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ABSTRACT

Large Multimodal Models (LMMs) demonstrate impressive in-context learning
abilities from limited multimodal demonstrations, yet the internal mechanisms
supporting such task learning remain opaque. Building on prior work of large
language models, we show that a small subset of attention heads in the vi-
sion–language model OpenFlamingo-4B is responsible for transmitting represen-
tations of spatial relations. The activations of these attention heads, termed func-
tion vectors, can be extracted and manipulated to alter an LMM’s performance
on relational tasks. First, using both synthetic and real image datasets, we ap-
ply causal mediation analysis to identify attention heads that strongly influence
relational predictions, and extract multimodal function vectors that improve zero-
shot accuracy at inference time. We further demonstrate that these multimodal
function vectors can be fine-tuned with a modest amount of training data, while
keeping LMM parameters frozen, to significantly outperform in-context learning
baselines. Finally, we show that relation-specific function vectors can be linearly
combined to solve analogy problems involving novel and untrained spatial rela-
tions, highlighting the strong generalization ability of this approach. Our results
show that LMMs encode spatial relational knowledge within localized internal
structures, which can be systematically extracted and optimized, thereby advanc-
ing our understanding of model modularity and enhancing control over relational
reasoning in LMMs.

1 INTRODUCTION

Figure 1: Relational rep-
resentations enrich per-
ception: rather than a
disconnected list of ob-
jects, relations (e.g., the
boy opening the fridge
next to the cabinet) pro-
vide a structured, mean-
ingful description.

Imagine you look at a picture of a kitchen. Without identifying relations
between objects, the visual system might perceive a disconnected list:
fridge, boy, cabinet, sink, window. However, with relational representa-
tions, the system provides a much richer description: a boy is opening
a fridge that is next to a cabinet; the cabinet is besides a window, which
is above the sink. Simply reading this description with relational con-
text makes it far easier to imagine the scene as shown in Figure 1. This
thought experiment highlights the critical role that relational representa-
tions play in perception, enabling us to organize and make sense of the
world by interpreting it as interconnected, meaningful scenes, and also
to form a “language of vision” to communicate with cognitive systems
(Cavanagh, 2021).

Although the importance of relational context is evident in shaping a
“language of vision,” it remains a difficult challenge because “relations
themselves cast no light onto our eyes” (Hafri & Firestone, 2021). In
other words, no pixels in an image signal visual relations. However, re-
cent advances in the mechanistic interpretability of large language mod-
els (LLMs) suggest that in-context learning can offer a promising path-
way for distilling relational knowledge from pre-trained models. In par-
ticular, one key line of research focuses on inference-time modification
of model activations to make task representations explicit (Turner et al.,
2023). Here, we particularly focus on the approch of function vectors
(FVs) (Todd et al., 2024). Function vectors were recently developed as a means to extract compact
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representations of a task from the hidden states of LLMs. By averaging activations from a small
number of attention heads across a set of consistent demonstrations, researchers have shown that
it is possible to define a task-specific vector. The extracted function vector can be inserted into
a model’s hidden layers and produce the intended behavior for a task even in the absence of any
demonstrations. These vectors effectively summarize the task’s input-output mapping and can be
reused, combined, or fine-tuned for new contexts (Jorgensen et al., 2023; Yin et al., 2024; Park
et al., 2023).

Despite the promise of function vectors in LLMs, their extension to multimodal settings remains at
an early stage. LMMs such as Flamingo (Alayrac et al., 2022) or BLIP (Li et al., 2022) introduce
additional complexity due to the fusion of high-dimensional visual features with natural language,
posing unique challenges for representation analysis. Recent work has successfully identified task
vectors in pre-trained vision–language models for visual prompting (Hojel et al., 2024; Huang et al.,
2024), e.g., modifying display styles or naming objects. Yet, the function vector approach has not
been explored for extracting and manipulating visual relations in images.

This paper investigates whether the approach of function vectors can be effectively extended to large
multimodal models (LMMs) to support the extraction of relational knowledge in images. Specifi-
cally, we ask whether multimodal function vectors can be extracted from the internal representations
of LMMs in a way that encodes spatial relations in a compact and causally meaningful form. We
further explore how architectural factors, such as the selection of attention heads and the choice of in-
jection layer, influence the effectiveness of function vector interventions. Next, we examine whether
these multimodal function vectors can be fine-tuned with a modest amount of training data consist-
ing of object pairs instantiating the same relations, while keeping model parameters frozen. We
will compare performance of fine-tuned function vectors with LMM’s in-context learning baselines.
Finally, inspired by the linear representation hypothesis (Park et al., 2023) in transformer-based
models, we hypothesize that relation-specific function vectors can be linearly combined to represent
untrained relations. We test this idea using one-shot analogy problems to examine generalization of
this approach.

