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Abstract

We investigate the connection between two popular methods commonly used in
training deep neural networks: Sharpness-Aware Minimization (SAM) and Batch
Normalization. We find that perturbing only the affine BatchNorm parameters
in the adversarial step of SAM benefits the generalization performance, while
excluding them can decrease the performance strongly. We confirm our results
across several models and SAM-variants on CIFAR-10 and CIFAR-100 and show
preliminary results for ImageNet. Our results provide a practical tweak for training
deep networks, but also cast doubt on the commonly accepted explanation of SAM
minimizing a sharpness quantity responsible for generalization.

1 Introduction

The generalization of deep neural networks has been linked to the flatness of the loss-surface already
by [8]. In the past years, several studies attempted to better understand this relation [10, 5, 11, 16]
and to leverage it for improved learning algorithms [19]. Most notably, [6] proposed Sharpness-
Aware Minimization (SAM), an optimization technique designed towards directly minimizing a
sharpness-based generalization bound alongside the training loss and achieved state-of-the-art in a
variety of vision-benchmarks. SAM minimizes an adversarially perturbed loss, where the perturbation
is computed with respect to a small l2-ball around the current point in the optimization trajectory.
Follow-up works tried to either reduce the computational cost of the method [4], or improve its
performance. [20] minimize a different objective called surrogate gap, whereas others aim at defining
a more accurate perturbation model, which is e.g. adaptive to the scale of the parameters and hence
invariant to reparametrizations of the network (ASAM [14]) or respects the parameter space geometry
induced by the Fisher information (Fisher-SAM [12]).

While the empirical success of SAM-like methods is commonly attributed to them finding favorable
flat minima, there remain doubts on whether this explanation can provide a conclusive picture.
[1] argue that the generalization bound, which provides the main theoretical justification for the
SAM algorithm, is based on average-case sharpness, but SAM with random instead of worst-case
perturbations does not substantially improve over SGD. Further, the empirical success of m-sharpness,
a gradient averaging heuristic explained in Section 2, and the observation that a more accurate
optimization of the perturbation model decreases SAMs generalization performance (discussed in [6])
additionally weakens this reasoning. [1] hypothesize that some other quantity, possibly correlated
with (m-)sharpness, could be responsible for generalization and the main success of SAM might
instead be due to its benefitial implicit bias.
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We therefore take a step back from the sharpness-explanation and instead investigate the interplay
between SAM and Batch Normalization (BN) [9], another technique that has shown to be crucial
for training well-generalizing networks, but remains poorly understood. [17] showed that the initial
explanation of BN-layers mitigating a covariate shift in the activations is insufficient, and instead
linked it to a smoothing of the loss-surface, whereas [15] understood it as an implicit regularization
scheme. [7] showed that the affine parameters of the layer are by themselves already surprisingly
expressive: Training only γ and β of deep ResNets and freezing all other parameters at their random
initialization yielded non-trivial accuracy on CIFAR-10 and ImageNet, which could not be achieved
when training an equivalent number of other parameters.

In this work, we show that ASAM, as it was proposed in [14], relies crucially on the BatchNorm
parameters and that computing the adversarial perturbation without them degrades its performance
strongly. We further demonstrate for a range of models and SAM-variants, that perturbing only the
BatchNorm parameters in the adversarial step typically boosts their performance, leading to a simple
adjustment that can easily be incorporated in existing SAM-like methods.

2 Background: Sharpness-Aware Minimization

We recapitulate SAM, ASAM and Fisher-SAM with their respective perturbation models. To this end,
we consider a neural network fw : Rd −→ Rk which is parameterized by a vector w as our model.
The train dataset consists of pairs Strain = {(x1,y1), ...(xn,yn)} which are drawn from the data
distribution D and we write the loss function as l : Rk×Rk −→ R+. The goal is to learn a model fw
with good generalization performance, i.e. low expected loss LD(w) = E(x,y)∼D[l(y, fw(x))] on
the distribution D. The training loss can be written as L(w) = 1

n

∑n
i=1 l(yi, fw(xi)). Conventional

SGD-like optimization methods minimize (a regularized version of) L by stochastic gradient descent.
SAM aims at additionally minimizing the worst-case sharpness of the training loss in a neighborhood
defined by an lp ball around w, i.e. max||ϵ||p<ρ L(w + ϵ)−L(w). This leads to the overall objective

min
w

max
||ϵ||p<ρ

L(w + ϵ). (1)

