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Fig. 1. Non-line-of-sight (NLOS) imaging aims at recovering the shape and albedo of objects hidden from a camera or a light source. Using ultra-fast pulsed

illumination and single-photon detectors, the light transport in the scene is sampled on visible surfaces (left). The global illumination components of these

time-resolved measurements (A,E) contain sufficient information to estimate the shape of hidden objects (B,C). Using a novel formulation for NLOS light

transport that models partial occlusions of hidden objects (D) via visibility terms (F), we demonstrate higher-fidelity reconstructions (C) than previous

approaches to NLOS imaging (B).

Imaging objects obscured by occluders is a significant challenge for many

applications. A camera that could łsee around cornersž could help improve

navigation and mapping capabilities of autonomous vehicles or make search

and rescue missions more effective. Time-resolved single-photon imaging

systems have recently been demonstrated to record optical information

of a scene that can lead to an estimation of the shape and reflectance of

objects hidden from the line of sight of a camera. However, existing non-

line-of-sight (NLOS) reconstruction algorithms have been constrained in the

types of light transport effects they model for the hidden scene parts. We

introduce a factored NLOS light transport representation that accounts for

partial occlusions and surface normals. Based on this model, we develop a

factorization approach for inverse time-resolved light transport and demon-

strate high-fidelity NLOS reconstructions for challenging scenes both in

simulation and with an experimental NLOS imaging system.
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1 INTRODUCTION

The capacity of imaging systems must continue to expand to keep

pace with rapidly emerging technologies. Autonomous vehicles,

for example, would greatly benefit from improved vision in fog,

snow, and other scattering media or from being able to see around

corners to detect what lies beyond the next bend or another car. Sens-

ing technology offering such non-line-of-sight (NLOS) capabilities

could help make self-driving cars safer and unlock unprecedented

potential for other machine vision systems.

Two challenges make NLOS imaging with time-resolved detec-

tors difficult. First, the low signal of multiply scattered light places

extreme requirements on photon sensitivity of the detectors. Second,
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inverse methods that aim at estimating shape, albedo, and other

properties of a hidden scene need to model the transient light trans-

port appropriately and devise means to robustly invert it. To address

the former issue, we follow recent work proposing acquisition se-

tups with a pulsed picosecond laser and single-photon avalanche

diodes (SPADs) for NLOS imaging and tracking [Buttafava et al.

2015; Chan et al. 2017; Gariepy et al. 2016; O’Toole et al. 2018].

SPADs are detectors that digitize the time of arrival of individual

photons with precision on the order of tens of picoseconds, thus

resolving light paths with centimeter resolution.

At the core of our paper is a factored representation of transient

light transport that models partial occlusions and surface normals in

the hidden scene. These effects have been largely ignored by other

NLOS imaging approaches [Buttafava et al. 2015; Gupta et al. 2012;

Heide et al. 2014; O’Toole et al. 2018; Velten et al. 2012; Wu et al.

2012]. Moreover, we derive a robust multi-convex reconstruction

algorithm that takes a measured transient image as input and factors

it into the proposed representation: a volume of hidden albedos

and surface normals along with visibility terms that model partial

occlusion in the hidden scene (see Fig. 1).

With the presented work, we take first steps towards making

NLOS imaging robust and practical for real-world applications.

Specifically, we make the following contributions:

• We introduce a factored nonlinear image formation model for

non-line-of-sight imaging that accounts for partial occlusions

and surface normals in the hidden scene.

• We propose a multi-convex solver for inverse transient light

transport and show that it achieves significantly higher recon-

struction quality than conventional NLOS imaging methods.

• We implement an experimental NLOS acquisition setup using

a single-photon avalanche diode and a picosecond laser.

• We validate the proposed reconstruction algorithms in simu-

lation and with example scenes captured with the prototype.

Overview of Limitations. Although the proposed inverse method

improves reconstruction quality for many types of hidden scenes, it

is also computationally more expensive than other methods. Specifi-

cally, thememory requirements of the proposed factorizationmethod

are two orders of magnitude higher than for matrix-free implementa-

tions of simpler inverse methods (see Sec. 6 for more details). Similar

to other non-line-of-sight methods, we make the assumption that

the measured transient light transport contains only first-order and

third-order bounces. The first-order bounces correspond to direct

illumination that is reflected off a visible wall back to the detector;

these contributions are used to estimate surface normals and albedos

of the visible wall and can be removed prior to recovering the hid-

den object from the indirect illumination. The third-order bounces

contain indirect illumination that bounced precisely three times

before reaching the detector: off the visible wall, then off a hidden

object, then off the visible wall again. We used a transient renderer

that supports global illumination [Jarabo et al. 2014] to verify that

higher-order bounces, which could result from interreflections in

the hidden scene, insignificantly contribute to the proposed confocal

image formation in our simulated scenes. We thus conclude that

these effects can be ignored in the imaging setup described in this

work.

2 RELATED WORK

Non-line-of-sight Imaging. Kirmani et al. [2009] first introduced

the idea of łlooking around cornersž by analyzing the feasibility of

reconstructing hidden objects from time-resolved light transport.

This concept was demonstrated in practice by Velten et al. [2012]

with a system capable of resolving the shape of a hidden object.

