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Figure 1: Stratfied Sampling vs Temperature Scaling Consider the LLM user request "Name a US
State." SimpleStrat employs auto-stratification to utilize the LLM to identify good dimensions of diversity,
for instance "East/West of the Mississippi River." Then, SimpleStrat uses stratified sampling to diversify
LLM generations.

ABSTRACT

Generating diverse responses from large language models (LLMs) is crucial for
applications such as planning/search and synthetic data generation, where diversity
provides distinct answers across generations. Prior approaches rely on increasing
temperature to increase diversity. However, contrary to popular belief, we show not
only does this approach produce lower quality individual generations as temperature
increases, but it depends on model’s next-token probabilities being similar to the
true distribution of answers. We propose SimpleStrat, an alternative approach
that uses the language model itself to partition the space into strata. At inference,
a random stratum is selected and a sample drawn from within the strata. To
measure diversity, we introduce CoverageQA, a dataset of underspecified questions
with multiple equally plausible answers, and assess diversity by measuring KL
Divergence between the sampling distribution and uniform distribution over valid
ground truth answers. As computing a posterior probability for proprietary models
is infeasible, we measure recall on ground truth solutions. Our evaluation show
using SimpleStrat achieves higher recall by 0.05 compared to GPT-4o and 0.36
average reduction in KL Divergence compared to Llama 3.

1 INTRODUCTION.

Large language models (LLMs) are routinely resampled in order to get a wide set of plausible
generations. Three key settings where this is important are: 1) improving downstream accuracy with
planning or search for agentic tasks (i.e. Tree-of-thought (Yao et al., 2024), AgentQ (Putta et al.,
2024)), 2) estimating prediction uncertainty (Aichberger et al., 2024), and 3) generating diverse
datasets for post-training (Dubey et al., 2024) and fine-tuning (Dai et al., 2023). All these use cases
rely on the model generating multiple plausible generations for the same prompt when multiple
answers exists.

1
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Figure 2: SimpleStrat workflow. SimpleStrat employs 3 phases: 1) auto-stratification to identify good
dimensions of diversity that divide the solution space into equal partitions, 2) heuristic estimation to estimate the
proportion of solutions in each stratum, and 3) probabilistic prompting where a concrete prompt is randomly
sampled from the prompt distribution specified by the previous two phases. Critically, diverse resampling comes
from both the random choice of prompt as well as the temperature of the LLM decoding.

Naively, increasing temperature, a parameter that controllably flattens an LLM’s softmax, can
improve an LLM’s generation diversity. However, temperature introduces two problems. First, higher
temperatures degrades generation quality. Recent evidence suggests removing temperature scaling
is desirable for multi-step reasoning to reduce errors compounding (Zhang et al., 2024). This is
especially critical in syntax sensitive settings like code generation where low temperatures (≤ 0.15)
are often used. Second, controlling for temperature does not necessarily improve diversity in the
answer space. In Figure 1, we illustrate increasing temperature doesn’t lead to meaningful increase
in diversity if the model is excessively confident and suffers from mode collapse. When asked to
"Name a US State," the model heavily skews towards answering "California", high temperature only
marginally softens the skew while surfacing incorrect answers and hurting instruction following.

Our goal is to improve diversity when resampling LLMs, even in cases of severe mode collapse
in next-token probabilities without manual intervention. Our analysis reveals that GPT-4 assigns
87% of its logit weight to "California" when prompted to name a US state. This observed bias
can be attributed to the worsening of calibration due to post-training as reported in the GPT-4 tech
report (OpenAI et al., 2024). This stark bias mirrors human cognitive bias, exemplified by the
blue-seven phenomenon—where individuals disproportionately select blue and seven when asked
to choose a random color and number. To counteract similar biases in human populations, social
scientists, particularly in political polling, employ stratified sampling techniques (Simpson, 1951;
Howell, 1992; Morris, 2022). We propose adapting this method to address mode collapse in LLMs.

We propose SimpleStrat, a training-free sampling approach to increase diversity. SimpleStrat improves
LLM generation diversity without degradation to generation quality while ensuring that an LLM’s
outputs are aligned with the true distribution of answers. SimpleStrat consist of three stages: auto-
stratification, heuristic estimation, and probabilistic prompting. Even if a language model cannot
generate diverse solutions, we find that it can be prompted to identify useful partitions of the solution
space based on the user request. We call this process auto-stratification. In Fig. 1, SimpleStrat
identifies two semantically significant strata from user request, "Name a US State": "(East/West) of
the Mississippi River" and "(North/South) of the Missouri Compromise Line."