In practice, SAM uses p = 2 and approximates the inner maximization by a single gradient step,
yielding ϵ = ρ∇L(w)/||∇L(w)||2 and requiring an additional forward-backward pass compared to
SGD. The gradient is then re-evaluated at the perturbed point w + ϵ, giving the actual weight update:

w←− w − α∇L(w + ϵ) (2)

Computing ϵ separately for each GPU in multi-GPU settings and then averaging the resulting
perturbed gradients for the update step in (2) has been shown to increase SAMs performance.
This method is called m-sharpness, with m being the number of samples on each GPU. Since the
perturbation model in (1) is not invariant to rescaling of fw [3], ASAM [14], a partly scale-invariant
version of SAM, was proposed, with the objective

min
w

max
||T−1

w ϵ||p<ρ
L(w + ϵ) (3)

where Tw is a normalization operator, making the perturbation adaptive to the scale of the network
parameters. [14] choose Tw to be diagonal with entries T i

w = |wi| + η for weight parameters
and T i

w = 1 for bias parameters, and η is typically set to 0.01. Equivalently to SAM, the inner
maximization is solved by a single gradient step:

ϵ2 = ρ
T 2
w∇L(w)

||Tw∇L(w)||2
for p = 2, ϵ∞ = ρTwsign

(
∇L(w)

)
for p =∞ (4)

We note that for Tw being the identity matrix, this is equivalent to the SAM formulation. Recently,
[12] proposed to use a distance metric induced by the Fisher information instead of a Euclidean
distance measure between parameters. The approach can also be framed as a variant of ASAM,
with Tw being diagonal with entries T i

w = 1/
√
1 + ηfi and fi approximating the ith diagonal

entry of the Fisher-matrix by the squared average batch-gradient, fi = (∂wiLBatch(w))
2. For our

experiments, we additionally employ layerwise normalization. This is, we set the diagonal entries of
Twi

= ||Wlayer[i]||2, which corresponds to a normalization with respect to the l2-norm of a layer.
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3 Method

In this paper, we focus on the interplay between Sharpness-Aware Minimization variants and Batch-
Norm. BatchNorm layers transform an input x with batch mean µB and batch variance σ2

B according
to

BN(x) = γ × x− µB

σB
+ β

During training, µB and σB are computed from the current batch-statistics, and running estimates are
used at test time. In our experiments, we focus on the trainable parameters γ and β, which perform a
channel-wise affine transformation. In our first experiment, we exclude them from the adversarial
SAM-step (no-bn). Taking inspiration from [7], in our main experiment we perturb only γ and β and
neglect all other parameters (only-bn). only-bn corresponds to setting all entries Twi = 0, if wi is not
a BatchNorm parameter, and vice versa for no-bn. Apart from this change in Tw, which leads to a
change of the perturbation ϵ according to (4), we use the conventional SAM-algorithm.

4 Experiments
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Figure 1: WRN28-10 trained with different SAM-variants on CIFAR-100. Best seen in color.

We first showcase that excluding γ and β from the ϵ-perturbation (no-bn) can lead to drastic perfor-
mance drops in some variants compared to using all parameters (all), but has little effect on others.
We train a range of ResNet-like models with several SAM-variants on CIFAR-10 and CIFAR-100
[13] and monitor the performance when computing the perturbation ϵ only along the directions of γ
and β (only-bn). We confirm our findings with experiments on ImageNet [2].

