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Abstract
Although the International Classification of001
Diseases (ICD) has been adopted worldwide,002
manually assigning ICD codes to clinical text003
is time-consuming, error-prone, and expensive,004
motivating the development of automated ap-005
proaches. This paper describes a novel deep006
learning approach for ICD coding, combining007
several ideas from previous related work. In008
particular, we split long clinical documents into009
chunks, and use a strong Transformer-based010
model for processing each of the chunks inde-011
pendently. The resulting representations are012
processed with a max-pooling operation, and013
combined with a label embedding mechanism014
that explores diverse ICD code synonyms. Ex-015
periments with different splits of the MIMIC-016
III dataset show that the proposed approach017
outperforms the current state-of-the-art models018
in ICD coding, while also leading to properly019
calibrated results that can effectively inform020
downstream tasks such as text quantification.021

1 Introduction022

The International Classification of Diseases (ICD1)023

coding system, proposed by the World Health Orga-024

nization, stands as a universally embraced standard025

for precise documentation of diagnoses and pro-026

cedures in the medical domain (O’malley et al.,027

2005). Still, the manual assignment of ICD codes028

to clinical text is a time-consuming, labor intensive,029

and error-prone task, which has led to the explo-030

ration of automated coding methods, e.g. using031

deep learning algorithms for text classification.032

Despite many previous efforts, automatic ICD033

coding is still challenging, since clinical notes con-034

sist of long text narratives, using a specialized med-035

ical vocabulary, and that are associated to a high036

dimensional, sparse, and imbalanced label space.037

In addition to accurately classifying individual038

clinical notes, estimating the prevalence of ICD039

1https://www.who.int/standards/
classifications/classification-of-diseases

codes within a dataset is also important for many 040

practical applications. This corresponds to a text 041

quantification problem (Schumacher et al., 2021; 042

Moreo et al., 2022), requiring properly calibrated 043

text classification models. 044

This paper describes a novel deep learning ap- 045

proach for ICD coding, combining several ideas 046

from previous related work. In particular, we 047

split long clinical documents into chunks, and use 048

a strong Transformer-based model (Yang et al., 049

2022a) for processing each of the text chunks in- 050

dependently. The resulting representations are pro- 051

cessed with a max-pooling operation, and com- 052

bined with a label embedding mechanism inspired 053

by that of Yuan et al. (2022), that explores diverse 054

ICD code synonyms. Additionally, taking inspi- 055

ration on the MLP-based quantification approach 056

from Coutinho and Martins (2023), we explored 057

a training setup in which multi-label classification 058

and text quantification are jointly addressed. This 059

additional step was explored as an approach to po- 060

tentially improve model calibration. 061

Following previous studies, the proposed model 062

was evaluated on the publicly available MIMIC-III 063

dataset (Johnson et al., 2016), specifically analyz- 064

ing results on two subsets of hospital discharge 065

summaries, namely MIMIC-III-50 (Mullenbach 066

et al., 2018) and MIMIC-III-clean (Edin et al., 067

2023). Our approach surpasses common baselines 068

and previous state-of-the-art models for ICD cod- 069

ing, across all evaluated metrics, while also leading 070

to properly calibrated results that can effectively in- 071

form downstream tasks such as text quantification. 072

The remaining parts of this paper are organized 073

as follows: Section 2 reviews existing literature, 074

while Section 3 introduces our novel framework for 075

ICD coding and quantification. Section 4 presents 076

the experimental results, establishing a direct com- 077

parison with previous studies. Finally, Section 5 078

summarizes our contributions and discusses future 079

research directions. The paper ends with a discus- 080
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sion on limitations and ethical considerations.081

