
REAL: EFFICIENT RLHF TRAINING OF LARGE LANGUAGE MODELS WITH
PARAMETER REALLOCATION

Zhiyu Mei * 1 2 Wei Fu * 1 2 Kaiwei Li 3 Guangju Wang 4 Huanchen Zhang 1 2 Yi Wu 1 2 4

ABSTRACT
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language
model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process
is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies
between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised
training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation,
we propose a novel technique named parameter REALlocation, which dynamically adapts the parallelization
strategies for different workloads during training by redistributing LLM parameters across the training cluster.
Building upon this idea, we introduce REAL, a pioneering system for efficient RLHF training. REAL introduces
the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy
particularly designed for RLHF training. Based on this concept, REAL employs a tailored search algorithm with
a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF
experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations
and redistributing parameters. We evaluate REAL on the LLaMA models with up to 70 billion parameters and
128 GPUs. The experimental results demonstrate that REAL achieves speedups of up to 3.58× compared to
baseline methods. Furthermore, the execution plans generated by REAL exhibit an average of 81% performance
improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of
REAL is publicly available at https://github.com/openpsi-project/ReaLHF.

1 INTRODUCTION

Large Language Models (LLMs) such as ChatGPT (OpenAI,
2022) have amazed the world with their powerful capabili-
ties. Their success relies on the enormous model sizes, e.g.,
GPT-3 (Brown et al., 2020) has 175 billion parameters. Be-
cause each graphic processing unit (GPU) has limited mem-
ory, to train such an expansive model, the computation along
with the model parameters must be distributed across a vast
GPU cluster. Recent literature has proposed a wide range
of parallelization strategies (Huang et al., 2019; Shoeybi
et al., 2019; Rajbhandari et al., 2020; Narayanan et al., 2021;
Jiang et al., 2024) specifically designed for the supervised
training paradigms, such as pretraining and supervised fine-
tuning (Dong et al., 2023; Zhang et al., 2024). Meanwhile,
another remarkable training paradigm for LLMs, known as

*Equal contribution 1Institute for Interdisciplinary
Information Science, Tsinghua University, Beijing,
China 2Shanghai Qi Zhi Institute, Shanghai, China
3Independent Researcher 4OpenPsi Inc.. Correspondence
to: Zhiyu Mei <meizy20@mails.tsinghua.edu.cn>, Wei Fu
<fuwth17@gmail.com>, Yi Wu <jxwuyi@gmail.com>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

Reinforcement Learning from Human Feedback (RLHF), is
the foundation technique for the success of ChatGPT-like
models (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022; Anil et al., 2023; Antropic, 2023; Touvron et al.,
2023; Bai et al., 2022; OpenAI, 2024). The workflow of
RLHF training is much more complicated than supervised
training. However, most existing RLHF systems adopt paral-
lelization techniques directly from supervised training (Yao
et al., 2023b; Hu et al., 2024; Shen et al., 2024), which could
lead to sub-optimal training efficiency.

The typical workflow of RLHF, which is often based on
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
algorithm, involves three distinct types of computational
tasks on four LLMs with independent parameters. In each
RLHF training iteration, a primary LLM (the training tar-
get, referred to as the Actor model) receives prompts and
generates responses (i.e., the generation tasks). These re-
sponses are evaluated by three additional LLMs: the Reward
model, the Reference model, and the Critic model (i.e., the
inference tasks). Then, Actor and Critic use the evaluation
results to compute gradients and update their parameters
(i.e., the training tasks).

To identify the drawbacks of the existing RLHF systems,

https://github.com/openpsi-project/ReaLHF

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Symmetric
Parallelization

Parameter
Reallocation

(Ours)

RLHF Workflow

Over-Parallelization

Asymmetric
Parallelization

GPU Idle

GPU 0
GPU 1
GPU 2
GPU 3

GPU 0
GPU 1
GPU 2
GPU 3

GPU 0
GPU 1
GPU 2
GPU 3

Generation Inference Training (2 PPO mini-batches)

Actor
Workload

Actor
Generation

Critic Inference

Ref. Inference

Rew. Inference

: Model Function Call

: Data Dependency

Actor Training

Critic Training

Generation Inference Training (2 PPO mini-batches)

Generation Inference Training

Critic
Workload

Reference
Workload

Reward
Workload

Parallelization
Overhead

Parameter
Reallocation

Time
Figure 1: An RLHF iteration breakdown based on the profiling of real systems (Table 6). The directed acyclic graph shows the RLHF
workload. Nodes represent model function calls and edges represents their data dependencies. We present timelines to visualize execution
plans that employ: [top] the same parallelization strategy that spreads across the entire cluster for all LLMs, [middle] independent resource
allocations and parallelization strategies for each LLM, and [bottom] distinct resource allocations and parallelization strategies for each
model function call generated by REAL. The plan of REAL considers parameter reallocation for the actor and critic model.

we conduct a thorough profile and discover two major lim-
itations. First, we note that many systems apply the same
parallelization strategy that spreads across the entire GPU
cluster for all LLMs. We name this a symmetric paral-
lelization strategy, which often leads to over-parallelization.
Our system profiling in Figure 1 (top) shows that over-
parallelization leads to substantial synchronization and com-
munication overheads (the light purple bars), thus com-
promising the end-to-end system performance. Moreover,
different computational tasks are better off with different
parallelization strategies (Lei et al., 2024). A single global
parallelization strategy, therefore, is likely to be sub-optimal.
Accordingly, some other systems choose to allocate different
LLMs to different sets of GPUs with different paralleliza-
tion strategies. In this way, tasks from different LLMs could
be executed concurrently. We call this an asymmetric paral-
lelization strategy. However, our second observation is that
such a strategy often causes under-utilization of the GPUs
(e.g., the gray areas in Figure 1 (middle)) because of the
dependencies between tasks.

The crux of the above inefficiencies is that resource allo-
cations and parallelization strategies for LLMs are fixed
throughout training. Therefore, we propose to enable dy-
namic reallocation of model parameters between GPUs, al-
lowing fine-grained resource allocations and parallel strate-
gies at the task level to improve the efficiency of the entire
RLHF training process. For clarity, we refer to an individual
task on an LLM as a model function call. As shown in Fig-
ure 1 (bottom), by first choosing a parallelization strategy
tailored for each model function call (e.g., Actor genera-
tion and training) and then executing these calls concur-
rently with a smaller parallelization degree (e.g., Actor and

+ Opt.Inf.

+ Critic.
Realloc.

+ Actor.
Realloc.

+ Actor.
Realloc.

+ Critic.
Realloc.

+ Opt.Inf.
+6% +8%

+87%

+7% +11%

+44%

Figure 2: The optimization opportunity over a 3D parallelism
execution plan inspired by pre-training. We show the sequential
improvement by optimizing inference parallelization strategy, re-
allocating critic workloads (inference/training), and reallocating
actor workloads (generation/training).
Critic training), we can reduce the communication overhead
caused by parallelization while maximizing GPU utilization.
Parameter reallocation effectively addresses the limitations
of prior solutions and can lead to a significant end-to-end
throughput improvement, as we show in Figure 2.

Based on the key idea of parameter reallocation, we devel-
oped REAL, a pioneering system for efficient RLHF training.
REAL consists of two components, i.e., an execution plan
generator and a runtime engine. An execution plan speci-
fies the resource allocations and parallelization strategies for
every model function call in the RLHF training workflow un-
der a specific algorithmic and hardware configuration. The
execution plan generator performs Markov Chain Monte
Carlo (MCMC) sampling to search for efficient execution
plans using an extremely lightweight profiling-assisted run-
time estimator. After a sufficiently good execution plan is
obtained, the runtime engine deploys the derived plan by
effective parallelization and parameter redistribution.

Our experimental evaluation entails RLHF training on
LLaMA models (Touvron et al., 2023; Dubey et al., 2024)
ranging from 7 to 70 billion parameters across 8 to 128
Nvidia H100 GPUs. Results showcase that REAL is able

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

to achieve a speedup up to 3.58 times over the baseline sys-
tems. Furthermore, we demonstrate that the performance of
REAL’s searched execution plans surpasses heuristic plans
based on Megatron by 54% on average and up to 81% with
a longer context length.

In summary, our contributions are as follows:

• We propose to reallocate model parameters dynamically
for efficient RLHF training.

• We introduce execution plans at the model function call
level and propose an efficient search algorithm to iden-
tify fast plans.

• We design and implement REAL, an RLHF training
system that can automatically discover and run a fast
execution plan with a high training throughput.

• We conduct comprehensive evaluations with detailed
breakdowns and ablation studies. REAL achieves up to
3.58× higher throughput compared to the baselines.

2 BACKGROUND

2.1 Introduction to RLHF

For the ease of illustration, this section adheres to the com-
mon practice of RLHF, focusing on GPT-like LLMs (Rad-
ford et al., 2019; Brown et al., 2020) and the Proximal Pol-
icy Optimization (PPO) algorithm (Schulman et al., 2017).
However, we remark that REAL can also support other
RLHF algorithms, as we will discuss in Section 4.

An RLHF training iteration involves six model function
calls on four LLMs: Actor generation, Reward inference,
Critic inference, Reference inference, Actor training, and
Critic training. Their dependencies are shown in Figure 1
(top). In these model function calls, Generation is composed
of multiple forward passes. It involves a prefill phase and
a decoding phase. The prefill phase is a single forward
pass, which consumes all prompt tokens to sample the first
generated token. The decoding phase repeatedly inputs the
(single) latest generated token and produces the subsequent
token until termination. Inference is a forward pass over the
combination of prompts and generated responses. Training
is an ordinary supervised training iteration, composed of
a forward pass, a backward pass, and a parameter update.
The next RLHF iteration then applies the updated Actor and
Critic for generation and inference.

Notably, training the Actor and Critic with PPO can in-
corporate multiple minibatches (Ouyang et al., 2022). For
each minibatch, the parameter update must occur before
the subsequent forward pass, distinguishing this approach
from gradient accumulation that performs a single parameter
update across minibatches.