2 RELATED WORK

2.1 IN-CONTEXT LEARNING AND FUNCTION VECTORS IN LARGE LANGUAGE MOELS

Large Language Models show impressive in-context learning ability (ICL), which can be viewed
as implicit meta-learning: attention dynamics approximate gradient descent or Bayesian inference
(Brown et al., 2020; Garg et al., 2022; Xie et al., 2021; Akyürek et al., 2023). Empirical work high-
lights that label words (Wang et al., 2023a), label noise (Wang et al., 2023b), and topical coherence
(Wang et al., 2023c) can influence prediction performance.

Recent work used in-context learning to show that transformer-based Large Language Models use
local structures to encode tasks using compact, causally meaningful representations (Hendel et al.,
2023). For example, (Olsson et al., 2022) identified “induction heads” enabling few-shot general-
ization of copying token patterns forward in a sequence. Built on the idea of induction heads, Todd
and colleagues developed the function vector (FV) framework (Todd et al., 2024) to show that a
small subset of mid-layer attention heads encodes the input-output mapping implied by in-context
examples. Hence, the average activations of these selected attention heads can yield a single func-
tion vector to capture task representations. Intervening on the language model with function vectors
reproduces task behavior without demonstrations. In this paper, we extend this paradigm to mul-
timodal models, testing whether vision-language systems such as Flamingo (Alayrac et al., 2022)
also encode multimodal tasks as function vectors.

2.2 MECHANISTIC INTERPRETABILITY IN MULTIMODAL MODELS

Mechanistic interpretability has uncovered circuits and features that support model behavior in
transformer-based Large Language Models. For example, Variengien & Winsor (2023) decom-
posed question-answer problems into query and retrieval stages to reveal modularity in transform-
ers. (Wang et al., 2022a) mapped a pronoun resolution circuit in GPT-2, while “skill neurons” (Wang
et al., 2022b) and “knowledge neurons” (Meng et al., 2022) revealed latent units causally tied to task
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execution and factual recall. Tools like the Tuned Lens (Belrose et al., 2023) and large-scale feature
maps (Anthropic, 2024) further demonstrate structured internal organization.

Extending mechanistic interpretability to Large Multimodal Models is challenging due to fused
vision–language streams (Dang et al., 2024). However, progress has been made. Causal tracing
in BLIP (Palit et al., 2023) found late-stage integration, while automatic circuit discovery isolates
concept-specific subnetworks (Rajaram et al., 2024). Meanwhile, Visual Task Vectors have been
discovered for visual prompting tasks (Hojel et al., 2024). Multimodal Task Vectors (MTV) show
that task information can be summarized into a reusable vector (Huang et al., 2024). Our work
derives function vectors via causal mediation analysis and fine-tuning, enabling manipulation of
relational knowledge and generalization to solving analogy problems with untrained relations.

3 METHOD

3.1 DATASETS

We use two multimodal datasets to test the models, one with synthetic images and the other with
realistic images. Full construction details are provided in the Supplementary Material A.1

Synthetic image dataset. We constructed a synthetic image dataset using 32 object cutouts from the
Big and Small Objects dataset (Konkle & Oliva, 2012). Each image includes six objects arranged
to instantiate specific spatial relations. Four relations are considered: above, below, left of, and
right of. One object is designated as the reference object, which consistently serves as the query
object in the relational reasoning task. We generated a total of 6000 images. These were divided
into three subsets: (1) 4000 images for extracting function vectors, (2) 1000 images for fine-tuning
function vectors, and (3) 1000 images for evaluating generalization. In addition, we constructed a
generalization test dataset containing four novel spatial relations not present in training: above left,
above right, below left, and below right. Each of 1000 images includes a centrally placed reference
object, four relational objects corresponding to the target spatial relations, and one additional object
positioned at least 300 pixels away from all others.

Real image dataset: GQA. For more realistic settings, we constructed a dataset using the GQA (Hud-
son & Manning, 2019), which consists of real-world images annotated with detailed scene graphs
supporting visual reasoning and question answering. From the 113K images in GQA, we selected
201 images using strict criteria designed to target relational tasks. See detailed criteria in the Supple-
mental section A.1.2. We divided the dataset into two subsets: a training set, used for function vector
extraction and fine-tuning, and a test set, used exclusively for evaluation with zero-shot tasks. From
each subset, we sampled 200 tasks per relation, where each task comprises four context images and
one query image, with object pairs instantiating the relation randomly selected.