2 Related Work082

Several previous studies have addressed the prob-083

lem of automatic ICD coding. For instance, Mul-084

lenbach et al. (2018) introduced the Convolutional085

Attention for Multi-Label classification (CAML)086

approach, i.e. a CNN-based method that is still087

commonly considered as a baseline. CAML em-088

ploys a label-wise attention mechanism, enabling089

the model to learn distinct document representa-090

tions for each label, through the use of attention091

to select relevant parts of the document for each092

ICD code. The authors conducted experiments on093

MIMIC datasets (Lee et al., 2011; Johnson et al.,094

2016), and the train-test splits developed for this095

work were latter made publicly available. This096

study is considered an important milestone for re-097

producibility regarding methods for ICD coding.098

Aiming to address CAML’s limitations in cap-099

turing variable-sized text patterns, Xie et al. (2019)100

improved the convolutional attention model by in-101

troducing a densely connected CNN with multi-102

scale feature attention (MSATT-KG), which pro-103

duces variable n-gram features and adaptively se-104

lects informative features based on neighborhood105

context. This method also incorporates a graph106

CNN to capture hierarchical relationships among107

medical codes. In turn, Li and Yu (2020) proposed108

MultiResCNN, i.e. a novel CNN architecture com-109

bining multi-filter convolutions and residual convo-110

lutions, capturing patterns of different lengths and111

achieving superior performance over CAML.112

Vu et al. (2020) introduced LAAT, i.e. a model113

that combines an RNN-based encoder with a new114

label attention mechanism for ICD coding. LAAT115

aimed to handle the variability in text segment116

lengths and the interdependence among different117

segments related to ICD codes. Additionally, the118

authors introduced a hierarchical joint learning119

mechanism to address the class imbalance issue.120

Yuan et al. (2022) put forth the Multiple Syn-121

onyms Matching Network (MSMN) as an alterna-122

tive approach to ICD coding. Rather than relying123

on the ICD code hierarchy, the authors leveraged124

synonyms to enhance code representation learning125

and improve coding performance.126

In recent years, text classification research has127

shifted towards the use of Transformer-based128

language models. Dai et al. (2022) compared129

Transformer-based models for long document clas-130

sification, focusing on mitigating the computational 131

overheads associated with encoding large texts. 132

Huang et al. (2022) investigated limitations asso- 133

ciated to the use of pre-trained Transformer-based 134

language models, identifying challenges associated 135

to large label spaces, long input lengths, and do- 136

main disparities. The authors proposed PLM-ICD, 137

i.e. a framework that effectively handles these chal- 138

lenges and achieves superior results on the MIMIC 139

dataset, surpassing previously existing methods. 140

In a recent study, Edin et al. (2023) argued that 141

the proper assessment of model performance on 142

ICD coding had often struggled with weak con- 143

figurations, poorly designed train-test splits, and 144

inadequate evaluation procedures. The authors pin- 145

pointed significant issues with the MIMIC-III splits 146

released by Mullenbach et al. (2018), and proposed 147

a new split using stratified sampling, to ensure a 148

complete representation of all classes. 149

On what regards text quantification, a variety of 150

different algorithms has been proposed in recent 151

years (Schumacher et al., 2021). Still, few previous 152

studies have specifically considered multi-label set- 153

tings (Moreo et al., 2022). Coutinho and Martins 154

(2023) explored the use of a Multi-Layer Percep- 155

tron (MLP) model, inspired on under-complete de- 156

noising auto-encoders. The MLP was trained to re- 157

fine estimates provided by the probabilistic classify 158

and count method, considering label correlations. 159

Experiments with MIMIC-III datasets showed that 160

the proposed method could outperform baseline 161

approaches such as Classify and Count (CC) and 162

Probabilistic Classify and Count (PCC). 163

3 Proposed Approach 164

This work presents a novel approach for ICD cod- 165

ing, aiming at strong classification performance 166

together with well-calibrated outputs that can in- 167

form downstream tasks such as text quantification. 168

3.1 Chunk-Based Modeling of Clinical Text 169

One of the key aspects in our approach is the as- 170

sumption that if an ICD code is identified in a single 171

segment (i.e., a chunk) of the input document, then 172

that code should clearly be assigned when classify- 173

ing the document as a whole. 174

By carefully attending to the ICD codes in each 175

chunk, and employing max-pooling to consolidate 176

detections, we can effectively leverage the capabil- 177

ities of a standard Transformer encoder, limited to 178

a maximum of T tokens (in our case, T = 512), 179
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Figure 1: Smooth document segmentation with token
overlaps. Note that each chunk includes, at the end, the
sentence separation token [SEP] characteristic of BERT
models, completing 512 tokens per chunk.

Figure 2: The chunk-based classification architecture.