Dataflow
Graph

Training
Settings
Cluster
Settings

 Execution Plan Generator

Profiler

Cost Estimator

Search Engine

Model statistics

Cost Plan

Runtime Engine

Best Found Execution Plan

Master Worker
Request Reply

 Cluster Device Mesh

 :1 Model Worker on 1 GPU

Figure 3: An overview of the architecture of REAL.

2.2 Parallelization of Large Language Models

Classical parallelization approaches for LLMs encompass
data, tensor-model, and pipeline-model parallelism.

Data Parallelism (DP) partitions data along the batch dimen-
sion and dispatches each partition to a model replicate for
independent computations. After the backward pass during
training, all DP peers should perform an all-reduce over
gradients before applying them for parameter update.

Tensor-model Parallelism (TP) partitions model parameters
and distributes matrix multiplications across multiple GPUs.
Each TP rank processes the same data and produces a partial
intermediate value. Then, all TP peers perform an all-reduce
over this value to obtain the full result and pass it to the next
layer. Since all TP peers should perform the all-reduce
operation in each layer of the LLM, TP leads to substantial
data communication overhead when scaling to more GPUs
and deeper models.

Pipeline-model Parallelism (PP) clusters adjacent layers
into several pipeline stages. PP peers transfer intermediate
results among stages for a complete forward or backward
pass, which entails less communication overhead than TP.
To improve the efficiency of PP, a common approach is to
divide the data into micro-batches, allowing different GPUs
to process different micro-batches simultaneously.

Since the above parallelization approaches are mutually
independent, Megatron-LM (Narayanan et al., 2021) inte-
grates them as 3D Paralleism to perform LLM supervised
training at scale. A parallelization strategy S is denoted by
three integer values (dp, tp, pp), representing the degrees of
DP, TP, and PP, respectively. Each coordinate in this grid
represents a process running on an independent GPU. 3D
parallelism entails near-optimal parallelization for GPT-like
language models, which has been extensively experimented
in previous studies (Zheng et al., 2022).

3 OVERVIEW

REAL is a system capable of automatically planning and
executing RLHF training workflows given algorithm and
cluster specifications. The key idea behind the design of
REAL is parameter reallocation: dynamically reallocating
model parameters across GPUs and assigning different GPU
resources with a suitable parallelization strategy to each
model function call. Parameter reallocation enables REAL

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Prompts

Data
Dependency

Actor Ref Reward CriticModel
Types

Parameter Version
Dependency

Prompts
...

...

Generate Inference Function
Call Types Train

...

...

Figure 4: The dataflow graph of two consecutive RLHF iterations.
Each model is an independent LLM. Each model function call is
computational task of the model.
to carry out the fine-grained orchestration of model function
calls. Specifically, REAL can allocate distinct groups of
resources to different model function calls, allowing them to
execute concurrently on different sets of GPUs. REAL also
chooses a tailored parallelization strategy for each model
function call. In this way, REAL reduces communication
overhead and improves GPU utilization without exceeding
the memory limitation of the devices. By exploiting param-
eter reallocation, REAL adopts a comprehensive design that
addresses various training scenarios, seizing more optimiza-
tion opportunities throughout the RLHF training workflow
compared to existing systems (Yao et al., 2023b; Hu et al.,
2024; Shen et al., 2024).

We summarize the steps of running REAL as follows. First,
REAL parses the RLHF workflow into a dataflow graph at
the granularity of model function calls. Then, REAL adopts
an efficient search algorithm to produce a fast execution
plan that includes parallelization strategies and intermediate
data/parameter communications. Finally, REAL runs this
plan with an efficient worker-based runtime engine.

As demonstrated in Figure 3, there are two major compo-
nents in the system, the Execution Plan Generator and
the Runtime Engine. The search engine in the execution
plan generator continuously searches for execution plans
with the Markov Chain Monte Carlo (MCMC) algorithm. A
lightweight estimator calculates the approximate time cost
of the proposed plan by exploiting execution statistics of
profiling. After reaching the search time limit, the fastest
execution plan obtained is presented to the runtime engine
for deployment.

The runtime engine is composed of a centralized master
worker and multiple model workers. The master worker
resolves task dependencies and sends requests to the corre-
sponding model workers for task execution. Model workers
act as RPC servers and respond to the master worker to up-
date dependencies for subsequent requests. The interaction
between the master worker and model workers repeats until
the execution plan finishes.

4 PROBLEM FORMULATION

REAL is designed to accelerate RLHF workflows with GPT-
like LLMs. To achieve this goal, we introduce the concept

...

...

...

...... Dependency

Training Data Transfer

Parameter Reallocation

Parallel Strategy

Paramter Offloading

Model Function Call Node
 Device Mesh

Figure 5: An augmented dataflow graph Gp of an execution plan
instance p in the t-th RLHF iteration.

of execution plans at the model function call level. We
formulate the problem as: taking training configurations
(e.g., model size and batch size) and cluster specifications
as inputs, search for an optimized execution plan that is
able to be executed on the given distributed cluster. In this
section, we introduce our detailed terminology definitions
in our formulation of the execution plan search problem.

Dataflow Graph. REAL considers the workflow of RLHF
training as a dataflow graph G = (V, E), as demonstrated
in Figure 4. A node vti ∈ V represents the i-th model
function call at the t-th training iteration. An edge (v, v′) ∈
E indicates a data or parameter version dependency. We
emphasize that G represents the concatenated graph of all
the iterations throughout the entire training process. By
operating on G, we can potentially overlap computations
with no mutual dependencies across training iterations.

Device Mesh. A device mesh D is defined as a two-
dimensional grid of GPUs. The shape of D is denoted
as (N,M) if it covers N nodes equipped with M devices.
Note that device meshes with the same shape could have dif-
ferent locations. We assume all devices in the cluster have
the same computing capability with identical intra-node
bandwidths, and inter-node bandwidths.

Execution Plan. An execution plan p of a dataflow graph
G assigns a device mesh Di and parallelization strategy Si

for the i-th individual function call in G. We express an exe-
cution plan p in the form of an augmented dataflow graph
Gp = (Vp, Ep), as visualized in Figure 5. It also involves
data transfer, parameter redistribution, and offloading (Ren
et al., 2021) across function calls. They are represented as a
set of extra nodes in Gp (rounded squares in Figure 5).

Search Space. We make several assumptions to make the
generation and deployment of execution plans practically
feasible. First, we assume that Di either covers several en-
tire hosts or a consecutive portion that is capable of dividing
the number of devices on one host, e.g., (1, 1), (1, 2), (1,
4), (1, 8), (2, 8), · · · , (N , 8) in a cluster of (N, 8). This en-
sures that multiple device meshes can fully cover the entire
cluster, eliminating sub-optimal execution plans with idle
GPUs (Zheng et al., 2022). Second, Si considers the 3D
parallelism degrees (dpi, tpi, ppi) and the number of micro

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

batches mbsi. Data will be divided into mbsi portions and
passed to the function call sequentially. This feature pro-
vides an option to avoid the out-of-memory issue with a
large batch size and context length.

Beyond PPO. The example shown in Figure 4 and Figure 5
represents the typical RLHF algorithm, PPO. Meanwhile,
we emphasize that our formulation is inherently expressive
for training algorithms whose workflow could be decom-
posed into the function calls and represented as a dataflow
graph. Experiments in Section 8.3 demonstrate the capabil-
ity of REAL to accelerate other prevalent RLHF algorithms
including DPO (Rafailov et al., 2023), ReMax (Li et al.,
2024) and GRPO (Shao et al., 2024).

5 EXECUTION PLAN GENERATOR

The execution plan generator takes the dataflow graph, the
training configurations, and the cluster specifications as
inputs to automatically search for a rapid execution plan in
the form of an augmented dataflow graph. This generator
comprises two primary components. First, a lightweight
runtime estimator predicts the time and memory cost of any
execution plan, leveraging statistical results from profiling.
Second, a search engine refines the proposed execution
plan using a Markov Chain Monte Carlo (MCMC) search
algorithm based on the preceding cost estimation.

5.1 Estimation

The architecture of LLMs is typically a stack of identical
layers, exhibiting clear computation patterns. Hence, we can
profile the time cost of operations on individual layers and
estimate the total cost of each model function call through
arithmetic operations. We present a lightweight runtime
estimator assisted by profiling. Profiling the statistics in a
single experiment takes only minutes, while evaluating the
cost for a candidate execution plan requires only hundreds
of microseconds, as opposed to several minutes for profiling
a single plan on a real run. In the subsequent paragraphs,
we denote the estimated values of the time cost and the
runtime memory of an execution plan as TimeCost(Gp) and
MaxMem(Gp).

Time Cost. We first estimate the time cost for each node v ∈
Vp. For model function call nodes, REAL profiles the cost of
forward, backward, and associated communication (e.g., all-
reduce) of individual layers across a set of data input sizes.
The range of this set is decided by the configured batch size,
the number of devices in the cluster, and the minimum batch
size on each device according to parallelization strategies.
We only profile sizes that are powers of two in this range.
If the data input size for v falls outside the profiling set,
REAL estimates the time cost using a linear interpolation
of the existing profiling statistics. We estimate the costs of

data and parameter transfer by running a simulation to the
algorithm outlined in Section 6. We approximate the time
with the data size and the bandwidth instead of running a
real NCCL operation.

Next, we derive TimeCost(Gp) from the cost of each node.
The calculation can be much more complex than simple
summation because different nodes can be executed concur-
rently on disjoint device meshes. We employ an algorithm
to find the shortest path from source nodes to sink nodes in
Gp, with the constraint that nodes assigned to overlapped de-
vice meshes cannot execute simultaneously. The algorithm
assigns each node v ∈ Gp with attributes StartTime, End-
Time, and ReadyTime. Each device mesh D tracks the last
completed node from all devices within D as D.last. The al-
gorithm maintains a priority queue containing all nodes that
have been ready for execution but not yet completed. The
priority queue iteratively selects the node with the minimum
ready time, marks it as completed, updates D.last for all D,
and adds new ready nodes to the queue. When the priority
queue becomes empty, all nodes in Gp should be completed,
and the maximal EndTime of all nodes yields the final result
of TimeCost(Gp). The details of the simulation algorithm is
shown by Algorithm 1 in Appendix C.