Next, the heuristic estimation computes the joint probabilities across all strata. Back to Fig. 1,
SimpleStrat then outputs the probability for all four possible regions in US. Finally, SimpleStrat
samples from the joint probability distribution to augment the original user prompt with the selected
stratas. We note that this approach to diversity is orthogonal to increasing temperature and hence
does not affect generation quality.

We evaluate SimpleStrat on underspecified questions, specifically questions that have more than one
plausible answer. However, unlike ambiguous questions more widely, an answer to an underspecified
question can be easily verified to be a valid without additional context. These questions capture
settings where the user is indifferent to the particular answer as long as it’s valid or in settings where
we wish to resample to get a set of candidates solutions. We introduce CoverageQA, a benchmark of
underspecified questions with on average 28.7 equally plausible answers.

We measure diversity by computing the Kullback-Leibler (KL) Divergence from the Maximum a
Posterior(MAP) distribution of answers to a uniform distribution over all valid answers. By computing
the MAP using next-token probabilities, we show SimpleStrat samples from a less biased distribution.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

For proprietary models where we cannot compute the Maximum a Posterior distribution, we measure
the model’s coverage via recall of ground-truth solutions over 100 samples. On CoverageQA,
SimpleStrat leads to 0.36 reduction in KL Divergence on average on Llama 3 models and a consistent
0.05 increase in recall. We show gains on top of temperature scaling leading to improved diversity
orthogonal to increasing temperature.

Concretely, our work contributes the following:

• CoverageQA dataset of 105 under-specified questions automatically generated from Wiki-
Data (Vrandečić & Krötzsch, 2014) annotated with on average 28.7 valid solutions per
question.

• We propose SimpleStrat a training-free approach for improving diversity with auto-
stratification and probabilistic prompting.

• We demonstrate SimpleStrat improves diversity on CoverageQA with 0.36 reduction in KL
Divergence on average on Llama 3 models and a consistent 0.05 increase in recall across all
temperatures for GPT-4o.

2 RELATED WORK.

Temperature Scaling. Going back as far as Platt scaling (Platt, 2000) and later applied to neural
networks (Hinton, 2015; Guo et al., 2017), temperature scaling controls the randomness of probability
distributions1. For dataset generation with LLMs, Chung et al. (2023) extends temperature-based
diversity by additionally downsampling previously sampled tokens. To address the decrease in quality,
they advocate for human intervention to manually filter out irrelevant diversity and manually fixing
wrong answers in QA tasks. We show in our work temperature scaling leaves much to be desired.

Improving Language Model Diversity with Search. In autoregressive generation, choices over
early tokens tend to have more impact on the eventual completion. Beam search ameliorates this
bias by allowing for multiple candidates in searching for the probability maximizing completion,
Maximum a Posteriori (MAP) Lowerre & Reddy (1976). At the end of the search, beam search will
have multiple candidate solutions encountered during search. Diverse Beam Search (DBS) proposes
introducing an auxiliary dissimilarity objective quantifying the diversity among candidates in the
beam (Vijayakumar et al., 2016). Especially on the task of image captioning, DBS shows improve-
ment for discovering higher probability completions and discovering diverse continuations. Our
improvements are orthogonal to beam search and our in-context approach corrects for inaccuracies in
the modeled likelihoods of candidate solutions.

Other approaches (Samvelyan et al., 2024; Bradley et al., 2023) based on MAP-Elites (Mouret &
Clune, 2015) require manual determined dimensions of relevant diversity and discretization of the
solution space into equally-sized bins. Diversity is then achieved by mutations and evolutionary
methods to cover adjacent bins. This search is potentially slow if the seed set of solutions do not
already provide coverage over the solutions space. Our approach does not need seed solutions and
avoids manually identifying dimensions of diversity. Instead, we rely solely on capabilities within the
model.

In-context Methods to Increase Diversity. When LLMs were first introduced, LMs were used to
augment existing datasets with more diversity (Wei & Zou, 2019; Ng et al., 2020; Dai et al., 2023).
As natural language is difficult to guarantee correctness, the space of augmentations is conservatively
limited to thesaurus based synonym replacement. More recently, Language Model Crossover proposes
presenting a random subset of existing data points to an LLM and ask it to hallucinate more data
points that likely came from the same distribution Meyerson et al. (2023). This is limited combining
aspects of existing data points into new generations. Although these methods address the limitations
of using the model’s token probabilities by in-context learning, they are ineffective at generating
meaningful diversity. They are limited to either a human identified domains of interest or trivial
variations sourced from synonyms or minicking random subsets of the existing dataset.

