

000 001 AX-PROVER: AGENTIC LEAN PROVING WITH LLMS AND MCP 002 INTEGRATION 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 We present Ax-Prover, a domain-agnostic multi-agent system for automated theorem proving in
012 Lean. Formal proof generation requires both creative reasoning and strict syntactic rigor. Ax-Prover
013 meets this challenge by combining large language models (LLMs), which provide knowledge and
014 reasoning, with MCP Lean tools, which ensure correctness. To evaluate performance, we bench-
015 mark our approach on the large-scale NuminaMath-LEAN dataset and introduce two new Lean
016 benchmarks in Abstract Algebra and Quantum Theory. Across all domains, Ax-Prover outperforms
017 state-of-the-art provers, with particularly large gains in the new benchmarks – indicating that while
018 Ax-Prover adapts readily to novel areas, existing systems remain narrowly specialized and struggle
019 to generalize.
020

021 1 INTRODUCTION 022

023 Large Language Models (LLMs) have become the standard approach to address complex tasks in both academic fields
024 and industry. A relevant application of such models is in the field of mathematics, where they have been used to solve
025 complex problems achieving outstanding performance (Chervonyi et al., 2025). More recently, considerable effort has
026 been put into training LLMs to perform formal theorem proving using Lean (de Moura et al., 2015), an open-source
027 programming language and proof assistant that, together with its community-driven `mathlib` library (Lean Prover
028 Community, 2025), provides a rigorous setting where AI systems must engage with symbolic reasoning, structured
029 formalization, and evolving mathematical knowledge. This makes Lean an attractive testbed for probing the reasoning
030 capabilities of LLMs.

031 Recent LLM provers such as the DeepSeek-Prover series (Xin et al., 2024a; DeepSeek-AI, 2024; Ren et al., 2025),
032 Kimina-Prover-72B (Wang et al., 2025), Goedel-Prover Lin et al. (2025), and Seed-Prover Chen et al. (2025) have
033 shown that distillations of frontier reasoning models or RL based training, when adapted for theorem proving in Lean,
034 can reach state-of-the-art performance on benchmarks like Mini-F2F (Zheng et al., 2021) and Putnambench Tsoukalas
035 et al. (2024). Despite these results, they face several key limitations. First, their ability to generalize beyond the
036 Lean mathematics distributions on which they were trained remains unclear, which limits their broader applicability.
037 Relatedly, they depend on fixed versions of the fast-evolving `mathlib`, making them brittle to new definitions unless
038 continuously re-trained, which adds significant cost. Second, it is hard to run them, as they require high-spec machines
039 and expertise to be successfully deployed and used. Third, while distillation improves their ability to produce Lean
040 proofs, it narrows their capabilities: compared to their parent reasoning models, they lose tool use and interactive
041 abilities, limiting effective human–AI collaboration. Together, these issues suggest that scaling increasingly large,
042 specialized provers may yield diminishing returns in both flexibility and usability.

043 In contrast, general-purpose frontier LLMs like Claude (Anthropic, 2025b) and GPT (OpenAI, 2025) encode sub-
044 stantial prior knowledge across a variety of domains (e.g., mathematics, physics, and computer science), while also
045 exhibiting strong natural language understanding, problem-solving skills, and interaction capabilities. Yet, they are
046 not explicitly trained to formalize statements or construct proofs in Lean and thus cannot natively engage with the
047 Lean environment. This creates a sharp division: specialized provers are tightly integrated with Lean but narrow and
048 hard to use, whereas general-purpose models are broad and easily accessible but lack the ability to access the formal
049 reasoning infrastructure required for theorem proving.

050 To address this gap, we introduce Ax-Prover,¹ a new agentic workflow for Lean theorem proving that equips general-
051 purpose LLMs with direct access to the Lean proof environment through external tools (Dressler, 2025a). Ax-Prover
052 enables LLMs to reason about unproven theorems, propose proof sketches, and generate step-by-step Lean code, while
053 using the `lean-lsp-mcp` (Dressler, 2025a;b) to inspect goals, search for relevant results, locate errors, and verify code

¹“Ax” stands for “axiomatic”, indicating the base principles in mathematics and physics, the domains explored in this work.

054 – capabilities essential for formal theorem proving. Ax-Prover overcomes the main limitations of current state-of-the-
 055 art provers. First, it avoids domain overspecialization and obsolescence tied to fixed `Mathlib` versions. Second, by
 056 leveraging existing frontier models, it sidesteps the need to host and deploy specialized systems. Third, it preserves
 057 tool-use and conversational abilities, enabling interactive collaboration with both experts (for targeted feedback) and
 058 non-experts (for guidance and advice).

059 We evaluated Ax-Prover on three datasets. The first is `NuminaMath-LEAN`, an established benchmark of mathematics
 060 competition problems. To broaden the evaluation, we also introduce two new datasets. **AbstractAlgebra** focuses
 061 on algebraic structures such as groups, rings, and fields, testing the prover’s ability to reason in a more abstract,
 062 research-oriented setting rather than the competition-driven style of `NuminaMath`. **QuantumTheorems** explores the
 063 domain of quantum physics, assessing whether the prover can extend beyond pure mathematics and transfer its reasoning
 064 to scientific applications. Our experiments show that Ax-Prover outperforms general-purpose LLMs not equipped
 065 with Lean tools as well as state-of-the-art specialized provers across the board, gaining flexibility and robustness
 066 without sacrificing accuracy.

067 Our contributions are twofold: (1) We design **Ax-Prover**, a lightweight agentic workflow that connects general-
 068 purpose LLMs to Lean via `lean-lsp-mcp`, and demonstrate it outperforms both general-purpose LLMs and specialized
 069 provers on competition-level mathematics, abstract algebra, and quantum physics; (2) We contribute new formalized
 070 **Lean datasets** covering physics and abstract algebra, complementing existing benchmarks.

