
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISCRETE NEURAL ALGORITHMIC REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural algorithmic reasoning aims to capture computations with neural networks
via learning the models to imitate the execution of classic algorithms. While
common architectures are expressive enough to contain the correct model in the
weights space, current neural reasoners are struggling to generalize well on out-
of-distribution data. On the other hand, classic computations are not affected by
distributional shifts as they can be described as transitions between discrete com-
putational states. In this work, we propose to force neural reasoners to maintain
the execution trajectory as a combination of finite predefined states. To achieve
that, we separate discrete and continuous data flows and describe the interaction
between them. Trained with supervision on the algorithm’s state transitions, such
models are able to perfectly align with the original algorithm. To show this,
we evaluate our approach on multiple algorithmic problems and get perfect test
scores both in single-task and multitask setups. Moreover, the proposed architec-
tural choice allows us to prove the correctness of the learned algorithms for any
test data.

1 INTRODUCTION

Learning to capture algorithmic dependencies in data and to perform algorithmic-like computations
with neural networks are core problems in machine learning, studied for a long time using vari-
ous approaches (Roni Khardon, 1994; Graves et al., 2014; Zaremba & Sutskever, 2014; Reed &
De Freitas, 2015; Kaiser & Sutskever, 2015; Veličković et al., 2020b).

Neural algorithmic reasoning (Veličković & Blundell, 2021) is a research area focusing on building
models capable of executing classic algorithms. Relying on strong theoretical guarantees of algo-
rithms to work correctly on any input of any size and distribution, this setting provides unlimited
challenges for out-of-distribution generalization of neural networks. Prior work explored this setup
using the CLRS-30 benchmark (Veličković et al., 2022), which covers classic algorithms from the
Introduction to Algorithms textbook (Cormen et al., 2009) and uses graphs as a universal tool to
encode data of various types. Importantly, CLRS-30 also provides the decomposition of classic al-
gorithms into subroutines and simple transitions between consecutive execution steps, called hints,
which can be used during training in various forms.

The core idea of the CLRS-30 benchmark is to understand how neural reasoners generalize well
beyond the training distribution, namely on larger graphs. Classic algorithms possess strong gen-
eralization due to the guarantee that correct execution steps never encounter ‘out-of-distribution’
states, as all state transitions are predefined by the algorithm. In contrast, when encountering in-
puts from distributions that significantly differ from the train data, neural networks are usually not
capable of robustly maintaining internal calculations in the desired domain. Consequently, due to
the complex and diverse nature of all possible data that neural reasoners can be tested on, the gen-
eralization performance of such models can vary depending on particular test distribution (Mahdavi
et al., 2023).

Given that, it is becoming important to interpret internal computations of neural reasoners to find
errors or to prove the correctness of the learned algorithms (Georgiev et al., 2021).

Interpretation methods have been actively developing recently due to various real-world applications
of neural networks and the need to debug and maintain systems based on them. Especially, the
Transformer architecture (Vaswani et al., 2017) demonstrates state-of-the-art performance in natural
language processing and other modalities, representing a field for the development of interpretability

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

methods (Elhage et al., 2021; Weiss et al., 2021; Zhou et al., 2024; Lindner et al., 2024). Based on
active research on a computational model behind the transformer architecture, recent works propose
a way to learn models that are fully interpretable by design (Friedman et al., 2023).

We found the ability to design models that are interpretable in a simple and formalized way to be
crucial for neural algorithmic reasoning as it is naturally related to the goal of learning to perform
computations with neural networks.

In this paper, we propose to force neural reasoners to follow the execution trajectory as a combina-
tion of finite predefined states, which is important for both generalization ability and interpretability
of neural reasoners. To achieve that, we start with an attention-based neural network and describe
three building blocks to enhance its generalization abilities: feature discretization, hard attention
and separating discrete and continuous data flows. In short, all mentioned blocks are connected:

• State discretization does not allow the model to use complex and redundant dependencies
in data;

• Hard attention is needed to ensure that attention weights will not be annealed for larger
graphs. Also, hard attention limits the set of possible messages that each node can receive;

• Separating discrete and continuous flows is needed to ensure that state discretization does
not lose information about continuous data.

Then, we build fully discrete neural reasoners for different algorithmic tasks and demonstrate their
ability to perfectly mimic ground-truth algorithm execution. As a result, we achieve perfect test
scores on the multiple algorithmic tasks with guarantees of correctness on any test data. Moreover,
we demonstrate that a single network is capable of executing all covered algorithms in a multitask
manner with perfect generalization too.

In summary, we consider the proposed blocks as a crucial component for robust and interpretable
neural reasoners and demonstrate that trained with hint supervision, discretized models perfectly
capture the dynamic of the underlying algorithms and do not suffer from distributional shifts.

2 BACKGROUND

2.1 ALGORITHMIC REASONING

Performing algorithmic-like computations usually requires the execution of sequential steps and the
number of such steps depends on the input size. To imitate such computations, neural networks are
expected to be based on some form of recurrent unit, which can be applied to a particular problem
instance several times (Kaiser & Sutskever, 2015; Zaremba & Sutskever, 2014; Vinyals et al., 2015;
Veličković et al., 2020b).

The CLRS Algorithmic Reasoning Benchmark (CLRS-30) (Veličković et al., 2022) defines a general
paradigm of algorithmic modeling based on Graph Neural Networks (GNNs), as graphs can natu-
rally represent different input types and manipulations over such inputs. Also, GNNs are proven to
be well-suited for neural execution (Xu et al., 2020; Dudzik & Veličković, 2022).

The CLRS-30 benchmark covers different algorithms over various domains (arrays, strings, graphs)
and formulates them as algorithms over graphs. Also, CLRS-30 proposes to utilize the decom-
position of the algorithmic trajectory execution into simple logical steps, called hints. Using this
decomposition is expected to better align the model to desired computations and prevent it from
utilizing hidden non-generalizable dependencies of a particular train set. Prior work demonstrates a
wide variety of additional inductive biases for models towards generalizing computations, including
different forms of hint usage (Veličković et al., 2022; Bevilacqua et al., 2023), biases from standard
data structures (Jürß et al., 2024; Jain et al., 2023), knowledge transfer and multitasking (Xhonneux
et al., 2021; Ibarz et al., 2022; Numeroso et al., 2023), etc. Also, recent studies demonstrate sev-
eral benefits of learning neural reasoners end-to-end without any hints at all (Mahdavi et al., 2023;
Rodionov & Prokhorenkova, 2023).