to analyze long clinical documents. To mitigate180

the loss of information from abruptly breaking in-181

terconnected pieces of text, we adopted a smooth182

partitioning scheme that considers large overlaps183

between chunks, as shown in Figure 1.184

With this approach, we used a Megatron BERT185

model pre-trained on the healthcare domain (i.e.,186

GatorTron, described by Yang et al. (2022a)), pub-187

licly available in the NVIDIA2 NGC Catalog and188

in association with the HuggingFace3 Transform-189

ers library. Figure 2 illustrates the chunk-based190

classification architecture, where C refers to the191

number of chunks, T corresponds to the number192

of tokens within each chunk, H corresponds to193

the dimensionality of the vectors representing each194

token, and L denotes the number of ICD classes.195

3.2 Multi-Synonyms Attention196

Inspired by Yuan et al. (2022), we enhanced our197

classification model through the integration of a198

multi-synonyms attention mechanism. The primary199

objective was to explore the intricate relationships200

between specific mentions to ICD codes, within201

chunks of the hospital discharge summaries, and202

the textual descriptions for ICD codes. This integra-203

tion aimed to leverage synonyms to improve code204

2https://catalog.ngc.nvidia.com/
3https://huggingface.co/UFNLP/gatortron-base

representation learning (i.e., label embeddings), ul- 205

timately aiding in code classification. 206

We started by extending the ICD-9-CM code 207

descriptions with synonyms obtained from a large 208

medical knowledge base, specifically the UMLS 209

metathesaurus. By aligning ICD codes with UMLS 210

Concept Unique Identifiers (CUIs), we selected 211

corresponding synonyms for English terms shar- 212

ing the same CUIs. Additionally, we considered 213

synonym variants by removing special characters, 214

allowing only hyphens and brackets, and removing 215

the coordinating conjunctions "or" and "and". 216

While extending the code descriptions, we ob- 217

served that the lists of UMLS synonyms associated 218

with each code were often long and repetitive, pos- 219

ing a risk of introducing bias in classification, and 220

negatively impacting the meaning of code repre- 221

sentations. To improve diversity, we gathered more 222

synonyms from Wikidata and Wikipedia, and then 223

selected M synonyms for each code according to 224

a particular procedure. The synonyms were first 225

represented as vectors through the same GatorTron 226

model used to represent the text chunks (i.e., taking 227

the [CLS] token representation for each synonym). 228

Then, M vectors were selected for each ICD code 229

through the application of the Gurobi optimizer4, as 230

a way to address the Maximum Diversity Problem5, 231

which can be formulated as follows: 232

maximize
n−1∑
i=1

n∑
j=i+1

dijxixj , (1) 233

234

subject to
n∑

i=1

xi = M, (2) 235

236
xi = {0, 1}, 1 ≤ i ≤ n. (3) 237

In the previous equations, dij is a distance metric 238

between synonym representations i and j (i.e., the 239

cosine distance between the vectors), and xi takes 240

the value 1 if element i is selected and 0 otherwise. 241

Through this optimization problem, we selected 242

a small subset of synonyms that effectively repre- 243

sents the broader embedding space for each ICD 244

code. Here we denote by Ql a matrix where rows 245

correspond to the representations for the M syn- 246

onyms associated to ICD code l, with each code 247

synonym composed of tokens {sji}
Sj

i=1: 248

Ql = {GatorEnc(sjl1 , ..., s
jl
Sjl

)[CLS]}Mj=1. (4) 249

4https://www.gurobi.com
5https://grafo.etsii.urjc.es/optsicom/mdp.html
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Note that the token representations within each250

chunk of text c are similarly produced with the251

GatorTron model, and are here denoted as Kc:252

Kc = GatorEnc(xc1, ..., x
c
T ). (5)253

To integrate the text representations from each254

chunk with the multiple synonym representations,255

we use an approach inspired by the multi-synonyms256

attention method proposed by Yuan et al. (2022),257

which in turn draws inspiration from the multi-head258

attention mechanism of the Transformer architec-259

ture (Vaswani et al., 2017).260

We specifically split Kc into Z heads, setting261

this value to be equal to the maximum number of262

synonyms per code, i.e. Z = M :263

Kc = Kc
1, ...,K

c
Z . (6)264

The code synonyms {Ql}Ll=1 are used to query Kc,265

and by calculating attention scores αl over Kc,266

we identify the parts from the chunk’s text that267

are more related to code’s synonym l. We use268

max-pooling of tanh(Kc)αl to aggregate code-wise269

text representations rl, assuming that the text only270

needs to match one of the synonyms:271

αl = {Softmax(WQQl . tahn(WKKc))}Cc=1, (7)272

273
rl = {MaxPool(tahn(Kc)αl)}Cc=1. (8)274

To assess whether the text of a chunk c contained275

code l, we evaluate the similarity between the code-276

wise text representation rl and code’s embeddings277

v. We aggregate the code synonym representa-278

tions Q to form a code representation v through279

max-pooling, resulting in a matrix with each row280

depicting a global representation of each code. To281

measure the similarity for classification, we apply282

a bi-affine transformation. Finally, after carefully283

attending to the IDC codes in each chunk using284

synonyms to enhance the classification, we employ285

max pooling to consolidate the results:286

v = MaxPool(Q1, Q2, ..., QM ), (9)287

288
Y = σ(MaxPool(rT1 Wv, ..., rTCWv)). (10)289

Unlike previous approaches that perform classi-290

fication using code-dependent parameters, which291

can be challenging to define for rare codes, our bi-292

affine function uses code-independent parameters293

Wv. This approach simplifies the learning process,294

at the same time making it more effective.295

Figure 3: The chunk-based classification architecture
that considers a multi-synonyms attention mechanism.

Figure 3 illustrates the process behind the chunk- 296

based classification method that considers the 297

multi-synonyms attention mechanism. 298

For model training, noting that we are in the pres- 299

ence of a multi-label classification task, we adopted 300

the widely-used Binary Cross-Entropy (BCE) loss, 301

which treats each class independently and can be 302

formally described as follows: 303

LC =
∑L

l=1−yllog(ŷl) − (1− yl)log(1− ŷl). (11) 304

The variable yl ∈ {0, 1} represents the ground truth 305

for a code l, while ŷl represents the probability of 306

that code being present, as given by the classifier, 307

and L is the number of different ICD codes. 308

3.3 Joint Classification and Quantification 309

Following previous work by Coutinho and Martins 310

(2023), we considered the use of an under-complete 311

denoising auto-encoder to quantify the prevalence 312

of ICD codes within a set of documents, accounting 313

with label associations. We integrated this quantifi- 314

cation module, implemented as a three-layer MLP, 315

together with the classifier, performing end-to-end 316

training of the resulting model. We hypothesise that 317

the classification and the quantification objectives 318

can naturally complement each other, contributing 319

to improved model calibration. 320

Notice that classification operates at the level 321

of individual instances, while quantification oper- 322

ates over groups of instances. To integrate both 323
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objectives within end-to-end training, we follow324