072 2 RELATED WORK

073 Automated theorem proving in Lean has roots in classical approaches such as decision procedures (de Moura &
 074 Bjørner, 2008; Barbosa et al., 2022) and heuristic-guided proof search (Kovács & Voronkov, 2013; Schulz et al., 2019),
 075 but they face scalability challenges and rarely generate proofs in a form usable by mathematicians. More recent work
 076 integrates machine learning: from heuristic tuning (Urban et al., 2011) to premise selection and tactic prediction (Irving
 077 et al., 2016; Huang et al., 2019), culminating in transformer-based language models capable of generating Lean proofs
 078 (Polu & Sutskever, 2020; Lample & Charton, 2022; Polu et al., 2023; Xin et al., 2024b). Recent large-scale systems
 079 extend this trend by distilling and fine-tuning massive base models (e.g., Kimina from Qwen2.5-72B (Wang et al.,
 080 2025); DeepSeek-Prover-V2 from DeepSeek-V3 (Ren et al., 2025)). These pipelines achieve impressive performance
 081 but demand enormous GPU resources and engineering efforts, producing specialized provers that don’t generalize
 082 across domains. Also, `Mathlib`’s rapid growth – now containing over 220,000 theorems and adding thousands more
 083 each month (Lean Prover Community, 2025) – highlights the need for tools that are both efficient and adaptable to
 084 evolving mathematical libraries. Moreover, these models usually cannot engage in collaboration with human experts:
 085 given an input theorem, they move on straight to its formalization and proof. This is the main approach among current
 086 provers, implemented also in Lin et al. (2025), Baba et al. (2025), and Ospanov et al. (2025).

087 A parallel line of work has explored classical machine learning for supporting experts in Lean proving, for example in premise selection and tactic prediction (Gauthier et al., 2021; Blaauwbroek et al., 2020), and more recently through LLMs that connect to Lean via external interfaces (Ayers et al., 2023; Azerbayev et al., 2023; Song et al.,
 088 2024). These approaches illustrate the promise of AI-assisted proving, but they remain resource-intensive and difficult
 089 to adapt across domains. Recent efforts, such as Kumarappan et al. (2024), attempt to remedy this by emphasizing
 090 greater adaptability within Lean. At the same time, there is growing interest in human–AI collaboration: conversational
 091 assistants (Collins et al., 2023) and “copilot”-style integrations (Chen et al., 2021) suggest how formal tools
 092 can augment, rather than replace, human reasoning. Our work builds on this trajectory by closing the gap between
 093 heavyweight, specialized provers and lightweight, researcher-friendly systems that can be more readily adapted to the
 094 evolving Lean ecosystem.

095 3 SYSTEM ARCHITECTURE

096 We implement **Ax-Prover** as a modular multi-agent architecture with three specialized agents: the **Orchestrator**, the
 097 **Prover**, and the **Verifier**. Following recent agentic designs for complex tasks such as scientific discovery (Gottweis
 098 et al., 2025; Yamada et al., 2025), we avoid a monolithic setup by assigning each sub-agent² a distinct role. This separation
 099 enables specialization and modularity: agents can be independently optimized, replaced, or extended allowing
 100 researchers to adapt Ax-Prover to new domains, integrate additional tools, or tailor workflows to their own expertise
 101 without destabilizing the system.

102 ²We use “sub-agent” and “specialized agent” interchangeably.

Our workflow is straightforward. The Orchestrator receives an unproven Lean statement and forwards it to the Prover, which iteratively generates a proof. The Verifier then checks the proof and reports back. If valid, the Orchestrator closes the task; otherwise, it provides feedback to the Prover, which attempts a new proof. Through this closed-loop process, the system incrementally converts unproven theorems into formally verified Lean proofs. We next describe each agent in detail and the tools underlying our workflow.

3.1 SPECIALIZED AGENTS

3.1.1 ORCHESTRATOR

The Orchestrator's role is analogous to a scheduler in distributed systems: it does not perform computation itself but ensures that computation flows smoothly across agents. It holds three main responsibilities. First, it handles **task assignment**, as it receives user input and instructs the Prover accordingly. Next, it manages **feedback routing** by taking diagnostic outputs from the Verifier and giving structured feedback to the Prover. This separation ensures that proof synthesis and evaluation remain distinct while still enabling iterative refinement. Finally, it decides when to **stop the refinement loop**. Termination occurs either when the Verifier certifies the proof as complete and error-free, or when repeated failures exceed a configurable threshold, deeming the theorem irrecoverable under the given resource budget.

3.1.2 PROVER

```

import Mathlib

theorem unitary_idempotent_is_identity {n : Type*} [DecidableEq n] [Fintype n]
  {α : Type*} [CommRing α] [StarRing α] (U : Matrix.unaryGroup n α)
  (h : (U : Matrix n n α) ^ 2 = (U : Matrix n n α)) :
  (U : Matrix n n α) = 1 := by sorry

-- Step 1: Extract the unitary property  $U \cdot U = 1$ 
have h1 : star (U : Matrix n n α) * (U : Matrix n n α) = 1 := by
  exact Matrix.unaryGroup.star_mul_self U

-- Step 2: From the idempotent property, multiply both sides by star  $U$  on the left
have h2 : star (U : Matrix n n α) * (U : Matrix n n α) ^ 2 = star (U : Matrix n n α) * (U : Matrix n n α) := by
  congr_arg (fun x => star (U : Matrix n n α) * x) h

-- Step 3: Simplify the left side using associativity and the unitary property
have h3 : star (U : Matrix n n α) * (U : Matrix n n α) ^ 2 = (U : Matrix n n α) := by
  sorry

-- Step 4: Combine to get the final result
have h4 : (U : Matrix n n α) = 1 := by
  sorry

exact h4

-- Step 1: Extract the unitary property  $U \cdot U = 1$ 
have h1 : star (U : Matrix n n α) * (U : Matrix n n α) = 1 := by
  sorry

-- Step 2: From the idempotent property, multiply both sides by star  $U$  on the left
have h2 : star (U : Matrix n n α) * (U : Matrix n n α) ^ 2 = star (U : Matrix n n α) * (U : Matrix n n α) := by
  sorry

-- Step 3: Simplify the left side using associativity and the unitary property
have h3 : star (U : Matrix n n α) * (U : Matrix n n α) ^ 2 = (U : Matrix n n α) := by
  sorry

-- Step 4: Combine to get the final result
have h4 : (U : Matrix n n α) = 1 := by
  sorry

exact h4

```

Figure 1: Prover steps.