The recently proposed SALSA-CLRS benchmark (Minder et al., 2023) enables a more thorough
OOD evaluation compared to CLRS-30 with increased test sizes (up to 100-fold train-to-test scaling,
compared to 4-fold for CLRS-30) and diverse test distributions. Despite significant gains in the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

performance of neural reasoners in recent work, current models still struggle to generalize to out-
of-distribution (OOD) test data (Mahdavi et al., 2023; Georgiev et al., 2023; Minder et al., 2023).
While de Luca & Fountoulakis (2024) prove by construction the ability of the transformer-based
neural reasoners to perfectly simulate graph algorithms (with minor limitations occurring from the
finite precision), it is still unclear if generalizable and interpretable models can be obtained via
learning. Importantly, the issues of OOD generalization are induced not only by the challenges
of capturing the algorithmic dependencies in the data but also by the need to carefully operate
with continuous inputs. For example, investigating the simplest scenario of learning to emulate
the addition of real numbers, Klindt (2023) demonstrates the failure of some models to exactly
imitate the desired computations due to the nature of gradient-based optimization. This limitation
can significantly affect the performance of neural reasoners on adversarial examples and larger input
instances when small errors can be accumulated.

2.2 TRANSFORMER INTERPRETABILITY AND COMPUTATION MODEL

Transformer (Vaswani et al., 2017) is a neural network architecture for processing sequential data.
The input to the transformer is a sequence of tokens from a discrete vocabulary. The input layer maps
each token to a high-dimensional embedding and aggregates it with the positional encoding. The
key components of each layer are attention blocks and MLP with residual connections. Providing a
detailed description of mechanisms learned by transformer models (Elhage et al., 2021) is of great
interest due to their widespread applications.

RASP (Weiss et al., 2021) is a programming language proposed as a high-level formalization of the
computational model behind transformers. The main primitives of RASP are elementwise sequence
functions, select and aggregate operations, which conceptually relate to computations performed
by different blocks of the model. Later, Lindner et al. (2024) presented Tracr, a compiler for con-
verting RASP programs to the weights of the transformer model, which can be useful for evaluating
interpretability methods.

While RASP might have limited expressibility, it supports arbitrary complex continuous functions
which in theory can be represented by transformer architecture, but are difficult to learn. Also, RASP
is designed to formalize computations over sequences of fixed length. Motivated by that, Zhou et al.
(2024) proposed RASP-L, a restricted version of RASP, which aims to formalize the computations
that are easy to learn with transformers in a size-generalized way. The authors also conjecture that
the length-generalization of transformers on algorithmic problems is related to the ‘simplicity’ of
solving these problems in RASP-L language.

Another recent work (Friedman et al., 2023) describes Transformer Programs: constrained trans-
formers that can be trained using gradient-based optimization and then automatically converted into
a discrete, human-readable program. Built on RASP, transformer programs are not designed to be
size-invariant.

3 DISCRETE NEURAL ALGORITHMIC REASONING

3.1 ENCODE-PROCESS-DECODE PARADIGM

Our work follows the encode-process-decode paradigm (Hamrick et al., 2018), which is usually
employed for step-by-step neural execution.

All input data is represented as a graph G with an adjacency matrix A and node and edge features
that are first mapped with a simple linear encoder to high-dimensional vectors of size h. Let us
denote node features at a time step t (1 ≤ t ≤ T ) as Xt = (xt

1, . . . , x
t
n) and edge features as

Et = (et1, . . . , e
t
m). Then, the processor, usually a single-layer GNN, recurrently updates these

features, producing node and edge features for the next step:

Xt+1, Et+1 = Processor(Xt, Et, A).

The processor network can operate on the original graph defined by the task (for graph problems) or
on the fully connected graph. For the latter option, the information about the original graph can be
encoded into the edge features.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The number of processor steps T can be defined automatically by the processor or externally (e.g.,
as the number of steps of the original algorithm). After the last step, the node and edge features are
mapped with another linear layer, called the decoder, to the output predictions of the model.

If the model is trained with hint supervision, the changes of node and edge features at each step are
expected to be related to the original algorithm execution. In this sense, the processor network is
aimed to mimic the algorithm’s execution in the latent space.

3.2 DISCRETE NEURAL ALGORITHMIC REASONERS

In this section, we describe the constraints for the processor that allow us to achieve a fully inter-
pretable neural reasoner. We start with Transformer Convolution (Shi et al., 2020) with a single
attention head.

As mentioned above, at each computation step t (1 ≤ t ≤ T ), the processor takes the high-
dimensional embedding vectors for node and edge features as inputs and then outputs the repre-
sentations for the next execution step.

Each node feature vector xi is projected into query (Qi), key (Ki), and value (Vi) vectors via
learnable parameter matrices WQ, WK , and WV , respectively. Edge features eij are projected into
key (Kij) vector with a matrix WE

K . Then, for each directed edge from node j to node i in the graph
G, we compute the attention coefficient

αij =
⟨Qj ,Ki +Kij⟩√

h
,

where ⟨a, b⟩ denotes the dot product. Then, each node i normalizes all attention coefficients across
its neighbors with the softmax function and temperature τ and receives the aggregated message:

α̂ij =
exp(αij/τ)∑

k∈N(i) exp(αik/τ)
, Mi =

∑
k∈N (i)

α̂ikVk, (1)

where N (i) denotes the set of all incoming neighbors of node i and Mi is the message sent to the
i-th node.

For undirected graphs, we consider two separate edges in each direction. Also, for each node, we
consider a self-loop connecting the node to itself. For multi-head attention, each head l separately
computes the messages M l

i which are then concatenated.

Similar to Transformer Programs, we enforce attention to be hard attention. We found this property
important not only for interpretability but also for size generalization, as hard attention allows us to
overcome the annealing of the attention weights for arbitrarily large graphs and strictly limits the set
of messages that each vertex can receive.

After message computation, node and edge features are updated depending on the current values
and sent messages using feed-forward MLP blocks:

x̂t+1
i = FFNnodes([x

t
i,M

t
i ]),

êt+1
ij = FFNedges([e

t
ij , α̂jiVi, α̂ijVj ]).