Maximum Memory Allocated. An execution plan p is
executable only if its maximum runtime memory does not
exceed device limitations. We categorize the runtime mem-
ory into the static memory and the active memory. The
static memory consists of the gradients and optimizer states,
which will not be freed or transferred until the entire exper-
iment finishes. The active memory is only stored in GPU
when it is required, including the KV cache, intermediate ac-
tivations, and reallocable parameters, etc. We first calculate
the static memory and the peak active memory allocated for
each function call according to their parallelization strate-
gies. Afterwards, we calculate the peak memory during an
RLHF iteration for each device and take the maximum to
obtain MaxMem(Gp).

5.2 Execution Plan Search

An execution plan p assigns a device mesh Di and a paral-
lelization strategy Si for the i-th model function call. The
number of choices grows exponentially with the number of
devices in the cluster. For instance, in a cluster of shape
(8, 8), there are over 500 options for each model function
call, and over 1016 execution plans in total, rendering brute-
force enumeration practically infeasible. Therefore, REAL
employs an efficient MCMC-based search algorithm tai-
lored for this problem setting.

We associate each execution plan with a cost defined by

cost(Gp) = I (MaxMem(Gp) < memd) · T imeCost(Gp)

+ (1− I (MaxMem(Gp < memd)) · α · T imeCost(Gp),

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

where memd is the device memory capacity, I is an
OOM indicator, and α is a large integer representing the
OOM penalty. We then define an energy-based distribu-
tion P (p) ∝ exp(−β · cost(Gp)), where β is the sampling
temperature. Lower-cost execution plans have higher prob-
abilities of being sampled from P . Hence, the searching
process for a fast execution plan becomes drawing samples
from the target distribution P , where MCMC techniques
come into play.

We employ the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970) for drawing samples from
P . The sampling process begins with a greedy solution
p0 minimizing the summation of time costs of all function
calls. Notably, this execution plan can be sub-optimal due
to the excessive memory allocation on devices and the lack
of overlap between different model function calls. Subse-
quently, we construct a Markov Chain comprising execution
plans p0, p1, · · · . We alter Di and Si of a random function
call i and accept this transition with probability

Pacc(pn → pn+1) = min

(
1,

P (pn+1)

P (pn)

)
,

This process repeats until a terminating condition, such as
when a constant time limitation is met. Finally, the exe-
cution plan with the minimum TimeCost(Gp) throughout
the entire searching process is selected as the output of the
execution plan generator.

6 RUNTIME ENGINE

In this section, we introduce the runtime engine, includ-
ing the implementation details of workers, redistributing
parameters, and transferring data among function calls.

Workers. The master worker resides on a CPU and executes
several asyncio coroutines to manage the each function
call. The coroutine awaits the completion of all the parent
function calls and dispatches requests via sockets upon the
function call is ready. These messages do not transfer the
associated data. Instead, the data is retained locally in the
GPUs of model workers. The master worker communicates
the data locations to the model workers in requests to initiate
data transfers. Each model worker acts as an RPC server on
a GPU. It polls requests from the socket for each local LLM
handle (e.g., Actor and Reward) in a round-robin manner.
Received requests are put in a FIFO queue for sequential
execution and responding.

Redistributing Parameters encompasses host-device (e.g.,
offload) and device-device communications. Host-device
communication utilizes an additional CUDA stream for
asynchronous memory copying. Device-device commu-
nication involves mapping one 3D parallelization strategy
to another, e.g., from (dp1, tp1, pp1) to (dp2, tp2, pp2). We

regard the remapping as a hierarchical process consisting
of an outer loop (Figure 6 left) and an inner loop (Figure 6
right). Initially, we focus on remapping pipeline stages from
pp1 to pp2. Each stage i ∈ [pp1] holds a group of layers
distributed in a device mesh specified by (dp1, tp1). For
each stage pair (i, j), where i ∈ [pp1] and j ∈ [pp2], we
transfer the parameters of common layers between device
meshes specified by (dp1, tp1) and (dp2, tp2). We denote
the devices in (dp1, tp1) as source GPUs and (dp2, tp2) as
destination GPUs. For each destination GPU, we greed-
ily assign a source GPU with the lowest communication
cost (e.g., a local GPU has a lower cost than remote GPUs).
Once assigned, the source GPUs broadcast parameters to
the destinations in parallel. This process iterates until all
stage pairs (i, j) are covered.

Data Transfer Among Function Calls. Model function
calls produce disjoint data partitions along the DP dimen-
sion, while replicating the data along the TP dimension.
This mirrors the communication pattern of redistributing
parameters in the right part of Figure 6, but with reversed TP-
DP dimensions. Therefore, we employ the same broadcast-
based algorithm for data transfer.

Remark: Zhuang et al. (2022) explored a similar problem
to data transfer in REAL. In our paper, we do not focus on
developing an optimal communication algorithm in such
scenarios, as long as the cost is minor compared to other
workloads in RLHF, as we will show in Figure 11.

7 DISCUSSIONS

This section discusses the advantages and limitations of
REAL and clarifies the contexts where REAL can be ap-
plied. REAL is a system that is applicable on accelerating
RLHF workflows composed of training, inference, or gen-
eration function calls with GPT-like LLMs. Apart from its
superb performance, REAL has following advantages (■)
and limitations (⋄):

■ REAL’s method is orthogonal to advanced techniques
for accelerating individual function calls (e.g., Paged-
attention (Kwon et al., 2023)) or fusing different function
calls (e.g., RLHFuse (Zhong et al., 2024b)). These tech-
niques can be integrated for better performance.

■ REAL can generalize beyond the workflow for PPO. It
can also significantly accelerate various other prevalent
RLHF algorithms, such as DPO (Rafailov et al., 2023).

⋄ REAL requires predictable function calls to ensure the
validity of cost estimation. An unstable cluster or dynamic
workflow (e.g., the generation length varies significantly
during training) can violate this assumption.

⋄ The searching of REAL does not guarantee optimality de-
spite producing plans that are fast and efficient in practice.

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Pipeline Stage 1

Pipeline Stage 1 Pipeline Stage 3Pipeline Stage 2
Pipeline

Parallelization
Strategy 1

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Pipeline Stage 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Pipeline
Parallelization

Strategy 2

GPU Meshes

GPU Meshes

Layer 1
Layer 2 Layer

3
Layer

4

Layer 5
Layer 6

Layer Replicate 1Data + Tensor
Parallelization

Strategy 1

Layer

Data + Tensor
Parallelization

Strategy 2

A B C D

Layer Replicate 1

A B C D

Layer Rep.1

Layer A B C D= =

AB CD

Layer Rep.2

AB CD

Layer Rep.3
AB CD

AB CD

Parameter
Broadcast

Tensor
Partition

TP 1-4 TP 1-2

GPU Mesh

GPU Mesh

Figure 6: The parameter redistribution is a hierarchical procedure. In the outer loop (left), each pair of pipeline stages communicates the
parameters of their common layers. These parameters are distributedly stored in a DP plus TP device mesh. In the inner loop (right), layers
are remapped from one DP plus TP mesh to another. Each destination GPU is assigned with a source that has the lowest communication
cost. All assigned sources broadcast TP partitions required by destination GPUs in parallel.

16 32 64 128

Number of GPUs

0

5

10

15

20

25

Th
ro

ug
hp

ut
 P

FL
O

P/
s Scaling Actor with 7B Critic

DeepSpeedChat
OpenRLHF
NeMoAligner
veRL
ReaL (Ours)

32 64 128

Number of GPUs

0

5

10

15

20

25
Scaling Actor with 13B Critic

Figure 7: An end-to-end throughput comparison with baseline
systems. Red cross denotes instability and OOM errors caused by
scalability issues.

8 EXPERIMENTS

REAL is implemented in Python (41k LoC) and C++ (2.5k
LoC). The search engine and simulator components are
written in C++, while the remaining modules leverage Py-
Torch (Paszke et al., 2019). Our experiments are conducted
on a cluster of 128 H100 GPUs, interconnected via NVLink
for the intra-node communication and RoCE with a 3.2Tbps
bandwidth for the inter-node communication. We adopt the
most advanced LLaMA-3 models (Dubey et al., 2024) for
our experiments. Since the vocabulary size of LLaMA-3
is large (128k), resulting a 250GB memory usage during
computing softmax1, we are only able to train a 70B actor
with a 13B critic model under the resource constraint.

Our evaluation comprises five key components. First, we
benchmark REAL’s end-to-end performance against two
open-source RLHF systems and a heuristic baseline. Sec-
ond, we present a detailed performance breakdown to iden-
tify key improvements. Third, we conduct an ablation
study of the execution plan generator. Fourth, we demon-
strate REAL’s compatibility with and acceleration of various
RLHF algorithms beyond PPO. Finally, we analyze REAL’s
strong scaling characteristics and provide suggestions for
the practical usage.

1VocabSize × BatchSize × CtxLen × BytesPerParam =
128e3× 512× 2048× 2 = 250GB

8.1 Comparison with Baselines

Baselines. We evaluate REAL against four prominent open-
source systems: DeepSpeed-Chat (Yao et al., 2023b) (com-
mit f73a6ed with DeepSpeed v0.15.1 as backend), veRL
(Hybrid Flow) (Sheng et al., 2024) (v0.2.0.post2 with vLLM
v0.6.3 and FSDP on pytorch v2.4.0), NeMo-Aligner (Shen
et al., 2024) (v0.4.0 with TRT-LLM v0.10.0 and Megatron
v0.8.0) and OpenRLHF (Hu et al., 2024) (v0.4.2 with vLLM
v0.4.2 and DeepSpeed v0.15.0). Addtional details of the
baseline systems are listed in Appendix D.