the steps described next:325

1. Shuffling and setting a limit: We shuffle the326

training dataset at the start of each training327

epoch. We also establish a limit that simulates328

the maximum number of instances that will329

be considered for quantification.330

2. Iterative data collection: We process the in-331

stances individually as we progress through332

the training set. For each instance that is pro-333

cessed, we collect the classification results334

until we hit the previously defined maximum335

limit. This creates a new group of instances336

for each new instance that is processed, con-337

sisting of the ones we have processed thus338

far, plus the latest instance. The processing of339

each instance is made as follows:340

(a) Computation of classification loss:341

When processing each new instance, we342

apply our classification model and calcu-343

late the classification loss associated to344

that instance.345

(b) Computation of quantification loss:346

We take the classification output and add347

it to the previous classification outputs.348

This combination allows us to compute349

a probabilistic classify and count vector,350

denoting the estimated relative frequency351

of each class label within the group of352

instances. We then process this vector353

using the aforementioned MLP, which re-354

fines the probabilistic classify and count355

estimates. We finally calculate the quan-356

tification loss with the refined estimates.357

(c) Aggregation of results: The loss values358

computed in the previous steps are aggre-359

gated into a total loss, which is used to360

update model parameters for each batch361

of instances that is processed.362

3. Repeat and reset: We follow the iterative pro-363

cess (steps (a) to (c)) until we reach the maxi-364

mum number of instances designated for the365

quantification set. Once this limit is reached,366

we reset the quantification group and estab-367

lish a new maximum limit for the instances to368

be quantified, continuing with model training369

until a stopping criteria is meet.370

Our combined loss function can be formally de-371

scribed by the following equation, where λ is an372

hyper-parameter controlling the relative influence 373

of the quantification loss: 374

L = LC + λLQ. (12) 375

The classification loss (LC) is the BCE formally 376

described in Equation 11, while the quantification 377

loss (LQ) uses the MSE, formally described as: 378

LQ(p̂
MLP
ϵ , pϵ) =

L∑
l=1

|p̂MLP
ϵ (l)− pϵ(l)|2, (13) 379

where pϵ is the ground-truth quantification result 380

(i.e., the relative class frequency within the set of 381

instances) for each of the L class labels. 382

The MSE loss was preferred over other 383

regression-type losses, such as the MAE, because it 384

provides a smoother optimization landscape, lead- 385

ing to more stable and accurate results. 386

4 Experimental Evaluation 387

This section presents the experimental evaluation 388

of the proposed method, establishing a comparison 389

towards previously reported results. 390

4.1 Datasets 391

Experiments were conducted using the publicly 392

available MIMIC-III data (Johnson et al., 2016). 393

We specifically used the same dataset splits con- 394

sidered in previous work, namely MIMIC-III-50 395

(Mullenbach et al., 2018), which only comprises 396

the top-50 most frequent codes in the dataset, and 397

also MIMIC-III-clean (Edin et al., 2023), which 398

corresponds to a cleaned dataset version that con- 399

tains 3, 681 unique ICD-9-CM codes. Access to the 400

MIMIC-III data was granted through PhysioNet6, 401

after completing the ethical training by the Collab- 402

orative Institutional Training Initiative program. 403

4.2 Evaluation Metrics 404

To ensure a fair comparison with prior research, we 405

assessed the proposed approach across a range of 406

metrics also considered in previous work. 407

Regarding the classification task, we used mi- 408

cro and macro-averaged F1-scores, Area Under the 409

Curve (AUC) scores, and precision at cutoff n. For 410

the experiments over the MIMIC-III-50 dataset we 411

defined n = 5, and for the experiments conducted 412

on MIMIC-III-clean we considered n = 8 and 413

n = 15, roughly aligning with the average number 414

6https://physionet.org/content/mimiciii/

5

https://physionet.org/content/mimiciii/


Parameters MIMIC-III-50 MIMIC-III-clean

Maximum token input length 7, 142 6, 122

Token overlapping window 255 255

GatorTron hidden size 1, 024 1, 024

Synonyms per ICD code (M) 4 4

Number of heads (Z) 4 4

Maximum number of epochs 300 300

Early stopping patience 5 5

Effective batch size 16 16

Adam e 1e-8 1e-8
Starting learning rate 2e-5/2e-7 2e-5/2e-7
Ending learning rate 0 0

MLP hidden size 32 3, 072

Quantification coefficient (λ) 100 100

Learning rate scheduler linear linear

Table 1: Hyper-parameters used for model training in
the MIMIC-III-50 and MIMIC-III-clean settings. The
max number of epcochs values are related to the classifi-
cation and quantification modules.