3.2 RELATION TASK WITH OPENFLAMINGO

To evaluate how the vision-language model represents spatial relations, we designed a 4-shot in-
context learning task (ICL) using OpenFlamingo-4B (Awadalla et al., 2023), a vision-language
model built on the Flamingo architecture. Each multimodal prompt consisted of four context images
and one query image, accompanied with text inputs. In the in-context demonstrations, four exam-
ples consistently include a specific spatial relation (e.g., above) between a query object (Q) and its
corresponding answer object (A). Followng these demonstrations, a query image with the text label
of a query object is presented, and the model must infer the linguistic label of an object that instan-
tiates the correct spatial relation with the query object. See an illusation of the relation task in the
in-context learning settings in the top panel of Figure 2.

OpenFlamingo integrates a frozen CLIP vision encoder with a language model through interleaved
cross-attention layers, enabling joint processing of visual and textual inputs. Our implementation
used a ViT-L/14 vision encoder pretrained with CLIP (Radford et al., 2021) and a 3B-parameter
RedPajama-INCITE language model (Together Computer, 2024), with cross-attention layers in-
serted every two transformer blocks1.

1The model was initialized from the openflamingo/OpenFlamingo-4B-vitl-rpj3b-langinstruct
checkpoint via HuggingFace Hub.
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3.3 EXTRACTING FUNCTION VECTORS IN MULTIMODAL CONTEXTS

In OpenFlamingo model(Awadalla et al., 2023), we focus on language-module layers positioned
after cross-attention, which incorporate inputs from vision encoders. The goal is to extract internal
representations of spatial relations present in images. Specifically, we test whether function vectors
(FV) can be explicitly extracted and causally intervened upon to influence performance in relation
tasks with multimodal inputs.

3.3.1 FORMULATION

Let f denote a vision-language transformer model and t denote a relation task (e.g., identifying the
object that is right of or above a query object). For each task t, we construct ICL prompts pti ∈ Pt

that consist of a sequence of image-text examples. Each example encodes a pair (xk, yk) in the
format:

<image>Q:xk. A:yk. <|endofchunk|>

A complete prompt includes several such in-context demonstration examples followed by a query.
For a task prompt pti with n context pairs and a query input xq , the structure is:

pti = <image>Q:x1. A:y1. <|endofchunk|>

. . .

<image>Q:xn. A:yn. <|endofchunk|>

<image>Q:xq. A:

The model is expected to infer the correct answer yq based on the context and query object.

3.3.2 CAUSAL MEDIATION ANALYSIS

Let aℓj(pti) represent the activation of the j-th attention head at layer ℓ when processing prompt
pti. For each attention head, we compute the relation-specific average activations, mean of task-
conditioned activations across all prompts for a specific relation t as:

ātℓj =
1

|Pt|
∑
pt
i∈Pt

aℓj(p
t
i) (1)

To assess the causal influence of attention heads, we construct perturbed prompts with uninformative
context p̃ti ∈ P̃t. An uninformative context is generated by pairing the reference object with a
randomly chosen object xk that does not exhibit the target relation in the image ỹk. To prevent
the in-context demonstrations from being biased toward any particular relation, the sampled object
labels ỹk are selected such that each of the four relation types—above, below, left of, and
right of—appears exactly once across the four image-text pairs in each perturbed prompt. See
Figure 2 bottom panel for an example.

We then run the model on perturbed prompts with uninformative context twice: once with original
activations and once with the attention head activation aℓj replaced by the relation-specific mean ac-
tivations computed from the in-context learning ātℓj . The causal indirect effect (CIE) of an attention
head aℓj is defined as the difference of prediction probability between the two rans.

To quantify the overall contribution of an attention head in processing a specific relation, we compute
its average indirect effect (AIE) as defined in Todd et al. (2024). This metric reflects the mean
increase in the model’s probability of generating the correct object label when the activation of
attention head aℓj is replaced by its relation-secific mean activations ātℓj for perturbed prompts. The
heads with the highest AIE scores are identified as the most causally influential for task execution
and are grouped into the set At.

We define the function vector vt ∈ Rd for a specific relation task t as the sum of mean activations
from the selected top heads with high AIE in At:

vt =
∑

at
ℓj∈At

ātℓj (2)
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Context: multimodal demonstration examples Query Prediction

(A) In-context below relation

(B) Uninformative context

Q: avocado
A: pear

Q: spoon
A: book

Q: lemon
A: razor

Q: apple
A: chair

Q: cup
A: 

P(“knife”)

Q: avocado
A: pear

Q: spoon
A: sharpener

Q: lemon
A: scissors

Q: apple
A: lemon

Q: cup
A: 

P(“knife”)

Figure 2: Example 4-shot in-context learning (ICL) prompts for relation understanding. Each
prompt includes four demonstrations followed by a query. We compare the model’s performance in
a consistent relational setting (A) versus a perturbed setting (B) to isolate components responsible
for relational inference.