DeepSpeed-Chat employs a symmetric parallelization strat-
egy using the ZeRO-3 data parallelism (Rajbhandari et al.,
2020) across all RLHF models. Its Hybrid Engine temporar-
ily redistributes ZeRO-3 partitions to TP during the gen-
eration task, reverting afterward. Beyond this mechanism,
DeepSpeed-Chat does not support TP or PP implementa-
tions.

OpenRLHF implements an asymmetric parallelization strat-
egy, dividing GPUs into three GPU groups. The groups
hold the actor/reference model, the critic/reward model, and
a generation engine using vLLM (Kwon et al., 2023). The
vLLM engine is only responsible for the actor generation.
It remains idle during the actor training, awaiting parameter
updates before proceeding to the next RLHF iteration.

Similarly, NeMoAligner divides GPUs into two disjoint
GPU groups. Unlike OpenRLHF, it locates actor training
and generation on the same GPU group. veRL (HybridFlow)
is a concurrent work to REAL that supports colocating mod-
els on GPUs and split placement of models on different GPU
groups, including the strategies adopted by three previous
systems.

Additionally, we evaluate REAL-Heuristic, a pre-training-
inspired approach (Narayanan et al., 2021) that implements
a symmetric 3D parallelization across all models. This strat-
egy combines the intra-node TP with the inter-node PP and
DP, maximizing the DP degree within memory constraints.

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

7B/7B 13B/7B 13B/13B 34B/7B 34B/13B 70B/7B 70B/13B
Actor/Critic Sizes

0

5

10

15

20

25

Th
ro

ug
hp

ut
 P

FL
OP

/s ReaL-Heuristic
ReaL (Ours)
Context 2048
Context 8192

Figure 8: Throughput comparisons with the heuristic execution
plan with different context lengths.

Gen. Optimization
- 70.1s

Concurrent Train
- 20.9s Inf. Opt.

- 9.8s

18.2 s

Gen. Opt.
257.9s

Train
Opt.
70.4s

Inf.
Opt.
36.6s

Figure 9: The wall time of one training step of 7B + 7B and 70B
+ 7B settings, with different levels of optimization. The left most
and right most bars show the performance of REAL-Heuristic and
REAL. From left to right, the optimized resource allocation and
parallelization strategies of generation, training and inference are
applied in order.

Settings. We evaluate the weak scaling characteristics of
REAL, where the model size and the batch size both increase
proportionally with the number of devices. Our experimen-
tal configuration follows InstructGPT (Ouyang et al., 2022)
with more details in Appendix A.

Evaluation Metrics. Since the dataflow graph dependen-
cies ensure consistent convergence properties, we focus on
the total training throughput as our primary performance
metric. Measurements are taken over 20 consecutive train-
ing iterations following appropriate warm-up periods. The
observed throughput variation across trials is negligible,
thus error bars are omitted from our figures.

Results. Throughput comparisons presented in Figure 7
and Figure 8 demonstrate REAL’s superior performance.
Compared to the baseline systems, REAL achieves at most
3.58× higher throughput. The search-generated execution
plan outperforms REAL-Heuristic by an average of 54%.
This advantage further increases to 81% when extending
the context length from 2048 to 8192 tokens, highlighting
REAL’s particular effectiveness in long-context scenarios.

8.2 Breakdown Analysis

To illustrate the source of REAL’s performance improve-
ment, we break down and analyze the time cost per train-
ing iteration across several representative experimental set-
tings.

Function-call Level Breakdown. First, we analyze the
wall time of model function calls in two representative cases:
a 7B actor with a 7B critic, and a 70B actor with a 7B critic.
These cases respectively feature identical/similar and dif-

1/2 Attn. + MLP Forward TP=2
All-Reduce

PP Send/Recv
& Sync. Overhead

960us 337us 650us

1/8 Attn. + MLP
Forward

TP=8
All-Reduce

PP Send/Recv
& Sync. Overhead

1/8 Attn. + MLP
Forward

TP=8
All-Reduce

PP Send/Recv
& Sync. Overhead

803us 650us491us 803us 650us491us

Kernel Trace of 70B Actor Generation Decoding Phase

1/2 Attn. + MLP Fwd

1/8 Attn. +
MLP Fwd

TP=8 Scatter-
Reduce/All-gather

1/8 Attn. +
MLP Fwd

TP=8 Scatter-
Reduce/All-gather

1/8 Attn. +
MLP Fwd

TP=8 Scatter-
Reduce/All-gather

1/8 Attn. +
MLP Fwd

TP=8 Scatter-
Reduce/All-gather

Pipeline
Bubble

Batch Size=2
TP=2 PP=16

Batch Size=2
TP=8 PP=4

432ms + 30ms 108ms

132ms 220ms 132ms 220ms 132ms 220ms 132ms 220ms

Batch Size=16
TP=2 PP=4

Batch Size=32
TP=8 PP=4

Kernel Trace of 70B Actor Training Forward Phase

Figure 10: Simplified kernel traces of a transformer layer com-
pleting the same amount of decoding or training computation. The
top trace in each sub-figure represents REAL, while the bottom
trace represents REAL-Heuristic. REAL’s parallelization strategies
reduce memory I/O by invoking fewer computation kernels and
minimize communication overhead caused by excessive tensor or
pipeline parallelism.

ferent sizes for the actor and critic models. Figure 9 shows
the wall time per training step in REAL with progressively
applied optimizations:

• CUDAGraph Generation.

• Generation parallelization

• Training parallelization & concurrent execution.

• Inference parallelization & concurrent execution.

Performance improves incrementally from REAL-Heuristic
(leftmost bar) to REAL (rightmost bar), with each step
adding one optimization. The orange and blue bars demon-
strate the impact of CUDAGraph generation, a key contrib-
utor to performance improvement. The primary difference
between the two settings lies in training phase optimization.
In the 7B+7B configuration, REAL concurrently executes
actor and critic training on separate devices. Since their
training times are similar, this creates perfect overlap, max-
imizing performance. In contrast, for configurations with
large model size disparities like 70B+7B, REAL executes
training sequentially on the global device mesh. The signifi-
cant computational imbalance makes concurrent execution
inefficient, so REAL instead employs tailored parallelization
strategies for each model to optimize overall performance.
The details of the execution plans and wall time breakdown
are presented in Tables 2 to 6.

Kernel Level Breakdown. To understand the enhance-
ment of transforming parallelization strategies, we further
examine the CUDA kernel traces, with a simplified example
shown in Figure 10. During decoding, REAL prioritizes TP
over PP to avoid the significant synchronization overhead
between pipeline stages caused by numerous small decod-
ing steps. Additionally, REAL maximizes the DP degree
within available GPU memory constraints. This reduces
memory I/O and P2P communication overheads with less
kernel invocations. For the compute-bounded training phase,

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

7B+7B 13B+7B 34B+7B 70B+7B 13B+13B 34B+13B 70B+13B
Actor Size + Critic Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
GP

U
Ti

m
e

37%
51%

41%
51%

41% 40% 45%

2% 3%
4%

4% 3%
3%

4%

5%
7%

3%
5% 7% 3%9%

17%
14%

12%
10% 14% 11%

71% 74%
58% 58%

75%
63% 54%

6% 5%
5%

9%

22% 20%

15% 19%

19%
17% 17%

7% 6%
21% 19%

6% 15% 19%

GPU Time Breakdown, ReaL (Left) vs Heuristic (Right)
Compute P2P Comm. Coll.Comm. Idle & Pipeline Bubble

Figure 11: The CUDA kernel time statistics of an RLHF iteration
for REAL (left) and REAL-Heuristic (right). REAL effectively
eliminates the overhead of parallelization, i.e., the collective com-
munication of TP and the P2P communication of PP, and reduces
the memory IO time in compute kernels.

7B 13B 34B 70B
Model Size

0

50

100

150

200

Pr
of

ile
r T

im
e

Co
st

 (s
)

0 200 400 600 80010001200
Real Time (s)

0

200

400

600

800

1000

1200

Es
t.

Ti
m

e
(s

)

Heuristic
Search

Figure 12: (Left) The time of profiling before cost estimation. We
consider batch sizes ranging from 1 to 512 and sequence lengths
limited to 256, 512, and 1024. (Right) The estimated time cost
produced by the estimator and the real time cost of execution plans
used in experiments. Two data points of a same color denote the
searched and heuristic execution plan in one experiment setting.

0 100 200
Search Time (s)

0.4

0.6

0.8

1.0
Context Len. 8192

0 100 200
Search Time (s)

0.6

0.8

1.0
Context Len. 2048

7B
13B
34B
70B

Im
pr

ov
em

en
t R

at
io

Figure 13: The time cost of the best discovered execution plan
compared to the initial one as the searching process proceeds. We
name this metric as improvement ratio.

REAL utilizes a larger PP degree with a large number of
micro-batches. Consequently, it minimizes the TP-induced
collective communication overhead with a minimal bubble
time increase.

We further validate these observations by decomposing the
GPU time per training iteration into three CUDA kernel
types, as illustrated in Figure 11. REAL demonstrates a
similar trend of the kernel time decreasing across all scenar-
ios. We also note that the broadcasts of data transfer and
parameter reallocation take much less GPU time than visu-
alized types, so we omit them from the figure. To conclude,
the improvement of REAL stem from two key aspects of
our execution plan design. First, given a fixed device count,
REAL optimizes the parallelization strategies to minimize
redundant memory IO and communication overheads from
excessive TP or PP degrees. Second, by executing function
calls concurrently across different device subsets, REAL
reduces per-function communication overheads through de-
creasing parallelization degrees.

0 100 200 300
Search Time (s)

0.4

0.6

0.8

1.0 ~10^14
~10^16
~10^18

Im
pr

ov
em

en
t R

at
io

Figure 14: The performance of the MCMC-based search algo-
rithm with pruning in an experiment setting with 1024 GPUs.
Three lines show performance with the search spaces that are
pruned to 1014, 1016, and 1018 execution plans.