The Prover is the constructive core of the system. Its task is to transform unproven Lean theorems into completed proofs. Theorem proving requires both creativity – finding the right lemma or using the right tactic – and discipline – ensuring that the structure and Lean code are syntactically correct. To achieve this, the Prover balances LLM-based heuristic exploration with rigorous Lean formalization aided by the Lean tools made available by the lean-lsp-mcp (see Section 3.2).

We instruct the Prover to carry out its task following this general approach. Note that at each stage, the Prover writes the updated version of the theorem to a `.lean` file. This is for two reasons: first, it complies with Lean tools requirements, which require filepaths to function. Second, writing to a file at each step allows the user to inspect the proving process in real time (see Figure 1):

1. **Theorem identification:** The Prover scans Lean files for unfinished proofs marked with `sorry` - for example, the `Unitary` `Idempotent` `is` `Identity` theorem in box 1 in Figure 1. This step guarantees that the prover attempts to prove all valid theorem statements.
2. **Sketch construction:** Next the Prover generates a coarse-grained natural language outline of the proof's logical flow (box 2), breaking down a complex proof into more manageable steps, and briefly describing the

162 key ideas for each step (e.g., algebraic manipulation). This mirrors how human mathematicians would break
 163 down a complex problem, starting with a high-level sketch before filling in the details.
 164

- 165 3. **Stepwise formalization:** Then the Prover formalizes each of the steps in Lean (box 3). Each formalized step
 starts with and have and ends with a `sorry`.
- 166 4. **Sequential Solving:** The Prover goes through each step sequentially, proposing Lean tactics to substitute the
`sorry` (box 4).
- 167 5. **Verification check:** After completing each step, the Prover uses `lean_diagnostic_messages` to assess
 168 if the generated step is correct. If a severity 1 error is detected, the Prover halts progress, backtracks, and
 169 attempts an alternative strategy. If the check is correct and there are no `sorrys` left, the Prover ends its task
 170 (box 5).

173 This approach allows the Prover to function like an automated yet cautious mathematician: it incrementally explores
 174 and implements ideas, verifies their correctness in Lean, and advances only once each step has been validated.
 175

176 3.1.3 VERIFIER

178 The Verifier serves as the final gatekeeper of correctness in our workflow. It neither generates nor modifies
 179 proofs: it only assesses the correctness of the proof generated by the Prover. Similarly to the Prover, the Veri-
 180 fier has access to filesystem tools – required to access the file produced by the Prover – and a single Lean tool,
 181 `lean_diagnostic_messages`, to assess the correctness of the proof.

182 Concretely, the Verifier operates in two steps: First, it **compiles** the Lean file produced by the Prover using
 183 `lean_diagnostic_messages`. Second, it parses the diagnostic message, generate a reports of the errors, and
 184 **emits a verdict**: a proof is considered verified if and only if no level-1 error exists and there are no `sorrys` or `admit`
 185 statements present (see Section 3.2).

186 At first glance the Verifier may seem redundant, since it uses the same `lean_diagnostic_messages` tool as the
 187 Prover. However, it is needed for two reasons: (i) the Prover may run out of steps and return an incomplete or incorrect
 188 proof, and (ii) it sometimes terminates early despite remaining errors. An independent Verifier thus ensures robustness,
 189 mirroring software pipelines where aggressive testing is always checked by a conservative compiler.
 190

191 3.2 MCP TOOLS

193 As mentioned above, tools are essential for the Prover to complete a proof. We provide tool access via the MCP pro-
 194 tocol, a standard interface that lets LLM agents invoke external services in a uniform, controlled way. The Prover uses
 195 two categories of tools: **Filesystem tools** and **Lean tools**. Filesystem tools handle file operations such as `read_file`,
 196 `write_file`, and `list_directory` (see Appendix A.1). Lean tools allow the Prover to perform a variety of ac-
 197 tions crucial for theorem proving. We access these tools through the `lean-lsp-mcp` project Dressler (2025a), which
 198 provides a standardized interface to the Lean environment and ensures that the Prover always operates on the latest
 199 version of `Mathlib`, maintaining compatibility for imports, theorem references, and proof construction. The tools
 200 themselves fall into four main groups, summarized in Table 1.