3.3.3 ZERO-SHOT INTERVENTION WITH RELATION-SPECIFIC FUNCTION VECTORS

To evaluate whether the relation-specific function vector vt captures a transferable and causally
meaningful representation for performing a relation task, we perform an intervention in a zero-shot
setting, in which a prompt contains no prior in-context demonstrations of the task. Let p̃∅i denote
a zero-shot prompt containing only the query image and query object label, without any in-context
examples. We intervene on the model’s hidden state at a selected layer ℓ by adding the relation-
specific function vector vt. Specifically, we modify the hidden representation h(ℓ)(p̃∅i ) at the final
token position as:

h(ℓ)(p̃∅i )← h(ℓ)(p̃∅i ) + vt. (3)

We then evaluate whether the model produces the correct object label yq in response to the query to
instantiate the intended relation. Model performance is evaluated using top-1 prediction accuracy,
defined as the proportion of test queries where the model’s highest-ranked output correctly predicts
the first token of the object label corresponding to the intended spatial relation. If the intervention
of adding a relation-specific function vector during inference increases accuracy compared to the
zero-shot baseline, we interpret this as evidence that vt embeds the intended relational knowledge
and can causally trigger task execution even without in-context demonstrations.

3.3.4 FINE-TUNING FUNCTION VECTORS ON ZERO-SHOT PROMPTS

Next, we introduce a fast-learning component to fine-tune relation-specific function vectorvt using
a held-out set of zero-shot multimodal examples, freezing all model parameters and updating only
relation-specific function vectors.

Let the zero-shot training set be denoted by Dtrain
t = {(p̃∅i , yiq)}Ni=1, where p̃∅i is a prompt containing

only the query image and query object label, and yiq is the correct object label indicating the relation
to the query object. We then optimize vt ∈ Rd to increase the model’s likelihood of producing the
correct answer. The training objective is the negative log-likelihood over the training set:

L(vt) = −
1

N

N∑
i=1

log f(p̃∅i | h(ℓ) + vt)[y
i
q] (4)

Note that the backbone model f remains completely frozen during this fine-tuning procedure; only
the function vector is updated.
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The fine-tuning procedure is conducted on a dedicated training set of 1000 zero-shot examples in
the synthetic dataset or the 101 training images in the real image dataset, respectively, as described
in Section 3.1. Each example consists of a single query image and a query object name, without
any in-context demonstrations. During training, the relation-specific function vector is injected into
the hidden representation at a selected layer ℓ (layer 19 for synthetic dataset, and layer 8 for real-
image GQA dataset), specifically at the final token position, and is optimized to increase the model’s
probability of generating the correct lable of object that couples with the query object to instantiate
a specific relation. The fine-tuning process is initialized with the extracted relation-specific function
vector from the causal mediation analysis, and proceeds for 20 epochs using the Adam optimizer
with a learning rate of 0.001 and a cosine annealing learning rate schedule.

We evaluate generalization performance separately on the held-out test sets of the two datasets. The
synthetic test set includes 1,000 zero-shot examples, while the GQA test set corresponds to the
designated split described above. In both cases, the test data are entirely disjoint from the extraction
and training sets.

3.3.5 COMPOSITE FUNCTION VECTORS FOR ONE-SHOT ANALOGY TASK

One characteristic of explicit relational knowledge is that the knowledge can be actively manipulated
to guide the inference process. Here, we use relation-specific function vectors as a basis to compute
the representation of other spatial relations that are not included in the training set. This idea is
consistent with the “linear representation hypothesis” that high-level concepts can be represented
linearly in a model’s internal representation space (e.g. (Mikolov et al., 2013; Elhage et al., 2022;
Park et al., 2023)).

We develop a two-step procedure for solving one-shot analogy problems involving these untrained
spatial relations. (1) Compute a composite function vector from a source analogy. Given a source
object pair (x1, y1) in an image, we compute a composite function vector as a weighted sum of
relation-specific function vectors. The weight assigned to each function vector vt is proportional to
the model’s probability of predicting y1 given x1 and vt:

wt =
P (y1 | x1,vt)∑
t′ P (y1 | x1,vt′)

. (5)

The resulting composite function vector is then defined as:

vcomposite =
∑
t

wtvt. (6)

(2) Complete the target analogy. We inject the composite function vector vcomposite into the model
to perform zero-shot inference on the target analogy . This transfer allows the model to generalize
relational knowledge instantiated in the source pair (x1, y1) to the new target setting.

Figure 3 provides an illustration of this process. Note that the composite function vector is con-
structed for a particular source object pair and image. It encodes the relation instantiated between
these objects in a source and transfers that relational knowledge to guide inference in the target
analog.

