Accurate and Well-Calibrated ICD Code Assignment with a Chunk-Based
Classifier Attending over Diverse Label Embeddings

Anonymous ACL submission

Abstract

Although the International Classification of
Diseases (ICD) has been adopted worldwide,
manually assigning ICD codes to clinical text
is time-consuming, error-prone, and expensive,
motivating the development of automated ap-
proaches. This paper describes a novel deep
learning approach for ICD coding, combining
several ideas from previous related work. In
particular, we split long clinical documents into
chunks, and use a strong Transformer-based
model for processing each of the chunks inde-
pendently. The resulting representations are
processed with a max-pooling operation, and
combined with a label embedding mechanism
that explores diverse ICD code synonyms. Ex-
periments with different splits of the MIMIC-
IIT dataset show that the proposed approach
outperforms the current state-of-the-art models
in ICD coding, while also leading to properly
calibrated results that can effectively inform
downstream tasks such as text quantification.

1 Introduction

The International Classification of Diseases (ICD')
coding system, proposed by the World Health Orga-
nization, stands as a universally embraced standard
for precise documentation of diagnoses and pro-
cedures in the medical domain (O’malley et al.,
2005). Still, the manual assignment of ICD codes
to clinical text is a time-consuming, labor intensive,
and error-prone task, which has led to the explo-
ration of automated coding methods, e.g. using
deep learning algorithms for text classification.
Despite many previous efforts, automatic ICD
coding is still challenging, since clinical notes con-
sist of long text narratives, using a specialized med-
ical vocabulary, and that are associated to a high
dimensional, sparse, and imbalanced label space.
In addition to accurately classifying individual
clinical notes, estimating the prevalence of ICD
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codes within a dataset is also important for many
practical applications. This corresponds to a text
quantification problem (Schumacher et al., 2021;
Moreo et al., 2022), requiring properly calibrated
text classification models.

This paper describes a novel deep learning ap-
proach for ICD coding, combining several ideas
from previous related work. In particular, we
split long clinical documents into chunks, and use
a strong Transformer-based model (Yang et al.,
2022a) for processing each of the text chunks in-
dependently. The resulting representations are pro-
cessed with a max-pooling operation, and com-
bined with a label embedding mechanism inspired
by that of Yuan et al. (2022), that explores diverse
ICD code synonyms. Additionally, taking inspi-
ration on the MLP-based quantification approach
from Coutinho and Martins (2023), we explored
a training setup in which multi-label classification
and text quantification are jointly addressed. This
additional step was explored as an approach to po-
tentially improve model calibration.

Following previous studies, the proposed model
was evaluated on the publicly available MIMIC-III
dataset (Johnson et al., 2016), specifically analyz-
ing results on two subsets of hospital discharge
summaries, namely MIMIC-III-50 (Mullenbach
et al., 2018) and MIMIC-III-clean (Edin et al.,
2023). Our approach surpasses common baselines
and previous state-of-the-art models for ICD cod-
ing, across all evaluated metrics, while also leading
to properly calibrated results that can effectively in-
form downstream tasks such as text quantification.

The remaining parts of this paper are organized
as follows: Section 2 reviews existing literature,
while Section 3 introduces our novel framework for
ICD coding and quantification. Section 4 presents
the experimental results, establishing a direct com-
parison with previous studies. Finally, Section 5
summarizes our contributions and discusses future
research directions. The paper ends with a discus-
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sion on limitations and ethical considerations.

2 Related Work

Several previous studies have addressed the prob-
lem of automatic ICD coding. For instance, Mul-
lenbach et al. (2018) introduced the Convolutional
Attention for Multi-Label classification (CAML)
approach, i.e. a CNN-based method that is still
commonly considered as a baseline. CAML em-
ploys a label-wise attention mechanism, enabling
the model to learn distinct document representa-
tions for each label, through the use of attention
to select relevant parts of the document for each
ICD code. The authors conducted experiments on
MIMIC datasets (Lee et al., 2011; Johnson et al.,
2016), and the train-test splits developed for this
work were latter made publicly available. This
study is considered an important milestone for re-
producibility regarding methods for ICD coding.

Aiming to address CAML’s limitations in cap-
turing variable-sized text patterns, Xie et al. (2019)
improved the convolutional attention model by in-
troducing a densely connected CNN with multi-
scale feature attention (MSATT-KG), which pro-
duces variable n-gram features and adaptively se-
lects informative features based on neighborhood
context. This method also incorporates a graph
CNN to capture hierarchical relationships among
medical codes. In turn, Li and Yu (2020) proposed
MultiResCNN, i.e. a novel CNN architecture com-
bining multi-filter convolutions and residual convo-
lutions, capturing patterns of different lengths and
achieving superior performance over CAML.

Vu et al. (2020) introduced LAAT, i.e. a model
that combines an RNN-based encoder with a new
label attention mechanism for ICD coding. LAAT
aimed to handle the variability in text segment
lengths and the interdependence among different
segments related to ICD codes. Additionally, the
authors introduced a hierarchical joint learning
mechanism to address the class imbalance issue.