201 Category	202 Tools
203 Project and 204 File Management	205 <code>build</code> : Compile and build the Lean project <code>file_contents</code> : Get contents of a Lean file <code>declaration_file</code> : Find which file contains a declaration
206 Diagnostics and 207 Feedback	208 <code>lean_diagnostic_messages</code> : Compile code and return diagnostic messages <code>goal</code> : Get the current proof goal at a position <code>term_goal</code> : Get goal information for a term <code>hover_info</code> : Get hover information for symbols
209 Code Assistance	210 <code>completions</code> : Get completion suggestions <code>multi_attempt</code> : Try multiple proof attempts <code>run_code</code> : Execute Lean code
211 Search and 212 Reasoning	213 <code>leansearch</code> : Search for theorems and lemmas <code>loogle</code> : Search for lemmas by type signature <code>state_search</code> : Search proof states <code>hammer_premise</code> : Use automated theorem proving

215 Table 1: Lean tools available on `lean-lsp-mcp`, organized by functionality.

216 Note that `lean_diagnostic_messages` returns a diagnostic with the error log and a scalar: 0 if no error is found;
 217 1 for incorrect/incomplete proofs; and 2 for a valid but incomplete proof, e.g. with `sorry`, warning, or linter error.
 218
 219

220 **4 DATASETS**

221
 222 While the application of LLMs to mathematical verification in Lean is evolving rapidly, the availability of comprehensive datasets remains limited. At present, only a few open-source datasets are available, with some of the most notable being **MiniF2F** (Zheng et al., 2021), **Putnambench** Tsoukalas et al. (2024), and **NuminaMath-LEAN** (Numina-Team, 2025). These benchmarks include hard, high-level math problems from competitions such as the International Mathematical Olympiad (IMO) or the Putnam exam. Other datasets exist, but have clear limitations: For example, the Deepseek-Prover-V1 Train(DeepSeek-AI, 2024) includes 27k LLM-generated statements and proofs, but most of them are very simple, with 2–3 line proofs. Also Lean Workbook(Ying et al., 2024) (57k) gathers LLM-generated formalizations of mathematical problems. While it reports a 93.5% statement-level accuracy after filtering, subsequent analyses note that a nontrivial fraction of examples still suffer from semantic errors and hallucinations (Lu et al., 2025; Wu et al., 2025), which limits its reliability.

223 All in all, current valuable datasets (MiniF2F, Putnambench, and NuminaMath-LEAN), not only cover a single domain
 224 - mathematics - but they also focus on a very specific type of math problem, i.e. competition-level problems. To enrich
 225 the current ecosystem and expand the coverage of Lean datasets, we create and release two new datasets.

226 **Abstract-Algebra (AA)** is a Lean 4 dataset of problems drawn from standard abstract algebra textbooks. Unlike
 227 MiniF2F (Zheng et al., 2021), Putnambench Tsoukalas et al. (2024), and NuminaMath-LEAN (Numina-Team, 2025),
 228 which focus on undergraduate level competition-style puzzles, AA targets graduate or research-level mathematics,
 229 emphasizing deeper abstract concepts over lengthy step-by-step manipulations.

230 **Quantum-Theorems (QT)** covers core topics in foundational quantum mechanics, spanning problems from density
 231 matrices to scaling laws for quantum repeater networks. By bridging theoretical physics with formal verification
 232 methods, QT offers an unprecedented opportunity to test prover agents outside the field of Math, providing a rigorous
 233 testbed for evaluating automated Lean theorem proving systems on quantum mechanical theorems.

234 In the section below, we provide more information about each dataset that we use for our experiments.

235
 236 **4.1 ABSTRACT-ALGEBRA**

237 **Abstract-Algebra (AA)** is a curated dataset of 100 Lean problems inspired by exercises in Dummit & Foote’s abstract
 238 algebra textbook (Dummit & Foote, 2004). The dataset consists of two subsets: 50 easy problems from Chapter 1.1
 239 and 50 intermediate problems from Chapters 1.2–2.5. An in-depth description of the pipeline used to generate AA and
 240 examples from AA are provided in the Appendix B.1. While MiniF2F (Zheng et al., 2021), Putnambench Tsoukalas
 241 et al. (2024), and NuminaMath-LEAN (Numina-Team, 2025) focus on high school to undergraduate level competition
 242 mathematics, the AA dataset is aimed toward research-level mathematics. The key distinction is that competition-
 243 level math typically involves elementary content framed as puzzles that require many reasoning steps. For example, a
 244 competition problem may ask to determine all positive integers a, b such that

$$\frac{a^2 + b^2}{ab + 1} \in \mathbb{Z},$$

245 which is conceptually elementary but requires a sequence of clever number-theoretic transformations. In contrast,
 246 research-level mathematics involves deeper concepts with fewer reasoning steps per exercise; for instance, an AA
 247 problem may ask: *Prove every subgroup of a cyclic group is cyclic.* This example highlights the focus on abstract
 248 structures rather than intricate manipulations, echoing the distinction between competition-level and research-level
 249 mathematics.

250 The creation of the AA dataset is motivated by two main reasons. First, abstract algebra is foundational to much of
 251 mathematics, providing essential tools for research in number theory, geometry, topology, and beyond—indeed, 22 of
 252 the 32 primary mathematics categories on arXiv build upon it (arX, 2025) It also underpins advances outside math, in
 253 fields such as cryptography, physics, and chemistry, making it a natural setting for formal reasoning. Second, there
 254 is a practical gap between AI-focused formalization efforts, which largely targets elementary mathematics, and the
 255 advanced topics studied by research mathematicians. By formalizing problems from standard textbooks, AA bridges
 256 this gap and offers a research-oriented dataset that supports deeper mathematical reasoning.