of codes in each split. For measuring the calibra-415

tion quality of our classifier, we used the Mean416

Expected Calibration Error (MECE) with 20 bins.417

For the quantification task, we used the Mean418

Absolute Error (MAE) and the Mean Relative Ab-419

solute Error (MRAE) to assess result quality.420

4.3 Implementation Details421

Table 1 presents the training hyper-parameters con-422

sidered in our experiments.423

Since the proposed model processes the input424

text in chunks, the maximum allowable token425

length is limited only by hardware constraints. Dur-426

ing training, we had to cap the maximum input to-427

ken length due to restrictions in the available GPU428

memory. However, we could further raise this limit429

in the test environment, up to 20, 000 tokens.430

We trained our classifiers in two stages. The431

first stage uses a learning rate starting at 2e-5 and432

proceeds until we reach the early stopping criteria.433

We then perform a second training stage, with a434

learning rate starting at 2e-7. The quantifier model435

(MLP) was first trained individually following the436

guidelines of Coutinho and Martins (2023), using a437

learning rate starting at 2e-5 and proceeds until we438

reach the early stopping criteria without maximum439

number of epochs.440

The model that integrates the quantification ob-441

jective was initialized with pre-trained classifi-442

cation and quantification components, obtained443

through the first stage of training. Thus, these444

components should already perform each task with445

reasonable competence, prior to their combination.446

4.4 Experiments and Results 447

The experimental results present a comprehensive 448

evaluation of the proposed approach across the dif- 449

ferent metrics, comparing it against previous meth- 450

ods and also against ablated model versions. 451

4.4.1 Classification 452

Tables 2 and 3 present experimental results for 453

the proposed approach, together with results for 454

ablated versions that do not consider the label 455

embeddings or the joint training with the quan- 456

tification objective, and with the results of pre- 457

vious work for both MIMIC-III dataset splits. 458

The rows named BM correspond to our base 459

model, while BM+MSAM refers to the addition of 460

the multiple-synonyms attention mechanism, and 461

BM+MSAM+CLQ refers to the joint training with 462

classification and quantification objectives. 463

The best results were achieved with the model 464

variant that includes the multi-synonym attention 465

mechanism, jointly considering the classification 466

and quantification objectives (BM+MSAM+CLQ). 467

When it comes to the impact of the label embed- 468

ding mechanism that explores multiple-synonyms, 469

it is clear that this module played a crucial role, sig- 470

nificantly boosting performance across all metrics. 471

In turn, the joint training with classification and 472

quantification objectives had a negligible impact 473

on classification accuracy. 474

When compared against previous proposals in 475

the literature, our approach outperformed the pre- 476

viously best-performing models reported for both 477

splits under analysis. It is also worth noting that 478

the models reported by Edin et al. (2023) under- 479

went an adjustment using the validation splits, as 480

the authors reported on model performance after 481

optimizing the decision boundary values through a 482

grid search mechanism to maximize F1 scores in 483

the validation splits. In contrast, our results do not 484

involve any such adjustment, and still surpassed 485

the best reported models to date, establishing a new 486

state-of-the-art approach with a default decision 487

boundary set at 0.5. 488

For the MIMIC-III-50 setup, the proposed ap- 489

proach outperforms the best reported model to 490

date (i.e., KEPTLongFormer) across all metrics 491

securing leading scores of 93.4 (+0.8), 95.2 (+0.4), 492

70.3 (+1.5), 73.6 (+0.7), and 68.5 (+1.2) in terms 493

of macro-AUC, micro-AUC, macro-F1, micro-F1, 494

and P@5, respectively. For the MIMIC-III-clean 495

setup, the proposed approach outperforms the best 496

reported model to date (i.e., PLM-ICD) also across 497
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Model
Stopping
Epochs

AUC F1 P@N
Macro Micro Macro Micro P@5

CAML* (Mullenbach et al., 2018) − 87.5 91.1 51.0 60.6 61.1

MSATT-KG† Xie et al. (2019) − 91.4 93.6 63.8 68.4 64.4

MultiResCNN* (Li and Yu, 2020) − 89.7 92.4 61.1 67.3 64.4

LAAT* (Vu et al., 2020) − 90.5 92.8 59.2 66.8 64.0

PLM-ICD* (Huang et al., 2022) − 91.7 93.8 65.4 70.5 65.7

MSMN† (Yuan et al., 2022) − 92.8 94.7 68.3 72.5 68.0

KEPTLongformer† (Yang et al., 2022b) − 92.6 94.8 68.9 72.9 67.3

BM 10(+0) 91.2 93.4 65.5 70.0 66.1

BM+MSAM 5(+2) 93.5 95.3 70.1 73.4 68.5
BM+MSAM+CLQ 5(+8) 93.4 95.2 70.3 73.6 68.5

Table 2: Results for the different classification meth-
ods on the MIMIC-III-50 test set. Results for meth-
ods marked with * were taken directly from Edin et al.
(2023). Results for methods marked with † were taken
directly from the corresponding paper.

Model
Stopping
Epochs

AUC F1 P@N
Macro Micro Macro Micro P@8 P@15

CAML* Mullenbach et al. (2018) − 91.4 98.2 20.4 55.4 67.7 52.8

MultiResCNN* (Li and Yu, 2020) − 93.1 98.5 22.9 56.4 68.5 53.5

LAAT* (Vu et al., 2020) − 94.0 98.6 22.6 57.8 70.1 54.8

PLM-ICD* (Huang et al., 2022) − 95.9 98.9 26.6 59.6 72.1 56.5

BM 68(+0) 91.7 96.1 16.9 52.1 66.1 50.6

BM+MSAM 7(+4) 96.4 99.0 31.9 60.8 73.3 57.6
BM+MSAM+CLQ 7(+3) 96.4 99.0 31.9 60.8 73.3 57.6

Table 3: Results for the different classification methods
on the MIMIC-III-clean test set. Results for methods
marked with * were taken from Edin et al. (2023).