10ms 100ms 1s 10s 60s 600s
Search Time (ms)

0.3

0.35

0.4

0.45

0.5

1

Im
pr

ov
em

en
t R

at
io

BS=512, SeqLen=2048
BS=1024, SeqLen=1024
BS=2048, SeqLen=512

Figure 15: The performance of execution plans produced by
MCMC-based search in 10 minutes, in the setting of 7B+7B model
sizes and 8 GPUs and three different settings of batch sizes and
sequence lengths. The x-axis is log scaled, and the dotted lines
mark the optimal performance produced by brute-force search.

We evaluate three key aspects of the execution plan gener-
ator in REAL, including the time cost of the profiler, the
accuracy of the runtime estimator, and the performance of
the search engine.

Profiler. The profiler requires less than 4 minutes to collect
a model’s complete statistics, as shown in Figure 12 (left).
Our experiments only profile statistics of individual layers
and inter/intra-node bandwidths. These profiled statistics are
reusable across experiments within the same model family.

Runtime Estimator Accuracy. The comparison between
the real and estimated time costs, presented in Figure 12
(right), shows relative differences consistently below 25%.
Crucially, the estimated costs maintain the same relative
ordering as the real costs across different execution plans,
ensuring the reliability of searched execution plans.

Search Engine. Figure 13 tracks the estimated RLHF train-
ing cost throughout the searching process, using settings
from the throughput experiments in Figure 8. The search
engine is able to identify execution plans with significant
throughput improvements within 150 seconds across all
experimental configurations.

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Ref.
Inference

Ref. Inference Actor Training

DPO

Actor
Generation

Rew.
Inference

Actor
Training

GRPO Sample
Generation

Greedy
Reward

Actor
Training

ReMax

Greedy
Generation

Sample
Reward

Actor Workload Reward Workload Reference Workload

Throughput
(PetaFLOP/s) DPO GRPO ReMax

ReaL-Heuristic 32.84 60.96 2.49
ReaL (Ours) 50.38 71.12 7.23

Improvement (%) +53.4% +16.67% +190.84%

Figure 16: Throughput comparison with the heuristic execution
plan on three prevalent RLHF algorithms other than PPO. Their
dataflow graph representations are shown in the upper part.

As the number of GPUs increases, the search space grows at
a high-degree polynomial rate. When the number of GPUs
reaches over 1000, the entire search space has more than
1024 execution plans. In this case, the efficiency of MCMC
sampling can degrade badly. To address this, we employ an
effective heuristic pruning technique that eliminates subopti-
mal execution plans likely to cause excessive GPU idle time,
out-of-memory errors, or high communication overhead.
For instance, we discard parallelization strategies where the
tensor parallelization degree exceeds the number of GPUs
per node, as these incur significant communication bottle-
necks due to limited inter-node bandwidth. We also prune
execution plans where the model function calls do not fully
utilize the device mesh, as such configurations inevitably
lead to GPU idle time and suboptimal performance.

In Figure 14, we present an ablation study that shows the
relationship between the size of pruned search space and the
efficiency of MCMC sampling in an experiment setting with
1024 GPUs. The results show that our algorithm can still
find a fast execution plan within 5 minutes by pruning the
search space. Furthermore, while our demonstration uses a
single-threaded implementation, the search process can be
further accelerated through a multi-core parallelization.

The Optimality of MCMC-based Search. Figure 15
demonstrates a comparison between the execution plan pro-
duced by the MCMC-based search algorithm and the op-
timal ones produced by brute-force search, in the setting
of 7B+7B model sizes and 8 GPUs. The result in Fig-
ure 15 shows that, in this setting, our search algorithm could
achieve more than 95% of the best performance in 5 sec-
onds. Moreover, our search algorithm could produce the
optimal execution plans within 10 minutes.

8.3 RLHF Algorithms Beyond PPO

REAL can naturally incorporate any RLHF algorithms repre-
sentable as a directed acyclic graph (DAG) with generation,
inference, and training function calls. We examine three
concrete examples, including DPO (Rafailov et al., 2023),

8 16 32 64 96 128
Number of GPUs

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 P

FL
OP

/s

Strong Scaling Trend of ReaL
7B Actor with 7B Critic
13B Actor with 7B Critic
34B Actor with 7B Critic

8 16 32 64 96 128
Number of GPUs

10
20
30
40
50
60
70
80
90

Ut
iliz

at
io

n
(%

)

Utilization of Static Memory

Figure 17: The throughput and memory utilization in strong
scaling experiments. REAL can achieve (super-)linear scaling
when the computation budget is tight by parallelizing computation
and trading memory for communication. For a small model, the
performance will hit the plateau due to the memory IO overhead
of auto-regressive generation.

GRPO (Shao et al., 2024), and ReMax (Li et al., 2024).

In Figure 16, we compare REAL with REAL-Heuristic us-
ing a 70B Actor and 7B Critic on 16 nodes and observe
an average throughput improvement of 87%. Among these
three algorithms, ReMax achieves the highest gain by ex-
ecution its two generation calls concurrently rather than
sequentially. Conversely, GRPO shows more modest im-
provements due to its grouped generation technique. GRPO
increases the batch size by 8× and makes the workload much
more compute-bounded, which diminishes the benefits of
reducing memory IO or TP/PP overheads.

8.4 Strong Scaling Trend

We analyze the strong scaling performance by measuring
throughput for fixed problem sizes across increasing device
counts. Figure 17 reveals a sub-linear scaling for 7B actors
but a super-linear scaling for 34B actors.

Analysis. The scaling behavior can be understood by exam-
ining the generation and training patterns, which dominate
the RLHF iteration time. With limited computational re-
sources, both operations are compute-bounded. Additional
resources enable computation parallelization and can trade
off more overall memory usage for less communication,
leading to linear or super-linear gains. However, as re-
sources increase, generation becomes a bottleneck due to the
inherent sequential nature of autoregressive processing. It
requires iterative KV cache loading, creating an irreducible
overhead that leads to a diminishing scaling return.

Practical Suggestions. Due to its larger algorithm design
and hyperparameter searching space, RLHF implementa-
tions face a fundamental trade-off between faster training
with more resources and broader configuration exploration
with fewer GPUs. The observed sub-linear scaling indicates
the reduced resource efficiency at larger scales. However,
a minimal resource allocation can impede production by
extending experiment duration. Our results suggest iden-
tifying the transition point from super-linear to sub-linear

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

scaling for each training configuration as the optimal device
allocation. We recommend using static memory utilization
as a heuristic metric, with utilization below 60% indicat-
ing diminishing returns from additional GPU resources, as
demonstrated in Figure 17 (right).

9 RELATED WORK

9.1 Systems for Training and Serving LLMs

Significant efforts have been made to develop distributed
LLM training systems (Narayanan et al., 2021; Chowdhery
et al., 2023; Jiang et al., 2024) that leverage efficient data
(Zhao et al., 2023a; Rajbhandari et al., 2020), tensor-model
(Lepikhin et al., 2021; Wang et al., 2019), and pipeline-
model parallelism (Huang et al., 2019; Li et al., 2021). Con-
currently, research has focused on the efficient serving of
pre-trained LLMs for generation (Sheng et al., 2023b;a; Yu
et al., 2022; Zhong et al., 2024a). However, integrating
dependent workloads for training, inference, and generation,
as in the case of RLHF, presents a challenge that extends
beyond these individual efforts.

Previous RLHF systems (Yao et al., 2023a; Hu et al., 2024;
Shen et al., 2024) typically employ hand-crafted paralleliza-
tion strategies with limited flexibility. While they incorpo-
rate techniques like concurrent execution and ad hoc pa-
rameter resharding, these approaches remain inefficient and
fail to adapt to diverse RLHF training scenarios. Sev-
eral concurrent works (Xiao et al., 2023; Lei et al., 2024;
Sheng et al., 2024) explore RLHF system design and are
conceptually similar to our paper. In comparison, REAL
identifies parameter reallocation as the key to addressing
this challenge, a factor overlooked by these works. More-
over, our problem formulation and search-based solution
offers more generalization and optimization opportunities.
Another concurrent work (Zhong et al., 2024b) is an orthog-
onal extension to our paper. It proposes to fuse pipeline
stages of actor and critic training and balancing the data
skewness during generation, which targets on some special
cases in the workflow of PPO.

9.2 GPU Memory Management for Distributed Training

Previous work on GPU memory management has primarily
focused on reducing runtime memory usage, rather than
improving training throughput. Techniques such as gradient
checkpointing, ZeRO-3 optimization (Rajbhandari et al.,
2020), and parameter offloading (Ren et al., 2021; Rajb-
handari et al., 2021; Lv et al., 2023; Wu et al., 2024) trade
computation or communication to save memory.

Model parameter communication has been explored in pa-
rameter server architectures (Li et al., 2014) and large-scale
reinforcement learning systems (Berner et al., 2019; Mei
et al., 2023). These systems replicate the same set of pa-

rameters across multiple devices for concurrent job execu-
tion, with periodic synchronization for parameter updates.
OpenRLHF (Hu et al., 2024) follows this pattern as well.
Parameter synchronization is a specific case of parameter
reallocation, where the source and destination devices are
disjoint. However, in the context of LLMs, this technique
often results in GPU underutilization, making it inefficient.

The concept most related to parameter reallocation is the
HybridEngine in DSChat (Yao et al., 2023b) and Hybrid-
Flow (Sheng et al., 2024). However, HybridEngine was
limited to the actor model on the same device mesh. Param-
eter reallocation generalizes this approach, allowing it to be
applied to any models within the algorithm, whether devices
are disjoint or overlapping, leading to further throughput
improvements, as demonstrated in Table 6.

9.3 Automatic Parallelization of DL Models

Given the substantial effort required to manually design
a parallelization strategy, numerous studies have focused
on automating the parallelization of deep learning mod-
els (Zheng et al., 2022; Jia et al., 2019; Fan et al., 2020; Har-
lap et al., 2018; Wang et al., 2019). Notably, Alpa (Zheng
et al., 2022) and FlexFlow (Jia et al., 2019) offer general
solutions for deep learning models that can be parsed into
tensor operator graphs. Alpa leverages dynamic program-
ming, while FlexFlow employs a custom search algorithm.