Yuan et al. (2022) put forth the Multiple Syn-
onyms Matching Network (MSMN) as an alterna-
tive approach to ICD coding. Rather than relying
on the ICD code hierarchy, the authors leveraged
synonyms to enhance code representation learning
and improve coding performance.

In recent years, text classification research has
shifted towards the use of Transformer-based
language models. Dai et al. (2022) compared
Transformer-based models for long document clas-

sification, focusing on mitigating the computational
overheads associated with encoding large texts.
Huang et al. (2022) investigated limitations asso-
ciated to the use of pre-trained Transformer-based
language models, identifying challenges associated
to large label spaces, long input lengths, and do-
main disparities. The authors proposed PLM-ICD,
i.e. a framework that effectively handles these chal-
lenges and achieves superior results on the MIMIC
dataset, surpassing previously existing methods.

In a recent study, Edin et al. (2023) argued that
the proper assessment of model performance on
ICD coding had often struggled with weak con-
figurations, poorly designed train-test splits, and
inadequate evaluation procedures. The authors pin-
pointed significant issues with the MIMIC-III splits
released by Mullenbach et al. (2018), and proposed
a new split using stratified sampling, to ensure a
complete representation of all classes.

On what regards text quantification, a variety of
different algorithms has been proposed in recent
years (Schumacher et al., 2021). Still, few previous
studies have specifically considered multi-label set-
tings (Moreo et al., 2022). Coutinho and Martins
(2023) explored the use of a Multi-Layer Percep-
tron (MLP) model, inspired on under-complete de-
noising auto-encoders. The MLP was trained to re-
fine estimates provided by the probabilistic classify
and count method, considering label correlations.
Experiments with MIMIC-III datasets showed that
the proposed method could outperform baseline
approaches such as Classify and Count (CC) and
Probabilistic Classify and Count (PCC).

3 Proposed Approach

This work presents a novel approach for ICD cod-
ing, aiming at strong classification performance
together with well-calibrated outputs that can in-
form downstream tasks such as text quantification.

3.1 Chunk-Based Modeling of Clinical Text

One of the key aspects in our approach is the as-
sumption that if an ICD code is identified in a single
segment (i.e., a chunk) of the input document, then
that code should clearly be assigned when classify-
ing the document as a whole.

By carefully attending to the ICD codes in each
chunk, and employing max-pooling to consolidate
detections, we can effectively leverage the capabil-
ities of a standard Transformer encoder, limited to
a maximum of 7' tokens (in our case, T = 512),
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Figure 1: Smooth document segmentation with token
overlaps. Note that each chunk includes, at the end, the
sentence separation token [SEP] characteristic of BERT

models, completing 512 tokens per chunk.

[CxT]
\[CxTxH]

[
" Chunks ‘ Iﬂl> GatorTron I£L>

[CxH]

—

o> v ixy

Model

“—D@Q

Figure 2: The chunk-based classification architecture.
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to analyze long clinical documents. To mitigate
the loss of information from abruptly breaking in-
terconnected pieces of text, we adopted a smooth
partitioning scheme that considers large overlaps
between chunks, as shown in Figure 1.

With this approach, we used a Megatron BERT
model pre-trained on the healthcare domain (i.e.,
GatorTron, described by Yang et al. (2022a)), pub-
licly available in the NVIDIA? NGC Catalog and
in association with the HuggingFace® Transform-
ers library. Figure 2 illustrates the chunk-based
classification architecture, where C' refers to the
number of chunks, 7" corresponds to the number
of tokens within each chunk, H corresponds to
the dimensionality of the vectors representing each
token, and L denotes the number of ICD classes.

3.2 Multi-Synonyms Attention

Inspired by Yuan et al. (2022), we enhanced our
classification model through the integration of a
multi-synonyms attention mechanism. The primary
objective was to explore the intricate relationships
between specific mentions to ICD codes, within
chunks of the hospital discharge summaries, and
the textual descriptions for ICD codes. This integra-
tion aimed to leverage synonyms to improve code
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representation learning (i.e., label embeddings), ul-
timately aiding in code classification.

We started by extending the ICD-9-CM code
descriptions with synonyms obtained from a large
medical knowledge base, specifically the UMLS
metathesaurus. By aligning ICD codes with UMLS
Concept Unique Identifiers (CUIs), we selected
corresponding synonyms for English terms shar-
ing the same CUIs. Additionally, we considered
synonym variants by removing special characters,
allowing only hyphens and brackets, and removing
the coordinating conjunctions "or" and "and".