all metrics, securing leading scores of 96.4 (+0.5),498

99.0 (+0.1), 31.9 (+5.3), 60.8 (+1.2), 73.3 (+1.2)499

and 57.6 (+1.1) in terms of macro-AUC, micro-500

AUC, macro-F1, micro-F1, P@8, and P@15.501

To explore the influence of using a differ-502

ent number of synonyms, we considered the503

BM+MSAM+CLQ model and varied M between504

2, 4, or 8 synonyms on a test over the MIMIC-III-505

50 dataset. Similarly to Yuan et al. (2022), our506

experiments showed that M = 4 lead to the best507

results, as can be observed in Table 4.508

We also analyzed the proposed approach in terms509

of calibration performance. In Table 5, we explic-510

itly examine the calibration error over different511

sets of ICD codes: Low percentile (Low Pth) cor-512

responds to the average value of the calibration513

error calculated for the 10% of ICD codes with514

the lowest frequency rates in the training set of the515

respective MIMIC-III split. In turn, medium per-516

centile (Medium Pth) represents the average value517

of the calibration error for the 10% of ICD codes518

with medium frequency rates, falling within the519

55% to 65% range in the respective MIMIC-III520

split training set; Finally, high percentile (High521

Pth) indicates the average value of the calibration522

error for the 10% of medical codes with the highest523

frequency of occurrence in the training set of the524

AUC F1 Prec@N
Macro Micro Macro Micro P@5

M = 1 93.3 95.0 69.0 71.7 67.2
M = 2 93.4 95.1 69.8 72.6 67.8
M = 4 93.4 95.2 70.1 73.4 68.5
M = 8 93.5 95.1 69.8 72.8 67.9

Table 4: Results when considering a different number
of synonyms (M ) on the MIMIC-III 50 dataset.

Dataset Classifier Mean Low Pth Medium Pth High Pth

BM 3.5e-2 2.1e-2 3.0e-2 5.1e-2
MIMIC-III-50 BM+MSAM 2.7e-2 1.8e-2 2.5e-2 3.6e-2

BM+MSAM+CLQ 3.2e-2 2.1e-2 2.8e-2 4.0e-2

BM 2.4e-3 1.1e-4 8.4e-4 16.0e-3
MIMIC-III-clean BM+MSAM 1.6e-3 2.0e-4 8.3e-4 7.7e-3

BM+MSAM+CLQ 1.5e-3 2.0e-4 8.3e-4 7.7e-3

Table 5: Calibration quality according to the MECE
metric, for all the proposed classification models and on
different percentiles of the MIMIC-III splits.

respective MIMIC-III split. 525

The results show that the the label embedding 526

mechanism that explores multiple-synonyms also 527

offers notable benefits in terms of model calibration. 528

The joint optimization of classification and quan- 529

tification objectives failed to further improve quan- 530

tification performance on MIMIC-III-50. How- 531

ever, on MIMIC-III-clean, this approach indeed 532

improved the calibration results, particularly for 533

the highest percentile codes. 534

Besides presenting overall classification results, 535

we also analyzed model performance for specific 536

(groups of) diagnostic codes, using the MIMIC- 537

III-clean split. When considering the top-10 most 538

frequent ICD-9-CM codes, Table 6 presents the 539

performance metrics per code, using our best per- 540

forming model. We obtained a mean precision of 541

75.23%, a recall of 79.96%, and an F1 score of 542

77.47%, i.e. results which we believe that can at- 543

test to the usefulness of our approach. 544

In turn, Table 7 presents performance metrics for 545

some relevant chronic diseases, representing some 546

of the main focuses of health care investigation. 547

Each of these diseases corresponds to specific ICD 548

blocks, with results again attesting to the usefulness 549

of the proposed classification method. 550

We show a more detailed analysis of the classifi- 551

cation results in an appendix, including results for 552

the different chapters of ICD codes. 553

4.4.2 Quantification 554

Tables 8 and 9 show quantification test results, us- 555

ing both MIMIC-III splits. We used the results 556

from the classification methods given in the pre- 557
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Code Description Precision Recall F1

401.9 Unspecified essential hypertension 76.68 86.26 81.19

38.93 Venous Catheterization, Not Elsewhere Classified 67.75 72.71 70.15

428.0 Heart failure 79.90 82.93 81.38

427.31 Atrial fibrillation 90.18 92.15 91.16

414.01 Coronary atherosclerosis of native coronary artery 80.09 86.94 83.38

96.04 Insertion Of Endotracheal Tube 77.89 84.16 80.90

96.6 Enteral Infusion Of Concentrated Nutritional Substances 69.58 78.12 73.60

99.04 Transfusion Of Packed Cells 64.27 62.04 63.14

584.9 Acute kidney failure, unspecified 73.04 71.22 72.12

250.00
Diabetes mellitus without mention of complication

72.97 83.02 77.67
type II or unspecified type, not stated as uncontrolled

Average 75.23 79.96 77.47

Table 6: Performance metrics for the 10 most frequent
ICD-9-CM codes in the MIMIC-III-clean test dataset.

Block Chronic Disease
Unique codes

(Present)
Percentage

Performance metrics
Macro-F1 Micro-F1

250 Diabetes mellitus 33 1.943% 31.93 65.46

401-405 Hypertensive Disease 14 3.303% 28.33 77.15

410-414 Ischemic Heart Disease 32 3.279% 29.42 68.75

428 Heart Failure 15 2.471% 38.53 71.23

585;403-404 Renal Failure 8 0.774% 34.11 58.89

490-496 Pulmonary Disease 16 1.209% 41.22 67.78

Table 7: Performance metrics for some relevant chronic
diseases. The columns named "Unique Codes" and
"Percentage" refer to the number of unique codes of the
respective block within the MIMIC-III-clean test dataset,
and to the corresponding percentage of occurrences.