4 EXPERIMENTS

4.1 IDENTIFYING CAUSALLY IMPORTANT ATTENTION HEADS FOR SPATIAL RELATIONS

We first compute the Average Indirect Effect (AIE) for each attention head, for each specific spatial
relation. This allows us to rank heads by their causal contribution to relational predictions. Figure 4
shows the distribution of AIE scores across all layers and heads for two spatial relations, above and
left of, for synthetic dataset. The AIE score figures for other relations in synthetic dataset and real
image dataset are included in the Supplementary Material Figure 7 and 8. We observe that only a
small subset of heads concentrated in intermediate layers exhibit consistently high AIE scores. We
select the top 10 attention heads with the highest AIE as the causal subnetwork At for each relation
task. The function vector for each relation vt is then calculated by averaging the activations from
the selected top 10 heads.
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Q: pencil
A: bagel

Q: spoon
A: ?

Source analog Target analog

LMM

P(“bagel”| ”pencil”, ) = 0.24

P(“bagel”| ”pencil”,                 ) = 0.03

P(“bagel”| ”pencil”,                 ) = 0.18

P(“bagel”| ”pencil”,                 ) = 0.01

normalize

𝑤𝑎𝑏𝑜𝑣𝑒  = 0.52 
𝑤𝑏𝑒𝑙𝑜𝑤 = 0.07
𝑤𝑙𝑒𝑓𝑡  = 0.39

𝑤𝑟𝑖𝑔ℎ𝑡  = 0.02

෍𝒘

P(“pear”)
      = 0.64

𝒗𝒍𝒆𝒇𝒕

𝒗𝒂𝒃𝒐𝒗𝒆

𝒗𝒃𝒆𝒍𝒐𝒘

𝒗𝒓𝒊𝒈𝒉𝒕

𝒗𝒂𝒃𝒐𝒗𝒆

𝒗𝒃𝒆𝒍𝒐𝒘

𝒗𝒍𝒆𝒇𝒕

𝒗𝒓𝒊𝒈𝒉𝒕

LMM

𝒗𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒆

𝒗

Figure 3: Illustration of the composite function vector approach for one-shot analogy tasks. In
the source analogy, relation-specific function vectors vt are injected into the model to compute
prediction probabilities for the target object y1 given the reference object x1. These probabilities
define the weights wt used to form a composite function vector vcomposite as a weighted sum of vt.
The resulting vector is then transferred to guide inference in the target analogy.

Figure 4: Average indirect effect (AIE) scores of attention heads for two spatial relations. Left
panel for above relation, right panel for right of relation Each heatmap shows the AIE scores
of attention heads indexed by layer and head position. Pink boxes mark the top 10 most causally
influential attention heads.

4.2 EFFECTS OF INTERVENTION LAYER, HEAD SET SIZE, CONTEXT SIZE

We examined how the effectiveness of function vector interventions depends on the injection layer,
the number of attention heads used, and the size of the in-context prompt. All detailed results are in
Supplementary Material A.3. Below we summarize the main findings for these factors.

Layer effect. Zero-shot accuracy peaks when function vectors are injected at intermediate layers
(e.g., around layer 19 for synthetic data), while early layers lack sufficient abstraction and late layers
are too downstream to support relational reasoning between objects.

Head set size. Performance improves rapidly as more top-ranked heads are included, peaks with a
small subset (6–12 heads), and then declines as less informative heads introduce noise. This reveals a
trade-off: too few heads underrepresent relational knowledge, while too many dilute the signal with
irrelevant activations. Across both synthetic and real-image datasets, function vectors built from a
sparse, carefully chosen set of attention heads significantly outperform the zero-shot baselines.

Context size. Function vector performance remains relatively stable across 2-shot and 4-shot
prompts, with only marginal changes at 8-shot. In some cases, longer contexts slightly reduce
accuracy, possibly reflecting model capacity limits. These findings indicate that moderate context
is sufficient to obtain robust activations of function vectors, and more context does not necessarily
improve performance of function vectors in LMMs.
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Q: bagel. A:?

(a) Synthetic Dataset example. (b) Synthetic Dataset results.

Q: plate. A:?

(c) GQA Dataset example. (d) GQA Dataset results.

Figure 5: Top-1 prediction accuracy of zero-shot relation tasks for four models: zero-shot base-
line of LMM, 4-shot ICL of LMM, initial function vector, and fine-tuned function vector. Fine-tuned
vectors significantly outperform all baselines on the held-out zero-shot test set.