While extending the code descriptions, we ob-
served that the lists of UMLS synonyms associated
with each code were often long and repetitive, pos-
ing a risk of introducing bias in classification, and
negatively impacting the meaning of code repre-
sentations. To improve diversity, we gathered more
synonyms from Wikidata and Wikipedia, and then
selected M synonyms for each code according to
a particular procedure. The synonyms were first
represented as vectors through the same GatorTron
model used to represent the text chunks (i.e., taking
the [CLS] token representation for each synonym).
Then, M vectors were selected for each ICD code
through the application of the Gurobi optimizer?, as
a way to address the Maximum Diversity Problem’,
which can be formulated as follows:

n—1 n
maximizez Z dijxixg, (D)
i=1 j=i+1
n
subject to » " a; = M, )
i=1
z;=1{0,1}, 1<i<n. 3)

In the previous equations, d;; is a distance metric
between synonym representations ¢ and 5 (i.e., the
cosine distance between the vectors), and x; takes
the value 1 if element ¢ is selected and O otherwise.
Through this optimization problem, we selected
a small subset of synonyms that effectively repre-
sents the broader embedding space for each ICD
code. Here we denote by (); a matrix where rows
correspond to the representations for the M syn-
onyms associated to ICD code [/, with each code
synonym composed of tokens {sf f; 1

Q= {GatorEnc(s{l, ...,sgjl)[CLS]}jﬂil. @)
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Note that the token representations within each
chunk of text c¢ are similarly produced with the
GatorTron model, and are here denoted as K ¢:

K°¢ = GatorEnc(z{, ..., 7). 5)

To integrate the text representations from each
chunk with the multiple synonym representations,
we use an approach inspired by the multi-synonyms
attention method proposed by Yuan et al. (2022),
which in turn draws inspiration from the multi-head
attention mechanism of the Transformer architec-
ture (Vaswani et al., 2017).

We specifically split K¢ into Z heads, setting
this value to be equal to the maximum number of
synonyms per code, i.e. Z = M:

K= K¢, .., KS. (6)

The code synonyms {Q;}~_ | are used to query K°,
and by calculating attention scores oy over K€,
we identify the parts from the chunk’s text that
are more related to code’s synonym [. We use
max-pooling of tanh(K )« to aggregate code-wise
text representations 7;, assuming that the text only
needs to match one of the synonyms:

a; = {Softmax(WqQ; . tahn(Wx KN}, (7)

c=1>
r; = {MaxPool(tahn(K)a)}Z_;.  (8)

To assess whether the text of a chunk c contained
code [, we evaluate the similarity between the code-
wise text representation r; and code’s embeddings
v. We aggregate the code synonym representa-
tions () to form a code representation v through
max-pooling, resulting in a matrix with each row
depicting a global representation of each code. To
measure the similarity for classification, we apply
a bi-affine transformation. Finally, after carefully
attending to the IDC codes in each chunk using
synonyms to enhance the classification, we employ
max pooling to consolidate the results:

v = MaxPool(Q', Q?, ..., Q™), 9)

Y = o(MaxPool(r Wu, ...,r&Wwv)).  (10)

Unlike previous approaches that perform classi-
fication using code-dependent parameters, which
can be challenging to define for rare codes, our bi-
affine function uses code-independent parameters
Ww. This approach simplifies the learning process,
at the same time making it more effective.
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Figure 3: The chunk-based classification architecture
that considers a multi-synonyms attention mechanism.

Figure 3 illustrates the process behind the chunk-
based classification method that considers the
multi-synonyms attention mechanism.

For model training, noting that we are in the pres-
ence of a multi-label classification task, we adopted
the widely-used Binary Cross-Entropy (BCE) loss,
which treats each class independently and can be
formally described as follows:

Lo =Yr —ylog@) — (1 —y)log(l —gp. (11)

The variable y; € {0, 1} represents the ground truth
for a code [, while ¢; represents the probability of
that code being present, as given by the classifier,
and L is the number of different ICD codes.

3.3 Joint Classification and Quantification

Following previous work by Coutinho and Martins
(2023), we considered the use of an under-complete
denoising auto-encoder to quantify the prevalence
of ICD codes within a set of documents, accounting
with label associations. We integrated this quantifi-
cation module, implemented as a three-layer MLP,
together with the classifier, performing end-to-end
training of the resulting model. We hypothesise that
the classification and the quantification objectives
can naturally complement each other, contributing
to improved model calibration.

Notice that classification operates at the level
of individual instances, while quantification oper-
ates over groups of instances. To integrate both



objectives within end-to-end training, we follow
the steps described next:

1. Shuffling and setting a limit: We shuffle the
training dataset at the start of each training
epoch. We also establish a limit that simulates
the maximum number of instances that will
be considered for quantification.

2. Iterative data collection: We process the in-
stances individually as we progress through
the training set. For each instance that is pro-
cessed, we collect the classification results
until we hit the previously defined maximum
limit. This creates a new group of instances
for each new instance that is processed, con-
sisting of the ones we have processed thus
far, plus the latest instance. The processing of
each instance is made as follows:

(a) Computation of classification loss:
When processing each new instance, we
apply our classification model and calcu-
late the classification loss associated to
that instance.