We also enforce all node and edge features to be from a fixed finite set, which we call states. We
ensure such property by adding discrete bottlenecks at the end of the processor block:

xt+1
i = Discretizenodes(x̂

t+1
i ),

et+1
ij = Discretizeedges(ê

t+1
ij ).

We implement discretization by projecting the features to the vectors of size k which we force to be
one-hot using annealing Gumbel-Softmax (Jang et al., 2017) during training and the argmax at the
inference.

3.3 CONTINUOUS INPUTS

Clearly, most of the algorithmic problems operate with continuous or unbounded inputs (e.g.,
weights on edges). Usually, all input data is encoded into node and edge features and the pro-
cessor operates over the resulting vectors. The proposed discretization of such vectors would lead to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the loss of information necessary for performing correct execution steps. One possible option to op-
erate with such inputs (we will call them scalars, meaning both continuous or size-dependent integer
inputs, such as node indexes) is Neural Execution Engines (Yan et al., 2020), which allows one to
operate with bit-wise representations of integer and (in theory) real numbers. Such representations
are bounded by design, but fully discrete and interpretable.

We propose another option: to maintain scalar inputs (denote them by S) separately from the node
and edge features and use them only as edge priorities sij in the attention block. If scalars are related
to the nodes, we assign them to edges depending on the scalar of the sender or receiver node. Now,
we can consider the hard attention block as a selector which for each node selects the best edge
based on an ordered pair of ‘states priority’ (attention weights described above, which depend only
on states of the corresponding nodes and edges) and sij . We note that this selector is related to the
theoretical primitive select best from RASP. We implement this simply by augmenting key vectors
Kij of each edge with the indicator if the given edge has the “best” (min or max) scalar among the
other edges to node j. Thus, scalars affect only the attention weights, not the messages and the node
states.

For multiple different scalar inputs (e.g., weighted edges and node indexes), we use multi-head
attention, where each head operates with separate scalars.

Given that, the interface of the proposed processor can be described as

Xt+1, Et+1 = Processor(Xt, Et, A, S),

where Xt, Xt+1 and Et, Et+1 are from the fixed sets. State sets are independent of the execution
step t and the input graph (including scalar inputs S).

3.4 MANIPULATIONS OVER CONTINUOUS INPUTS

Discrete states

Discrete states

Scalars

Scalars

Message Passing

Feed Forward

Figure 1: An illustration of the proposed separa-
tion between discrete and continuous data flows.
Scalars can only affect the attention weights
(Green) and can be modified with actions via
ScalarUpdate (Blue).

The proposed selector offers a read-only inter-
face to scalar inputs, which is not expressive
enough for most of the algorithms. However,
we note that the algorithms can be described as
discrete manipulations over input data. For ex-
ample, the Dijkstra algorithm (Dijkstra, 1959)
takes edge weights as inputs and uses them
to find the shortest path distances. Computed
distances can affect the consequent execution
steps. We note that such distances can be de-
scribed as the sum of the weights of the edges
that form the shortest path to the given node. In
other words, the produced scalars depend only
on input scalars and discrete execution states.

To avoid the challenges of learning continu-
ous updates with high precision (Klindt, 2023),
we propose to learn discrete manipulations with
scalars. The updated scalars can then be used
with the described selector in the next steps.

In our experiments, we use a scalar updater
capable of incrementing, moving, and adding
scalars depending on discrete node/edge states:

st+1
i = inc(xt

i) + keep(xt
i) · sti +

∑
j∈N (i)

push(etji) · stji,

st+1
ij = inc(etij) + keep(etij) · stij + push(xt

i) · sti,

where si are node-related scalars, sij are edge-related scalars, and inc, keep, push are 0-1 func-
tions representing if scalar in each node/edge should be incremented, kept, or pushed to any of its
neighbors. We implement these functions as simple linear projections of node/edge features with
consecutive discretization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, our proposed method (see Figure 1) can be described as:
Xt+1, Et+1 = Processor(Xt, Et, A, St),

St+1 = ScalarUpdate(Xt+1, Et+1, A, St).

The proposed neural reasoners are fully discrete and can be interpreted by design. Moreover, the
proposed selector block guarantees the predicted behavior of the message passing for any graph
size, as it compares discrete state importance and uses continuous scalars only to break ties between
equally important states.

4 EXPERIMENTS

In this section, we perform experiments to evaluate how the proposed discretization affects the
performance of neural reasoners on diverse algorithmic reasoning tasks. Our main questions are:

1. Can the proposed discrete neural reasoners capture the desired algorithmic dynamics with
hint supervision?

2. How does discretization affect OOD and size-generalization performance of neural reason-
ers?

3. Is the proposed model capable of multi-task learning?

Also, we are interested if discrete neural reasoners can be learned without hints and how they tend
to utilize the given amount of node and edge states to solve the problem. We discuss no-hint experi-
ments separately in Section 6.

4.1 DATASETS

We perform our experiments on the problems from the recently proposed SALSA-CLRS bench-
mark (Minder et al., 2023), namely BFS, DFS, Prim, Dijkstra, Maximum Independent Set (MIS),
and Eccentricity. We believe that the proposed method is not limited by the covered problems, but
we leave the implementation of the required data flows (e.g., edge-based reasoning (Ibarz et al.,
2022), graph-level hints, interactions between different scalars) for future work.

The train dataset of SALSA-CLRS consists of random graphs with at most 16 nodes sampled from
the Erdös-Rényi (ER) distribution with parameter p chosen to be as low as possible while graphs
remain connected with high probability. The test set consists of sparse graphs of sizes from 16 to
1600 nodes.

We slightly modify the hints from the benchmark without conceptual changes (e.g., we have modi-
fied the hints for the DFS problem to remove graph-level hints). Discrete states are fully described
by the non-scalar hints and scalars are exactly the hints of the scalar type (we refer to Veličković
et al. (2022) for the details on hint design).

4.2 BASELINES AND EVALUATION

We compare the performance of our proposed discrete model with two baseline sparse models, GIN
(Xu et al., 2019) and Pointer Graph Network (Veličković et al., 2020a). We report both node-level
and graph-level metrics for the baselines and our model. Also, we compare our model with Triplet-
GMPNN (Ibarz et al., 2022) and two recent approaches, namely Hint-ReLIC (Bevilacqua et al.,
2023) and G-ForgetNet (Bohde et al., 2024), which demonstrate state-of-the-art performance of
hint-based neural algorithmic reasoning. However, as these methods are evaluated on the CLRS-30
benchmark and their code is not yet publicly available, we can only compare them on the corre-
sponding tasks (BFS, DFS, Dijkstra, Prim) and CLRS-30 test data, namely ER graphs with p = 0.5
of size 64. Note that this test data is more dense than that of SALSA-CLRS, meaning shorter roll-
outs for given tasks. Also, only node-level metrics have been reported for these methods.