In theory, the entire RLHF training workflow could be repre-
sented as a tensor operation graph and automatically paral-
lelized using prior methods. However, they are sub-optimal
for two key reasons. First, parameter reallocation introduces
significant optimization opportunities in RLHF, but is un-
necessary in supervised training. Consequently, previous
methods do not consider parameter reallocation at runtime,
resulting in subpar performance. Second, RLHF involves
four different LLMs, which are highly operator-intensive.
Searching through the entire tensor operator graph would
be prohibitively expensive. In contrast, REAL accounts
for parameter reallocation and operates at the granularity
of model function calls. Our approach not only enhances
end-to-end training performance but also explores a smaller
solution space, significantly speeding up the search process.

10 CONCLUSION

In this paper, we present REAL, the first system capable of
automatically finding and executing a fast execution plan
for RLHF training with parameter reallocation. We evalu-
ate the performance of REAL against prior RLHF systems
to demonstrate its superior performance. We believe that
REAL will not only democratize the powerful RLHF train-
ing algorithm but also encourage the development of novel
algorithms on LLMs in the future.

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

REFERENCES

Anil, R., Borgeaud, S., Wu, Y., Alayrac, J., Yu, J., Soricut,
R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican, K.,
and et al. Gemini: A family of highly capable multimodal
models. CoRR, abs/2312.11805, 2023. doi: 10.48550/
ARXIV.2312.11805. URL https://doi.org/10.
48550/arXiv.2312.11805.

Antropic. Claude, Jul 2023. URL https://claude.
ai/chats.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,
T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
Showk, S. E., Elhage, N., Hatfield-Dodds, Z., Hernandez,
D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda,
N., Olsson, C., Amodei, D., Brown, T. B., Clark, J., Mc-
Candlish, S., Olah, C., Mann, B., and Kaplan, J. Train-
ing a helpful and harmless assistant with reinforcement
learning from human feedback. CoRR, abs/2204.05862,
2022. doi: 10.48550/ARXIV.2204.05862. URL https:
//doi.org/10.48550/arXiv.2204.05862.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak,
P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S.,
Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., de Oliveira Pinto, H. P., Raiman,
J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S.,
Sutskever, I., Tang, J., Wolski, F., and Zhang, S. Dota
2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019. URL http://arxiv.org/
abs/1912.06680.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., and et al. Language models are few-shot
learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., and et al. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113, 2023. URL http://jmlr.org/papers/
v24/22-1144.html.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., Shum, K., and Zhang, T.
Raft: Reward ranked finetuning for generative foundation
model alignment, 2023. URL https://arxiv.org/
abs/2304.06767.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fan, S., Rong, Y., Meng, C., Cao, Z., Wang, S., Zheng, Z.,
Wu, C., Long, G., Yang, J., Xia, L., Diao, L., Liu, X., and
Lin, W. DAPPLE: A pipelined data parallel approach
for training large models. CoRR, abs/2007.01045, 2020.
URL https://arxiv.org/abs/2007.01045.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri,
V., Devanur, N. R., Ganger, G. R., and Gibbons, P. B.
Pipedream: Fast and efficient pipeline parallel DNN
training. CoRR, abs/1806.03377, 2018. URL http:
//arxiv.org/abs/1806.03377.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57
(1):97–109, 1970. ISSN 00063444. URL http://www.
jstor.org/stable/2334940.

Hu, J., Wu, X., Wang, W., Zhang, D., Cao, Y., et al. Open-
rlhf: An easy-to-use, scalable and high-performance rlhf
framework. arXiv preprint arXiv:2405.11143, 2024.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M. X., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen, Z.
Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 103–112, 2019.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. In Talwalkar, A.,
Smith, V., and Zaharia, M. (eds.), Proceedings of Ma-
chine Learning and Systems 2019, MLSys 2019, Stan-
ford, CA, USA, March 31 - April 2, 2019. mlsys.org,
2019. URL https://proceedings.mlsys.org/
book/265.pdf.

Jiang, Z., Lin, H., Zhong, Y., Huang, Q., Chen, Y., Zhang, Z.,
Peng, Y., Li, X., Xie, C., Nong, S., Jia, Y., He, S., Chen,
H., Bai, Z., Hou, Q., Yan, S., Zhou, D., Sheng, Y., Jiang,
Z., Xu, H., Wei, H., Zhang, Z., Nie, P., Zou, L., Zhao, S.,
Xiang, L., Liu, Z., Li, Z., Jia, X., Ye, J., Jin, X., and Liu,
X. Megascale: Scaling large language model training to
more than 10, 000 gpus. CoRR, abs/2402.15627, 2024.
doi: 10.48550/ARXIV.2402.15627. URL https://
doi.org/10.48550/arXiv.2402.15627.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Effi-
cient memory management for large language model

https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2312.11805
https://claude.ai/chats
https://claude.ai/chats
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2007.01045
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1806.03377
http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940
https://proceedings.mlsys.org/book/265.pdf
https://proceedings.mlsys.org/book/265.pdf
https://doi.org/10.48550/arXiv.2402.15627
https://doi.org/10.48550/arXiv.2402.15627

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

serving with pagedattention. In Flinn, J., Seltzer, M. I.,
Druschel, P., Kaufmann, A., and Mace, J. (eds.), Pro-
ceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP 2023, Koblenz, Germany, Octo-
ber 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.
1145/3600006.3613165. URL https://doi.org/
10.1145/3600006.3613165.

Lei, K., Jin, Y., Zhai, M., Huang, K., Ye, H., and Zhai,
J. PUZZLE: efficiently aligning large language models
through light-weight context switch. In Bagchi, S. and
Zhang, Y. (eds.), Proceedings of the 2024 USENIX An-
nual Technical Conference, USENIX ATC 2024, Santa
Clara, CA, USA, July 10-12, 2024, pp. 127–140. USENIX
Association, 2024. URL https://www.usenix.
org/conference/atc24/presentation/lei.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,
Y., Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scal-
ing giant models with conditional computation and auto-
matic sharding. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=qrwe7XHTmYb.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J.,
Ahmed, A., Josifovski, V., Long, J., Shekita, E. J., and
Su, B. Scaling distributed machine learning with the
parameter server. In Flinn, J. and Levy, H. (eds.), 11th
USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA,
October 6-8, 2014, pp. 583–598. USENIX Associa-
tion, 2014. URL https://www.usenix.org/
conference/osdi14/technical-sessions/
presentation/li_mu.

Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D.,
and Stoica, I. Terapipe: Token-level pipeline parallelism
for training large-scale language models. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pp. 6543–6552. PMLR,
2021. URL http://proceedings.mlr.press/
v139/li21y.html.

Li, Z., Xu, T., Zhang, Y., Lin, Z., Yu, Y., Sun, R., and
Luo, Z. Remax: A simple, effective, and efficient
reinforcement learning method for aligning large lan-
guage models. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=Stn8hXkpe6.

Lv, K., Yang, Y., Liu, T., Gao, Q., Guo, Q., and Qiu, X. Full
parameter fine-tuning for large language models with

limited resources. CoRR, abs/2306.09782, 2023. doi:
10.48550/ARXIV.2306.09782. URL https://doi.
org/10.48550/arXiv.2306.09782.

Mei, Z., Fu, W., Wang, G., Zhang, H., and Wu, Y. SRL:
scaling distributed reinforcement learning to over ten
thousand cores. CoRR, abs/2306.16688, 2023. doi:
10.48550/ARXIV.2306.16688. URL https://doi.
org/10.48550/arXiv.2306.16688.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. Equation of state cal-
culations by fast computing machines. 3 1953. doi:
10.2172/4390578. URL https://www.osti.gov/
biblio/4390578.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Catanzaro, B., Phanishayee, A., and
Zaharia, M. Efficient large-scale language model train-
ing on GPU clusters using megatron-lm. In de Supin-
ski, B. R., Hall, M. W., and Gamblin, T. (eds.), Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2021, St. Louis,
Missouri, USA, November 14-19, 2021, pp. 58. ACM,
2021. doi: 10.1145/3458817.3476209. URL https:
//doi.org/10.1145/3458817.3476209.

Nvidia. Tensorrt-llm. https://github.com/
NVIDIA/TensorRT-LLM, 2024.

OpenAI. Introducing chatgpt, Nov 2022. URL https:
//openai.com/blog/chatgpt.

OpenAI. Introducing openai o1-preview, Sep
2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://www.usenix.org/conference/atc24/presentation/lei
https://www.usenix.org/conference/atc24/presentation/lei
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
http://proceedings.mlr.press/v139/li21y.html
http://proceedings.mlr.press/v139/li21y.html
https://openreview.net/forum?id=Stn8hXkpe6
https://openreview.net/forum?id=Stn8hXkpe6
https://doi.org/10.48550/arXiv.2306.09782
https://doi.org/10.48550/arXiv.2306.09782
https://doi.org/10.48550/arXiv.2306.16688
https://doi.org/10.48550/arXiv.2306.16688
https://www.osti.gov/biblio/4390578
https://www.osti.gov/biblio/4390578
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
memory optimizations toward training trillion parameter
models. In Cuicchi, C., Qualters, I., and Kramer, W. T.
(eds.), Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA,
November 9-19, 2020, pp. 20. IEEE/ACM, 2020. doi:
10.1109/SC41405.2020.00024. URL https://doi.
org/10.1109/SC41405.2020.00024.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and
He, Y. Zero-infinity: breaking the GPU memory wall
for extreme scale deep learning. In de Supinski, B. R.,
Hall, M. W., and Gamblin, T. (eds.), International Con-
ference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2021, St. Louis, Mis-
souri, USA, November 14-19, 2021, pp. 59. ACM,
2021. doi: 10.1145/3458817.3476205. URL https:
//doi.org/10.1145/3458817.3476205.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Gupta,
R., Liu, Y., Tang, J., and Prakash, B. A. (eds.), KDD

’20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pp. 3505–3506. ACM, 2020.
doi: 10.1145/3394486.3406703. URL https://doi.
org/10.1145/3394486.3406703.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload:
Democratizing billion-scale model training. In Cal-
ciu, I. and Kuenning, G. (eds.), 2021 USENIX An-
nual Technical Conference, USENIX ATC 2021, July
14-16, 2021, pp. 551–564. USENIX Association, 2021.
URL https://www.usenix.org/conference/
atc21/presentation/ren-jie.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M.,
Li, Y. K., Wu, Y., and Guo, D. Deepseekmath: Pushing
the limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300, 2024. doi: 10.48550/
ARXIV.2402.03300. URL https://doi.org/10.
48550/arXiv.2402.03300.