(b) Computation of quantification loss:
We take the classification output and add
it to the previous classification outputs.
This combination allows us to compute
a probabilistic classify and count vector,
denoting the estimated relative frequency
of each class label within the group of
instances. We then process this vector
using the aforementioned MLP, which re-
fines the probabilistic classify and count
estimates. We finally calculate the quan-
tification loss with the refined estimates.

(c) Aggregation of results: The loss values
computed in the previous steps are aggre-
gated into a total loss, which is used to
update model parameters for each batch
of instances that is processed.

3. Repeat and reset: We follow the iterative pro-
cess (steps (a) to (c¢)) until we reach the maxi-
mum number of instances designated for the
quantification set. Once this limit is reached,
we reset the quantification group and estab-
lish a new maximum limit for the instances to
be quantified, continuing with model training
until a stopping criteria is meet.

Our combined loss function can be formally de-
scribed by the following equation, where A is an

hyper-parameter controlling the relative influence
of the quantification loss:

L=Lc+ Nq. (12)

The classification loss (L) is the BCE formally
described in Equation 11, while the quantification
loss (L) uses the MSE, formally described as:

~

Lo pe) = Z PR () = pe(D?, (13)

where p, is the ground-truth quantification result
(i.e., the relative class frequency within the set of
instances) for each of the L class labels.

The MSE loss was preferred over other
regression-type losses, such as the MAE, because it
provides a smoother optimization landscape, lead-
ing to more stable and accurate results.

4 Experimental Evaluation

This section presents the experimental evaluation
of the proposed method, establishing a comparison
towards previously reported results.

4.1 Datasets

Experiments were conducted using the publicly
available MIMIC-III data (Johnson et al., 2016).
We specifically used the same dataset splits con-
sidered in previous work, namely MIMIC-III-50
(Mullenbach et al., 2018), which only comprises
the top-50 most frequent codes in the dataset, and
also MIMIC-III-clean (Edin et al., 2023), which
corresponds to a cleaned dataset version that con-
tains 3, 681 unique ICD-9-CM codes. Access to the
MIMIC-IIT data was granted through PhysioNet®,
after completing the ethical training by the Collab-
orative Institutional Training Initiative program.

4.2 Evaluation Metrics

To ensure a fair comparison with prior research, we
assessed the proposed approach across a range of
metrics also considered in previous work.
Regarding the classification task, we used mi-
cro and macro-averaged F1-scores, Area Under the
Curve (AUC) scores, and precision at cutoff n. For
the experiments over the MIMIC-III-50 dataset we
defined n = 5, and for the experiments conducted
on MIMIC-III-clean we considered n = 8 and
n = 15, roughly aligning with the average number

https://physionet.org/content/mimiciii/
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Parameters MIMIC-1II-50 MIMIC-III-clean

Maximum token input length 7,142 6,122
Token overlapping window 255 255
GatorTron hidden size 1,024 1,024
Synonyms per ICD code (M) 4 4
Number of heads (Z) 4 4
Maximum number of epochs 300 300
Early stopping patience 5 5
Effective batch size 16 16
Adam e le-8 le-8
Starting learning rate 2e-5/2e-T 2e-5/2e-T7
Ending learning rate 0 0
MLP hidden size 32 3,072
Quantification coefficient (\) 100 100

Learning rate scheduler linear linear

Table 1: Hyper-parameters used for model training in
the MIMIC-III-50 and MIMIC-III-clean settings. The
max number of epcochs values are related to the classifi-
cation and quantification modules.

of codes in each split. For measuring the calibra-
tion quality of our classifier, we used the Mean
Expected Calibration Error (MECE) with 20 bins.
For the quantification task, we used the Mean
Absolute Error (MAE) and the Mean Relative Ab-
solute Error (MRAE) to assess result quality.

4.3 Implementation Details

Table 1 presents the training hyper-parameters con-
sidered in our experiments.

Since the proposed model processes the input
text in chunks, the maximum allowable token
length is limited only by hardware constraints. Dur-
ing training, we had to cap the maximum input to-
ken length due to restrictions in the available GPU
memory. However, we could further raise this limit
in the test environment, up to 20, 000 tokens.

We trained our classifiers in two stages. The
first stage uses a learning rate starting at 2e-5 and
proceeds until we reach the early stopping criteria.
We then perform a second training stage, with a
learning rate starting at 2e-7. The quantifier model
(MLP) was first trained individually following the
guidelines of Coutinho and Martins (2023), using a
learning rate starting at 2e-5 and proceeds until we
reach the early stopping criteria without maximum
number of epochs.

The model that integrates the quantification ob-
jective was initialized with pre-trained classifi-
cation and quantification components, obtained
through the first stage of training. Thus, these
components should already perform each task with
reasonable competence, prior to their combination.

4.4 Experiments and Results

The experimental results present a comprehensive
evaluation of the proposed approach across the dif-
ferent metrics, comparing it against previous meth-
ods and also against ablated model versions.