vious section within different quantification meth-558

ods. These correspond to the standard Classify559

and Count (CC) and Probabilistic Classify and560

Count (PCC) methods, as well as to the use of561

an MLP separately trained for quantification, fol-562

lowing the guidelines and experimental setup from563

Coutinho and Martins (2023). In the case of564

BM+MSAM+CLQ, the MLP trained jointly with565

the classifier was used for quantification.566

Examining Table 8 with results for the MIMIC-567

III-50 split, we observe that the PCC method has568

a lower performance when using the results of569

the model that jointly optimizes classification and570

quantification objectives. In the previous section,571

we had already seen that the calibration perfor-572

mance also decreases in this setting. Additionally,573

we find that the joint optimization does not im-574

prove performance over the separate training of an575

MLP for quantification, as previously proposed by576

Coutinho and Martins (2023). A possible expla-577

nation relates to the fact that MIMIC-III-50 does578

not feature severe class imbalance issues. With a579

sufficient amount of data for all ICD codes, the580

multi-synonym attention mechanism is effective581

in producing well-calibrated classification outputs,582

leading to good quantification performance.583

On what regards results over the MIMIC-III-584

clean split, which features more ICD codes and585

more severe class imbalance issues, we can see in586

Model
CC PCC MLP/CLQ

MAE MRAE MAE MRAE MAE MRAE

BM 2.11e-02 1.08e-01 1.50e-02 9.67e-02 1.14e-02 6.83e-02
BM+MSAM 1.83e-02 9.92e-02 1.21e-02 8.28e-02 1.10e-02 6.62e-02
BM+MSAM+CLQ 1.71e-02 9.15e-02 1.62e-02 10.1e-01 1.14e-02 6.83e-02

Table 8: Results for different quantification methods,
using the results from different classification models on
the MIMIC-III-50 test dataset split.

Model
CC PCC MLP/CLQ

MAE MRAE MAE MRAE MAE MRAE

BM 1.41e-03 3.15e-01 1.24e-03 5.59e-01 8.62e-04 5.98e-01
BM+MSAM 1.41e-03 3.33e-01 1.24e-03 6.06e-01 8.62e-04 5.86e-01
BM+MSAM+CLQ 1.41e-03 3.32e-01 1.24e-03 5.98e-01 7.02e-04 4.50e-01

Table 9: Results for different quantification methods,
using the results from different classification models on
the MIMIC-III-clean test dataset split.

Table 9 that the BM+MSAM+CLQ model outper- 587

forms all the baseline approaches by a significant 588

margin, including the use of an MLP that was sep- 589

arately trained for quantification. These results 590

are again aligned with our previous observations 591

regarding model calibration. 592

5 Conclusion and Future Work 593

This work introduced a novel deep learning method 594

for ICD coding, which achieves state-of-the-art re- 595

sults in tests with two MIMIC-III dataset splits 596

used in previous work. The proposed method pro- 597

cesses long clinical documents in chunks, and it 598

uses a label embedding mechanism that explores 599

diverse ICD code synonyms. Besides achieving 600

highly-accurate classification results, the proposed 601

approach also produces well-calibrated estimates, 602

that can effectively inform downstream tasks such 603

as text quantification (i.e., estimating class preva- 604

lence values over sets of clinical documents). 605

Despite the very strong results, it should be noted 606

that our model does not exploit the hierarchical 607

structure inherent to the ICD coding system, which 608

could further enhance its classification capabilities. 609

Thus, a promising avenue for further improvement 610

involves the use of this structural knowledge, e.g. 611

through the implementation of dual classification 612

heads. Regarding text quantification, we believe 613

that a path that is worth exploring concerns the 614

use of alternative methods to further enhance the 615

calibration of our classifier (e.g., through the use 616

of other classification loss functions besides the 617

BCE), since improving calibration is beneficial for 618

classification and essential for achieving accurate 619

results in quantification tasks. 620
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Limitations and Ethical Considerations621

While our work does not raise new ethical issues622

within this domain, there are general concerns to623

take into account.624

ICD coding is very important in the context of625

clinical, operational, and financial healthcare de-626

cisions. Traditionally, medical coders review doc-627

uments and manually assign the appropriate ICD628

codes, by following specific coding guidelines. Ap-629

proaches such as ours can help to significantly re-630

duce time and costs in ICD coding. Still, there are631

important risks associated to over-reliance on auto-632

matic coding methods. No matter how accurate a633

given approach is, it is still possible to misclassify634

documents with erroneous ICD codes, which may635

for instance affect patient treatment. We therefore636

strongly believe that automatic coding should be637

used to assist, rather than replace, the judgement638

of trained clinical professionals.639

Our experiments have also relied on MIMIC-640

III datasets used in previous studies. While these641

datasets constitute useful benchmarks for devel-642

oping and evaluating new methods, they are not643

representative of the the enormous variety of clini-644

cal and linguistic data that may be encountered in645

potential deployments of the method.646
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A Appendix727

Tables 10 and 11 provide additional insights into728

our model’s performance, specifically consider-729

ing results with the BM+MSAM+CLQ model for730

codes within different ICD-9-CM diagnosis and731

procedure chapters.732

Occurrences Performance metrics
Chapter Train Validation Test Percentage Macro-F1 Micro-F1