For our CIFAR experiments, we consider a range of SAM-variants which differ either in the norm
(p ∈ {2,∞}) or in the definition of the normalization operator. We use SGD, the original SAM
with no normalization and p = 2, Fisher-SAM and the following ASAM-variants: elementwise-l∞,
layerwise-l2, and elementwise-l2. For each of the ASAM-variants, we normalize both bias and weight
parameters and set η = 0. Additionally, we employ the original ASAM-algorithm, where the bias
parameters are not normalized and η = 0.01. We train all models on a single GPU for 200 epochs,
and m-sharpness is not employed. We use both basic augmentations (random cropping and flipping)
and strong augmentations (basic+AutoAugment). Like [14], adopt a learning rate of 0.1, momentum
of 0.9, weight decay of 0.0005 and use label smoothing with a factor of 0.1.

We showcase the effect of excluding γ and β from the adversarial step for a WideResNet-28-10 on
CIFAR-100 in Figure 1. For the elementwise-l2 variants we observe a strong drop in accuracy, while
for SAM, Fisher-SAM, layerwise-l2 and elementwise-l∞ there is either no or very little change. If,
in contrast, we use only the batch-norm parameters for the ϵ computation, we observe that almost
all variants obtain higher accuracy. Except for Fisher-SAM, the difference is especially pronounced
for the variants which did not experience a performance drop for no-bn. For those, the ideal ρ
shifts towards larger values, indicating that the perturbation model cannot perturb the BatchNorm
parameters enough when all parameters are used. In order to confirm this observation, we train a
range of models on CIFAR-10 and CIFAR-100. For each SAM-variant and dataset, we probe a set of
pre-defined ρ-values (shown in Table 4) with a ResNet-56 and fix the best-performing ρ for all other
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models to compare only-bn to all. We report mean accuracy and standard deviation over 3 seeds for
CIFAR-100 in Table 1. On average, only-bn outperforms all for all considered SAM-variants and
layerwise-l2 works particularly well. On CIFAR-10 (Table 3 in the appendix) the results are similar,
but slightly less pronounced due to the very high accuracy of all methods.

For ImageNet, we adopt the timm training script ([18]). We train all models for 100 epochs on 8 2080-
Ti GPUs with m = 64, leading to an overall batch-size of 512. Apart from ρ, all hyperparameters are
shared for all models and can be found in the appendix in Table 5. Due to the computational cost of
training on large-scale datasets like ImageNet, we can only show preliminary results. In particular, we
could not run all models with all methods, but instead selected the most promising only-bn variants
and compared them against the established methods (SGD, SAM, ASAM elementwise l2). For SAM
and ASAM, ρ has been tuned by [6] and [14] and we adopt those values. For the methods involving
elementwise l∞ and layerwise l2 with their respective all and only-bn variant, we probe two ρ values
each and report the result of the better one. The results are shown in Table 2, where we observe
that the only-bn models outperform their all counterparts for elementwise l2 and elementwise l∞.
For layerwise l2, the all variant achieves higher accuracy, which might be due to the ρ-value of the
corresponding only-bn variant not being properly tuned. Nevertheless, all only-bn variants outperform
the previously established methods (SGD, SAM, ASAM). For reference, we also show the values
reported for ESAM [4] and GSAM [20], two other SAM-variants we did not include in our study.

Table 1: Accuracy on CIFAR-100. Green indicates best performance across all methods, bold values
indicate best performance between all and only-bn within a SAM-variant.