Velten’s hardware setup included a streak camera and a femtosecond

laser, which together account for a cost of several hundred thousand

dollars. The streak camera provides a theoretical precision of up to

2 ps, which corresponds to a travel distance of 0.6 mm. Correlation-

based time-of-flight sensors have also been demonstrated as a low-

cost alternative for non-line-of-sight imaging [Heide et al. 2014;

Kadambi et al. 2013]. While these systems are about three orders

of magnitude less expensive than Velten’s system, they also only

offer a very limited temporal resolution, thus limiting the quality

of reconstructed NLOS scenes. Recently, single photon avalanche

diodes (SPADs) have been proposed for NLOS imaging [Buttafava

et al. 2015; O’Toole et al. 2018] as a readily-available hardware

platform that offers a good balance between cost and precision.

NLOS imaging requires a model for the light transport of hid-

den scene parts as well as a large-scale reconstruction framework.

Existing proposals for NLOS imaging [Buttafava et al. 2015; Gupta

et al. 2012; Heide et al. 2014; Kirmani et al. 2009; O’Toole et al. 2018;

Velten et al. 2012; Wu et al. 2012] use an image formation model that

makes the following assumptions: (1) light bounces at most three

times within the scene; (2) the scene contains no occlusions; (3) light

scatters isotropically (i.e., surface normals are ignored). Under these

assumptions, the reconstruction becomes a linear inverse problem.

Velten et al. [2012], Gupta et al. [2012], Buttafava et al. [2015], and

Jarabo et al. [2017] solved this system using variants of the back-

projection algorithm. Due to the fact that this tends to emphasize

low frequencies and does not actually solve the inverse problem,

the reconstruction quality offered by backprojection-type inverse

methods tends to be low. Using the same assumptions, Gupta et

al. [2012], Wu et al. [2012], Heide et al. [2014], and [O’Toole et al.

2018] proposed to solve the inverse problem via large-scale iterative

optimization. While this approach is more accurate than backprojec-

tion, the underlying light transport model ignores partial occlusions

and surface normals, which we show to be crucial for accurate scene

reconstruction. Tsai et al. [2017] recently proposed a space carving

algorithm for estimating the convex hull of hidden objects; a full 3D

volume of the hidden scene cannot be recovered with this approach.

Finally, Pediredla et al. [2017] propose a plane-based parametric

model for reconstructing room scenes.

At the core of this paper is a novel image formation model that

models NLOS light transport more accurately than existing methods

by accounting for partial occlusions and surface normals in the

hidden scene; we derive inverse methods tailored to this model.

Single Photon Avalanche Diodes. SPADs are reverse-biased pho-

todiodes that are operated well above their breakdown voltage

(see e.g. [Burri et al. 2016]). Every photon incident on a SPAD

has some probability of triggering an electron avalanche which

is time-stamped. This time-stamping mechanism usually provides

an accuracy of tens to hundreds of picoseconds. SPADs and also

avalanche photodiodes (APDs) are commonly used for a wide range
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of applications in optical telecommunication, fluorescence lifetime

imaging, and remote sensing systems (e.g., LIDAR). Often, these

imaging modes are referred to as time-correlated single photon

counting [O’Connor 2012].

Recently, SPADs were applied to range imaging [Heide et al. 2018;

Kirmani et al. 2014; Lindell et al. 2018a; Rapp and Goyal 2017; Shin

et al. 2016], transient imaging [Hernandez, Quercus and Gutierrez,

Diego and Jarabo, Adrian 2017; Gariepy et al. 2015; Lindell et al.

2018b; O’Toole et al. 2017] as well as tracking [Chan et al. 2017;

Gariepy et al. 2016] and imaging [Buttafava et al. 2015; O’Toole et al.

2018] non-line-of-sight objects. Altmann et al. [2018] also provide

a comprehensive review of ultra-fast computational imaging. The

works by Buttafava et al. [2015] and O’Toole et al. [2018] are closest

to ours, but their reconstruction algorithms ignore hidden surface

normals and occlusions. While the approach proposed by O’Toole et

al. [2018] achieves computational efficiency by modeling NLOS light

transport as a shift-invariant convolution, normals and the visibility

term modeling partial occlusions create spatial variation in the

image formation and so are incompatible with this representation.

Imaging Through and Around Scene Objects. Other forms of non-

line-of-sight imaging have also been demonstrated that do not rely

on time-resolved imaging. For example, Sen et al. [2005] proposed

a projector-camera system where the viewpoints of camera and

projector could be interchanged. This approach allows the scene to

be hidden from the camera’s perspective, but it must be visible from

the projector’s perspective. In time-resolved NLOS imaging, the

scene is typically not directly observed from either detector or light

source. Snapshot NLOS imaging was demonstrated by exploiting

correlations that exist in coherent laser speckle [Katz et al. 2014],

though this has so far been demonstrated at microscopic scales.

Radio and terahertz frequencies were shown to be able to image

through objects due to the physical properties of these parts of

the electromagnetic spectrum [Adib et al. 2015; Redo-Sanchez et al.

2016]. Recovering and tracking hidden objects was also shown to

be possible with intensity measurements of conventional cameras

to a limited extent [Bouman et al. 2017; Klein et al. 2016].

In concurrentwork, Thrampoulidis et al. [2017] andXu et al. [2018]

developed an alternative model that also includes partial occlusions

for NLOS imaging. As opposed to our model, these works assume

that the shape of the NLOS scene, including occluders, is known

and only surface albedos need to be recovered. We make no such as-

sumptions; we model and recover unknown shape, albedo, visibility

and also surface normals.