I 152, 465 21, 978 35, 168 26.302% 40.08 69.14

II 9, 200 1, 401 2, 076 1.590% 35.00 57.71

III 49, 135 7, 356 11, 008 8.470% 34.81 60.51

IV 17, 882 2, 657 4, 106 3.092% 30.12 42.87

V 17, 392 2, 562 3, 740 2.973% 23.23 47.94

VI 15, 811 2, 433 3, 397 2.715% 31.82 55.19

VII 99, 076 14, 729 22, 526 17.107% 30.58 67.49

VIII 31, 613 4, 703 7, 113 5.449% 35.00 59.91

IX 27, 061 3, 967 6, 022 4.649% 33.98 57.33

X 22, 940 3, 438 5, 260 3.970% 32.77 62.61

XI 151 24 33 0.026% 24.19 31.11

XII 6, 056 888 1, 371 1.043% 28.43 47.78

XIII 9, 098 1, 360 1, 944 1.556% 28.29 51.77

XIV 2, 228 328 471 0.380% 51.14 64.92

XV 12, 656 1, 740 2, 565 2.128% 33.43 61.51

XVI 20, 692 3, 154 4, 550 3.563% 19.35 40.77

XVII 87, 280 13, 018 19, 131 14.986% 24.78 51.72

Table 10: Number of instances and performance met-
rics for each of the ICD-9-CM diagnosis chapters. The
column named "Percentage" corresponds to the percent-
age of the diagnosis codes under consideration over the
MIMIC-III-clean test dataset.

Chapter I (i.e., infectious and parasitic diseases)733

in the ICD-9-CM diagnosis codes accounts for734

a substantial portion of the dataset, represent-735

ing 26.302% of all codes. This chapter demon-736

strates impressive performance metrics, achieving737

a macro-averaged F1 score of 40.08% and a micro-738

averaged F1 score of 69.14%.739

Conversely, Chapter XI (i.e., complications of740

pregnancy, childbirth, and the puerperium) is the741

least frequent chapter of ICD codes, and it also cor-742

responds to the lowest performance metrics. With743

a prevalence of only 0.026% in the dataset, this744

chapter yields macro and micro-averaged F1 scores745

of 24.19% and 31.11%, respectively. These scores746

highlight the negative impact of infrequent ICD747

code occurrences on the model’s effectiveness.748

Furthermore, we observe an interesting phe-749

nomenon in Chapter XIV (i.e., congenital anoma-750

lies). Despite representing a relatively small per-751

centage (0.380%) of the overall dataset, the model752

performs performs remarkably well in this chap-753

ter. It attains macro and micro-averaged F1 scores754

Occurrences Performance metrics
Chapter Train Validation Test Percentage Macro-F1 Micro-F1

I 5, 508 855 1, 347 3.589% 35.46 63.54

II 4, 852 733 1, 148 3.134% 37.08 66.60

III 91 13 17 0.056% 65.39 68.57

IV 102 15 23 0.065% 40.23 43.24

V 0 0 0 0% 0.0 0.0

VI 21 3 4 0.013% 40.00 40.00

VII 501 75 104 0.317% 28.77 46.63

VIII 9, 590 1, 480 2, 164 6.161% 36.94 65.27

IX 47, 762 6, 895 10, 813 30.478% 48.20 76.14

X 897 127 217 0.578% 47.53 71.75

XI 15, 302 2, 267 3, 555 9.834% 41.06 66.59

XII 1, 045 152 230 0.664% 55.39 74.61

XIII 641 102 127 0.405% 75.10 71.84

XIV 201 27 43 0.126% 63.53 63.91

XV 20 3 4 0.013% 75.00 75.00

XVI 5, 990 924 1, 307 3.827% 39.35 60.05

XVII 2, 308 318 539 1.473% 32.96 49.16

XVIII 61, 329 8, 568 14, 455 39.267% 28.54 67.18

Table 11: Number of instances and performance met-
rics for each of the ICD-9-CM procedure chapters. The
column named "Percentage" corresponds to the percent-
age of the procedure codes under consideration over the
MIMIC-III-clean test dataset.

of 51.14% and 64.92%, respectively, empirically 755

showing the model’s ability to perform few-shot 756

learning when dealing with seldom-seen codes. 757

When we examine the overall distribution of 758

procedure codes, we see that the dataset is char- 759

acterized by a generally low density of procedure 760

codes, with two notable exceptions in Chapter IX 761

(i.e., operations on the cardiovascular system) and 762

Chapter XVIII (i.e., miscellaneous diagnostic and 763

therapeutic procedures), which encompass almost 764

70% of the dataset. However, despite the relatively 765

low frequency of procedures in the other chapters, 766

our model performs exceptionally well in them. 767

For instance, Chapters VI and XV achieve perfor- 768

mance values of 40% and 75.00% respectively in 769

both metrics, even though these codes have a mi- 770

nuscule 0.013% representation within the dataset. 771

These results underscore the model’s capacity to 772

learn even from infrequent instances, again empha- 773

sizing its few-shot learning capabilities. 774

Chapter XVIII in the ICD-9-CM procedure 775

codes, which covers "miscellaneous diagnostic and 776

therapeutic procedures," stands out as the most fre- 777

quently occurring chapter in the dataset, accounting 778

for a substantial 39.267% of the total. We achieve 779

28.54% for macro-averaged F1 in this chapter, and 780

67.18% for micro-averaged F1. 781
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