4.3 MODEL DETAILS

For our experiments, we use the model described in Section 3. We use one attention head for each
scalar value. The number of processor steps is defined externally as the length of the ground truth

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

algorithm trajectory, which is consistent with the prior work. We use one architecture (except the
task-depended encoders/decoders), including the ScalarUpdate module for all the problems.

We recall that neural reasoners can operate either on the base graph (which is defined by the problem)
or on more dense graphs with the original graph encoded into edge features. SALSA-CLRS proposes
to enhance the size-generalization abilities of neural reasoners with increased test sizes (up to 100-
fold train-to-test scaling), so we use the base graph for message-passing, similar to the SALSA-
CLRS baselines. We also add a virtual node that communicates with all nodes of the graph.

4.4 TRAINING DETAILS AND HYPERPARAMETERS

We train each model using the Adam optimizer, learning rate η = 0.001, using teacher forcing, batch
size of 32 graphs with 1000 optimization steps, and evaluate the resulting model. We anneal softmax
temperatures in the discrete bottlenecks (attention weights, ScalarUpdate operations) geometrically
from 3.0 to 0.01, decreasing the temperature at each training step. We report all hyperparameters in
the source code.1

During training, we minimize the standard hints and output losses: scalar hints are optimized with
MSE loss, and other types of hints are optimized with cross-entropy and categorized cross-entropy
losses (Veličković et al., 2022; Ibarz et al., 2022). Note that we do not supervise any additional
details in model behavior, e.g., selecting the most important neighbor in the attention block, the
exact operations with scalars, etc.

Table 1: Node \ graph level test scores for the
proposed discrete reasoner and the baselines on
SALSA-CLRS test data. Scores are averaged
across 5 different seeds, standard deviation is
omitted. For the eccentricity problem, only the
graph-level metric is applicable.

TASK SIZE GIN PGN DNAR (OURS)

BFS 16 98.8 \ 92.5 100. \ 100. 100. \ 100.
80 95.3 \ 59.4 99.8 \ 88.1 100. \ 100.

160 95.1 \ 37.8 99.6 \ 66.3 100. \ 100.
800 86.9 \ 0.9 98.7 \ 0.2 100. \ 100.

1600 86.5 \ 0.0 98.5 \ 0.0 100. \ 100.

DFS 16 41.5 \ 0.0 82.0 \ 19.9 100. \ 100.
80 30.4 \ 0.0 38.4 \ 0.0 100. \ 100.

160 20.0 \ 0.0 26.9 \ 0.0 100. \ 100.
800 19.5 \ 0.0 24.9 \ 0.0 100. \ 100.

1600 17.8 \ 0.0 23.1 \ 0.0 100. \ 100.

SP 16 95.2 \ 49.8 99.3 \ 89.5 100. \ 100.
80 62.4 \ 0.0 94.2 \ 3.3 100. \ 100.

160 53.3 \ 0.0 92.0 \ 0.0 100. \ 100.
800 40.4 \ 0.0 87.1 \ 0.0 100. \ 100.

1600 36.9 \ 0.0 84.5 \ 0.0 100. \ 100.

PRIM 16 89.6 \ 29.7 96.4 \ 69.9 100. \ 100.
80 51.6 \ 0.0 79.7 \ 0.0 100. \ 100.

160 49.5 \ 0.0 75.6 \ 0.0 100. \ 100.
800 45.0 \ 0.0 69.5 \ 0.0 100. \ 100.

1600 43.2 \ 0.0 66.8 \ 0.0 100. \ 100.

MIS 16 79.9 \ 3.3 99.8 \ 98.6 100. \ 100.
80 79.9 \ 20.0 99.4 \ 88.9 100. \ 100.

160 78.2 \ 0.0 99.4 \ 76.2 100. \ 100.
800 83.4 \ 0.0 98.8 \ 18.0 100. \ 100.

1600 79.2 \ 0.0 98.9 \ 5.2 100. \ 100.

ECC. 16 25.3 100. 100.
80 23.8 100. 100.

160 26.1 100. 100.
800 17.1 100. 100.

1600 16.0 83.0 100.

For multitask experiments, we follow the setup
proposed by Ibarz et al. (2022) and train
a single processor with task-dependent en-
coders/decoders to imitate all covered algo-
rithms simultaneously. We make 10000 op-
timization steps on the accumulated gradients
across each task and keep all hyperparameters
the same as in the single task.

Our models are trained on a single A100 GPU,
requiring less than 1 hour for single-task and
5-6 hours for multitask training.

4.5 RESULTS

We found learning with teacher forcing suit-
able for discrete neural reasoners, as discretiza-
tion blocks allow us to perform the exact tran-
sitions between the states. Trained with step-
wise hint supervision, discrete neural reason-
ers are able to perfectly align with the origi-
nal algorithm and generalize on larger test data
without any performance loss. We report the
evaluation results in Tables 1 and 2. Also, our
multitask experiments show that the proposed
discrete models are capable of multitask learn-
ing and demonstrate the perfect generalization
scores in a multitask manner too.

Recall that we have three key components of
our contribution: feature discretization, hard at-
tention, and separating discrete and continuous
data flows. To evaluate the importance of each
component for generalization capabilities of the
proposed models, we conduct an ablation study,
the details can be found in Appendix A. In

1https://anonymous.4open.science/r/F4CA/

7

https://anonymous.4open.science/r/F4CA/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Node-level test scores for the proposed discrete reasoner and the baselines on CLRS-30 test
data. Test graphs are of size 64. Scores are averaged across 5 different seeds.