4.3 FINE-TUNING FUNCTION VECTORS FOR ZERO-SHOT RELATION TASKS

To evaluate generalization, we use two separate held-out test sets. For the synthetic dataset, the test
set contains 1,000 zero-shot examples. For the real image dataset, the test set includes 100 images
corresponding to 200 tasks per relation. Both test sets are fully disjoint from the extraction and
training data. Figure 5 reports prediction accuracy for 4 spatial relations in synthetic dataset and
7 relations in real-image GQA dataset. The plots include performance from four models, (1) the
LMM zero-shot baseline, (2) standard LMM 4-shot in-context learning, (3) the initial (untrained)
relation-specific function vector based on causal mediation analysis, and (4) the fine-tuned function
vector.

As shown in Figure 5, we observe that fine-tuning leads to substantial performance gains for both
synthetic and real-image datasets. Fine-tuned function vectors more than double the accuracy
achieved in the zero-shot baseline and outperform both the 4-shot ICL condition and the initial
function vector. These findings highlight that function vectors are not only causally meaningful
encodings of relation-specific representations, but also flexible and optimizable representations that
can be adapted to novel inputs.

4.4 COMPOSITE FUNCTION VECTORS FOR ONE-SHOT ANALOGY TASK

We evaluate composite function vectors (CFVs) on one-shot analogy tasks involving untrained spa-
tial relations (above-left, above-right, below-left, below-right). The test set contains 1000 one-shot
analogy problems. To construct the CFVs, we derive function vectors from four primary spatial
relations (above, below, left-of, right-of ) in the source analogy, and then transfer the resulting CFV
to the target analogy during inference. Model performance with CFVs is compared against three
baselines: LMM with one-shot in-context learning, four-shot ICL, and ten-shot ICL. As shown in
Figure 6 (right panel), the CFV model achieved substantial improvements, nearly doubling accu-
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racy from 8.3% in one-shot ICL to 16.8% with CFV. Notably, CFVs also significantly outperformed
in-context learning even when provided with four (8.1%) or ten demonstration examples (9.6%).

Q: pencil
A: bagel

Q: spoon
A: ?

One-Shot Analogy Task

Figure 6: Top-1 prediction accuracy of one-shot analogy tasks for composite function vectors
(CFVs) involving untrained spatial relations (above-left, above-right, below-left, below-right). The
CFV model outperformed baseline in-context learning models.

5 CONCLUSION

This paper set out to investigate whether the concept of function vectors could be extended from
language-only transformer models to large multimodal models (LMMs), with a focus on relational
reasoning tasks. By targeting a vision-language model (OpenFlamingo-4B), we developed a frame-
work to extract, analyze, and manipulate function vectors derived from structured in-context learning
prompts.

The experimental results demonstrate that function vectors can indeed be extracted from the activa-
tions of a sparse subset of attention heads in LMMs and that these vectors retain causal influence
over the model’s output. Specifically, injecting function vectors into zero-shot prompts significantly
increased the model’s ability to make correct relational predictions. This confirms that the extracted
vectors encode relational knowledge beyond superficial memorization of context. Furthermore, after
fine-tuned on zero-shot examples, these vectors yielded substantial gains in performance, surpass-
ing the few-shot in-context learning baseline. These findings validate function vectors as flexible
and transferable modules that can be used to control and enhance reasoning in LMMs. Importantly,
these relation-specific function vectors can be linearly combined to represent previously untrained
relations. Using a synthetic dataset, we extracted function vectors for basic spatial relations such
as above, below, left of, and right of. During inference, we then constructed composite function
vectors by linearly combining the learned ones to solve one-shot analogy tasks involving novel spa-
tial relations, such as top-left, bottom-right. The composite function vectors demonstrated signifi-
cant improvements over LMM in-context learning baselines in solving one-shot analogy problems.
While these results are based on a synthetic images, they provide a proof of concept for the strong
generalization ability of this approach.

While this study presents promising results, several limitations must be acknowledged. First, the ex-
periments were conducted using a single architecture—OpenFlamingo-4B—a relatively lightweight
MLLM compared to state-of-the-art models, given our limited computational resources. It remains
to be seen whether the findings generalize to larger and more complex architectures that exhibit dif-
ferent dynamics of attention, modality fusion, or training scale. Second, the scope of relational tasks
investigated in this work is restricted to a small set of spatial relations (e.g., above, next to). Although
this controlled setting allows for precise causal analysis, it does not capture the full richness or diver-
sity of visual relations required in real-world multimodal tasks. Future work should explore whether
the multimodal function vector framework generalizes to larger, more advanced multimodal archi-
tectures with different training regimes and fusion mechanisms. Extending the analysis to a broader
range of relational categories—including physical, agentic, and social relations—would also test the
flexibility of the approach.