4.4.1 Classification

Tables 2 and 3 present experimental results for
the proposed approach, together with results for
ablated versions that do not consider the label
embeddings or the joint training with the quan-
tification objective, and with the results of pre-
vious work for both MIMIC-III dataset splits.
The rows named BM correspond to our base
model, while BM+MSAM refers to the addition of
the multiple-synonyms attention mechanism, and
BM+MSAM+CLQ refers to the joint training with
classification and quantification objectives.

The best results were achieved with the model
variant that includes the multi-synonym attention
mechanism, jointly considering the classification
and quantification objectives (BM+MSAM+CLQ).
When it comes to the impact of the label embed-
ding mechanism that explores multiple-synonyms,
it is clear that this module played a crucial role, sig-
nificantly boosting performance across all metrics.
In turn, the joint training with classification and
quantification objectives had a negligible impact
on classification accuracy.

When compared against previous proposals in
the literature, our approach outperformed the pre-
viously best-performing models reported for both
splits under analysis. It is also worth noting that
the models reported by Edin et al. (2023) under-
went an adjustment using the validation splits, as
the authors reported on model performance after
optimizing the decision boundary values through a
grid search mechanism to maximize F1 scores in
the validation splits. In contrast, our results do not
involve any such adjustment, and still surpassed
the best reported models to date, establishing a new
state-of-the-art approach with a default decision
boundary set at 0.5.

For the MIMIC-III-50 setup, the proposed ap-
proach outperforms the best reported model to
date (i.e., KEPTLongFormer) across all metrics
securing leading scores of 93.4 (+0.8), 95.2 (+0.4),
70.3 (+1.5), 73.6 (+0.7), and 68.5 (+1.2) in terms
of macro-AUC, micro-AUC, macro-F1, micro-F1,
and P@5, respectively. For the MIMIC-III-clean
setup, the proposed approach outperforms the best
reported model to date (i.e., PLM-ICD) also across



Stopping AUC F1 P@N
Epochs Macro Micro Macro Micro P@5

Model

CAML* (Mullenbach et al., 2018)
MSATT-KG' Xie et al. (2019)
MultiResCNN* (Li and Yu, 2020)
LAAT* (Vu et al., 2020)

87.5 91.1 51.0 60.6  61.1
91.4 93.6 63.8 68.4  64.4
89.7 92.4 61.1 67.3 644
90.5 92.8 59.2 66.8  64.0

PLM-ICD* (Huang et al., 2022) 91.7 93.8 65.4 70.5 65.7
MSMNT (Yuan et al., 2022) 92.8 94.7 68.3 72.5 68.0
KEPTLongformer! (Yang et al., 2022b) 92.6 94.8 68.9 72.9 67.3
BM 10(+0) 91.2 93.4 65.5 70.0 66.1
BM+MSAM 5(+2) 935 953 70.1 73.4 68.5
BM+MSAM+CLQ 5(+8) 93.4 95.2 70.3 73.6 68.5

Table 2: Results for the different classification meth-
ods on the MIMIC-III-50 test set. Results for meth-
ods marked with * were taken directly from Edin et al.
(2023). Results for methods marked with T were taken
directly from the corresponding paper.

Model Stopping AUC F1 P@N
Epochs Macro Micro Macro Micro P@8 P@15
CAML* Mullenbach et al. (2018) 91.4 98.2 20.4 55.4  67.7 528
MultiResCNN* (Li and Yu, 2020) 93.1 98.5 22.9 56.4 685  53.5
LAAT* (Vu et al., 2020) 94.0 98.6 22.6 578  70.1  54.8

PLM-ICD* (Huang et al., 2022) 95.9 98.9 26.6 59.6 721 56.5

BM 68(+0) 91.7 96.1 16.9 52.1  66.1  50.6

BM+MSAM 7(+4) 96.4 99.0 319 608 733 576
BM+MSAM+CLQ 7(+3) 96.4 99.0 319 608 733 576

Table 3: Results for the different classification methods
on the MIMIC-III-clean test set. Results for methods
marked with * were taken from Edin et al. (2023).

all metrics, securing leading scores of 96.4 (+0.5),
99.0 (+0.1), 31.9 (+5.3), 60.8 (+1.2), 73.3 (+1.2)
and 57.6 (+1.1) in terms of macro-AUC, micro-
AUC, macro-F1, micro-F1, P@8, and P@15.

To explore the influence of using a differ-
ent number of synonyms, we considered the
BM+MSAM+CLQ model and varied M between
2,4, or 8 synonyms on a test over the MIMIC-III-
50 dataset. Similarly to Yuan et al. (2022), our
experiments showed that M = 4 lead to the best
results, as can be observed in Table 4.