TASK TRIPLET-GMPNN HINT-RELIC G-FORGETNET DNAR (OURS)

BFS 99.73 ± 0.0 99.00 ± 0.2 99.96 ± 0.0 100. ± 0.0
DFS 47.79 ± 4.2 100. ± 0.0 74.31 ± 5.0 100. ± 0.0
DIJKSTRA 96.05 ± 0.6 97.74 ± 0.5 99.14 ± 0.1 100. ± 0.0
MST-PRIM 86.39 ± 1.3 87.97 ± 2.9 95.19 ± 0.3 100. ± 0.0

short, our additional experiments demonstrate that the proposed processor without the discretization
performs non-above the baselines level and that removing hard-attention or discrete ScalarUpdate
module strictly limits the generalization capabilities of the proposed model.

5 INTERPETABILITY AND TESTING

In addition to the empirical evaluation of the trained models on diverse test data, the discrete and
size-independent design of the proposed models allows us to interpret and test them manually. The
main idea is to show that the model will perform the exact discrete state transitions (including dis-
crete operations with scalars) as the original algorithm.

First, we note that due to the hard attention, each node receives exactly one message. Also, the
message depends only on the discrete states of the corresponding nodes and edges. Thereby, as each
node and edge states after a single processor step depend only on the current states and received
message, all the possible options can be directly enumerated and tested if all states change to the
correct ones.

The only remaining part to fully interpret the whole model is the attention block. We note that
our implementation of the select best selector (Section 3.3) does not necessarily produce the top-1
choice over the ordered pairs of ‘states priority’ and scalars sij as it simply augments key vectors
with indicators if the given edge has the best scalar among others. For example, it may happen
that for some state, the maximum attention weight is achieved for an edge without the indicator.
However, given the finite number of discrete states, we can manually check if the mentioned “best”
indicator increases the attention weight between every pair of states. Combined with hard attention,
this would imply that the attention block attends depending on the predefined states and uses scalar
priorities only to break ties. Please see the particular example with more detailed explanation for the
BFS problem in the Appendix D.

Given that, we can unit-test all possible state transitions and attention blocks. With full coverage
of such tests, we can guarantee the correct execution of the desired algorithm for any test data.
We tested our trained models from Section 4 manually verifying state transitions. As a result, we
confirm that the attention block indeed operates as select best selector, as the model actually uses
these indicators to increase the attention weights. Thus, we can guarantee that for any graph size,
the model will mirror the desired algorithm, which is correct for any test size.

6 TOWARDS NO-HINT DISCRETE REASONERS

In this section, we discuss the challenges of training discrete reasoners without hints, which can be
useful when tackling new algorithmic problems.

Training deep discretized models is known to be challenging: without hyperparameter search, dis-
crete models are only slightly improved over the untrained models. Therefore, we focus only on
the BFS algorithm, as it is well-aligned with the message-passing framework, has short roll-outs,
and can be solved with small states count (note that for no-hint models node/edge states count is a
hyperparameter due to the absence of the ground truth states trajectory).

We recall that the output of the BFS problem is the exploration tree pointing from each node to
its parent. Each node chooses as a parent the neighbor from the previous distance layer with the
smallest index.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: BFS node/graph level scores of the best no hint model for different graph sizes.

5 16 64

best no hint model 99 / 86 94 / 34 79 / 0

We perform hyperparameter search over the training sizes (using ER graphs with p = 0.5 and
n ∈ [4, 16]), discrete node states count (from 2 to 6 states), softmax temperature annealing schedules
([3, 0.01], [3, 0.1], [3, 1]). For each hyperparameter choice, we train 5 models with different seeds.
We validate the resulting models on the graphs of size 16. The best resulting model is obtained
with the training size 5 and 4 node states. The trained models never achieved the perfect validation
scores, see Table 3 for the results.

Then, we select the best-performing models and try to analyze the mistakes of the resulting models
and reverse-engineer how they utilize the given states. First, we look at the node states after the last
step of the processor and note that the states correspond to the distances from the starting node. More
formally, we note that the model with four states uses the first state for the starting node, the second
state for its neighbors, the third state for nodes at distance two from the starting node, and the last
state for all other nodes and such states-based classification of distance has accuracy > 98% when
tested on 1000 random graphs with 16 nodes. Then, we note that for the nodes that are from the first
four distance layers from the starting node, the pointers are predicted with 100% accuracy and these
pointers are computed layer-by-layer as in the ground truth algorithm (we refer to Appendix B for
illustrations). The mistakes of the model are on the distance ≥ 4 from the starting node (we did not
reverse-engineer the specific logic of computations on larger distances).

We found this behavior well-aligned to the BFS algorithm and indicating the possibility of achieving
the perfect validation score with enough states count. However, this algorithm does not generalize
since it fails at distances larger than those encountered during training.

On the other hand, one can demonstrate that for a small enough state count (for BFS, it is two node
states and two edge states) and diverse enough validation data, the perfect validation performance
implies that the learned solution will generalize to any graph size.

Therefore, we highlight the need to achieve perfect validation performance with models that use as
few states as possible, which corresponds to the minimum description length (MDL) theory (Myung,
2000; Rissanen, 2006) and is related to the notion of Kolmogorov complexity (Kolmogorov, 1963).

Finally, we note that for sequential problems, such as DFS, obtaining a good no-hint model can
be even more challenging and can require additional effort. One possible way to overcome this
limitation is to implement a curriculum learning setup.

7 LIMITATIONS AND FUTURE WORK

Limitations In this work, we propose a method to learn robust neural reasoners that demonstrate
perfect generalization performance and are interpretable by design. In this section, we describe
some limitations of our work and important directions for future research.

First, several proposed design choices strictly reduce the expressive power of the model. For exam-
ple, due to the hard attention, the proposed model is unable to compute the mean value from all the
neighbors in a single message-passing step, which is trivial for attention-based models (note that this
can be computed in several message-passing steps). Thus, the model in its current form is unable to
express transitions between hints for some algorithms from the CLRS-30 in a single processor step.
However, we believe that the expressivity of the proposed model can be enhanced with additional
architectural modifications (e.g., edge-based reasoning (Ibarz et al., 2022), global states, interactions
between different scalars) that can be combined with the proposed discretization ideas.

Second, while we report the perfect scores for the covered tasks, we cannot guarantee that the train-
ing will converge to the correct model for any initialization/training data distributions. However, we
empirically found the proposed method to be quite robust to various architecture/training hyperpa-
rameter choices.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Future work Our method is based on the particular architectural choice and actively utilizes the
attention mechanism. However, the graph deep learning field is rich in various architectures exploit-
ing different inductive biases and computation flows. The proposed separation between discrete
states and continuous inputs may apply to other models, however, any particular construction can
require additional efforts.