9
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A SUPPLEMENTAL MATERIALS

A.1 DATASETS

A.1.1 SYNTHETIC IMAGE DATASET

We constructed a synthetic image dataset using object cutouts from the Big and Small Objects
dataset (Konkle & Oliva, 2012), which contains real-world objects annotated by their typical phys-
ical size. From this dataset, we selected 32 diverse objects spanning various categories and size
ranges, which were subsequently mapped to a relatively uniform scale.

Each image in the dataset has a resolution of 800 × 800 pixels and depicts six objects arranged to
instantiate specific spatial relations. Four relations are considered: above, below, left of, and right
of. One object is designated as the reference object, which consistently serves as the query object in
the relational reasoning task. To maintain spatial centrality and leave room for neighboring objects,
the reference object is randomly placed within a 400 × 400 central region of the image (bounded
between pixels 200 and 600 along both axes). The four relational objects are then positioned directly
above, below, left, and right of the reference object, corresponding to the four target spatial relations.
Finally, a sixth object is placed at a minimum distance of 300 pixels from all other objects. Following
this procedure, we generated a total of 6000 images. These were divided into three subsets: (1)
4000 images for extracting function vectors, (2) 1000 images for fine-tuning function vectors, and
(3) 1000 images for evaluating generalization.

In addition, we constructed a test dataset containing four novel spatial relations not present in train-
ing: above left, above right, below left, and below right. These images were designed to support
one-shot analogy tasks, enabling evaluation of the generalization capacity of multimodal function
vectors. As in the main dataset, each image includes a centrally placed reference object, four rela-
tional objects corresponding to the target spatial relations, and one additional object positioned at
least 300 pixels away from all others. In total, we generated 1000 such images for this test set.

A.1.2 REAL IMAGE DATASET: GQA

For more realistic settings, we constructed a dataset using the GQA (Hudson & Manning, 2019),
which consists of real-world images annotated with detailed scene graphs supporting visual reason-
ing and question answering. From the 113,000 images in GQA, we selected 201 images using strict
criteria designed to target relational tasks. Specifically, (i) each object must have appeared only
once per image, (ii) objects were required to occupy between 5% and 30% of the image area, (iii)
non-descriptive or background-type objects (e.g., sky, ground, tree, clothes, hair) were removed,
(iv) each image must contain between four and seven valid objects, (v) only seven designated spa-
tial relations were considered (above, below, to the left of, to the right of, next to, behind, in front
of), and (vi) each image must include at least four valid spatial relations and three distinct relation
types. These constraints ensured that the final set of images captured relational structures suitable
for evaluating visual relational reasoning.

Because the number of real images is limited, we divided the dataset into two subsets: a training set,
used for function vector extraction and fine-tuning, and a test set, used exclusively for evaluation
with zero-shot tasks. The 201 images were split approximately in half while ensuring that the
distribution of relation categories was balanced across the two subsets. The training set consists of
101 images with a total of 794 relation instances, and the test set consists of 100 images with 792
relation instances. Note that one image can include multiple spatial relations among objects.

We randomly sampled 200 tasks for each relation in both the training and testing sets. Each task
consists of four context images and one query image, all drawn from the corresponding set. In every
task, both the context and query images contain object pairs annotated with the target relation, and
the specific object pairs instantiating the relation are randomly selected within each image.

A.2 AVERAGE INDIRECT EFFECT

To quantify the overall contribution of an attention head in processing a specific relation, we compute
its average indirect effect (AIE) as defined in Todd et al. (2024). This metric reflects the mean
increase in the model’s probability of generating the correct object label when the activation of
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attention head aℓj is replaced by its relation-secific mean activations ātℓj for perturbed prompts. The
heads with the highest AIE scores are identified as the most causally influential for task execution
and are grouped into the set At.

(a) Above relation. (b) Below relation. (c) Left-of relation. (d) Right-of relation.

Figure 7: AIE of attention heads for relations in the synthetic dataset. Each heatmap shows the
average indirect effect (AIE) values of attention heads (indexed by layer and head position). Pink
boxes mark the top 10 most causally influential heads.

(a) Above relation. (b) Below relation. (c) Left-of relation. (d) Right-of relation.

(e) Behind relation. (f) Next-to relation. (g) In-front-of relation.

Figure 8: AIE of attention heads for relations in the real image dataset. Each heatmap shows the
average indirect effect (AIE) values of attention heads (indexed by layer and head position). Pink
boxes mark the top 10 most causally influential heads.