Applications of Diversity. As shown by Raventós et al. (2024), dataset diversity is crucial for model
generalization. Below sufficient coverage of the desired task, the model will resort to memorization,

1Use of temperature parameter goes back at least to Verhulst’s development of logistic regression in response
to Malthus’ An Essay on Principle of Population (Malthus, 1798; Verhulst, 1838).
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but when sufficient diversity is presented it will learn to generalize. As LLMs are increasingly
used for generating synthetic data (Dubey et al., 2024), methods for diversity will be critical. This
insight follows from extensive work demonstrating the benefits of data augmentation for bias mit-
igation (Sharmanska et al., 2020) and domain adaptation (Huang et al., 2018; Dunlap et al., 2023;
Trabucco et al., 2023).

In code and math applications, checking validity efficiently enables more aggressive augmentations.
One such augmentation for diversifying the languages supported by the model, data is translated to
different natural or programming language (Chen et al., 2023; Cassano et al., 2023). In other domains
such as images, text-to-image models have been used to do diversify data into uncommon settings. In
the setting of diversifying an accumulating dataset, these methods can take advantage of an existing
source of variance (for translation) or set of previously generated data points. Our primary focus is
on settings where SimpleStrat is unaware of past data samples to support a wider set of applications.

Ambiguous or Underspecified Datasets. ClariQ (Aliannejadi et al., 2020), CLAQUA (Xu et al.,
2019), and AmbigQA (Min et al., 2020) focus on assessing LM’s ability to formulate clarifying
questions. These question tend to have only 2 candidate solutions, as there exists a ground truth
clarifying question whose answer fully specifies the question. Ambiguous Trivia QA (Kuhn et al.,
2022) also looks at under-specified questions, but assume a user has contextual information that’s
hidden. For instance, "Where in England was she born?" or "Who was the first woman to make a
solo flight across this ocean?". We distinguish our underspecified question setting in this paper as
one where the user is indifferent. In this setting, the given an answer it should be easy to verify the
answer is correct without additional hidden context.

Coding datasets like Description2Code (Caballero et al., 2016), Wiki2SQL (Zhong et al., 2017),
SPIDER (Yu et al., 2019), code-contest (Li et al., 2022), Apps (Hendrycks et al., 2021), and Leetcode
Hard Shinn et al. (2023) admit multiple valid answers. However, the space of valid implementations
is infinite, making diversity difficult to measure, and good coding practices enforce preferences
among valid implementations. We additionally construct CoverageQA to have an exhaustive list of
ground-truth answers in order to measure the impact of diversity on coverage.

3 METHOD

3.1 WORKFLOW OVERVIEW

As illustrated in 2, SimpleStrat consist of three stages, 1) auto-stratification, 2) heuristic estimation,
and 3) probabilistic prompting. For each unique user prompt, the outputs of the first two stages can
be cached to avoid recomputing feed-forwards.

3.2 AUTO-STRATIFICATION

For a given user request, ruser, we call S, the space of valid solutions. In many settings, the space of
potential solutions, S may be naturally partitioned based on geography, parity, or demographics. The
partition function, P : S → L, assigns any solution s from S to a partition label lj in L the set of parti-
tion labels. Partition functions are most useful if they’re as balanced as possible. A balanced partition
function minimizes imbalance(P,L) = maxl∈L (|{s | P (s) = l}|) − minl∈L (|{s | P (s) = l}|).
The goal of auto-stratification is to search for a set of partition functions P = {P1, P2, ..., Pn}, that
are balanced. Traditionally, in settings where there are oft-overlooked or a large or infinite number
of valid solutions, stratified sampling can ensure our limited budget of samples covers the space of
solutions evenly.

Based on this insight, we prompt the language model to identify promising dimensions of diversity.
Concretely, the language model proposes good clarifying questions that will potentially eliminate
half of the potential solutions based on the user request. These clarifying questions tend to align with
semantically significant differences. In the running example, when asked, "Name a US State," the
states can be partitioned based on East or West of the Mississippi River. See App. C for full prompt.
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3.3 HEURISTIC ESTIMATION

As previously observed in Zou et al. (2022); Yan et al. (2023); Halawi et al. (2024), LLMs can
used in forecasting to estimate well-calibrated probabilities of events that have not yet occured. For
forecasting, the model success benefits substantially from having updated news through web search.
Although our unnecessary for the offline benchmarks we consider, this may be helpful for accurate
estimation depending on the application. However, as our goal is diversity, we stand to benefit even
from coarse-grain approximate proportions. We employ a similar reasoning template as Halawi et al.
(2024) to estimate the proportion of valid solutions lie within each strata.