3 FORWARD AND INVERSE LIGHT TRANSPORT

The non-line-of-sight imaging problem involves estimating 3D shape

and albedo of objects outside the line of sight of a detector from

third-order bounces of time-resolved global light transport. Specifi-

cally, a short light pulse is focused on a visible part of the scene, for

example a wall, the light scatters off that surface, reaches a hidden

object which scatters some of the light back to the visible surface,

where it can be recordedwith a time-resolved detector.While several

different acquisition setups have been proposed, each warranting

a slightly different image formation model, we follow O’Toole et

al. [2018] and model a confocal system, where a single time-resolved

Fig. 2. NLOS scene with partial occlusions. The detector and laser sample

the visible wall at point i to record the direct and indirect light transport.

The indirect components include contributions from hidden objects, such

as two patches j0 and j1. Whereas the optical path between i and j0 is

unoccluded, the path between i and j1 is partly obscured by another hidden

surface. These occlusions are modeled by a visibility term v .

detector is co-axially aligned with a pulsed light source to sample

positions x ′,y′ on a visible diffuse wall (see Figs. 1, 2).

3.1 Confocal NLOS Image Formation Model

A time-resolved detector measures the incident photon flux as a

function of time relative to an emitted light pulse. Such a detector

can be used to record the temporal impulse response of a scene,

including direct and global illumination, at sampling positions x ′,y′

on a visible surface, resulting in a 3D space-time volume that is

known as a transient image τ .

The direct illumination, i.e., light emitted by the source and scat-

tered back to the detector from an object, contains all information

necessary to recover the shape and reflectance of visible scene parts.

This is commonly done for 3D imaging or light detection and rang-

ing (LIDAR) [Kirmani et al. 2014; McCarthy et al. 2013; Schwarz

2010; Shin et al. 2016]. In the following image formation model,

the direct light is not considered because it can be removed from

measurements acquired in practice; only the global illumination

contains useful information for non-line-of-sight imaging.

The image formation model can be formulated as

τ
(

x ′,y′, t
)

=

∫∫∫

Ω

1

r4
ρ (x ,y, z) (1)

δ

(

2

√

(x ′ − x)2 + (y′ − y)2 + z2 − tc

)

dx dy dz,

where the Dirac delta function δ (·) relates the time of flight t to

the distance function r =

√

(x ′ − x)2 + (y′ − y)2 + z2 = tc/2. Here,

c is the speed of light. This image formation model makes several

assumptions on the light transport in the hidden scene: light scat-

ters only once (i.e., back to the visible scene parts), light scatters

isotropically (i.e., surface normals are ignored), and no occlusions

occur between different scene parts outside the line of sight.
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We lift two of these assumptions by augmenting Equation 1 by a

visibility factor v as well as surface normals n:

τ
(

x ′,y′, t
)

=

(

2

tc

)4∫∫∫

Ω

v
(

x ′,y′,x ,y, z
)

ρ (x ,y, z) (ω · n (x ,y, z))

δ

(

2

√

(x ′ − x)2 + (y′ − y)2 + z2 − tc

)

dx dy dz, (2)

The distance falloff 1/r4 (see Eq. 1) is replaced by the factor (2/tc)4,

which can be pulled out of the integral because it is space-invariant

for confocal scanning setups. The term v (x ′,y′,x ,y, z) ∈ [0, 1]

models the visibility of a hidden surface patch at location x ,y, z

observed from the position x ′,y′ on the visible wall. For partial

occlusion in the hidden scene, such a patch may be visible from

one sampling point on the wall but it may be occluded by another

hidden object from the perspective of another sampling point (see

Fig. 2).

In a confocal scanning setup, the bidirectional reflectance distri-

bution function (BRDF) fr of the hidden scene is only sampled at a

subset of all combinations of incident and outgoing light direction:

ωi = ωo = ω, where ω is the normalized direction from a location

x ,y, z to some sampling point x ′,y′. Thus, it may be infeasible to

recover arbitrary BRDFs from confocal measurements. However,

when the BRDF can be modeled as a spatially-varying but direction-

ally constant albedo ρ (x ,y, z) = fr (x ,y, z,ω,ω), which is the case

for diffuse and also retroreflective materials, this albedo can indeed

be estimated as shown in previous work.

For a confocal scanning system, retroreflective materials have the

benefit of significantly increasing the amount of light reflected from

hidden scene parts back to sampling point on the wall. In theory,

the distance falloff of 1/r4 becomes 1/r2 (cf. Eq. 1). In practice,

the BRDFs of these materials often exhibit extended retroreflective

lobes combined with some amount of Lambertian behavior, making

them non-ideal retroreflectors. Even though the proposed confocal

scanning scheme only samples the retroreflective component of the

hidden BRDF, any deviation from ideal retroreflectors leads to a

distance falloff term that is somewhere between 1/r4 and 1/r2. In the

Supplemental Material, we experimentally verify that the distance

falloff of łdiamond gradež retroreflectors is close to ideal while

łengineer gradež retroreflectors or retroreflective paints are less than

ideal, but still exhibit a falloff that is significantly more favorable

than that of purely diffuse objects.