A.3 ABLATION STUDIES

A.3.1 EFFECTS OF INJECTION LAYER

We examine how the effectiveness of function vector intervention varies across different injection
layers. Zero-shot accuracy is evaluated when the vector is injected at each layer, while the base
model remains frozen and the intervention is applied only at the final token position of the query
segment. As shown in Figure 9, zero-shot accuracy peaks when the function vector is injected at
intermediate layers (around layer 19). Early-layer injection yields weaker effects due to limited
semantic abstraction, whereas late-layer injection occurs too downstream to support structural rea-
soning. This non-monotonic pattern suggests that function vectors function not as linear modifiers
but as triggers for nonlinear computations distributed across the model’s depth.

A.3.2 EFFECT OF HEAD SET SIZE IN FUNCTION VECTORS

We next analyze how the number of attention heads used to construct the function vector vt

influences zero-shot relational performance. We evaluate zero-shot accuracy as a function of
k ∈ {1, 2, . . . , 50}. Figure 10 presents the results for the relations in the synthetic dataset. In all
cases, we observe a consistent non-monotonic trend: zero-shot accuracy improves rapidly as more
top heads are included, reaches a peak in the range of 6 to 12 heads, and then gradually declines as
additional, less informative heads are added.
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(a) Above relation. (b) Below relation.

(c) Left-of relation. (d) Right-of relation.

Figure 9: Effect of injection layer on zero-shot accuracy. Injecting the function vector at inter-
mediate layers yields the highest accuracy, indicating that these layers are optimal for triggering
relation computations.

This pattern highlights a trade-off: using too few attention heads underrepresent relational knowl-
edge, while using too many attention heads introduces idiosyncratic activations from those with low
or no causal relevance to spatial relations. Notably, for both relation types, the function vector sig-
nificantly outperforms the unmodified zero-shot baseline when constructed from a small, carefully
selected subset of heads. These findings reinforce the idea that relational reasoning is driven by a
sparse set of causally influential attention heads.

A.3.3 EFFECT OF CONTEXT SIZE DURING EXTRACTION

We analyze how the number of in-context examples used to extract head activations affects the
performance of the relation-specific function vector vt. We vary the context size n ∈ {2, 4, 8} used
to construct ICL prompts when computing the task-conditioned head activations ātℓj , and evaluate
zero-shot accuracy across layers.

Figure 11 presents results for the below and left of relations from synthetic dataset. Overall, we
find that function vector performance is not highly sensitive to the number of context examples used
during extraction. Accuracy remains relatively stable across 2-shot and 4-shot settings, especially in
the middle layers where function vectors are most effective.

Interestingly, increasing the number of context examples beyond a moderate size does not necessar-
ily yield better performance. In some cases, accuracy slightly declines when using 8-shot prompts
compared to 4-shot. One possible explanation is that the relatively small size of the OpenFlamingo-
4B model may limit its ability to integrate longer contexts effectively. This suggests that while some
context is necessary to obtain stable and representative activations, more is not always better for
LMMs.
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(a) Below relation. (b) Above relation.

(c) Left-of relation. (d) Right-of relation.

Figure 10: Zero-shot accuracy as a function of number of heads in function vector. Accuracy
peaks when using 6 - 14 heads, suggesting that the function is distributed sparsely across a limited
causal subnetwork.

(a) below, 2-shot (b) below, 4-shot (c) below, 8-shot

(d) left-of, 2-shot (e) left-of, 4-shot (f) left-of, 8-shot

Figure 11: Function vector accuracy across layers as a function of context size. Each subfigure
shows accuracy when injecting function vectors extracted from prompts with 2, 4, or 8 in-context
examples. Results are shown for the below relation (top row) and left-of relation (bottom row).

B ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. The study did not involve human subjects,
personally identifiable data, or sensitive information. The synthetic dataset was constructed using
object cutouts from the Big and Small Objects dataset (Konkle & Oliva, 2012), which is publicly
available and licensed for research. The real-image dataset was derived from the publicly released
GQA dataset (Hudson & Manning, 2019), and our subset selection followed criteria designed to
preserve data integrity and avoid inclusion of sensitive or descriptive background elements. All
datasets are used in accordance with their intended research purposes.
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C REPRODUCIBILITY STATEMENT

A detailed description of dataset construction and preprocessing is provided in Supplementary Ma-
terial A.1. All experimental settings, model architectures, and training procedures are reported in
the main text. To further support reproducibility, we provide the full source code and all datasets
used in our experiments through an anonymous OSF repository.

D USE OF LARGE LANGUAGE MODELS

Large language models (ChatGPT and Claude) were used as assistive tools for writing polish, gener-
ating plotting scripts for visualizing results, and debugging code. In addition, Figure 1 was generated
using Gemini 2.5 Flash Image (Nano Banana). These tools did not contribute to research ideation,
experimental design, data analysis, or substantive writing of the paper. All research ideas, experi-
ments, and results were conceived and validated by the authors, who take full responsibility for the
final content.
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