We also analyzed the proposed approach in terms
of calibration performance. In Table 5, we explic-
itly examine the calibration error over different
sets of ICD codes: Low percentile (Low Pth) cor-
responds to the average value of the calibration
error calculated for the 10% of ICD codes with
the lowest frequency rates in the training set of the
respective MIMIC-III split. In turn, medium per-
centile (Medium Pth) represents the average value
of the calibration error for the 10% of ICD codes
with medium frequency rates, falling within the
55% to 65% range in the respective MIMIC-III
split training set; Finally, high percentile (High
Pth) indicates the average value of the calibration
error for the 10% of medical codes with the highest
frequency of occurrence in the training set of the

AUC F1 Prec@N
Macro Micro Macro Micro P@5

M=1 933 95.0 69.0 1.7 67.2
M=2 934 95.1 69.8 72.6 67.8
M=4 934 95.2 70.1 73.4 68.5
M=8 935 95.1 69.8 72.8 67.9

Table 4: Results when considering a different number
of synonyms (/) on the MIMIC-III 50 dataset.

Dataset Classifier Mean Low Pth Medium Pth High Pth
BM 3.5e2  2.le-2 3.0e-2 5.1e-2

MIMIC-III-50 BM+MSAM 2.7e-2  1.8e-2 2.5e-2 3.6e-2
BM+MSAM+CLQ 3.2e-2  2.le2 2.8e-2 4.0e-2
BM 2.4e-3  l.le4 8.4e-4 16.0e-3

MIMIC-III-clean BM+MSAM 1.6e-3  2.0e-4 8.3e-4 7.7¢-3
BM+MSAM+CLQ 1.5e-3  2.0e-4 8.3e-4 7.7¢-3

Table 5: Calibration quality according to the MECE
metric, for all the proposed classification models and on
different percentiles of the MIMIC-III splits.

respective MIMIC-III split.

The results show that the the label embedding
mechanism that explores multiple-synonyms also
offers notable benefits in terms of model calibration.
The joint optimization of classification and quan-
tification objectives failed to further improve quan-
tification performance on MIMIC-III-50. How-
ever, on MIMIC-III-clean, this approach indeed
improved the calibration results, particularly for
the highest percentile codes.

Besides presenting overall classification results,
we also analyzed model performance for specific
(groups of) diagnostic codes, using the MIMIC-
III-clean split. When considering the top-10 most
frequent ICD-9-CM codes, Table 6 presents the
performance metrics per code, using our best per-
forming model. We obtained a mean precision of
75.23%, a recall of 79.96%, and an F1 score of
77.47%, i.e. results which we believe that can at-
test to the usefulness of our approach.

In turn, Table 7 presents performance metrics for
some relevant chronic diseases, representing some
of the main focuses of health care investigation.
Each of these diseases corresponds to specific ICD
blocks, with results again attesting to the usefulness
of the proposed classification method.

We show a more detailed analysis of the classifi-
cation results in an appendix, including results for
the different chapters of ICD codes.

4.4.2 Quantification

Tables 8 and 9 show quantification test results, us-
ing both MIMIC-III splits. We used the results
from the classification methods given in the pre-



Code Description Precision Recall F1
401.9  Unspecified essential hypertension 76.68 86.26  81.19
38.93  Venous Catheterization, Not Elsewhere Classified 67.75 72.71  70.15
428.0  Heart failure 79.90 82.93 81.38
427.31  Arrial fibrillation 90.18 92.15 91.16
414.01  Coronary atherosclerosis of native coronary artery 80.09 86.94 83.38
96.04  Insertion Of Endotracheal Tube 77.89 84.16  80.90
96.6  Enteral Infusion Of Concentrated Nutritional Substances 69.58 78.12  73.60
99.04  Transfusion Of Packed Cells 64.27 62.04 63.14
584.9  Acute kidney failure, unspecified 73.04 71.22 7212

25000 Diabetes mellitus without mention of complication 79.97 83.02  TT.67

type 11 or unspecified type, not stated as uncontrolled

Average 75.23 79.96  T7.47

Table 6: Performance metrics for the 10 most frequent
ICD-9-CM codes in the MIMIC-III-clean test dataset.

Unique codes Performance metrics

Block Chronic Disease Percentage — M8 M
(Present) Macro-F1 Micro-F1
250 Diabetes mellitus 33 1.943% 31.93 65.46
401-405 Hypertensive Disease 14 3.303% 28.33 77.15
410-414 Ischemic Heart Disease 32 3.279% 29.42 68.75
428 Heart Failure 15 2.471% 38.53 71.23
585;403-404  Renal Failure 0.774% 34.11 58.89
490-496 Pulmonary Disease 16 1.209% 41.22 67.78

Table 7: Performance metrics for some relevant chronic
diseases. The columns named "Unique Codes" and
"Percentage" refer to the number of unique codes of the
respective block within the MIMIC-III-clean test dataset,
and to the corresponding percentage of occurrences.

vious section within different quantification meth-
ods. These correspond to the standard Classify
and Count (CC) and Probabilistic Classify and
Count (PCC) methods, as well as to the use of
an MLP separately trained for quantification, fol-
lowing the guidelines and experimental setup from
Coutinho and Martins (2023). In the case of
BM+MSAM+CLQ, the MLP trained jointly with
the classifier was used for quantification.