3.2 Factored Image Formation

We discretize Equation 2 by representing the hidden volume as

N × N × N voxels. Each voxel j = 1 . . .N 3 contains an albedo ρ j

and a surface normal nj . The discrete transient image is sampled at

N × N locations that coincide with the voxel centers on the visible

wall. For notational convenience, we model the transient image

with N temporal bins at each spatial location. The image formation

model becomes

τ = Aρ = (T ◦ I (N ◦ V)) ρ, (3)

where τ ∈ RN
3

+
is the vectorized transient image and ρ ∈ RN

3

+
is

the vectorized volume of nonnegative hidden albedos. The system

matrix A ∈ RN
3×N 3

+
combines all others terms of the transient

Fig. 3. Illustration of several light transport terms for a simple hidden scene

containing two partially-occluding white planes (top left). The transient

image of measurements is shown (top right) along with a single xt-slice

(center right). A 3D rendering of the ground truth visibility term for one sam-

pling location (center left) and two xz-slices (bottom) for different sampling

positions (blue circles) make it intuitive to understand what the visibility

terms are.

light transport (cf. Eq. 2). This matrix representation has also been

used in most previous approaches to NLOS imaging. We propose

to factor the transient light transport matrix A into several terms,

each modeling different aspects of light transport, as discussed in

the following and illustrated in Figure 3.

Visibility. The visibility term V ∈ RN
2×N 3

+
is time-invariant and

models how much of the light reflected by voxel j reaches measure-

ment location i = 1 . . .N 2 on the visible wall. As shown in Figure 2,

when the path between j and i is unoccluded: Vi j = 1. When an-

other surface occludes the path between j and i: Vi j = 0. We allow

for a continuous range of values, i.e. 0 ≤ Vi j ≤ 1, to model partial

occlusion along a light path.

Normals. The matrix N ∈ RN
2×N 3

is also time-invariant and

models the factor ω · n, such that Ni j = ωj→i · nj where ωj→i

is the normalized direction pointing from voxel j to the visible

wall location i . For the purpose of this paper, we parameterize the

surface normals in spherical coordinates. That is, the normal nj
at voxel j is represented using two scalars nuj ,n

v
j , such that nj =

[cos(nuj ) sin(n
v
j ), sin(n

u
j ) sin(n

v
j ), cos(n

v
j )]

T . This representation
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enforces unit length on all surface normals and only requires two,

instead of three, parameters to be estimated per hidden normal.

CopyMatrix. To account for the fact that neitherV norN are time-

dependent, but the transport matrix T is, the matrix I ∈ RN
3×N 2

+

simply copies the time-independent quantities of the hidden volume

projected on the sampling locations to all time bins of the transient

image.

Transport Matrix. The matrix T ∈ RN
3×N 3

+
models the time-

dependent aspects of the hidden light transport. Specifically, the jth

column of T is the surface of the hypercone
(

x ′ − x j
)2
+

(

y′ − yj
)2
+

z2j = (tc/2)
2 modeling time-resolved propagation in free space from

voxel j to the entire transient image. The super-position principle

holds, such that the hypercones for each voxel contribute to the

transient image in an additive way.

3.3 Inverse NLOS Light Transport

Several inverse methods for the non-line-of-sight imaging problem

have been proposed. We briefly review backprojection-type meth-

ods and linear inverse methods before introducing a factorization

approach that allows us to recover the unknown visibility terms

and surface normals along with the hidden albedos.

3.3.1 Backprojection. The NLOS problem can be reduced to a

linear one under certain assumptions. First, the visibility term is

ignored (i.e., Vi j = 1,∀i, j) and, second, the surface normals are

fixed. For the latter, one could either make the assumption that the

hidden scene is comprised of isotropic scatterers (i.e., Ni j = 1,∀i, j)

or assume that the hidden normals are known, but that is typically

not the case. Previous work on NLOS imaging has shown that these

assumptions lead to the linear image formation model τ = Aρ, with

A = T (cf. Eq. 3).

Filtered and unfiltered backprojection methods are standard al-

gorithms for solving many linear inverse problems, particularly

in computed tomography [Kak and Slaney 1988]. The beauty of

backprojection methods is their simplicity, i.e., both compute time

(O
(

N 5
)

) and memory requirements (matrix-free implementation

O
(

N 3
)

; with sparse matrixO
(

N 5
)

) are tractable even for large-scale

inverse problems. Velten et al. [2012], Gupta et al. [2012], Buttafava

et al. [2015], and Arellano et al. [2017] all employ a variant of back-

projection by multiplying the measured transient image by the

transpose of the system matrix, i.e., ρ ≈ A
T
τ , and then optionally

applying a sharpening filter, such as a Laplacian, and a thresholding

operator [Velten et al. 2012].

Unfortunately, filtered backprojection only solves the linear prob-

lem correctly when measurements over the full sphere are available.

The acquisition setups of NLOS imaging discussed in the literature

resemble that of a limited-baseline tomography problem, for which

backprojection only gives a rough estimate of the latent variable,

but it does not solve the actual inverse problem.

3.3.2 Linear Inverse Light Transport. Several other NLOS recon-

struction algorithms [Gupta et al. 2012; Heide et al. 2014; Wu et al.

2012] solve the system of linear equations directly, but they make

the same assumptions on visibility and normals as the backprojec-

tion algorithm. The inverse problem of recovering hidden albedos

can be expressed as

minimize
ρ





τ − Aρ






2
2 + Γ

(

ρ
)

, s.t. 0 ≤ ρ (4)

Although the nonnegativity constraints were not directly enforced

by all previous proposals, including it in the reconstruction can

improve the estimated solution. An additional prior on the albedos

Γ
(

ρ
)

can help further improve the estimated albedos. For example,

Heide et al. [2014] used a combination of sparseness and sparse

gradients (i.e., total variation). The runtime and memory require-

ments for an iterative solver are in the same order as those of the

backprojection method per iteration.