In heuristic estimation, we look to estimate the joint distribution for each stratum, l⃗ = [l1, l2, l3, ...].
Formally, we define the weighted-stratification as W = (P, ρ), where ρ(⃗l) = Prs∼S [P1(s) =
l1,j , P2(s) = l2,j , P3(s) = l1,j , ...] for P identified in auto-stratification. To improve scalability, we
assume the partition functions are independent and multiply the marginal probabilities to get the joint
probabilities associated with each stratum.

ρ(l1, l2, ..., lm) =
∏
i

ρi(li) (1)

We ask the LLM for each lj , to estimate the marginal proportion of solutions this holds for. As
this may not add up to 1, we normalize the estimates to form a proper probability distribution. For
simplicity, we focus in this work on settings where all solution in the solution space is equally like.
As noted in Sec. 3.2, we encourage the LLM to propose balanced partitions. However, heuristic
estimation allow us to support imbalanced partitions by reweighing the sampling to favor stratum
with more potential solutions. More details on prompting in App. D. In Fig. 2, the LLM determines
the joint probabilities across two stratas, the Mississippi River and the Missouri Compromise Line.

3.4 PROBABILISTIC PROMPTING.

Post heuristic estimation, a set of statum is sampled from the joint probability distribution in Eqn. 1.
This implicitly forms a probabilistic prompt, which specifies a distribution over concrete language
model prompts. After a prompt is sampled, the LLM is then used to sample from within the stratum.
Back to Fig. 2, East and South are sampled from the Mississippi and Missouri strata respectively,
augmenting the final prompt with diverse specifications.

Formally, call l⃗ a stratum defined by choices of li,j for each Pi across all i. Call Prompt a function
that maps the stratum, l⃗ to a concrete prompt, Prompt(⃗l). Intuitively, the probabilities of the prompt
distribution is defined by Pr[Prompt(⃗l] = ρ(⃗l). We can then compute the probability of a solution

Pr[s] =
∑
l⃗

Pr[Prompt(⃗l)] ∗ Pr[s | Prompt(⃗l)] =
∑
l⃗

ρ(⃗l) ∗ Pr[s | Prompt(⃗l)] (2)

The specific language model’s next-token probabilities define Pr[s | Prompt(⃗l)].

As the probabilistic prompt is human readable form, the user can inspect the properties and the
proportions and modify it to adjust for unwanted bias or remove unwanted factors. For instance,
when proposing English baby names, we may want the model to propose male vs female names
equally often, even though there are more female than male baby names 2. This interpretability and
controllability is a major advantage of SimpleStrat in practice.

4 COVERAGEQA DATASET

4.1 OVERVIEW

We wish to evaluate generation diversity in settings where 1) user requests have more than one distinct
correct answer, 2) and answers are equally likely, and 3) answers do not require hidden or implicit

2As reported in Wilson (2016), there are 18,993 unique names for girls and 13,959 for boys in 2015 report by
Social Security Administration.
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context to verify. These three properties allow us to measure diversity in the sense of whether the
language model will provide coverage over the full solution space when resampled. Unfortunately
existing benchmarks discussed in Sec. 2 do not satisfy these properties. We introduce CoverageQA
to assess the language model generation diversity. The dataset consists of two splits: CoverageQA-
Curated, manually curated naturally underspecified questions, and CoverageQA-Wikipedia, and
auto-generated dataset of underspecified questions.

4.2 COVERAGEQA-WIKIPEDIA APPROACH

To generate CoverageQA-Wikipedia, we leverage the Wikidata knowledge base which contains all
relational mappings between entities and properties in Wikipedia. Our generation process starts with
an initial item-property pairing and a constraint on the number of correct answers. We then perform a
recursive search through Wikidata to find all sets of item-property constraints and their corresponding
answers that meet our criteria. These constraints are subsequently transformed into natural language
questions using GPT-4.

Consider an initial pairing of the Wikidata item "country" with the property "instance of". We might
specify that we want between 20 and 40 valid answers. Our search would then yield a set of all
constraints from the knowledge base that fit the initial conditions, such as "instance of country, located
in Europe, uses Euro as currency". GPT-4 would convert this into a natural language question like
"Name a country located in Europe that uses the Euro as its currency."

This approach has several advantages: 1) it allows us to create a diverse and extensive benchmark
that can be easily updated with weekly updates to Wikidata, 2) it allows us to arbitrarily specify the
size of the solution space as constraints can be added or removed to form; and 3) this process in
principle can curate a large dataset with little manual effort or supervision. In the initial instantiation
of CoverageQA dataset, we publish 105 questions across 4 domains, each corresponding to a different
initial seed item-property pair. To ensure quality, we employ both automatic filters (e.g., excluding
certain generic properties) and manual curation to remove redundant or unsuitable questions. This
dataset can be substantially expanded as we only used 4 domains, but we leave this for future work.
For a details on the dataset breakdown and details on the question generation process, please refer to
Appendix A.1.

