational Linguistics (Volume 1: Long Papers),259
pages 6907–6919.260

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-261
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-262
ford, Diego de Las Casas, Lisa Anne Hendricks,263
Johannes Welbl, Aidan Clark, et al. 2022. Train-264
ing compute-optimal large language models. arXiv265
preprint arXiv:2203.15556.266

Stephen Merity, Caiming Xiong, James Bradbury, and267
Richard Socher. 2016. Pointer sentinel mixture mod-268
els. arXiv preprint arXiv:1609.07843.269

Bogdan Nicolae, Carlos Costa, Claudia Misale, Kostas270
Katrinis, and Yoonho Park. 2016. Towards memory-271
optimized data shuffling patterns for big data analyt-272
ics. In 2016 16th IEEE/ACM International Sympo-273
sium on Cluster, Cloud and Grid Computing (CC-274
Grid), pages 409–412. IEEE.275

Ofir Press. 2019. Partially shuffling the training276
data to improve language models. arXiv preprint277
arXiv:1903.04167.278

Ofir Press, Noah A Smith, and Mike Lewis. 2021.279
Train short, test long: Attention with linear biases280
enables input length extrapolation. arXiv preprint281
arXiv:2108.12409.282

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,283
Dario Amodei, Ilya Sutskever, et al. 2019. Language284
models are unsupervised multitask learners. OpenAI285
blog, 1(8):9.286

Min Shen, Ye Zhou, and Chandni Singh. 2020. Mag-287
net: push-based shuffle service for large-scale data288
processing. Proceedings of the VLDB Endowment,289
13(12):3382–3395.290

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon291
Tworkowski, Wei Liu, Piotr Miłoś, Yuxiang Wu, and292
Pasquale Minervini. 2024. Analysing the impact293
of sequence composition on language model pre-294
training. arXiv preprint arXiv:2402.13991.295

Tianle Zhong, Jiechen Zhao, Xindi Guo, Qiang Su, and296
Geoffrey Fox. 2023. Rinas: Training with dataset297
shuffling can be general and fast. arXiv preprint298
arXiv:2312.02368.299

A Appendix300

A.1 Dataset and Filtering301

We conducted our studies on the generative lan-302

guage model training using the WikiText dataset303

(Merity et al., 2016), chosen for its generalizability.304

Specifically, we used the WikiText-103-raw subset,305

Figure 4: The distribution of tokenized sequence lengths
in WikiText-103-raw with 10,000 random samples. The
dataset mostly consists of short paragraphs with length
0 to 200.

which comprises approximately 1.81M rows and 306

over 100M words derived from filtered Wikipedia 307

content. Notably, the dataset mostly consists of 308

short paragraphs: Figure 4 shows the distribution 309

of tokenized sequence lengths using 10,000 ran- 310

domly sampled rows from the dataset. 311

Before tokenization or shuffling the WikiText 312

dataset, we removed blank rows and short title rows 313

that contained limited context information. We fil- 314

tered out rows with fewer than 50 words. This 315

filtered 55.62% rows (2.45% words) in the training 316

set and 53.86% rows (2.33% words) in the valida- 317

tion set. The training and validation corpus size 318

after filtering are 98,937,698 and 208,893 words 319

respectively. 320

Before feeding dataset to models, we prepro- 321

cessed the sequences by tokenization and packing. 322

We first used GPT2TokenizerFast (Radford et al., 323

2019)to tokenize all sequences in parallel, then 324

used one of the two packing methods (padding and 325

concat) with shuffling to ensure that all sequences 326

could be batched in MSL. 327

A.2 Choices of MSL and Atom Size Explained 328

We set MSL = 32, 64, 128 to keep it smaller than 329

document lengths and save wasteful padding to- 330

kens. Atom sizes were chosen to follow a geomet- 331

ric progression relative to MSL, set at 0.25MSL, 332

0.5MSL, 1MSL, 2MSL, 4MSL. However, when 333

MSL = 128, we did not test on an atom size of 4 334

MSL = 512 because of wasteful padding tokens. 335

We also adjusted batch sizes based on MSL: 256 336

for MSLs of 32 and 64, and 128 for MSL = 128. 337

These batch size selections were made to optimize 338

GPU memory usage. 339

5



Figure 5: Illustration of packing steps of padding, when
MSL is 32 and atom size is 64. The "tail" subsequence
contains fewer tokens than the specified atom size and
is padded to meet the MSL requirement, ensuring con-
sistency in sequence length.