270 4.2 QUANTUM-THEOREMS
271272
273 **Quantum-Theorems (QT)** includes 134 problems spanning core areas of quantum theory. These problems introduce
274 unique challenges, as they require integrating finite-dimensional linear algebra, complex analysis, and matrix theory
275 with quantum principles such as unitarity, Hermiticity, and measurement postulates. This domain-specific knowledge
276 is largely absent from existing prover datasets, making QT a valuable benchmark for testing and advancing formal
277 reasoning in physics.
278279 QT was generated through an iterative human-in-the-loop process, combining automated proof synthesis with expert
280 curation. An automated coding agent first generated proof attempts, producing both complete proofs and partial
281 derivations. A quantum physics expert then reviewed each proof identifying gaps, correcting errors, and standardizing
282 operator definitions. The final dataset replaces these proofs with `sorry` statements.
283284 We generated problems at two levels of difficulty: Basic problems are short (1–10 lines) and often solvable with
285 standard automation (`simp`, `linarith`), e.g., proving that the diagonal entries of a Hermitian matrix are real. Inter-
286 mediate level problems require 10–50 lines, systematic case analysis, and orchestration of rewrite rules, such as
287 proving simultaneous diagonalization of commuting observables. An in-depth description of the process used to cre-
288 ate QT and examples from QT are provided in Appendix B.2.
289290 QT represents a first step toward computer-verified quantum mechanics, addressing the challenge of ensuring cor-
291 rectness in quantum information protocols and algorithms. The dataset has practical importance beyond research: as
292 quantum technologies grow more complex, errors in proofs or hidden assumptions can have serious consequences.
293 For instance, a recent bug in a proof claiming to break lattice-based cryptography—only identified weeks later by ex-
294 perts—illustrates the risks of unchecked reasoning in high-stakes domains (Rousseau, 2024; Chen, 2024). QT provides
295 a resource to begin developing tools which can help in detect these kind of mistakes earlier.
296297 4.3 NUMINAMATH-LEAN
298299 NuminaMath-LEAN (Numina-Team, 2025) is a large-scale collection of approximately 104,000 competition-level
300 mathematics problems formalized in Lean 4. The dataset is created by the same research group that developed the
301 Kimina-Prover. They derived NuminaMath-LEAN from NuminaMath 1.5 (LI et al., 2024), with problems drawn
302 from prestigious contests such as the International Mathematical Olympiad (IMO) and the United States of America
303 Mathematical Olympiad (USAMO).
304305 Each problem includes a formal statement in Lean 4, written either by a human annotator (19.3% of the problems)
306 or by an autoformalizer model (80.7%) (Numina-Team, 2025). Out of the total problems, 25% were correctly proved
307 by Kimina-Prover during its RL training phase (`Solved-K`), 11% were proved by humans (`Solved-H`), while the
308 remaining 64% do not have any proof (`Unsolved`) (Wang et al., 2025; LI et al., 2024; Numina-Team, 2025). We
309 analyzed problems across the three groups and observed a clear difficulty gradient: `Solved-K` < `Solved-H` <
310 `Unsolved`. This ordering aligns with the fact that `Unsolved` problems could not be handled by Kimina-Prover,
311 providing an implicit measure of hardness. For problems with available proofs, this qualitative assessment is further
312 supported quantitatively: `Solved-K` proofs are shorter on average than `Solved-H` (98 vs. 155 lines), indicating greater
313 proof complexity.
314315 5 EXPERIMENTS
316317 We evaluated Ax-Prover against frontier LLMs and specialized provers using the datasets from Section 4. For AA and
318 QT, we used the full datasets. From NuminaMath-LEAN, we sampled 300 problems – 100 each from `Solved-K`,
319 `Solved-H`, and `Unsolved` – to balance difficulty levels while keeping experiments budget-friendly. We chose to
320 test NuminaMath-LEAN over MiniF2F and Putnambench because they contains similar problems types, and including
321 these benchmarks would have increased costs unnecessarily. Furthermore, Ren et al. (2025) and Wang et al. (2025)
322 both report results on MiniF2F with `pass@32` and `pass@8192`, and on Putnambench with `pass@192` for Kimina put
323 and `pass@1024` for DeepSeek put which would be too expensive for us to run or compare against using Ax-Prover.
The following subsections outline our setup and present the results.
324

324 5.1 EXPERIMENTAL SETUP
325326 For our experiments, each Ax-Prover agent was powered by Claude Sonnet 4 (Anthropic, 2025a). Since the agentic
327 flow can run indefinitely, we capped Prover API calls at 100,³ limited Orchestrator–Prover–Verifier loops to 2, and set
328 a 25-minute timeout per theorem. We compare our approach against three strong baselines:329

- **Claude Sonnet 4 (Sonnet)**, without access to any tools. This baseline allows us to assess how the same LLM
330 used for our agentic flow performs if used outside the agentic flow, and without access to MCP tools.
- **DeepSeek-Prover-V2-671B (DS-Prover)**, a specialized Lean prover.
- **Kimina-Prover (Kimina)**, another specialized Lean prover.

335 We applied the 25-minutes timeout to all baselines, and run them with pass@1.⁴
336337 5.2 RESULTS
338339

Dataset	Subset	Ax-Prover	Sonnet	DS-Prover	Kimina
NuminaMath	solved-K	81%	7%	48%	100%
	solved-H	47%	8%	14%	0%
	unsolved	26%	1%	18%	0%
	total	51%	5%	28%	31%
AbstractAlgebra	easy	72%	10%	26%	12%
	intermediate	56%	6%	22%	14%
	total	64%	8%	24%	13%
QuantumTheorems	easy	100%	54%	88%	72%
	intermediate	92%	18%	48%	34%
	total	96%	40%	61%	57%