SGD SAM elem. l2 η = 0 elem. l2 η = 0.01
all all only bn all only bn all only bn

D100 77.01±0.16 79.37±0.70 79.92±0.39 78.90±0.20 79.83±0.30 79.94±0.36 80.14±0.06
D100 +AA 79.72±0.49 80.69±0.05 79.46±0.18 81.30±0.25 80.89±0.22 80.84±0.38 81.03±0.29
RN56 72.82±0.31 75.07±0.58 75.58±0.44 75.05±0.12 76.25±0.05 75.54±0.66 76.07±0.22
RN56 +AA 75.26±0.24 76.33±0.33 76.02±0.34 76.51±0.06 76.04±0.33 76.49±0.20 76.58±0.44
RnxT 80.16±0.27 81.79±0.36 82.18±0.23 81.26±0.24 82.30±0.28 82.15±0.33 81.90±0.38
RnxT +AA 80.31±0.29 82.33±0.54 83.19±0.20 82.00±0.29 83.20±0.15 82.78±0.14 82.87±0.27
WRN 80.75±0.22 83.37±0.30 84.17±0.28 82.38±0.18 83.67±0.28 83.67±0.10 83.53±0.22
WRN +AA 83.62±0.15 85.27±0.18 85.50±0.12 84.80±0.30 85.43±0.33 85.25±0.38 85.41±0.08

elem. l∞ η = 0 layer l2 η = 0 Fisher η = 1
all only bn all only bn all only bn

D100 79.32±0.21 79.68±0.20 78.25±0.15 79.77±0.27 79.05±0.53 79.37±0.16
D100 +AA 78.35±0.43 79.42±0.42 80.46±0.30 81.18±0.21 80.86±0.21 80.79±0.33
RN56 75.36±0.12 76.10±0.15 74.63±0.09 76.03±0.32 75.27±0.04 75.37±0.12
RN56 +AA 74.89±0.39 76.19±0.35 76.23±0.54 76.93±0.43 76.22±0.29 76.29±0.08
RnxT 81.02±0.59 82.39±0.34 81.66±0.22 82.46±0.14 81.53±0.14 82.03±0.37
RnxT +AA 82.33±0.12 83.11±0.19 82.61±0.31 83.32±0.24 82.49±0.17 82.74±0.30
WRN 83.33±0.17 84.11±0.26 83.23±0.16 84.05±0.23 83.29±0.11 83.37±0.04
WRN +AA 85.28±0.11 85.46±0.13 85.40±0.30 85.98±0.01 85.13±0.26 84.92±0.31

Table 2: ImageNet top-1 accuracy. ESAM and GSAM values are taken from the respective papers.

top-1 SGD SAM ESAM[4] GSAM[20] elem. l2 elem. l∞ layer l2
all all all all all only bn all only bn all only bn

Resnet-50 77.09 77.67 77.05 77.20 77.62 77.76 77.50 77.81 78.19 77.91

5 Conclusions and Future Work

In this paper we showed that excluding the BN-parameters in ASAM degrades its performance,
whereas performing the adversarial SAM-step only for γ and β brings improvements for a variety
of SAM-variants. This provides a practical training tweak, but also casts doubt on the commonly
accepted explanation of SAMs empirical success. Since the BatchNorm parameters typically account
only for a tiny fraction of the models parameters (for a WideResNet-28-10, 0.05% of all parameters
belong to BatchNorm layers), it is unclear if the sharpness quantity used by SAM-variants could
still be optimized well with only-bn. In addition, the good performance of layerwise normalization,
which is not invariant to parameter rescaling, questions the relevance of designing reparametrization-
invariant sharpness measures. While we do not have a conclusive answer on why only-bn works, we
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provide an experiment in Appendix A.3 giving additional insights into the method’s impact on BN
parameters.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Section 4 we explain that
we restrict ourselves to ResNet-like architectures and in Section 5 that we did not
investigate different normalization techniques.

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...
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imental results (either in the supplemental material or as a URL)? [No] We plan to
publish the code upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The hyperparameters are specified in Section 4 and A
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ments multiple times)? [Yes] For the main Tables we report errorbars over repeated
runs with different seeds, for ImageNet we could not provide them due to the large
computational cost.
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A Appendix

The appendix is structured as follows: In A.1 we show the results of the CIFAR-10 experiment and
the ρ values that were used. In A.2 we show the hyperparameters used for the ImageNet runs. In A.3
we show an additional experiment, aimed at providing insight into the effects of only-bn on the scale
of the BatchNorm parameters.

A.1 CIFAR-Experiments

Table 3 show the results for fixed ρ on CIFAR-10. The values of ρ we considered for each method
can be found in Table 4. The networks we considered for the CIFAR-experiments are DenseNet100
(D100), ResNet56 (RN56), ResNeXt-29-32x4d (RnxT), and WideResNet-28-10 (WRN).