Shen, G., Wang, Z., Delalleau, O., Zeng, J., Dong, Y., Egert,
D., Sun, S., Zhang, J., Jain, S., Taghibakhshi, A., et al.
Nemo-aligner: Scalable toolkit for efficient model align-
ment. arXiv preprint arXiv:2405.01481, 2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexible
and efficient RLHF framework. CoRR, abs/2409.19256,
2024. doi: 10.48550/ARXIV.2409.19256. URL https:
//doi.org/10.48550/arXiv.2409.19256.

Sheng, Y., Cao, S., Li, D., Hooper, C., Lee, N., Yang,
S., Chou, C., Zhu, B., Zheng, L., Keutzer, K., Gon-
zalez, J. E., and Stoica, I. S-lora: Serving thousands
of concurrent lora adapters. CoRR, abs/2311.03285,
2023a. doi: 10.48550/ARXIV.2311.03285. URL https:
//doi.org/10.48550/arXiv.2311.03285.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M.,
Chen, B., Liang, P., Ré, C., Stoica, I., and Zhang,
C. Flexgen: High-throughput generative inference
of large language models with a single GPU. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), International Con-
ference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pp. 31094–31116.
PMLR, 2023b. URL https://proceedings.mlr.
press/v202/sheng23a.html.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. CoRR, abs/1909.08053, 2019. URL http:
//arxiv.org/abs/1909.08053.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M.,
Lowe, R., Voss, C., Radford, A., Amodei, D., and
Christiano, P. F. Learning to summarize with human
feedback. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1f89885d556929e98d3ef9b86448f951-Abstract.
html.

https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2409.19256
https://doi.org/10.48550/arXiv.2409.19256
https://doi.org/10.48550/arXiv.2311.03285
https://doi.org/10.48550/arXiv.2311.03285
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., and et al. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288, 2023.
doi: 10.48550/ARXIV.2307.09288. URL https://
doi.org/10.48550/arXiv.2307.09288.

Wang, M., Huang, C., and Li, J. Supporting very large mod-
els using automatic dataflow graph partitioning. In Can-
dea, G., van Renesse, R., and Fetzer, C. (eds.), Proceed-
ings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019, pp. 26:1–26:17. ACM,
2019. doi: 10.1145/3302424.3303953. URL https:
//doi.org/10.1145/3302424.3303953.

Wu, X., Rao, J., and Chen, W. ATOM: asynchronous train-
ing of massive models for deep learning in a decentral-
ized environment. CoRR, abs/2403.10504, 2024. doi:
10.48550/ARXIV.2403.10504. URL https://doi.
org/10.48550/arXiv.2403.10504.

Xiao, Y., Wu, W., Zhou, Z., Mao, F., Zhao, S., Ju, L., Liang,
L., Zhang, X., and Zhou, J. An adaptive placement and
parallelism framework for accelerating RLHF training.
CoRR, abs/2312.11819, 2023. doi: 10.48550/ARXIV.
2312.11819. URL https://doi.org/10.48550/
arXiv.2312.11819.

Yao, Z., Aminabadi, R. Y., Ruwase, O., Rajbhandari, S., Wu,
X., Awan, A. A., Rasley, J., Zhang, M., Li, C., Holmes, C.,
Zhou, Z., Wyatt, M., Smith, M., Kurilenko, L., Qin, H.,
Tanaka, M., Che, S., Song, S. L., and He, Y. Deepspeed-
chat: Easy, fast and affordable rlhf training of chatgpt-like
models at all scales, 2023a.

Yao, Z., Aminabadi, R. Y., Ruwase, O., Rajbhandari, S., Wu,
X., Awan, A. A., Rasley, J., Zhang, M., Li, C., Holmes, C.,
Zhou, Z., Wyatt, M., Smith, M., Kurilenko, L., Qin, H.,
Tanaka, M., Che, S., Song, S. L., and He, Y. Deepspeed-
chat: Easy, fast and affordable RLHF training of chatgpt-
like models at all scales. CoRR, abs/2308.01320, 2023b.
doi: 10.48550/ARXIV.2308.01320. URL https://
doi.org/10.48550/arXiv.2308.01320.

Yoo, A. B., Jette, M. A., and Grondona, M. SLURM:
simple linux utility for resource management. In Fei-
telson, D. G., Rudolph, L., and Schwiegelshohn, U.
(eds.), Job Scheduling Strategies for Parallel Process-
ing, 9th International Workshop, JSSPP 2003, Seat-
tle, WA, USA, June 24, 2003, Revised Papers, volume
2862 of Lecture Notes in Computer Science, pp. 44–
60. Springer, 2003. doi: 10.1007/10968987\ 3. URL
https://doi.org/10.1007/10968987_3.

Yu, G., Jeong, J. S., Kim, G., Kim, S., and Chun, B. Orca:
A distributed serving system for transformer-based gen-
erative models. In Aguilera, M. K. and Weatherspoon,

H. (eds.), 16th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, pp. 521–538. USENIX As-
sociation, 2022. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S.,
Li, J., Hu, R., Zhang, T., Wu, F., and Wang, G. Instruction
tuning for large language models: A survey, 2024. URL
https://arxiv.org/abs/2308.10792.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C., Xu,
M., Wright, L., Shojanazeri, H., Ott, M., Shleifer, S.,
Desmaison, A., Balioglu, C., Damania, P., Nguyen, B.,
Chauhan, G., Hao, Y., Mathews, A., and Li, S. Pytorch
FSDP: experiences on scaling fully sharded data par-
allel. Proc. VLDB Endow., 16(12):3848–3860, 2023a.
doi: 10.14778/3611540.3611569. URL https://www.
vldb.org/pvldb/vol16/p3848-huang.pdf.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C., Xu,
M., Wright, L., Shojanazeri, H., Ott, M., Shleifer, S.,
Desmaison, A., Balioglu, C., Damania, P., Nguyen, B.,
Chauhan, G., Hao, Y., Mathews, A., and Li, S. Pytorch
FSDP: experiences on scaling fully sharded data par-
allel. Proc. VLDB Endow., 16(12):3848–3860, 2023b.
doi: 10.14778/3611540.3611569. URL https://www.
vldb.org/pvldb/vol16/p3848-huang.pdf.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., Gonza-
lez, J. E., and Stoica, I. Alpa: Automating inter- and
intra-operator parallelism for distributed deep learning.
In Aguilera, M. K. and Weatherspoon, H. (eds.), 16th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2022, Carlsbad, CA, USA, July
11-13, 2022, pp. 559–578. USENIX Association, 2022.
URL https://www.usenix.org/conference/
osdi22/presentation/zheng-lianmin.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin,
X., and Zhang, H. Distserve: Disaggregating prefill and
decoding for goodput-optimized large language model
serving. In Gavrilovska, A. and Terry, D. B. (eds.), 18th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2024, Santa Clara, CA, USA, July
10-12, 2024, pp. 193–210. USENIX Association, 2024a.
URL https://www.usenix.org/conference/
osdi24/presentation/zhong-yinmin.

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1145/3302424.3303953
https://doi.org/10.1145/3302424.3303953
https://doi.org/10.48550/arXiv.2403.10504
https://doi.org/10.48550/arXiv.2403.10504
https://doi.org/10.48550/arXiv.2312.11819
https://doi.org/10.48550/arXiv.2312.11819
https://doi.org/10.48550/arXiv.2308.01320
https://doi.org/10.48550/arXiv.2308.01320
https://doi.org/10.1007/10968987_3
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2308.10792
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://arxiv.org/abs/2312.07104
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Zhong, Y., Zhang, Z., Wu, B., Liu, S., Chen, Y., Wan, C.,
Hu, H., Xia, L., Ming, R., Zhu, Y., and Jin, X. Rlhfuse:
Efficient RLHF training for large language models with
inter- and intra-stage fusion. CoRR, abs/2409.13221,
2024b. doi: 10.48550/ARXIV.2409.13221. URL https:
//doi.org/10.48550/arXiv.2409.13221.

Zhuang, Y., Zhao, H., Zheng, L., Li, Z., Xing, E. P., Ho,
Q., Gonzalez, J. E., Stoica, I., and Zhang, H. On
optimizing the communication of model parallelism.
CoRR, abs/2211.05322, 2022. doi: 10.48550/ARXIV.
2211.05322. URL https://doi.org/10.48550/
arXiv.2211.05322.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P. F., and Irving, G. Fine-
tuning language models from human preferences. CoRR,
abs/1909.08593, 2019. URL http://arxiv.org/
abs/1909.08593.

https://doi.org/10.48550/arXiv.2409.13221
https://doi.org/10.48550/arXiv.2409.13221
https://doi.org/10.48550/arXiv.2211.05322
https://doi.org/10.48550/arXiv.2211.05322
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

A EXPERIMENT DETAILS

Our base setting is adopted from Ouyang et al. (2022), which
utilizes a global batch size of 512, context length 2048, and
a maximum prompt length of 1024. The global batch is
divided into 8 mini-batches for PPO training.

We emphasize that the prompt and generation length may
vary for different models, datasets or tasks, algorithm im-
plementation, and even during RLHF training. To eliminate
this effect and perform a fair comparison, we synthesize ran-
dom data with the maximum prompt length and terminate
generation only after the maximum length is reached.