350 Table 2: AX Agent compared to Claude Sonnet 4 and DeepSeek-Prover-V2-671B across algebra and physics domains.
351 Note that results on NuminaMath for Kimina are reported from Numina-Team (2025), and where obtained during its
352 RL training phase with, on average, pass@68.354 We compute results by running an external Lean compiler on the files generated by the model – if the file compiles with
355 no errors we mark it as correct, otherwise it is incorrect. We report overall accuracy in Table 2. In both mathematics
356 and physics domains, Ax-Prover consistently surpasses both specialized prover models (DS-Prover and Kimina) and
357 the standalone LLM baseline (Sonnet), highlighting its superior performance across the board.358 On the Numina dataset, Ax-Prover largely outperformed all the baselines. Across all three NuminaMath-LEAN questions
359 we benchmarked on, Ax-Prover scored 51% accuracy while DS-Prover (28%) and Kimina (31%) achieve similar
360 performance, while Sonnet only gets 5% accuracy. Particularly notable is the performance of Ax-Prover on Solved-H,
361 where it solves almost half of the problems, and on Unsolved (26%). Furthermore, due to autoformalization (see
362 Section 4.3), some theorems are ill-posed: during testing, Ax-Prover encountered them, spotted the error, and reported
363 it (see Appendix C).364 On AA the gap in performance is striking, with Ax-Prover (64%) outperforming DS-Prover by 40%. Both Kimina
365 (13%) and Sonnet get a very poor performance (8%). This is expected, as the AA dataset is largely out-of-distribution
366 for DS-Prover, Sonnet, and Kimina, which are trained primarily on Mathlib — covering only a minimal subset of
367 abstract algebra — or on undergraduate competition-level math problems.368 On the QT dataset, Ax-Prover achieves an almost perfect performance (96%). DS-Prover also performed strongly
369 (61%), while Kimina lagged significantly (57%), and Sonnet drops to 40%. To showcase the differences between
370 the models, let’s consider the proofs that quantum observables are Hermitian matrices (full proofs available in
371 Appendix D.1). DeepSeek misused the Hermitian field, misunderstanding its type, while Sonnet made a more sophisticated
372 effort but encountered a rewrite pattern mismatch, which highlights its difficulties in managing Lean environment.
373 In contrast, Ax-Prover succeeded through a systematic approach, explicitly applying the Hermitian property to
374 diagonal elements, using the definition of conjugate transpose, and connecting it to the fact that a complex number
375376 ³Each call may produce code or a tool invocation – for example, a call to `read_file` or `diagnostic_messages`.377 ⁴We could not test the baselines with pass@>1 due to budget restrictions.

378 equal to its conjugate is real. The case highlights that successful formal theorem proving requires careful, step-by-
 379 step reasoning, a solid grasp of type theory, and familiarity with library theorems – demonstrating that clarity and
 380 correctness outweigh clever shortcuts in formal verification.

381 These results highlight two key limitations of current approaches: general-purpose LLMs alone cannot effectively
 382 manage the Lean environment or leverage its tools, while specialized provers fail to generalize beyond their narrow
 383 training domains. The fact that Ax-Prover, built on Sonnet, nearly doubles the performance of the standalone LLM
 384 demonstrates that combining agentic reasoning with Lean tool integration is essential for robust theorem proving
 385 across domains.

387 5.3 ANALYSIS OF TACTIC USAGE

388 The large performance gap between Ax-Prover and standalone Sonnet underscores the importance of Lean tools. We
 389 measured tool usage over 100 runs on the challenging Numina unsolved subset, and found that the Prover makes
 390 an average of 100.76 tool calls per run.

391 However, one might still ask: do frequent tool calls actually enhance proofs quality and variety? To answer this
 392 question, we check the tactics used in the proofs by Ax-Prover, Kimina, and DeepSeek. (full stats in Table 3). While
 393 the three models share 28 tactics, Ax-Prover uses 10 tactics not employed by DS-Prover or Kimina, whereas the
 394 specialized provers use only one tactic absent in Ax-Prover. This supports our hypothesis that integrating frontier
 395 LLMs with Lean tools enhances both creative exploration and proof construction. Beyond performance, tool usage
 396 mirrors human Lean development, where interactive debugging and iterative proof refinement are central.

397 5.4 DEPLOYMENT ANALYSIS

398 As stressed in Section 1, deployment complexity is critical when using AI models. Here we compare models under
 399 this aspect. DeepSeek-Prover-V2-671B and Kimina-Prover-72B require GPU-accelerated, high-spec machines and
 400 are not available through model as a service (MaaS) providers – for instance, while DeepSeek-Prover-V2-671B was
 401 previously hosted by Novita (deepseek ai, 2025), this endpoint now redirects to the general DeepSeek-V3 model. We
 402 hosted DeepSeek and Kimina on Google Cloud: DeepSeek on an A3 Ultra VM with eight H200-141GB GPUs, and
 403 Kimina on an A2 High GPU VM with eight A100-40GB GPUs.

404 Deployment is burdensome and demands MLOps expertise: users must match hardware specs, configure distributed
 405 runtimes, debug serving issues, and contend with scarce GPU availability. Cloud providers enforce strict quotas and
 406 long queues for H100/H200 GPUs, hindering reproducibility even for well-funded teams.

407 In contrast, Ax-Prover relies only on making Anthropic API calls within an agentic loop, requiring no infrastructure
 408 beyond basic client access. It can be executed locally on a client machine or remotely in a lightweight container,
 409 enabling hundreds of problems per dataset to be evaluated without any engineering burden.

410 On monetary costs, running DS-Prover and Kimina on 1000 datapoints cost approximately \$300 and \$2000, respectively,
 411 while Ax-Prover cost about \$4000. At first glance, our approach appears more expensive, but only because we
 412 evaluate specialized models with pass@1. Had we followed the common practice of running them with pass@32 or
 413 even pass@8192 (!), the cost of these specialized models would have far exceeded ours. Moreover, general-purpose
 414 LLMs are on a rapid trajectory of improvement: each new generation delivers stronger reasoning at lower cost, suggesting
 415 that the relative efficiency of Ax-Prover will only increase over time.

416 The deployment and cost barriers of specialized models also help explain why they have not achieved widespread
 417 use beyond benchmark settings such as IMO-style mathematics problems. For most researchers, the need to manage
 418 specialized hardware, navigate GPU quotas, and bear high costs makes these systems effectively unusable in practice.
 419 These barriers are eliminated with Ax-Prover. In the following section, we show how Ax-Prover can be directly
 420 used by domain experts, highlighting its potential as a researcher-friendly tool for real mathematical and scientific
 421 verification tasks.