3.3.3 Factorized Light Transport. Assuming that neither the hid-

den albedos ρ, surface normals n, or visibility terms V are known,

inverting Equation 3 becomes a nonlinear inverse problem with the

cost function

minimize
ρ,n,V





τ − (T ◦ I (N ◦ V)) ρ






2
2 + Γ

(

ρ
)

.

s.t. 0 ≤ V ≤ 1, 0 ≤ ρ

(5)

An important insight for solving Equation 5 efficiently is that

although the cost function is nonlinear, it is tri-convex when the

prior Γ is convex. As is standard practice for multi-convex problems,

we use an alternating least-squares (ALS) approach. To this end,

Equation 5 is solved in an alternating manner by fixing two of

the unknown terms and optimizing for the third. Each of these

subproblems is convex; the method is outlined in Algorithm 1.

Algorithm 1 Triconvex Factorization via Alternating Least Squares

1: V(0) = 1, N
(0)
= Niso ρ

(0)
= 0

2: for k = 1 to K

3: ρ
(k ) ← arg min

0≤ρ








τ −
(

T ◦ I
(

N
(k−1) ◦ V(k−1)

))

ρ










2

2
+ Γρ

(

ρ
)

4: V
(k ) ← arg min

0≤V≤1








τ −
(

T ◦ I
(

N
(k−1) ◦ V

))

ρ
(k )










2

2

5: n
(k )← arg min

n








τ −
(

T ◦ I
(

N ◦ V(k )
))

ρ
(k)










2

2
+ Γn (n)

6: end for

We initialize the unknowns with full visibility, null albedo, and we

use isotropic normals Niso in the first two substeps (until we solve

for n(1)). Warmstarting the albedo vector with the backprojection

estimate improves the overall runtime of the algorithm.

Updating ρ (Alg. 1, line 3). In this subproblem, the system matrix

A = T ◦ I
(

N
(k−1) ◦ V(k−1)

)

is fixed for a given iteration k . The

resulting inverse problem is similar to that of Equation 4; we use

the alternating direction method of multipliers (ADMM) [Boyd et al.

2011] to solve it.

Updating V (Alg. 1, line 4). This subproblem is also convex be-

cause we could construct a system matrix that absorbs T,N,I and

ρ and write the image formation as a matrix-vector multiplication.

Unfortunately, the size of this problem is very large ś the system

matrix would have N 3 × N 5 non-zero elements. Thus, we solve this

subproblem using a projected gradient algorithm that minimizes
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the objective function J =




τ − (T ◦ I (N ◦ V)) ρ






2
2 while enforcing

0 ≤ V ≤ 1. For this algorithm, we simply take a step into the direc-

tion of the negative gradient of J and clamp the result to the feasible

range, i.e., between 0 and 1, using the projection operator Π:

V← Π (V − α∇v J ) , with (6)

∇v J = −2N ◦ I
T
((

(

τ − (T ◦ I (N ◦ V)) ρ
)

ρ
T
)

◦ T
)

Here, α is the step length. In practice, this intuitive method can be

improved using an adaptive step length which changes per iteration.

We derive this in detail in the Supplemental Material.

Updating n (Alg. 1, line 5). Using the spherical coordinate repre-

sentation of the normals, this subproblem can be solved with an

unconstrained nonlinear solver to minimize the objective function

J with respect to n
u
,n

v . We chose the L-BFGS algorithm for this

task and, using the chain rule, derive the gradient of the objective

as

∇
n(u,v )

J = ∇N J · ∇n(u,v )N, with (7)

∇N J = −2V ◦ I
T
((

(

τ − (T ◦ I (N ◦ V)) ρ
)

ρ
T
)

◦ T
)

,

∇
n(u,v )

Ni j=

[

−ωx
j ✮i sin(n

u
j ) sin(n

v
j )+ω

y
j ✮i cos(n

u
j ) sin(n

v
j )

ωx
j ✮i cos(n

u
j ) cos(n

v
j )−ω

y
j ✮i sin(n

u
j ) cos(n

v
j )−ω

z
j ✮i sin(n

v
j )

]T

4 EVALUATION

In this section, we evaluate the proposed factorization method in

simulation and show detailed comparisons to other non-line-of-

sight reconstruction methods. Figure 4 shows maximum intensity

projections generated with the Chimera volume renderer1 for one

of the scenes we used for this evaluation. Several additional results

can be found in the Supplemental Material. This scene contains two

hidden objects that partly occlude each other (row 1, column 1).

The measured transient image is simulated for 64 × 64 sampling

locations x ′,y′ over an area of 1 m × 1 m on the visible wall with

a temporal bin size of 16 ps (row 1, column 2). Although we simu-

late time-resolved light transport that includes direct and indirect

illumination, we visualize only the indirect components in Figure 4.

Rows 2 and 3 of Figure 4 show two different perspectives of the

reconstructions obtained with the following algorithms: backprojec-

tion, filtered backprojection as described by Velten et al. [2012], the

linear method with identical regularization parameters as those used

in the proposed factorization method, the proposed factorization

method, and a reference solution obtained by fixing the ground

truth visibility term and applying the linear method to recover only

the hidden albedos. The latter represents an upper bound on the

reconstruction quality that can be achieved with the full factoriza-

tion method, where the visibility is unknown and also needs to be

estimated. Whereas previously-proposed algorithms fail in recover-

ing the partially occluded scene parts, our factorization accurately

estimates this challenging scene; our solution closely matches the

reference solution.