A.3 Concat and Padding Details340

Padding. This method focuses on padding to gen-341

erate sequences with lengths equal to MSL. The342

steps are shown in Figure 5. Each input document343

was segmented into smaller subsequences of length344

(atom size - 1) with an <EOS> token placed at the345

end. The role of the <EOS> token is to inform346

the model that the current sequence has ended. To347

maintain consistency in sequence length and en-348

sure efficient batch processing, the tail end of any349

subsequence that does not meet the requirement of350

MSL would be padded. For example, in the case351

of MSL = 64, a sequence of length 130 (L = 130)352

would be segmented into 2 subsequences of length353

64 (each with 63 word tokens and an <EOS> token354

at the end), then a tail subsequence composed of355

4 word tokens and 60 padding tokens. We used356

<EOS> as the padding token for simplicity of the357

special token set. All resulted subsequences have a358

length of MSL regardless of the original sequence359

length.360

Next, all subsequences were randomly shuffled361

with random seed set to 42. During this process,362

any underlying chronological or thematic order in363

the original dataset should be removed.364

After shuffling, the subsequences were either365

merged or split to align with the predefined MSL.366

When atom size is less than MSL, we merged sub-367

sequences; when atom size is larger than MSL,368

we split subsequences. Finally, when atom size369

equals MSL, we kept the shuffled subsequences370

unchanged. For example, in the case where MSL is371

32 and atom size is 64, we split every subsequences372

to get 2 final subsequences of length 32 to feed to373

the model.374

Figure 6: Illustration of packing steps of concat, with
MSL of 32 and atom size of 64.