Table 3: Accuracy on CIFAR-10

SGD SAM elem. l2 η = 0 elem. l2 η = 0.01
all all only bn all only bn all only bn

D100 94.51 ± 0.09 95.76 ± 0.08 95.88 ± 0.06 95.76 ± 0.16 95.86 ± 0.17 95.92 ± 0.25 95.85 ± 0.07
D100 +AA 95.62 ± 0.05 96.28 ± 0.06 96.25 ± 0.03 96.45 ± 0.15 96.31 ± 0.09 96.54 ± 0.02 96.47 ± 0.08
RN56 94.28 ± 0.21 94.94 ± 0.12 95.18 ± 0.10 94.96 ± 0.10 94.94 ± 0.20 95.14 ± 0.11 95.21 ± 0.08
RN56 +AA 94.70 ± 0.11 95.25 ± 0.12 95.40 ± 0.12 95.12 ± 0.05 94.82 ± 0.17 95.39 ± 0.14 95.60 ± 0.10
RnxT 95.37 ± 0.14 96.35 ± 0.21 96.48 ± 0.10 96.41 ± 0.10 96.53 ± 0.08 96.41 ± 0.06 96.41 ± 0.13
RnxT +AA 96.19 ± 0.22 96.98 ± 0.11 97.22 ± 0.27 97.01 ± 0.05 97.21 ± 0.12 97.24 ± 0.04 97.33 ± 0.11
WRN 96.20 ± 0.05 97.08 ± 0.08 97.10 ± 0.04 97.03 ± 0.23 97.06 ± 0.04 97.10 ± 0.08 97.07 ± 0.13
WRN +AA 97.01 ± 0.04 97.57 ± 0.09 97.58 ± 0.05 97.61 ± 0.01 97.69 ± 0.04 97.60 ± 0.02 97.57 ± 0.05

el. l-inf η = 0 layer l2 η = 0 Fisher η = 1
all only bn all only bn all only bn

D100 95.56 ± 0.18 95.91 ± 0.10 95.48 ± 0.17 95.82 ± 0.15 95.81 ± 0.10 95.80 ± 0.05
D100 +AA 96.20 ± 0.10 96.38 ± 0.17 96.33 ± 0.13 96.28 ± 0.10 96.25 ± 0.10 96.25 ± 0.12
RN56 94.93 ± 0.08 94.96 ± 0.04 94.95 ± 0.17 95.07 ± 0.06 94.97 ± 0.04 95.05 ± 0.07
RN56 +AA 95.12 ± 0.12 95.48 ± 0.35 95.43 ± 0.25 95.28 ± 0.13 95.28 ± 0.19 95.12 ± 0.04
RnxT 96.06 ± 0.22 96.22 ± 0.07 96.07 ± 0.30 96.46 ± 0.06 96.31 ± 0.02 96.14 ± 0.04
RnxT +AA 96.70 ± 0.22 96.91 ± 0.18 96.80 ± 0.06 96.88 ± 0.11 97.07 ± 0.07 96.97 ± 0.15
WRN 96.95 ± 0.16 97.00 ± 0.11 97.02 ± 0.02 96.96 ± 0.13 97.05 ± 0.13 97.12 ± 0.08
WRN +AA 97.52 ± 0.09 97.62 ± 0.09 97.60 ± 0.04 97.48 ± 0.06 97.56 ± 0.09 97.61 ± 0.08
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CIFAR-10 CIFAR-100
SAM 0.05, 0.1, 0.25 0.05, 0.1, 0.5, 1.
SAM only-bn 0.1, 0.5, 1 0.1, 0.5, 1., 5.

elementwise l2, η = 0 0.5, 1, 2, 3, 5 0.5, 1, 2.5, 5., 10.
elementwise l2, η = 0 only-bn 0.5, 1, 2, 3, 5 0.5, 1., 2.5, 5., 10.