Examining Table 8 with results for the MIMIC-
III-50 split, we observe that the PCC method has
a lower performance when using the results of
the model that jointly optimizes classification and
quantification objectives. In the previous section,
we had already seen that the calibration perfor-
mance also decreases in this setting. Additionally,
we find that the joint optimization does not im-
prove performance over the separate training of an
MLP for quantification, as previously proposed by
Coutinho and Martins (2023). A possible expla-
nation relates to the fact that MIMIC-III-50 does
not feature severe class imbalance issues. With a
sufficient amount of data for all ICD codes, the
multi-synonym attention mechanism is effective
in producing well-calibrated classification outputs,
leading to good quantification performance.

On what regards results over the MIMIC-III-
clean split, which features more ICD codes and
more severe class imbalance issues, we can see in

Model CcC PCC MLP/CLQ
MAE MRAE MAE MRAE MAE MRAE
BM 2.11e-02  1.08e-01 1.50e-02  9.67e-02 1.14e-02 6.83e-02
BM+MSAM 1.83e-02  9.92e-02 1.21e-02  8.28e-02 1.10e-02  6.62e-02
BM+MSAM+CLQ 1.71e-02  9.15e-02 1.62e-02 10.1e-01 1.14e-02 6.83e-02

Table 8: Results for different quantification methods,
using the results from different classification models on
the MIMIC-III-50 test dataset split.

Model CcC PCC MLP/CLQ
MAE MRAE MAE MRAE MAE MRAE
BM 1.41e-03  3.15e-01 1.24e-03 5.59e-01 8.62e-04 5.98e-01
BM+MSAM 1.41e-03  3.33e-01 1.24e-03  6.06e-01 8.62e-04 5.86e-01
BM+MSAM+CLQ 1.41e-03 3.32e-01 1.24e-03 5.98e-01 7.02¢-04 4.50e-01

Table 9: Results for different quantification methods,
using the results from different classification models on
the MIMIC-III-clean test dataset split.

Table 9 that the BM+MSAM+CLQ model outper-
forms all the baseline approaches by a significant
margin, including the use of an MLP that was sep-
arately trained for quantification. These results
are again aligned with our previous observations
regarding model calibration.

5 Conclusion and Future Work

This work introduced a novel deep learning method
for ICD coding, which achieves state-of-the-art re-
sults in tests with two MIMIC-III dataset splits
used in previous work. The proposed method pro-
cesses long clinical documents in chunks, and it
uses a label embedding mechanism that explores
diverse ICD code synonyms. Besides achieving
highly-accurate classification results, the proposed
approach also produces well-calibrated estimates,
that can effectively inform downstream tasks such
as text quantification (i.e., estimating class preva-
lence values over sets of clinical documents).

Despite the very strong results, it should be noted
that our model does not exploit the hierarchical
structure inherent to the ICD coding system, which
could further enhance its classification capabilities.
Thus, a promising avenue for further improvement
involves the use of this structural knowledge, e.g.
through the implementation of dual classification
heads. Regarding text quantification, we believe
that a path that is worth exploring concerns the
use of alternative methods to further enhance the
calibration of our classifier (e.g., through the use
of other classification loss functions besides the
BCE), since improving calibration is beneficial for
classification and essential for achieving accurate
results in quantification tasks.



Limitations and Ethical Considerations

While our work does not raise new ethical issues
within this domain, there are general concerns to
take into account.

ICD coding is very important in the context of
clinical, operational, and financial healthcare de-
cisions. Traditionally, medical coders review doc-
uments and manually assign the appropriate ICD
codes, by following specific coding guidelines. Ap-
proaches such as ours can help to significantly re-
duce time and costs in ICD coding. Still, there are
important risks associated to over-reliance on auto-
matic coding methods. No matter how accurate a
given approach is, it is still possible to misclassify
documents with erroneous ICD codes, which may
for instance affect patient treatment. We therefore
strongly believe that automatic coding should be
used to assist, rather than replace, the judgement
of trained clinical professionals.

Our experiments have also relied on MIMIC-
III datasets used in previous studies. While these
datasets constitute useful benchmarks for devel-
oping and evaluating new methods, they are not
representative of the the enormous variety of clini-
cal and linguistic data that may be encountered in
potential deployments of the method.
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A Appendix

Tables 10 and 11 provide additional insights into
our model’s performance, specifically consider-
ing results with the BM+MSAM+CLQ model for
codes within different ICD-9-CM diagnosis and
procedure chapters.