5 RESULTS

5.1 EVALUATION SETUP

For the primary empirical evaluation of SimpleStrat, we use gpt4o-2024-08-06. To obtain true answer
distributions and perform divergence from uniform analysis, we use open-source models from the
Llama 3 and 3.1 families, specifically the 8B and 70B variants. The inference of these models were
run on 8 A100-80GB GPUs. Additionally, we leverage claude-3.5-sonnet-20240620 for baseline
evaluations on two datasets: CoverageQA Curated and CoverageQA Wikipedia. For CoverageQA,
we used WikiData version from 07-03-2024.

5.2 MEASURING DIVERSITY

We consider two measures of diversity. For models with accessible softmax next-token probabilities,
we compute the a Posterior probability of each solution in the solution space. We then define
distributional diversity as the distributional distance between the a Posterior sampling distribution
and the ground-truth distribution derived from these probabilities. For CoverageQA, the ground-truth
distribution is uniform over valid solutions and zero elsewhere. In general, it can be more complex.

In setting where we do not have access to the next-token distribution, we evaluate diversity by
resampling responses to CoverageQA 100 times per question. This allows us to empirically observe
the diversity in the form of coverage. We call this coverage diversity. To measure coverage, we report
the recall (unique valid solutions/total unique valid solutions) on the reference solutions. Note

6
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Figure 3: Diversity scaled with temperature. We show 100 resamples of "Name one Great Lake in the
United States." On the right, we show the result of resampling GPT-4o 100 times per temperature. In contrast
to SimpleStrat on the left, GPT-4o at temperature 1.5 still only samples Lake Huron once and never samples
Lake Ontario. SimpleStrat improves the diversity across all temperatures.

that this is an unconventional measure of recall as it’s over the solution space3. To ensure this doesn’t
come at the cost of quality, we also show precision is not reduced.

5.3 QUALITATIVE EXAMPLE

Consider the question "Name one Great Lake in the United States." as shown in Fig. 3. We see
that temperature scaling with GPT-4o results in a strong preference/bias for Lake Erie. This is
certainly a correct continuation and under the language modeling objective should be incentivized.
Increasing the temperature helps sample the next most likely candidate solutions more often. However,
even when increasing the temperature past 1 there is still low coverage over the solutions space.
Specifically, Huron is only seen once out of 100 samples at 1.5 temperature, and Lake Ontario is
never observed. This is undesirable if the data is used to proposing candidate plans, generating test
cases, or generating training data. Not only is there insufficient coverage over all possible solutions,
but the model consistently has a strong preference for Lake Erie. This undesired biases in generations
may lead to problems in downstream use cases.

In Fig. 3, we observe a much more uniform distribution over valid solutions when using SimpleStrat.
Notably, we observe full coverage over all 5 Great Lakes. At lower temperatures, there is still a
preference of a single lake over the others, in this case Lake Huron. However, this is less pronounced
at higher temperatures and is a significant improvement over GPT-4o without SimpleStrat.

5.4 COVERAGE DIVERSITY ON PROPRIETARY MODELS

We first assess coverage diversity, specifically, the model’s ability to recall all the valid solutions
upon resampling. This measure is clearly impacted by temperature as temperature zero or greedy
decoding of LLMs leads to a single deterministic result. We compare the coverage diversity (recall)
of SimpleStrat, GPT-4o, and Claude 3.5 Sonnet as a function of temperature. We sweep over
temperatures from 0.15 to 1.5. Although not shown in the evaluation, note that SimpleStrat has
the advantage of providing diversity even when sampled at temperature zero. SimpleStrat with
GPT-4o leads to an improvement to recall across all temperatures as shown in Fig.4. On the
CoverageQA-Curated, we see a consistent 0.2 increase in recall over the same base model, GPT-4o.
On CoverageQA-Wikipedia, we see as much as 0.05 increase in recall

Our quantitative results are consistent with the Great Lakes example in Fig. 3. Scaling temperature
alone does not lead to as much coverage diversity as combining with SimpleStrat. The recall
importantly does not come at the expense of quality as measure by precision as shown in App. B.

3Not to be confused with conventional recall where we might measure how many valid solutions the LLM
recognize as valid.
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(a) CoverageQA-Curated. (b) CoverageQA-Wikipedia

Figure 4: Diversity measured with recall scaled with temperature. The figure shows the improved recall on
CoverageQA compared to GPT-4o and Claude 3.54. Recall indicates the percentage of ground truth questions
observed after sampling 100 times. The benefit of SimpleStrat is especially pronounced at low temperatures, but
the benefit is evident across all temperatures.