elementwise l2, η = 0.01 0.1, 0.5, 1, 5, 10 0.5, 1, 2.5, 5
elementwise l2, η = 0.01 only-bn 0.1, 0.5, 1, 5, 10 0.5, 1., 2.5, 5
elementwise l∞, η = 0 0.001, 0.005, 0.01, 0.05 0.001, 0.005, 0.01, 0.05
elementwise l∞, η = 0 only-bn 0.01, 0.025, 0.05, 0.1 0.01, 0.05, 0.1, 0.5

layerwise l2, η = 0 0.005, 0.01, 0.025, 0.05, 0.1 0.001, 0.01, 0.05, 0.1
layerwise l2, η = 0 only-bn 0.05, 0.1, 0.25, 0.5, 1 0.1, 0.2, 0.5, 1.

Fisher, η = 1 0.005, 0.01, 0.025, 0.05, 0.1 0.05, 0.1, 0.5
Fisher, η = 1 only-bn 0.05, 0.1, 0.25, 0.5, 1 0.05, 0.1, 0.5

Table 4: Search-space for ρ. The values used for the the experiments in 1 and 3 is marked bold.

A.2 ImageNet Experiments

Table 5 shows the hyperparameters for all variants used for ImageNet training. For SGD, SAM
and elementwise-l2 we used the hyperparameters from [6] and [14]. For the elementwise l2 and
elementwise-l∞ we tried 2 ρ-values per configuration and report the results of the better one (named
ρ (reported) in the table). ρ (discarded) refers to the ρ value we probed, but found to perform worse
than the other one.

Table 5: Hyperparameters for training from scratch on Imagenet

param SGD SAM elem. l2 elem. l∞ layer l2
all all all only bn all only bn all only bn

train epochs 90
warm-up epochs 3

cool-down epochs 10
batch-size 512

augmentation inception-style
lr 0.2

lr decay Cosine
weight decay 0.0001
ρ (reported) 0.05 1 1 0.001 0.005 0.005 0.05
ρ (discarded) 0.01 0.05 0.05 0.5

Input Resolution 224× 224

A.3 Additional Experiment

In order to get a better understanding of the impact of only-bn on γ and β, we train a WideResNet-
28-10 with different SAM-variants and both only-bn and all. We show the distribution of |wi|, i.e.
the parameter magnitudes, at the end of training for different layer types in figure 2. The y-axis
is shown on log-scale, since most convolutional parameters are almost zero and would make the
effects on the BatchNorm parameters invisible. For elementwise l2 there is no visible change in the
distribution of the BatchNorm parameters between all and only-bn. For elementwise l∞, layerwise
l2 and SAM, however, the magnitude of the BatchNorm parameters shifts clearly towards larger
values, especially for the weight parameters. We note that this resembles a pattern we observed when
comparing the optimal ρ-value for all and only-bn in figure 1: The optimal ρ of elementwise l2 did
not change much, whereas for the other considered methods, it shifted towards larger values for
only-bn. Additionally and in contrast to the other methods, the elementwise l2 variant showed a strong
performance decrease in no-bn, indicating that it implicitly focuses on perturbing the BatchNorm
layers already. We observe a similar, yet weaker effect when comparing basic to strong augmentations:
The BatchNorm parameters shift slightly towards larger values (shown for SGD in figure 2). We
note that larger BatchNorm parameters do not necessarily indicate a functionally different network,
since there are many reparametrization invariances in ReLU networks, some of which ASAM tries to
leverage in its perturbation definition (3). Nevertheless, the scale of the network still has an impact
on the training dynamics, since other methods like e.g. weight decay depend on it. While this does
not provide a conclusive explanation for the success or the underlying mechanism of only-bn-SAM,
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Figure 2: Distribution of |wi| for different layer types. Note that the y-axis is on log-scale. We
truncate the x-axis at x = 0.3 for better visualization.

we think it should be taken as a starting point to investigate the impact of SAM-like methods on other
parts of the training of neural networks.
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