Notably, when atom size is larger than MSL, we 375

do not pad every tail end to atom size, but to MSL 376

instead as shown in figure 5. This is because all 377

subsequences will be split into size of MSL after 378

shuffling. If we pad tail end to atom size instead 379

of MSL, we will produce some training sequences 380

that are completely composed of padding tokens. 381

For example, when MSL is 32 and atom size is 382

128, if we pad a document of 35 tokens to an atom 383

size of 128, we will yield a subsequence with 35 384

word tokens and 93 padding tokens, which will 385

lead to completely meaningless training samples 386

after split. 387

Concat. While the padding method handles dif- 388

ferent sequence lengths with padding tokens, the 389

concat method employs a concatenating and split- 390

ting process. The steps are shown in Figure 6. In 391

this approach, we firstly concatenate all sequences 392

together to obtain an extremely long sequence inter- 393

leaved with <EOS> tokens. Then we split the long 394

sequence into subsequences according to atom size, 395

shuffled them, and adjusted them to fit the max- 396

imum context length by merging or splitting as 397

needed. 398

The two methods reflect different strategies to 399

achieve the goal of generating fixed-length se- 400

quences for model training. The default method for 401

GPT models is concat, but we hope to test whether 402

padding outperforms concat in terms of efficiency 403

and model performance. Our experiments in Sec- 404

tion 3 would show that padding had better model 405

performance than concat with the cost of lower ef- 406

ficiency. Since our experiments on shuffling atom 407

size would focus on optimizing model performance, 408

we decided to employ padding during those experi- 409

ments. 410

6



A.4 Total Parameter Size411

When we experiment on models with different412

MSL, it is important to control the parameter size413

across all models. In the vanilla GPT-2 Small ar-414

chitecture, different MSLs lead to different param-415

eter sizes. This is because the positional encoding416

layer’s parameter size has a positive linear relation-417

ship with maximum context length. To eliminate418

this difference, we decide to replace the positional419

encoding with Attention with Linear Biases (Al-420

ibi) (Press et al., 2021), which is a non-parametric421

positional encoding algorithm that biases attention422

scores in accordance with the distance between423

tokens. This algorithm was originally designed424

to improve the processing of long sequences in425

language models and to reduce the computational426

load associated with longer inputs. However, our427

smaller-scale model with shorter maximum context428

lengths did not benefit from these advantages. In-429

stead, we focused on one particular characteristic430

of Alibi: it does not introduce additional trainable431

parameters, unlike the default positional encoding432

in the GPT-2 architecture. As a result, the total433

parameter size of all models trained in our experi-434

ments were fixed to 124M.435

A.5 Total Step Size436

Our objective is to schedule and use computational437

resources in ways that minimize training time and438

adhere to optimal training practices. We estimate439

the optimal number of tokens for training based440

on the estimation table from Chinchilla (Hoffmann441

et al., 2022). The table indicates that a model with442

400M parameters requires 8B tokens, so our 124M-443

parameter model will need (124/400)×8 = 2.48B444

tokens. Then we divided this number by batch size445

and maximum context length to calculate the opti-446

mal step size for training. However, due to limita-447

tions in computational resources, it would take us448

one day to train one model on the optimal number449

of tokens. In this case, we decided to run two full450

epochs (114,400,095 word tokens per epoch) for451

all experiments instead, bringing the perplexity to452

nearly convergence in 2 to 3 hours on one GPU453

(NVIDIA Tesla V100-PCIE-32GB ).454

A.6 Detailed Calculation of Final Perplexity455

and Perplexity Ranking456

After evaluating with perplexity, we compared all457

models based on their average perplexity ranking458

and final perplexity value. Here, we need to be459

careful of how to calculate these two comparison 460

metrics in detail. 461

We chose to calculate the comparison metrics by 462

epochs rather than training steps due to variations 463

in the number of word tokens learned at each step 464

in padding models. For ranking, we divided the 465

last epoch into 100 segments, each covering 0.01 466

of an epoch, calculated the average perplexity for 467

all models within each segment, and ranked them. 468

We then averaged the rankings from all 100 ranges 469

as our final ranking. For the final perplexity value, 470

we selected the last range (0.99 epoch - 1.00 epoch) 471

and calculated its average perplexity. 472

A.7 Exponential Moving Average (EMA) 473

We use Exponential Moving Average (EMA) to 474

visualize smooth perplexity curves for our mod- 475

els. EMA computes a weighted average of past 476

data points, with exponentially decreasing weights 477

that effectively smooth out fluctuations in original 478

perplexity values. Specifically, EMA is computed 479

iteratively using the following formula: 480

St = α · yt + (1− α) · St−1 481

where St represents the smoothed perplexity at 482

step t, yt is the observed perplexity at step t, and 483

α is the smoothing parameter. α is designed to 484

dynamically adjust based on changes in training 485

steps ∆t: 486

αt = min(
√
α, 0.999)∆t 487

where ∆t is always 1 since training step is a dis- 488

crete variable. Therefore, the smoothing parameter 489

remains constant during the process. 490

A.8 Concat and Padding Results under MSL 491

= 32 and 128 492

Concat. See Figure 7, Figure 8 for detail. 493

Padding. See Figure 9, Figure 10 for detail. 494

A.9 Step Size Differences in Padding 495

As mentioned in Section 3.2, models with different 496

atom sizes have different training steps due to the 497

differing amounts of padding tokens in the training 498

sequences. In specific, we added padding tokens to 499

the dataset in two ways. 500

(a) By the End of Each Subsequence. As men- 501

tioned in Appendix A.3, documents are split to 502

subsequences with an <EOS> token added to their 503

ends. In our case, the <EOS> is the same as the 504

padding token. 505

7



(a) Full Training Perplexity. The models with atom
sizes of 0.5MSL (red) and 0.25MSL (purple) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

(b) Second Epoch Perplexity. Models with atom size
of 4MSL (blue) has higher perplexity than the other two.
1MSL (green) consistently maintains the lowest perplexity
in the second epoch.