The linear and proposed methods use identical priors and reg-

ularization weights. Moreover, in the Supplemental Material, we

1http://www.cgl.ucsf.edu/chimera/

Fig. 4. Evaluation of reconstruction algorithms using the łDragon & Logož

scene. The hidden scene contains two objects that partially occlude each

other. Time-resolved measurements are shown along with reconstructions

obtained with several algorithms. Previously-proposed algorithms, including

backprojection, filtered backprojection, and the linear method with regular-

ization parameters identical to the ones used in the proposed method fail in

adequately recovering partially occluded scene parts, such as the logo in the

background. The proposed factorization method accurately estimates this

challenging scene via the visibility term and it additionally recovers surface

normals. Slight variations in intensity, for example for the logo between

backprojection and filtered backprojection, are introduced by the volume

rendered used to generate these visualizations.

have included additional results of the linear method with the regu-

larization parameters suggested by Heide et al. [2014], and we also

show results of the backprojection method followed by the same

regularization used by the proposed method. These supplemental

results validate the claim that the improved recovery performance

stems from the factorization method and not the choice of priors.

In addition to the hidden albedos, the proposed factorization

method also recovers a visibility term (row 1, columns 3ś4) and

the surface normals of the scene (row 1, column 5). The estimated

visibility term contains a full 3D volume of values for each of the

64×64 sampling locations on thewall.We show one of these volumes

for a single sampling point (row 1, column 4) as well as the average

visibility term for all sampling locations (row 1, column 3). The

estimated visibility terms can be interpreted as an intermediate

variable that helps improve the estimated albedos in the presence

of partial occlusions.

Table 1 shows quantitative comparisons of the estimated albedos.

For this purpose, we simulate a set of scenes with isotropic BRDFs

without surface normals (Tab. 1, top part) and a set of scenes with

Lambertian BRDFs that include surface normals (Tab. 1, bottom

part). Again, the filtered backprojection (FBP) method uses the filter

described by Velten et al. [2012]. The regularized backprojection

(RBP) applies a regularized least-squares projection of the output

of the BP method on an identical regularizer as used for the linear

(Lin) and the proposed methods. With RBP, regularization can only

be applied as a two-step process, i.e. BP followed by regularization,

whereas it is jointly solved with the regularized linear method.

We list reconstruction fidelity using the peak-signal-to-noise ratio

(PSNR) metric. In all cases, the proposed factorization approach
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BP FBP RBP Lin Factored
Lin with

known V

Bunny 15.8 13.3 17.8 26.6 40.8 46.1

Dragon 14.4 8.8 15.9 17.6 19.5 19.8

Dragon & Logo 14.5 10.3 16.5 23.7 38.7 42.3

Dragon & Bunny 14.3 10.3 16.1 22.1 31.6 37.0

Logo 20.9 13.2 24.5 41.1 57.9 62.2

2 Planes 19.7 13.4 22.6 29.9 40.5 40.6

Plane & Logo 19.9 12.1 23.1 33.3 48.2 49.8

Average 17.1 11.6 19.5 27.8 39.6 42.7

BP FBP RBP Lin Factored
Lin with

known N+V

Bunny 13.5 11.1 15.5 25.2 34.4 41.9

Dragon 13.1 8.3 14.9 17.4 18.7 19.7

Dragon & Logo 13.6 9.4 15.5 24.3 30.9 46.3

Dragon & Bunny 13.3 9.5 15.1 22.3 27.3 40.1

Logo 17.8 9.5 21.3 39.1 52.3 63.9

2 Planes 16.4 11.0 19.1 28.0 37.6 53.1

Plane & Logo 16.1 9.3 19.2 31.5 43.4 60.9

Spheres 14.8 10.1 17.3 24.5 28.5 34.9

Average 14.8 9.8 17.2 26.5 34.1 45.1

Table 1. Quantitative evaluation of estimated albedos for various NLOS re-

construction algorithms: backprojection (BP), filtered backprojection (FBP),

regularized backprojection (RBP), the linear estimation method (Lin) with

identical parameters to the proposed method, and the proposed factoriza-

tion method. We compare these algorithms for scenes with isotropic BRDFs

(top 7 scenes) and scenes with Lambertian BRDFs, including surface normals

(bottom 8 scenes). As a reference solution, we also apply the linear method

with fixed ground truth visibility term (top) and visibility as well as normals

(bottom); these values represent an upper bound on what quality can be

achieved. All values are reported as peak signal-to-noise ratio (PSNR) in dB.

results in the highest PSNR. The solutions Lin w/ V and Lin w/ N+V

apply the linear method with ground truth visibility fixed, and with

ground truth visibility and normals fixed. Due to the fact that the

resulting problems are convex, these values can be interpreted as

the reference solution representing an upper bound on what PSNR

could be achieved.

Table 2 shows a quantitative evaluation of the estimated point

clouds. For this purpose, all albedo volumes are thresholded by

discarding all voxels with an albedo below 0.1. The geometric error

between estimated point clouds and ground truth is then calculated

as the average Haussdorf distance. This metric can be interpreted

as measuring the fidelity of the estimated geometry rather than

the albedo. We show visualizations of these point clouds in the

Supplemental Material.

5 VALIDATION WITH PROTOTYPE

5.1 SPAD-based Imaging System

Our prototype uses a single photon avalanche diode (SPAD) and a

pulsed picosecond laser. We summarize the hardware components,

calibration procedure, and acquisition parameters in the following.