422 6 USE CASE: RESEARCHER-FRIENDLY VERIFICATION

423 Besides being easily accessible, Ax-Prover supports interactive, collaborative workflows. Unlike large-scale provers
 424 that attempt to complete a proof in one shot, Ax-Prover allows researchers to inspect intermediate states, guide proof
 425 direction, and incorporate domain knowledge. This makes it not just a backend system, but a partner in mathematical
 426 and scientific reasoning. We provide a concrete example below.

We applied Ax-Prover to a recent cryptography result, *A New Algorithm for Computing Branch Number of Non-Singular Matrices over Finite Fields* (Mishra et al., 2024) (see the full case study in Appendix F). The task involved formalizing the paper’s statements in Lean, and verifying the main claim. One of our mathematics domain experts collaborated with Ax-Prover to structure the proof, validate lemmas, and complete the verification all locally on their own laptop. Ax-Prover not only supported the process by checking intermediate lemmas and guiding proof strategies, but also revealed an error in the original approach – showing that it can not only reproduce known arguments, but also advance the state of knowledge. The whole process lasted two working days and resulted in over 2,000 lines of lean code and the resulting lean blueprint can be made available upon request.

Our case study marks one of the first concrete examples of AI systems directly assisting professional mathematicians. However, without Ax-Prover such successes currently require massive computational resources. For comparison, consider the formalization of the Prime Number Theorem (PNT): Terence Tao and Alex Kontorovich initiated the Lean translation, but the project was only completed *weeks later* by Math, Inc.’s Gauss agent running on Morph.AI’s Infinibranch cluster (Math Inc., 2025). While ultimately successful, this was a massive engineering effort for a well-known proof of comparable difficulty to our cryptography case study.

This comparison underscores the contribution of Ax-Prover in enabling fast and efficient verification of research-level proofs of new results. Crucially, it acts as a teammate, by exposing intermediate reasoning, accepting guidance, and enforcing rigor.

7 CONCLUSIONS

We introduce **Ax-Prover**, a novel agentic workflow that combines the broad reasoning capabilities of general-purpose LLMs with the formal rigor of Lean’s proof environment. Our system addresses three major limitations of current specialized provers: (i) limited generalizability and rapid obsolescence as libraries like `mathlib` evolve, (ii) high engineering and maintenance costs, and (iii) inability to leverage external tools or collaborate effectively with human experts.

Evaluations across multiple domains show that Ax-Prover consistently outperforms both specialized provers (DeepSeek-Prover, Kimina-Prover) and a standalone LLM baseline (Sonnet). On NuminaMath-LEAN it achieved higher overall success rates, including problems in the `Unsolved` split, and the gains were even more pronounced on our two new datasets, **AbstractAlgebra** and **Quantum Theorems**. These results highlight Ax-Prover’s superior generalization, adapting to novel domains beyond its training data where specialized systems’ performance worsens.

We attribute this success to our multi-agent architecture and its tight integration with Lean tools via the `lean-lsp-mcp` protocol. By iteratively editing proofs, inspecting goals, and diagnosing errors, Ax-Prover behaves like a cautious mathematician, systematically exploring and verifying each step. The frequency and effectiveness of tool use in our experiments confirm their essential role in improving proof quality and enabling human-like debugging.

Furthermore, in our case study on cryptography, we showcase the collaboration capabilities of Ax-Prover. One of our mathematics domain experts worked side-by-side with it, using it not just as an automated prover but as a partner for structuring arguments, validating intermediate lemmas, and diagnosing proof failures. This interaction demonstrates how Ax-Prover can adapt to expert guidance, accelerate verification workflows, and even surface errors in the original reasoning.

In addition, we contribute two new formalized datasets: **AbstractAlgebra**, which focuses on research-level mathematics, and **Quantum Theorems**. These benchmarks provide new testbeds for cross-domain reasoning in future agents.

Looking ahead, we plan to (i) enhance agentic performance with memory and parallelized agents to handle more complex, multi-step proofs; (ii) broaden the scope of our formalization efforts to applied scientific and engineering domains; and (iii) develop a more collaborative framework for human-agent interaction, enabling experts to guide agents on the most challenging problems.

7.1 ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics.⁵ Potential ethical considerations relate to the use of large language models for formal mathematics. First, compute costs and carbon footprint are a concern: although our approach requires API calls to frontier models, it avoids the extreme GPU usage required by specialized provers.

⁵<https://iclr.cc/public/CodeOfEthics>

486 Second, reproducibility and transparency are prioritized: all datasets used (NuminaMath-LEAN, AbstractAlgebra, and
 487 QuantumTheorems) are either publicly available or provided in our supplementary materials, and details of our setup
 488 are described in the Appendix. There are no other specific ethical concerns that we feel must be highlighted at this
 489 stage; however, we acknowledge the importance of ongoing evaluation of the societal and ethical implications as this
 490 technology is applied.
 491

492 7.2 REPRODUCIBILITY STATEMENT

493 We have taken multiple steps to ensure reproducibility. Our datasets are either publicly available or attached in our
 494 supplementary materials (NuminaMath-LEAN, AbstractAlgebra, and QuantumTheorems), with details of their con-
 495 struction in Appendix B. All experimental settings, including $\text{pass}@k$ values, timeouts, and model configurations, are
 496 specified in Section 5 and Appendix E. We also describe our agentic workflow (Section 3), provide our code in the sup-
 497 plementary materials, provide example Lean proofs and failure cases (Appendix F), and document missing `mathlib`
 498 lemmas. Together, these materials are intended to allow researchers to fully reproduce our results and extend our
 499 experiments.
 500

501 REFERENCES

502 Putnambench leaderboard. <https://trishullab.github.io/PutnamBench/leaderboard.html>. Accessed: 2025-09-24.

503 Mathematics (arxiv archive). arXiv, 2025. URL <https://arxiv.org/archive/math>. Accessed: 2025-09-24.

504 Anthropic. Claude 4. <https://www.anthropic.com/news/clause-4>, 2025a. Accessed: 2025-09-16.

505 Anthropic. Claude documentation, 2025b. URL <https://docs.claude.com/en/home>. Accessed: 2025-09-19.

506 Ethan Ayers et al. Leanlm: Large language models for lean theorem proving. *arXiv preprint arXiv:2306.09264*, 2023.

507 Zhenisbek Azerbayev et al. Formal proving with llms: Lean as a benchmark. In *Advances in Neural Information*
 508 *Processing Systems (NeurIPS)*, 2023.