(a) Llama 3.1 8B (b) Llama 3.1 70B

Figure 5: KL divergence from uniform for Baseline vs SimpleStrat on CoverageQA Wikipedia. Lower diver-
gence indicates closer alignment with the desired uniform distribution, arrow indicates direction of maximum
improvement from baseline

5.5 DISTRIBUTIONAL DIVERSITY WITH LLAMA 3

We use the Llama 3 model family to analyze answer distributional diversity in CoverageQA. Open-
source models let us calculate exact expected distributions by examining logits of all valid continua-
tions for a prompt. This is not possible with GPT-4o and Claude 3.5 Sonnet, where reliably estimating
the true probabilities would require extensive sampling. Our approach efficiently determines true
expected distributions of valid answers for any input, improving analysis accuracy, and overcoming
the resource constraints of high count sampling.

For our baseline, we prompt the models and directly compute Pr[s|Prompt(⃗l)] for each solution, s.
This is simply the product of the individual next-token probabilities. For SimpleStrat, the probability
involves the next-token probability conditioned on the prompt weighted by the probability the prompt
is selected. Concretely, the probability an answer is sampled by SimpleStrat can be computed based
on Eqn.2. The next-token probability based posterior Pr[s|Prompt(⃗l)] computed just as the baseline,
and we do a sum weighted by the joint probabilities assigned in heuristic estimation. We assign
remaining probability density to an "Invalid" category to form a proper distribution. The probabilistic
formulation allows us to easily compute the a Posterior distribution of SimpleStrat.

4Claude does not allow for temperatures above 1.
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(a) Llama 3.1 8B. (b) Llama 3.1 70B.

Figure 6: Distributional Diversity Comparison. We show the a posterior probability as defined by next-token-
probabilities for ground truth answers on Llama 3.1. For both 8B and 70B, SimpleStrat provides meaningful
improvement to the sampling distribution both for values previously over-represented in the distribution and
those previously underrepresented.

Table 1: Comparison of Baseline and SimpleStrat Average KL Divergence for Different Models on CoverageQA-
Curated and CoverageQA-Wikipedia. Smaller numbers reflect closer alignment to uniform distribution.

Model CoverageQA Curated CoverageQA Wikipedia
Baseline SimpleStrat Baseline SimpleStrat

Meta-Llama-3-8B-Instruct 2.78 1.74 2.75 2.47
Meta-Llama-3.1-8B-Instruct 2.47 1.19 2.60 2.39
Meta-Llama-3-70B-Instruct 3.24 2.17 3.28 2.73
Meta-Llama-3.1-70B-Instruct 2.70 1.54 2.78 2.38

Our ground-truth distribution is a distribution where each valid answer has equal probability, and
no invalid answers have probability density. We use Kullback–Leibler (KL) Divergence as the
discrepancy metric to measure how much our distribution deviates from a uniform distribution.
Across the four models in the Llama 3 family, SimpleStrat achieves an average reduction in KL
divergence from uniform of 1.14 compared to the baseline on the curated CoverageQA dataset.
For the general CoverageQA dataset, the reduction is 0.36. These results indicate that SimpleStrat
produces a sampling distribution much closer to uniform than the baseline method.

Additionally, we analyze the KL divergence on a per-question basis to identify where our method
achieves improvement (a more uniform distribution). The scatter plot in Fig 5b shows KL divergence
values for SimpleStrat (y-axis) versus the baseline (x-axis) for each question in the CoverageQA
Wikipedia dataset. Points above the diagonal line represent questions where SimpleStrat outperforms
the baseline by yielding a lower KL divergence. The vast majority of points fall on or above this
line, indicating that SimpleStrat consistently produces improvement in generating more uniform
distributions across the questions in the dataset.

In Fig. 6, we see an example of the a posterior distribution for Llama 3.1 with and without the
correction due to SimpleStrat. The base model distribution is strongly biased towards it’s most
desired output. As illustrated in Fig. 1, California is preferred by a long margin. Thus, it’s not
surprising that we observed little diversity when by simply increasing temperature. In contrast,
SimpleStrat provides a much more uniform distribution. The over represented solutions are adjusted
to be lower and the under represented solutions are adjusted to be higher. We note that the distributions
are still not perfectly uniform. For more examples, see App. E. Although Fig. 6 shows the larger
model has a closer to ideal distribution, the results in Table 1 indicate larger models have on average
worse diversity. This may be a result of memorization exacerbated in larger models.