Occurrences Performance metrics

Chapter Train Validation  Test Percentage Macro-F1  Micro-F1
1 152,465 21,978 35,168 26.302% 40.08 69.14
I 9,200 1,401 2,076 1.590% 35.00 57.71
i 49,135 7,356 11,008 8.470% 34.81 60.51
v 17,882 2,657 4,106 3.092% 30.12 42.87
\4 17,392 2,562 3,740 2.973% 23.23 47.94
VI 15,811 2,433 3,397 2.715% 31.82 55.19

Vil 99,076 14,729 22,526 17.107% 30.58 67.49
VIII 31,613 4,703 7,113 5.449% 35.00 59.91
IX 27,061 3,967 6,022 4.649% 33.98 57.33

X 22,940 3,438 5,260 3.970% 32.77 62.61
X1 151 24 33 0.026% 24.19 3111
XII 6,056 888 1,371 1.043% 28.43 47.78
X1 9,098 1,360 1,944 1.556% 28.29 51.77
X1V 2,228 328 471 0.380% 51.14 64.92
XV 12,656 1,740 2,565 2.128% 33.43 61.51
XVI 20,692 3,154 4,550 3.563% 19.35 40.77
XVII 87,280 13,018 19,131 14.986% 24.78 51.72

Table 10: Number of instances and performance met-
rics for each of the ICD-9-CM diagnosis chapters. The
column named "Percentage" corresponds to the percent-
age of the diagnosis codes under consideration over the
MIMIC-III-clean test dataset.

Chapter I (i.e., infectious and parasitic diseases)
in the ICD-9-CM diagnosis codes accounts for
a substantial portion of the dataset, represent-
ing 26.302% of all codes. This chapter demon-
strates impressive performance metrics, achieving
a macro-averaged F1 score of 40.08% and a micro-
averaged F1 score of 69.14%.

Conversely, Chapter XI (i.e., complications of
pregnancy, childbirth, and the puerperium) is the
least frequent chapter of ICD codes, and it also cor-
responds to the lowest performance metrics. With
a prevalence of only 0.026% in the dataset, this
chapter yields macro and micro-averaged F1 scores
of 24.19% and 31.11%, respectively. These scores
highlight the negative impact of infrequent ICD
code occurrences on the model’s effectiveness.

Furthermore, we observe an interesting phe-
nomenon in Chapter XIV (i.e., congenital anoma-
lies). Despite representing a relatively small per-
centage (0.380%) of the overall dataset, the model
performs performs remarkably well in this chap-
ter. It attains macro and micro-averaged F1 scores
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Occurrences Performance metrics
Chapter Train  Validation Test Percentage Macro-F1 =~ Micro-F1
I 5,508 855 1,347 3.589% 35.46 63.54
I 4,852 733 1,148 3.134% 37.08 66.60
I 91 13 17 0.056% 65.39 68.57
v 102 15 23 0.065% 40.23 43.24
v 0 0 0 0% 0.0 0.0
VI 21 3 4 0.013% 40.00 40.00
VII 501 75 104 0.317% 28.77 46.63
VIII 9,590 1,480 2,164 6.161% 36.94 65.27
X 47,762 6,895 10,813 30.478% 48.20 76.14
X 897 127 217 0.578% 47.53 71.75
XI 15,302 2,267 3,555 9.834% 41.06 66.59
XII 1,045 152 230 0.664% 55.39 74.61
X1II 641 102 127 0.405% 75.10 71.84
X1V 201 27 43 0.126% 63.53 63.91
XV 20 3 4 0.013% 75.00 75.00
XVI 5,990 924 1,307 3.827% 39.35 60.05
XVIL 2,308 318 539 1.473% 32.96 49.16
XVIII 61,329 8,568 14,455 39.267% 28.54 67.18

Table 11: Number of instances and performance met-
rics for each of the ICD-9-CM procedure chapters. The
column named "Percentage" corresponds to the percent-
age of the procedure codes under consideration over the
MIMIC-III-clean test dataset.

of 51.14% and 64.92%, respectively, empirically
showing the model’s ability to perform few-shot
learning when dealing with seldom-seen codes.

When we examine the overall distribution of
procedure codes, we see that the dataset is char-
acterized by a generally low density of procedure
codes, with two notable exceptions in Chapter IX
(i.e., operations on the cardiovascular system) and
Chapter X VIII (i.e., miscellaneous diagnostic and
therapeutic procedures), which encompass almost
70% of the dataset. However, despite the relatively
low frequency of procedures in the other chapters,
our model performs exceptionally well in them.
For instance, Chapters VI and XV achieve perfor-
mance values of 40% and 75.00% respectively in
both metrics, even though these codes have a mi-
nuscule 0.013% representation within the dataset.
These results underscore the model’s capacity to
learn even from infrequent instances, again empha-
sizing its few-shot learning capabilities.

Chapter XVIII in the ICD-9-CM procedure
codes, which covers "miscellaneous diagnostic and
therapeutic procedures," stands out as the most fre-
quently occurring chapter in the dataset, accounting
for a substantial 39.267% of the total. We achieve
28.54% for macro-averaged F1 in this chapter, and
67.18% for micro-averaged F1.
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