5.1.1 Hardware. We use a Micro Photon Devices SPAD with a

100 × 100 µm active area. Light is focused on the detector using a

BP FBP RBP Lin Factored
Lin with

known V

Bunny 271 263 274 278 23 8

Dragon 413 233 270 243 103 85

Dragon & Logo 295 180 235 298 29 23

Dragon & Bunny 287 412 371 199 54 23

Logo 222 91 136 29 8 8

2 Planes 202 116 135 129 23 23

Plane & Logo 214 139 149 56 23 23

Average 272 205 224 176 38 28

BP FBP RBP Lin Factored
Lin with

known N+V

Bunny 275 211 222 211 29 15

Dragon 326 211 255 166 99 72

Dragon & Logo 319 199 291 264 42 15

Dragon & Bunny 307 448 417 194 63 8

Logo 222 96 138 29 8 8

2 Planes 217 117 150 129 39 15

Plane & Logo 243 139 165 56 23 15

Spheres 275 159 190 129 56 15

Average 273 198 229 147 45 20

Table 2. Quantitative evaluation of estimated point clouds for various NLOS

reconstruction algorithms. We compare the average Haussdorf distance in

mm between ground truth and the estimated and thresholded point clouds

(lower number is better). This metric represents the per-point depth resolu-

tion of the reconstructions. The reported point cloud distances demonstrate

that the proposed method outperforms competing approaches in the quality

of the recovered geometry, independently of the object albedo.

75 mm achromatic doublet lens (Thorlabs AC254-075-A-ML). Photon

arrival times are time-stampedwith a PicoHarp 300 Time-Correlated

Single Photon Counting (TCSPC) module and stored in histograms

of photon counts with a 4 ps bin width. The laser is an ALPHALAS

PICOPOWER-LD-670-50, which operates at 670 nm wavelength

pulsed with a reported pulse width of 30.6 ps at a 10 MHz repetition

rate and 0.11 mW average power. The laser and SPAD are co-axially

aligned using a polarizing beam splitter cube (Thorlabs PBS251).

The aligned optical path is then scanned over the visible wall using

a 2-axis scanning galvanometer (Thorlabs GVS012) from a distance

of about 1.5 m from the wall. The combined temporal jitter of SPAD

and laser pulse width is measured to be approximately 60 ps. An

illustration of the setup and measurements are shown in Figure 5.

5.1.2 Calibration. Aligning the laser and SPAD is done by ad-

justing the beam splitter position and tilt angle to maximize the

recorded photon counts of the light directly reflected off the wall.

The SPAD is operated in free-running mode, which creates an effect

known as pileup. Pileup is basically a masking effect that makes it

difficult to see weak signals that occur right after a strong signal

in the temporal histogram. To avoid masking the weak indirect

reflections with the strong contribution of the direct reflections,

we slightly misalign SPAD and laser by moving the beam splitter

until we can see both direct and indirect contributions (cf. Fig. 5,

lower right). The confocal image formation model is not affected by

this procedure. Alternatively, a temporal gating mechanism could
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Fig. 5. Prototype and measurements. The prototype (top) consists of a

single-photon avalanche diode (SPAD), a pulsed laser, a 2-axis scanning

galvanometer, and a beam splitter that combines the optical path of the laser

and the SPAD (red line). With this setup, we scan a 2D array of sampling

locations capturing a temporal histogram of photon counts (lower right)

at each location. A spatio-temporal slice of these measurements is shown

(lower left), with only indirect illumination inside the displayed area.

be employed to remove the direct light; we did not have access to

hardware with this capability for our experiments.

To account for the differences in path length of different samples

on the wall and the imaging system, we align the measured his-

tograms in software such that the peak of the direct light appears

at time t = 0. Then, we reduce the histograms to a bin size of 16 ps

using area downsampling and remove the direct light for further

processing by setting the first 600 time bins to 0.

In total we captured six scenes. To keep the acquisition times

manageable, five of these scenes contain retroreflective objects and

only one scene contains a diffuse object. These scenes are recorded

with 64× 64 sample points spaced as an equidistant grid on a visible,

white planar surface. The sampling points of the retroreflective

scenes cover an area of 80 × 80 cm of the visible wall; the exposure

time for each of the samples is 0.1 s; reconstructed volumes of hidden

surface albedos have a resolution of 64 × 64 × 120 voxels and cover

80 × 80 × 80 cm. The diffuse scene was sampled over an area of

70 × 70 cm with an exposure time of 1 s per sample. All methods

compared in this work are processed at the same resolution.

For the reconstructions with the linear method, we run 150 iter-

ations with a weight of 0.1 on the sparsity prior and 0.001 on the

total variation (TV) prior. The proposed factorization method uses

5 ADMM iterations in total and 20 iterations for the linear method

in each of the ADMM iterations. Our source code is implemented

as unoptimized MATLAB code and takes about 2 h per scene on

a server with an Intel Xeon E5-4620 (2.20 GHz) and 768 GB RAM.

Please see the Sec. 6 for a more detailed discussion on potential

approaches to improving runtime and memory requirements.

5.2 Experimental Results

Figure 6 shows two of the experimental data sets; all six are shown in

the Supplemental Material. We show 3D maximum intensity projec-

tions of the acquired measurements and photographs of the imaged

objects along with two different perspectives of the reconstructions

obtained with several different methods. As expected from our simu-

lations, the backprojection and filtered backprojection methods give

a rough idea of the shape of hidden objects but fine geometric detail

is missing. The linear method with regularization weights match-

ing the ones of the proposed method achieves significantly better

results. The Light Cone Transform (LCT) was recently proposed

as a computationally efficient method for NLOS imaging [O’Toole

et al. 2018], but it uses similar assumptions on the image formation

model as the linear method and thus achieves similar reconstruction

quality for low regularization. The proposed factorization approach

recovers the scenes exhibiting partial occlusions most accurately

among all compared methods. For the łDiffuse Sž, our factorization

method achieves a better quality than the other methods. The pri-

mary benefit of the proposed method for NLOS scenes containing

isolated objects without substantial amounts of occlusions is that

we can estimate surface normals. As expected for this planar scene,

the estimated normals mostly point towards the scanned wall.