Model versions. Interestingly, Llama 3.1 handles underspecified questions better as it has consistent
lower KL Divergence. Although we do not have access to the training methodology, the likely
increase in dataset size and more careful model design seems to improve based mode capabilities on
underspecified questions.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 LIMITATIONS

Although SimpleStrat shows improvement empirically, it is sensitive to the model selecting good
meaningful axis in auto-stratification and correct joint probabilities in heuristic estimation. As work
on LLMs for forecasting improve, we expect LLMs to produce better estimates especially when
given access to external data and data analysis tools. For our prototype, we restricted to studying the
model’s intrinsic capabilities. Further, the model may have biases concerning race and gender that
may be reflected also in the auto-stratification and heuristic estimation. As such, it is recommended
the probabilistic prompt distribution of SimpleStrat is carefully inspected for critical applications.
Finally, CoverageQA is a dataset of short responses. Although this make evaluation more practical,
we believe SimpleStrat will be especially impactful in settings that require low temperature especially
multi-step reasoning as identified by Zhang et al. (2024).

7 CONCLUSION

In this paper, we propose SimpleStrat which offers an innovative alternative by leveraging the LLM
itself to partition the solution space into distinct strata. This process we call auto-stratification. At
inference time, a random stratum is selected, and a sample is drawn from within that stratum. This
approach achieves better diversity without sacrificing quality as increasing temperature would.

To quantitatively measure diversity, we introduced the CoverageQA dataset, which consists of
underspecified questions with multiple equally valid answers. We measure diversity with two metrics:
for open-source models, we measure distributional difference with KL Divergence and for proprietary
models, we measure coverage over the set of ground-truth solutions. Our rigorous evaluation on
both proprietary and open-source LLMs demonstrated that SimpleStrat achieves significantly higher
recall and produces answer distributions closer to uniform compared to traditional temperature-based
sampling methods.
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A APPENDIX

A.1 COVERAGEQA DATASET

Generation Procedure

To generate the questions, we manually came up with initial item and property pairings to run the
recursive search. We constrain the recursive search to yield between 20-40 possible answers to keep
the questions within common and relevant categories. We found that with fewer than 20 answers,
the questions become too obvious, while with more than 40, they tend to get too specific and stray
from general knowledge. The recursive search first finds all items that satisfy the initial conditions,
then iteratively adds properties in steps until either the maximum depth (number of constraints) is
reached or the number of answers falls outside the desired range. We blacklist properties that are
detrimental to high-quality question generation, such as an item’s presence in a specific database,
numeric properties like population, and properties that introduce high ambiguity. We then manually
evaluate the generated conditions and answers to ensure they meet our criteria. With an appropriate
initial condition, one query can generate hundreds of valid constraints that can later be turned into
questions. Finally, we use GPT-4 to convert these constraints into natural language.

B F1 SCORES

We show F1 scores in Fig. 7 to emphasize that the precision does not change substantially as a result
of our method. Precision is calculated over the set of 100 attempts how many are in the ground truth.
Recall as mentioned is calculated as how many unique ground truth solutions were observed in the
100 attempts.

(a) CoverageQA-Curated (b) CoverageQA-Wikipedia

Figure 7: F1 score scaled with temperature. The figure shows similar curves to recall on CoverageQA. This
indicates the improved diversity does not come at a cost to precision.

Table 2: CoverageQA Domains

Domain Question Count Average Number of Answers
General Knowledge (Curated) 10 64.1
US National Parks 6 12.2
Geography Questions 75 27.4
Chemical Elements 14 17.5

C AUTO-STRATIFICATION PROMPT

We provide the full prompt in Tbl. 3. To improve prompt adherence, we provide one in context
example in the form of one simulated round of multi-turn conversation, i.e. we provide an example
set of reasoning following the template.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

System Prompt:
You’re a helpful brainstorming assistant that is careful to consider all factors to a problem.

User:
I am tasked with the following request:
% User Request
Help me brainstorm how to respond to the user request by providing a list of True/False properties the solution may or may
not have. Use the following step-by-step to come up with good properties:

1. If you were playing 20 questions, what’s a good first question to ask that would split the possibilities in half?

List at least 5 questions and their corresponding properties.

Question: <Description>

2. Rewrite each question as a True/False property that’s true for one half and false for the other.

Question: <Description>

True/False Property: <Property Description>

3. For each property, come up with an example that would satisfy the property.

Property: <Description>

Example: <Description>

Is it a valid answer to the user’s request? <Yes/No>

4. For each property, come up with an example that would not satisfy the property.

Property: <Description>

Example: <Description>

Is it a valid answer to the user’s request? <Yes/No>

5. Does the property mention a candidate answer in it?

Property: <Description>

Does the property mention a candidate answer in it? <Yes/No>

6. For each property, list whether we should include it or not in the final list of properties. Do not include ones
where an example from above is not valid or if it mentions a candidate answer in it.