We create LLaMA models of four different sizes with their
detailed configurations shown in Table 1. For weak scaling
experiments, we increase the model size and batch size
proportionally to the number of devices. In particular, for
16, 32, 64, and 128 GPUs, the model sizes are 7B, 13B,
34B, and 70B, and batch sizes are 512, 1024, 2048, 4096,
respectively. For experiments with a longer context length,
we fix the number of tokens in the global batch. For instance,
when the context length increases from 2048 to 8192, the
global batch size decreases by a factor of 4. In experiments
for strong scaling and dditional RLHF algorithms, we adopt
the base setting with 70B actor/reference models and 7B
critic/reward models on 16 nodes.

We show the execution plans of wall time breakdown exam-
ples (Table 6) in Tables 2 to 5.

B THE API OF REAL
Figure 18 shows an example of the API for an REAL experi-
ment. Users define the dataflow graph of the algorithm (e.g.,
RLHF) using a list of ModelFunctionCallDef objects.
These objects encapsulate the model configuration and the
function call type, along with specifying input and output
data dependencies. Models sharing the same model name
must have identical architectures (e.g., llama7b). They
form parameter version dependencies, such that the infer-
ence and generation must wait for the training in the previ-
ous iteration. The experiment configuration is then wrapped
by the auto decorator, which initiates the search engine to
derive an efficient execution plan. This plan is transformed
into a scheduling configuration for launching workers, each
assigned to a specific GPU or CPU via SLURM (Yoo et al.,
2003). The search engine and launcher both run under the
hood. Users are free to provide distinct interface implemen-
tations to implement a diverse range of training workflows.

C SIMULATION ALGORITHM

The simulation algorithm in show in Algorithm 1.

1 # auto is a decorator that generates worker
2 # scheduling configs in the cluster.
3 @auto(nodelist="com[01-08]", batch_size=256)
4 @dataclasses.dataclass
5 class Experiment:
6 seed: int = 1
7 ppo: PPOHyperparameters
8
9 @property
10 def rpcs(self) -> List[ModelFunctionCallDef]:
11 return [
12 ModelFunctionCallDef(
13 model_name="actor",
14 model_type="llama7b",
15 interface_type=GENERATE,
16 input_data=["prompts"],
17 output_data=["seq", "logp"],
18),
19 ModelFunctionCallDef(
20 model_name="reward",
21 model_type="llama7b-critic",
22 interface_type=INFERENCE,
23 input_data=["seq"],
24 output_data=["r"],
25),
26 ModelFunctionCallDef(
27 model_name="actor",
28 interface_type=TRAIN_STEP,
29 input_data=["seq", "r", ...],
30),
31 # ref inference, critic inference,
32 # and critic training
33 ...,
34]

Figure 18: An example of the user interface of REAL.
Given the dataflow graph (represented by a list of
ModelFunctionCallDef objects), the training batch
size, and cluster specifications, REAL will automatically derive an
execution plan via the auto decorator.

D BASELINES

In Figure 7, we show the performance comparison be-
tween REAL and 4 baseline RLHF systems: DeepSpeed-
Chat (Yao et al., 2023b), OpenRLHF (Hu et al., 2024),
NeMoAligner (Shen et al., 2024) and veRL (Hybrid-
Flow (Sheng et al., 2024)). The first three baselines are
previous works of REAL, and veRL is concurrent to REAL.
In this section, we will briefly introduce the implementa-
tion of these baseline systems. We also list the version and
backend of baseline systems used in our experiments.

DeepSpeedChat is developed using modules from a pop-
ular training backend DeepSpeed (Rasley et al., 2020). It
supports sequential execution of model function calls, and
uses TP for the generation task, ZeRO-3 DP for the training
and inference task. It also implements HybridEngine, a
technique that reshards parameters between actor training
and generation.

OpenRLHF exploits vLLM (Kwon et al., 2023) as their
generation backend and DeepSpeed ZeRO-3 DP as their
training backend. It divides GPUs into three groups, hold-
ing the actor/reference model, the critic/reward model and

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Identifier 7B 13B 34B 70B

HiddenSize 4096 5120 8192 8192
IntermediateSize 14336 13824 22016 28672
NumLayers 32 40 48 80
NumAttentionHeads 32 40 64 64
NumKVHeads 8 40 8 8
VocabSize 128256 128256 128256 128256
MaxPositionEmbeddings 8192 8192 8192 8192
TotalParamCount 8030261248 14001525760 35321028608 70553706496
ParamCount w./o. Output Embedding 7504924672 13344855040 34270355456 69503033344

Table 1: The LLaMA-3 model configurations used in experiments. Because critic models have a smaller output embedding
layer than the actor (i.e., the output dimension is 1 for the critic), we use the embedding-less parameter count as the identifier.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-16] 2 4 16 4 185.1
RewInf trainer[01-16] 1 8 16 4 5.6
RefInf trainer[01-16] 1 8 16 16 35.6
CriticInf trainer[01-16] 1 8 16 16 5.6
CriticTrain trainer[01-16] 8 4 4 2 20.8
ActorTrain trainer[01-16] 2 16 4 2 108.0

Table 2: Device allocations and parallelization strategies for the 70B Actor and 7B critic searched case in Table 6.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-16] 8 4 4 8 241.8
RewInf trainer[01-16] 8 4 4 8 12.6
RefInf trainer[01-16] 8 4 4 8 63.5
CriticInf trainer[01-16] 8 4 4 8 12.5
CriticTrain trainer[01-16] 8 4 4 8 35.7
ActorTrain trainer[01-16] 8 4 4 8 163.4

Table 3: Device allocations and parallelization strategies for the 70B Actor and 7B critic heuristic case in Table 6.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-02] 2 2 4 1 16.3
RewInf trainer01 2 1 4 16 6.0
RefInf trainer02 1 2 4 16 8.0
CriticInf trainer[01-02] 1 2 8 8 4.7
CriticTrain trainer02 4 2 1 2 28.1
ActorTrain trainer01 2 4 1 2 26.6

Table 4: Device allocations and parallelization strategies for the 7B Actor and 7B critic searched case in Table 6.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-02] 8 1 2 4 44.2
RewInf trainer[01-02] 8 1 2 4 7.3
RefInf trainer[01-02] 8 1 2 4 7.6
CriticInf trainer[01-02] 8 1 2 4 6.8
CriticTrain trainer[01-02] 8 1 2 4 24.3
ActorTrain trainer[01-02] 8 1 2 4 24.7

Table 5: Device allocations and parallelization strategies for the 7B Actor and 7B critic heuristic case in Table 6.

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Time (s) 7B + 7B 70B + 7B
REAL Heuristic REAL Heuristic

ActorGen
(with CUDAGraph) 16.3 44.2 185.1 241.8

ActorGen
(w.o. CUDAGraph) 34.5 104.6 185.1 241.8

RewInf 6.0 7.3 5.6 12.6
RefInf 8.0 7.6 35.6 63.5

CriticInf 4.7 6.8 5.6 12.5
CriticTrain 28.1 24.3 20.8 35.7
ActorTrain 26.6 24.7 108.0 163.4

End2End
(with CUDAGraph) 64.0 122.6 383.1 546.8

End2End
(w.o CUDAGraph) 82.2 183.0 547.4 912.3

Table 6: The RLHF wall time breakdown of two most common and representative cases. REAL reduces the end-to-end time
by accelerating individual model function calls as well as concurrently executing independent computations.

the vLLM generation engine separately. It allows the con-
current execution of actor and critic training. However, the
generation and training phase can not be executed concur-
rently due to data and parameter dependencies. This results
in a significant GPU idle time.

Similarly, NeMoAligner divides GPUs into 2 disjoint GPU
groups. Unlike OpenRLHF, it locates actor training and gen-
eration on the same GPU group. It splits the computations
into micro batches and pipeline them to reduce the GPU
idle time. It exploits TRT-LLM (Nvidia, 2024) (supports
TP and resharding) as generation backend and Megatron-
LM (Shoeybi et al., 2019) as training backend (supports 3D
parallelization).

veRL supports colocating models on GPUs and split place-
ment of models on different GPU groups, including the
strategies adopted by three previous systems. It provides
different choices for the generation (SGLang (Zheng et al.,
2024) and vLLM (Kwon et al., 2023)) and training back-
end (Megatron-LM (Shoeybi et al., 2019) and Pytorch
FSDP (Zhao et al., 2023b)) to support different paralleliza-
tion strategies.

We list the version and backend of baseline systems used
in our experiments in Table 7. We remark that in this ex-
periment, REAL uses its own generation backend, model
and pipeline parallelization, and adopts tensor paralleliza-
tion and optimizer implementation from Megatron-LM. In
a more recent version of REAL, we also support vLLM and
SGLang as generation backend, which is not included in the
experiments in this paper.

Algorithm 1 Calculate TimeCost(Gp)
Require: The augmented dataflow graph Gp = (Vp, Ep), device

meshes D ∈ D where D contains all valid device meshes in the
cluster.
ready queue = PriorityQueue()// Sorted by v.ReadyTime
completed set = Set() // Contains completed nodes
for v ∈ Vp do

if v.parents=∅ then
ready queue.push(v)

end if
end for
while !ready queue.empty() do

Node v = ready queue.pop()
DeviceMesh D = v.device mesh
// D.last record the last completed node from all devices
within D
v.StartTime = max{v.ReadyTime, D.last.EndTime}
v.EndTime = v.StartTime + TimeCost(v)
completed set.add(v)
for D′ ∈ D do

if overlap(D, D′) and D′.last.EndTime ≤D.last.EndTime
then

D′.last = v
end if

end for
for u ∈ v.children do

u.ReadyTime = max{u.ReadyTime, v.EndTime}
if w ∈ completed set for all w ∈ u.parents then

ready queue.push(u)
end if

end for
end while
return max{v.EndTime |v ∈ Vp}

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

System Version Generation Backend Training Backend

DeepSpeedChat commit f73a6ed DeepSpeed v0.15.1 DeepSpeed v0.15.1
OpenRLHF v0.4.2 vLLM v0.4.2 DeepSpeed v0.15.0

NeMoAligner v0.4.0 TRT-LLM v0.10.0 Megatron-LM v0.8.0
veRL 0.2.0.post2 vLLM v0.6.3 Pytorch FSDP v2.4.0

Table 7: The version, generation backend and training backend used in our baseline experiments.