For the retroreflective łSign & Sž scene, the proposed factoriza-

tion method amplifies the shape of the łSž compared to other recon-

struction algorithms. This is mostly due to the fact that the image

formation model of the other methods does not adequately model

partial occlusions in the hidden scenes, but our method does and

thus results in a more accurate reconstruction. Finally, there is also

ambiguity in the factored light transport representation. An object

with very low reflectivity (i.e., small albedo) that is unobstructed

could produce the same measurements as the same object with a

larger albedo but appropriately down-scaled visibility terms. This

ambiguity may boost the brightness of certain objects but could be

mitigated by placing additional constraints on the visibility terms

(see Sec. 6 for discussion).

6 DISCUSSION

In summary, we propose a novel light transport representation for

non-line-of-sight imaging along with inverse methods that factor

the global illumination components of a transient image of a visible

surface into a volume of hidden albedos, surface normals, and visibil-

ity terms. The visibility terms model partial occlusions in the hidden

scene parts. Our simulations indicate that the proposed factorization

approach has the potential to improve the robustness and quality of

NLOS imaging for complex scenes that often include partial occlu-

sions. With experimentally-captured data we show similar trends,

but also reveal that the non-convex nature of the factored light

transport model can result in ambiguities in the reconstructions.

Overall, we demonstrate that the reconstruction quality of the pro-

posed method is substantially higher than what is achieved by other

methods. In addition, the proposed approach is the first to facilitate

surface normal estimation. Whereas normals could alternatively be

fitted to the estimated point clouds, the proposed method jointly

estimates these two unknowns directly from the measured data.
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Fig. 6. Experimental results of the łSign & Sž (left) and the łDiffuse Sž (right) scenes. The left scene contains two retroreflective objects that partly occlude

each other. We show measurements and compare the reconstruction quality of the backprojection method, filtered backprojection, the linear method, the

Light Cone Transform, and the proposed factorization method. For this example, the proposed method achieves the highest image quality. In the absence of

partial occlusions in the hidden scene, all methods, except for the backprojection, achieve a comparable quality. Unlike other methods, the factorization also

estimates surface normals of the hidden scene (top right).

Matrix-free implementations of backprojection-type methods re-

quireO(N 3)memory whereas an implementation that uses a sparse

matrix representation of the light transport requiresO(N 5)memory.

The linear method has similar memory requirements but a signif-

icantly increased computational cost. The Light Cone Transform

provides a closed-form solution to NLOS imaging that achieves a

similar quality as the linear method with only O(N 3logN ) memory.

The computational cost of the proposed factorization is slightly

higher than the linear method, but it is in the same order of magni-

tude. However, the fact that the factored light transport representa-

tion requires the visibility terms to be stored, which are generally

not sparse, results in memory requirements of O(N 5) making our

method two orders of magnitude more memory demanding than

other matrix-free NLOS algorithms.

6.1 Future Work

In the future, the memory requirements of the proposed method

could be mitigated by parameterizing the visibility terms as a sepa-

rate density volume with N 3 voxels. Inspired by techniques used in

the volume rendering community [Max 1995], such a representation

would represent the hidden scene using a density value as well as an

albedo for each voxel. Thus, memory requirements could be reduced

by two orders of magnitude to O(N 3). While such a parametriza-

tion is a promising direction to further improve the computational

efficiency of the proposed method, we leave this effort to future

work.

The runtime of our algorithm can be improved with a parallel

implementation on modern graphics processing units (GPUs). We

have implemented a preliminary GPU-based solver. This implemen-

tation achieves a speedup of 5× compared to our Matlab code at a

resolution of 40 × 40 × 75 voxels (matching the resolution reported

by Heide et al. [2014]) on a notebook computer (Intel 2.4GHZ, 16GB,

180 s total reconstruction time). However, the GPU solver is funda-

mentally limited by available memory resources. Scaling this fast

solver to operate on the same volume resolutions used throughout

this paper would require the memory management to be improved,

for example with the approach discussed above.

To improve the prototype hardware, we would like to replace

our laser with a more powerful option to reduce acquisition times

and improve the quality of hidden objects with Lambertian BRDFs.

Developing new inverse methods or learning them with a data-

driven approach are additional directions for future research. Finally,

similar to other NLOS imaging approaches, we assume that only

third-order light bounces contribute to the image formation. This

assumption could be lifted in future work to account for diffuse

interreflections and higher-order light transport effects in hidden

scene parts.

6.2 Conclusion

Non-line-of-sight imaging is a promising technology that has the

potential to unlock unprecedented imaging modalities for a va-

riety of applications. Recent advances in single-photon detector

technology and large-scale inverse light transport algorithms have

demonstrated that NLOS imaging is feasible in certain conditions.

With the proposed methods, we lift several important restrictions of

previous algorithms and take steps towards making NLOS imaging

more robust. Yet, further research and development is needed to

enable NLOS imaging łin the wildž, i.e. with strong ambient light,

at fast acquisition rates, and for more complex scenarios.
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