Property: <Description>

Include in final list? <Yes/No>

Final List of True/False Properties:

1. <Property Description 1>

2. <Property Description 2>

Ensure all properties are listed are sentences that are either True or False

Table 3: Full prompt for Auto-stratification.

D HEURISTIC ESTIMATION PROMPT

We first take each partition function from auto-stratification and estimate a starting probability with
the prompt in Table 4. This prompt is heavily inspired by Halawi et al. (2024). We then collect all the
proportions and pass it through a final Heuristic Estimation prompt to remove redundant properties
(negations for instance) and give the model a chance to correct any incorrect probabilities. See Table 5
for full prompt. Finally, we ask the model to select at most 3.

Note that for performance reasons, we estimate the marginal probabilities and make a simplifying
assumption of independence. This is not strictly true if one partition function is the negation of
the other. This leads potential stratum assigned positive probability but actually the stratum has no
solutions. Otherwise, there would be 2# of Partition Functions strata to estimate probabilities of. Further,
LLMs seem less reliable when asked to estimate fine-grained probabilities, whereas most marginal
probabilities are by design close to 0.5.

Formally, if P = ¬Q, the the stratum P ∧ Q has zero probability, even though we assumed it to
be Pr[P ] ∗ Pr[Q]. We handle approximation error in estimating the true prompt distribution by
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System Prompt:
You are an expert superforecaster, familiar with the work of Tetlock and others. Your mission is to generate accurate
predictions for forecasting questions. Aggregate the information provided by the user. Make sure to give detailed reasoning.

User:
I am tasked to estimate the probability that a random solution to "User Request" has the following property "Partitioning
Property"
Instructions:

1. Provide at least 3 reasons why the answer might be no.

{ Insert your thoughts }

2. Provide at least 3 reasons why the answer might be yes.

{ Insert your thoughts }

3. Rate the strength of each of the reasons given in the last two responses. Think like a superforecaster (e.g. Nate
Silver).

{ Insert your rating of the strength of each reason }

4. Aggregate your considerations.

{ Insert your aggregated considerations }

5. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal.

{ Insert your answer }

Table 4: Prompt for Partition-specific Heuristic Estimation.

System Prompt:
You are an expert superforecaster, familiar with the work of Tetlock and others. Your mission is to generate accurate
predictions for forecasting questions. Aggregate the information provided by the user. Make sure to give detailed reasoning.

User:
I’m playing a game where my friend has been tasked to:
"User Request"
I have the following Y/N statements I can ask my friend. I have probabilities that I think it’s true: % Insert numbered list
of partitions and proportions.
Instructions:

1. For each Y/N statement, is it redundant with another statement?

Y/N statement: <description>

Is redundant? <Y/N: Explanation>

2. Are any of the probabilities in accurate? If it’s sufficiently accurate just report back the same value.

Y/N statement: <Description>

Is accurate? <Y/N: Explanation>

Probability: <Probability>

3. Pick at most three statements that are least redundant and pair well together. Prefer ones that are closest to 50%
for most information.

Final List of True/False Properties:

1. <Y/N Properties> :: <Probability>

2. <Y/N Properties> :: <Probability>

Table 5: Prompt for Final Heuristic Estimation.

allowing the model to reply "Invalid" to trigger a resample. With this adjustment, the probabilistic
prompt distribution is maintained for this extreme case. This correction however does not ameliorate
potential issues with
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E ADDITIONAL PLOTS: DISTRIBUTIONAL ANALYSIS WITH LLAMA

We provide additional examples in Fig 9 and scatter plots for Llama 3 in Fig 8

(a) Llama 3 8B (b) Llama 3 70B

Figure 8: KL divergence from uniform for Baseline vs SimpleStrat on CoverageQA Wikipedia. Additional plots
for Llama 3 8B and 70B models
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(a) Llama 3.1 8B (b) Llama 3.1 70B

(c) Llama 3.1 8B (d) Llama 3.1 70B

(e) Llama 3.1 8B (f) Llama 3.1 70B

(g) Llama 3.1 8B (h) Llama 3.1 70B

Figure 9: Baseline vs SimpleStrat Probability Distributions This figure shows the answer distributions for 4
additional questions from CoverageQA curated. Each row represents a different question, showing distributions
for Llama 3.1 8B and 70B.
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