Also, we provide only one example of the ScalarUpdate block. We believe that utilizing a general
architecture (e.g., some form of discrete Neural Turing Machine (Graves et al., 2014; Gulcehre et al.,
2016)) capable of executing a wider range of manipulation is of interest for future work.

With the development of neural reasoners and their ability to execute classic algorithms on abstract
data, it is becoming more important to investigate how such models can be applicable in real-world
scenarios according to the Neural Algorithmic Reasoning blueprint (Veličković & Blundell, 2021)
and transfer their knowledge to high-dimensional noisy data with intrinsic algorithmic dependen-
cies. While there are several examples of NAR-based models tackling real-world problems (Beurer-
Kellner et al., 2022; Numeroso et al., 2023), there are no established benchmarks for extensive
evaluation and comparison of different approaches.

Lastly, we leave for future work a deeper investigation of learning interpretable neural reasoners
without hints, which we consider essential from both theoretical perspective and practical applica-
tions, e.g., combinatorial optimization.

8 CONCLUSION

In this paper, we force neural reasoners to maintain the execution trajectory as a combination of
finite predefined states. To achieve that, we separate discrete and continuous data flows and de-
scribe the interaction between them. The obtained discrete reasoners are interpretable by design.
Moreover, trained with hint supervision, such models perfectly capture the dynamic of the under-
lying algorithms and do not suffer from distributional shifts. We consider discretization of hidden
representations as a crucial component for robust neural reasoners.

REFERENCES

Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, and Petar Veličković. Learning to con-
figure computer networks with neural algorithmic reasoning. Advances in Neural Information
Processing Systems, 35:730–742, 2022.

Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles Blun-
dell, Jovana Mitrovic, and Petar Veličković. Neural algorithmic reasoning with causal regularisa-
tion. In International Conference on Machine Learning, 2023.

Montgomery Bohde, Meng Liu, Alexandra Saxton, and Shuiwang Ji. On the markov property of
neural algorithmic reasoning: Analyses and methods. In The Twelfth International Conference on
Learning Representations, 2024.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT press, 2009.

Artur Back de Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped trans-
formers. 2024.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:
269–271, 1959.

Andrew J Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. Advances
in Neural Information Processing Systems, 35:20635–20647, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. Advances in
Neural Information Processing Systems, 2023.

Dobrik Georgiev, Pietro Barbiero, Dmitry Kazhdan, Petar Velivckovi’c, and Pietro Lio’. Algorith-
mic concept-based explainable reasoning. In AAAI Conference on Artificial Intelligence, 2021.
URL https://api.semanticscholar.org/CorpusID:235899244.

Dobrik Georgiev, Pietro Lio, Jakub Bachurski, Junhua Chen, and Tunan Shi. Beyond erdos-renyi:
Generalization in algorithmic reasoning on graphs. In NeurIPS 2023 Workshop: New Frontiers
in Graph Learning, 2023.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Caglar Gulcehre, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Dynamic neural turing
machine with soft and hard addressing schemes. arXiv preprint arXiv:1607.00036, 2016.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenen-
baum, and Peter W Battaglia. Relational inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, et al. A
generalist neural algorithmic learner. In Learning on Graphs Conference. PMLR, 2022.

Rishabh Jain, Petar Veličković, and Pietro Liò. Neural priority queues for graph neural networks.
arXiv preprint arXiv:2307.09660, 2023.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In-
ternational Conference on Learning Representations, 2017.

Jonas Jürß, Dulhan Hansaja Jayalath, and Petar Veličković. Recursive algorithmic reasoning. pp.
5–1, 2024.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

David A. Klindt. Controlling neural network smoothness for neural algorithmic reasoning. Trans-
actions on Machine Learning Research, 2023. ISSN 2835-8856.

Andrei N. Kolmogorov. On tables of random numbers. Sankhya: The Indian Journal of Statistics,
25, 1963.

David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Tom McGrath, and Vladimir
Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. Advances in Neural
Information Processing Systems, 36, 2024.

Sadegh Mahdavi, Kevin Swersky, Thomas Kipf, Milad Hashemi, Christos Thrampoulidis, and Ren-
jie Liao. Towards better out-of-distribution generalization of neural algorithmic reasoning tasks.
Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Julian Minder, Florian Grötschla, Joël Mathys, and Roger Wattenhofer. SALSA-CLRS: A sparse
and scalable benchmark for algorithmic reasoning. arXiv preprint arXiv:2309.12253, 2023.

In Jae Myung. The importance of complexity in model selection. Journal of mathematical psychol-
ogy, 44(1):190–204, 2000.

Danilo Numeroso, Davide Bacciu, and Petar Veličković. Dual algorithmic reasoning. In Interna-
tional Conference on Learning Representations, 2023.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

11

https://api.semanticscholar.org/CorpusID:235899244


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jorma Rissanen. Information and complexity in statistical modeling. In Information Theory Work-
shop, 2006.

Gleb Rodionov and Liudmila Prokhorenkova. Neural algorithmic reasoning without intermediate
supervision. Advances in Neural Information Processing Systems, 2023.

Dan Roth Roni Khardon. Learning to reason. In Proceedings of the 12th National Conference on
Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1, pp. 682–687. AAAI
Press / The MIT Press, 1994.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.

Petar Veličković, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. Advances in Neural Information Processing Systems, 33:
2232–2244, 2020a.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execu-
tion of graph algorithms. In International Conference on Learning Representations, 2020b.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The CLRS algorithmic reasoning bench-
mark. In International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confer-
ence on Machine Learning, pp. 11080–11090. PMLR, 2021.

Louis-Pascal Xhonneux, Andreea-Ioana Deac, Petar Veličković, and Jian Tang. How to transfer
algorithmic reasoning knowledge to learn new algorithms? Advances in Neural Information
Processing Systems, 34:19500–19512, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In The Seventh International Conference on Learning Representations, 2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representa-
tions, 2020.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. Neural
execution engines: Learning to execute subroutines. Advances in Neural Information Processing
Systems, 33:17298–17308, 2020.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? A study in length
generalization. In The Twelfth International Conference on Learning Representations, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ABLATION STUDY

Recall that we have three key components of our contribution: feature discretization, hard attention,
and separating discrete and continuous data flows. In this section, we study the importance of these
components for generalization capabilities of the proposed models.