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(222.14),
while model with atom size of 1MSL has the lowest final
perplexity value(91.21) for 2 epochs.

(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking(5), while
model with atom size of 1MSL has the lowest perplexity
ranking(1) for 2 epochs.

Figure 7: Comparisons across concat models with different atom sizes when MSL is 32. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

(b) By the End of Tails. During the splitting506

process, we produce some end tails which do not507

completely fill an atom size as shown in figure 5.508

Padding tokens are added to those tails to make509

sure that they have lengths equal to the atom size.510

Smaller atom sizes will have more padding to-511

kens from source (a) than larger atom sizes because512

they have larger numbers of subsequences. Larger513

atom sizes will have more padding tokens from514

source (b) because we need more padding tokens515

for the end tails to fulfill the length requirement.516

A.10 License for GPT-2517

GPT-2 used a Modified MIT License, which can518

be seen on this: https://github.com/openai/519

gpt-2/blob/master/LICENSE. We only use GPT-520

2 for research, which is consistent to its intended521

use.522

8

https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE


(a) Full Training Perplexity. The models with atom
sizes of 0.25MSL (red) and 0.5MSL (green) have higher
perplexity than the others. 1MSL (orange) stabilizes at a
low perplexity after an initial drop.

(b) Second Epoch Perplexity. Initially, the model with
atom size of 1MSL (orange) shows higher perplexity than
2MSL (blue). 1MSL continuously decreases and achieves
the lowest perplexity by the end of the second epoch.

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(159.81),
while model with atom size of 1MSL has the lowest final
perplexity value(110.31) for 2 epochs.

(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (4), while
model with atom size of 1MSL has the lowest perplexity
ranking (1) for 2 epochs.

Figure 8: Comparisons across concat models with different atom sizes when MSL is 128. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

9



(a) Full Training Perplexity. The models with atom
sizes of 2MSL (orange) and 0.5MSL(red) have higher
perplexity than the others. 1MSL (green) stabilizes at a
low perplexity after an initial drop.

(b) Second Epoch Perplexity. The models with atom
size of 4MSL (blue) has higher perplexity than the other
two. 1MSL (green) has the lowest perplexity at the end of
second epoch.

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (196.83),
while model with atom size of 1MSL has the lowest final
perplexity value (85.56) for 2 epochs.

(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of 1MSL has the lowest perplexity
ranking (1.1) for 2 epochs.

Figure 9: Comparisons across padding models with different atom sizes when MSL is 32.Smaller or larger atom
sizes than 1MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

10



(a) Full Training Perplexity. The model with atom sizes
of 0.25MSL (red) has higher perplexity than the others.
1MSL (orange) stabilizes at a low perplexity after an initial
drop.

(b) Second Epoch Perplexity. Initially, the model with
atom size of 2MSL (blue) and 1MSL(orange) have similar
perplexity. 1MSL (orange) has the lowest perplexity at
the end of second epoch.

(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (146.95),
while model with atom size of 1MSL has the lowest final
perplexity value (86.20) for 2 epochs.

(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (4), while
model with atom size of 1MSL has the lowest perplexity
ranking (1.23) for 2 epochs.

Figure 10: Comparisons across padding models with different atom sizes when MSL is 128. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with 1MSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.

11


	Introduction
	Method
	Model Pretraining Setting
	Evaluation and Comparison Metric

	Results
	Concat Experiments
	Padding Experiments
	Comparison between Padding and Concat

	Discussion
	Language Coherence and Bias
	Implication of the Trade-off Between Performance and Efficiency

	Related Work
	Conclusion
	Appendix
	Dataset and Filtering
	Choices of MSL and Atom Size Explained
	Concat and Padding Details
	Total Parameter Size
	Total Step Size
	Detailed Calculation of Final Perplexity and Perplexity Ranking 
	Exponential Moving Average (EMA) 
	Concat and Padding Results under MSL = 32 and 128 
	Step Size Differences in Padding 
	License for GPT-2