Discrete bottlenecks First, we evaluate the model without all discrete bottlenecks: the result is a
simple Transformer Convolution processor, which performs comparable to other baseline models,
see Table 4.

Table 4: Node \ graph level test scores for our base model without all discrete bottlenecks. Scores
are averaged across 5 different seeds, standard deviation is omitted.

SIZE 16 80 160 800 1600

BFS 99.9 \ 99.3 99.7 \ 88.2 99.5 \ 57.9 98.4 \ 0.0 97.2 \ 0.0
DFS 79.2 \ 6.8 41.1 \ 0.0 28.1 \ 0.0 24.7 \ 0.0 21.9 \ 0.0
SP 99.3 \ 88.7 94.1 \ 12.4 90.3 \ 0.0 86.9 \ 0.0 82.4 \ 0.0
PRIM 95.1 \ 72.7 82.6 \ 0.0 79.7 \ 0.0 68.1 \ 0.0 66.0 \ 0.0
MIS 99.8 \ 98.6 99.6 \ 86.1 99.2 \ 69.0 97.1 \ 11.9 96.3 \ 0.0
ECC 79.2 41.1 28.1 24.7 21.9

Hard attention To highlight the importance of the hard attention for strong size generalization, we
train the proposed model but with the regular attention mechanism on the BFS task. The resulting
model also demonstrates the perfect scores for the given test data. However, the standard test data
(the Erdös-Renyi graphs with low edge probability) does not contain nodes with a large number of
neighbors, while such nodes can be problematic due to the annealing of the attention weights. Thus,
we additionally test the resulting model on the complete bipartite graphs K2,n−2 for different n. For
each n, we assign the starting node from the smaller component and test if the second node in this
component correctly selects its parent in the BFS tree, see Figure 2.

Figure 2: Complete bipartite graphs K2,n−2 used to evaluate the effect of the attention weights
annealing. The black node is the starting node. The highlighted edge (Green) is the ground truth
pointer from the bottom node to its parent from the BFS tree.

Our experiments demonstrate that the model without hard attention fails to predict the correct pointer
for larger graphs due to the attention weight annealing, see Table 5. We note that the models from
Section 4 are provably correct on any test data.

Table 5: Attention weights for the ground truth pointer (green pointer from Figure 2) for different
graph sizes; (+\-) denotes if the correct pointer was predicted.

SIZE 16 80 160 800 1600

ATTENTION WEIGHT 0.97 (+) 0.86 (+) 0.76 (+) 0.38 (-) 0.24 (-)

Scalar updater As demonstrated in Klindt (2023), simple neural networks trained to sum two real
numbers fail to learn the structure of the task and struggle to extrapolate beyond the training data
distributions. In this section, we study how these limitations affect the overall performance of neural
reasoners to highlight the importance of the proposed discrete manipulations with scalars.

First, we recall that usually all input data is encoded into node and edge features and the proces-
sor operates over the resulting vectors. Then, hints of type scalar are directly predicted from the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

node/edge features. To evaluate the effect of non-discrete ScalarUpdate modules, we simply re-
place the proposed discrete ScalarUpdate module with a single-layer transformer convolution net-
work, which inputs scalars and node/edge states and outputs the scalars for the next step, keeping
the remaining architecture the same as in the main experiments. We train the resulting model on
Dijkstra and MST problems.

Additionally, we evaluate the non-discrete ScalarUpdate module in a more straightforward setup.
Similarly to Klindt (2023), we train a 2-layer MLP to add two real numbers and use the resulting
model as a ScalarUpdate module for the Dijkstra algorithm. We manually use the learned addition
module when the node distances are updated (e.g., the distance of the node u is updated with the
sum of the distance of v and the edge (v, u) cost), and use the ground truth scalars for other scalar
updates. Our experiments demonstrate that the resulting model outperforms the baselines on the test
size of 16 nodes, but does not generalize well on larger graphs, see the evaluation results in Table 6.

Table 6: Node \ graph level test scores for the proposed model with ScalarUpdater replaced by
a regular attention-based network trained to predict hints of type scalar. ‘Addition only’ means that
ScalarUpdater is replaced by a 2-layer MLP trained to predict the sum of two numbers (other
values are taken from the ground truth).

SIZE 16 80 160 800 1600

DIJKSTRA 99.3 \ 94.6 60.7 \ 0.0 42.8 \ 0.0 19.0 \ 0.0 11.8 \ 0.0
MST 99.8 \ 98.1 98.2 \ 54.1 97.2 \ 28.1 95.5 \ 0.0 91.73 \ 0.0
DIJKSTRA (ADDITION ONLY) 99.8 \ 96.6 95.3 \ 71.0 86.5 \ 46.3 41.6 \ 3.1 22.2 \ 0.0

We note that all the resulting models demonstrate perfect scores when evaluated with teacher-forced
ground truth scalars. Thus, all state transitions are learned correctly and imperfect test scores are
fully described by the errors in manipulations with continuous values.

To summarize, small errors in manipulations with scalars (even restricted on the simplest addition
sub-task) strictly affect the overall performance of the model, highlighting the importance of the
proposed discrete manipulations with scalars.

B STATE USAGE FOR NO-HINT MODELS

In this section, we provide several illustrations of the node states and the dynamics of the pointer
prediction updates (Figures 3-5). Our analysis suggests that no-hint models with K states tend to
use states as distances from the starting node, with the distances ≥ K merged to the same state.
Also, pointer predictions for the first K BFS layers are correct and computed layer-by-layer as in
the ground truth algorithm. The mistakes of the model are at the later layers and some pointers at the
later layers are computed before that in the ground truth algorithm (Figure 5c). For the simplicity of
illustrations, we use the model with 3 discrete states.

(a) Node states after the last processor step (b) Predicted pointers (self-loops are omitted)

Figure 3: Node states and the predicted pointers after the last processor step of the DNAR model
(with 3 states), trained without hints. Different colors represent different states. The green node is
the starting node.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Node states after the last processor step (b) Predicted pointers (self-loops are omitted)

Figure 4: Node states and the predicted pointers after the last processor step of the DNAR model
(with 3 states), trained without hints. Different colors represent different states. The green node is
the starting node.

(a) Node states after the last processor step

(b) Predicted pointers after the first processor step
(self-loops are omitted)

(c) Predicted pointers after the second processor step
(self-loops are omitted)

Figure 5: Node states and the dynamics of the pointer prediction updates of the DNAR model (with
3 states), trained without hints. Different colors represent different states. The green node is the
starting node.

C EXTENDED ScalarUpdate MODULE

In this section, we investigate if the proposed ScalarUpdate module can be successfully extended
to support more complex manipulations with scalars.

First, we note that simple manipulations with scalars cover a significant part of the classical al-
gorithms. In this work, we use the minimum set of the required functions, but it can be directly
extended by other functions. Importantly, as ScalarUpdate can be viewed as a separate module,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

we can separately check if it is possible to train it with any given set of predefined manipulations for
any problem only with supervision on the results.

Let us formalize the problem: each input of the ScalarUpdate module can be described as an
object with a discrete state si (from a fixed predefined set) and several scalar values (we consider
two scalars xi and yi). Note that we omit the separation between nodes and edges and consider
objects with several scalar values. For each discrete state si, there exists a ground truth update of
scalars, e.g., f(s, x, y) = x+ cos(y). The output of the scalar updater can be viewed as a sum:

ScalarUpdate(s, x, y) =
∑

g∈OPS
g(x, y) · activateg(s),

whereOPS is a predefined set of operations and activateg is a 0-1 function representing if a specific
operation should be applied. Note that activateg depends only on a discrete state of the input.

For our additional experiment, we train several different ScalarUpdate modules with the extended
set of operations:

• g0(x, y) = 1;
• g1(x, y) = x;
• g2(x, y) = cos(x);
• g3(x, y) = x · y;
• g4(x, y) = atan2(x, y)

to learn the following set of the ground truth updates simultaneously:

• f0(x, y) = x;
• f1(x, y) = cos(x);
• f2(x, y) = cos(x) + x · y;
• f3(x, y) = atan2(x, y);
• f4(x, y) = 1 + x+ atan2(x, y).

In particular, we consider a set of 16 discrete states (numbered from 0 to 15 and sampled uniformly)
and the ground truth scalar update is derived from these states by taking the remainder of the division
by 5 (updates count).

The learnable parameters of the ScalarUpdate are state’s embeddings and linear projections for
each indicator. We train ScalarUpdate to minimize the MSE loss between the ground truth and
predicted outputs with 5000 optimization steps. Additionally, we train a non-discrete scalar updater
(2-layer MLP), similar to our ablation experiments. We refer to the source code for the experiment
details.

Inspired by Klindt (2023), we generate training scalars X and Y from Uniform[0.5, 1.0] and gener-
ate test set by sampling scalars from the Uniform[0., 0.5] distribution.

We report the evaluation results in Table 7. The proposed discrete ScalarUpdate module success-
fully learned the correct operations for updates f1, ..., f4 for all seeds and 3 times out of 5 for f0
(note that the model was trained to predict different manipulations for different states simultane-
ously). For unsuccessful runs, when f0 was not learned correctly, the learned operation for f0 was
g2 for some states (i.e. x · y instead of x), which can be explained by optimization challenges as the
distribution of y is close to 1.

Our experiment demonstrates that the proposed ScalarUpdate module can be extended to support
a wider range of manipulations with scalars. We note that this complicates the optimization problem
of selecting the correct operations/operands from the operations results (e.g., such decomposition
might not be unique).

D INTERPETABILITY AND TESTING DETAILS

In this section, we provide additional details on interpretability and testing of the proposed discrete
reasoners.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: MSE for train/test distributions for the discrete and non-discrete ScalarUpdate modules
and different operations.

f0 f1 f2 f3 f4

discrete 0.01 / 0.1 0. / 0. 0 / 0 0 / 0 0 / 0
non-discrete 5.7e-6 / 0.03 5.1e-6 / 0.001 1.1e-5 / 0.007 1.0e-5 / 0.08 2.0e-5 / 0.03

As an example, consider the BFS algorithm. First, recall the pseudocode of the algorithm:

Starting node← visited
All other nodes← not visited
for step in range(T) do

for node U in a graph do
if U is visited on previous steps then

continue
end if
if U has a neighbor P that visited on previous steps then

U ← visited on this step
U select the smallest-indexed such neighbor P as parent:
Edge (U,P )← pointer
Self-loop (U,U)← not pointer

end if
end for

end for
return a BFS tree described by pointers

Now let us describe how we can verify that the trained DNAR model will perfectly imitate this
algorithm for any test data.

First, we note that for each node U , the node state on the step t+1 (denoted by Ut+1) is the function
of Ut and Vt, where V is the node that sends the message to U on step t:

Ut+1 = StateUpdate(Ut,message from Vt)

How does the node U select a node that will send a message to it? For any node V connected to U ,
the node U computes attention scores depending on discrete states of V of each node and a discrete
indicator if each node has the smallest (or largest) scalar among all neighbors of U with the same
discrete state as V . Then, the node U selects the node V with the largest attention score.

In our (slightly simplified) case, the attention scores only depend on the tuples (Ustate, Vstate,
indicator if u has the smallest index) and there are only 8 such tuples. We can directly com-
pute these attention scores and verify the required invariants, e.g.,

Attention(not visited, visited, smallest) > Attention(not visited, ∗any other∗),

which would imply that the not visited node will receive the message from the smallest-indexed
visited neighbor if such exists independently of the graph size and distribution. If there is no such
neighbor, the node U will receive the message from another not visited node (or from itself).

After verifying the correctness of the message flows, we need to ensure that the state updates are
computed correctly, e.g.,

visited = StateUpdate(not visited,message from visited)

visited = StateUpdate(visited, ∗any∗)
not visited = StateUpdate(not visited,message from not visited)

The main idea is that due to the finite states count and discrete manipulations with scalars, there are
only finite amounts of such checks that can cover all possible state transitions and all of them should
be evaluated only once.

17


	Introduction
	Background
	Algorithmic reasoning
	Transformer interpretability and computation model

	Discrete neural algorithmic reasoning
	Encode-process-decode paradigm
	Discrete neural algorithmic reasoners
	Continuous inputs
	Manipulations over continuous inputs

	Experiments
	Datasets
	Baselines and evaluation
	Model details
	Training details and hyperparameters
	Results

	Interpetability and testing
	Towards no-hint discrete reasoners
	Limitations and future work
	Conclusion
	Ablation study
	State usage for no-hint models
	Extended ScalarUpdate module
	Interpetability and testing details