509 Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based framework for formal
 510 mathematical proofs. *arXiv preprint arXiv:2506.19923*, 2025.

511 Haniel Barbosa, Clark Barrett, Pascal Fontaine, and Andrew Reynolds. Satisfiability modulo theories: An appetizer.
 512 *Communications of the ACM*, 65(6):69–77, 2022.

513 Bart Blaauwbroek et al. Tactician: Lean proof automation with knn. In *Proceedings of the International Conference*
 514 *on Interactive Theorem Proving (ITP)*, pp. 348–366. Springer, 2020.

515 Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars R. Knudsen, Gregor Lean-
 516 der, Venzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
 517 Prince – a low-latency block cipher for pervasive computing applications. In Xiaoyun Wang and Kazue Sako (eds.),
 518 *Advances in Cryptology – ASIACRYPT 2012*, Lecture Notes in Computer Science, pp. 208–225, Berlin, Heidelberg,
 519 Springer Berlin Heidelberg. doi: 10.1007/978-3-642-34961-4_14.

520 Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Cheng-
 521 gang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving. *arXiv preprint*
 522 *arXiv:2507.23726*, 2025.

523 Mark Chen et al. Evaluating large language models trained on code. In *arXiv preprint arXiv:2107.03374*, 2021.

524 Yilei Chen. Quantum algorithms for lattice problems. Technical report, Cryptology ePrint Archive, Report 2024/555,
 525 2024. URL <https://eprint.iacr.org/2024/555.pdf>. Updated April 18: algorithm contains an unfix-
 526 able bug invalidating the main claim (see Section 3.5.9, Page 37).

527 Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Menegali, Junehyuk Jung,
 528 Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in solving olympiad geometry with
 529 alphageometry2. *arXiv preprint arXiv:2502.03544*, 2025.

530 Emily Collins et al. Llms as conversational partners for mathematicians. *arXiv preprint arXiv:2305.XXXX*, 2023.

540 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In *Proceedings of the International Conference*
 541 *on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)*, pp. 337–340. Springer, 2008.
 542

543 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover
 544 (system description). In *Automated Deduction – CADE-25*, volume 9195 of *Lecture Notes in Computer Science*,
 545 pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6_26.

546 DeepSeek-AI. Deepseek-prover-v1 dataset. <https://huggingface.co/datasets/deepseek-ai/>
 547 DeepSeek-Prover-V1, 2024. Accessed: 2025-08-24.

548 deepseek ai. Deepseek-prover-v2-671b, 2025. URL <https://huggingface.co/deepseek-ai/>
 549 DeepSeek-Prover-V2-671B. Accessed: 2025-09-24.

550

551 Oliver Dressler. Lean-lsp-mcp: Tools for agentic interaction with the lean theorem prover, 3 2025a. URL <https://github.com/o0o0o0o/lean-lsp-mcp>. Accessed: 2025-08-24.

552

553 Oliver Dressler. leanclient: Python client to interact with the lean4 language server, 1 2025b. URL <https://github.com/o0o0o0o/leanclient>. Accessed: 2025-08-24.

554

555 David S Dummit and Richard M Foote. Abstract algebra. john wile & sons. *Inc., Hoboken, NJ*, 2004.

556

557 Praveen Gauravaram, Lars Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer,
 558 and Søren S. Thomsen. Grøstl – a sha-3 candidate. Submission to nist, NIST, September 2008. URL <http://www.groestl.info/>. Available at <http://www.groestl.info/>.

559

560 Thérèse Gauthier, Cezary Kaliszyk, and Josef Urban. Tacticoe: Learning to prove with tactics. In *Proceedings of the*
 561 *International Conference on Automated Deduction (CADE)*, pp. 275–294. Springer, 2021.

562

563 Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom Myaskovsky, Felix
 564 Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist. *arXiv preprint arXiv:2502.18864*,
 565 2025.

566

567 Daniel Huang et al. Learning to prove theorems via interacting with proof assistants. In *International Conference on*
 568 *Machine Learning (ICML)*, pp. 2654–2663, 2019.

569

570 Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, et al. Deepmath - deep sequence models for premise selec-
 571 tion. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 2235–2243, 2016.

572

573 Thomas W Judson. *Abstract algebra: theory and applications*. 2020.

574

575 Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In *Proceedings of the International*
 576 *Conference on Computer Aided Verification (CAV)*, pp. 1–35. Springer, 2013.

577

578 Adarsh Kumarappan, Mo Tiwari, Peiyang Song, Robert Joseph George, Chaowei Xiao, and Anima Anandkumar.
 579 Leanagent: Lifelong learning for formal theorem proving. *arXiv preprint arXiv:2410.06209*, 2024.

580

581 Guillaume Lample and François Charton. Deep reinforcement learning for theorem proving. In *International Confer-
 582 ence on Learning Representations (ICLR)*, 2022.

583

584 Lean Prover Community. Mathlib statistics. [https://leanprover-community.github.io/mathlib_](https://leanprover-community.github.io/mathlib_stats.html)
 585 stats.html, 2025. GitHub repository for generating statistics plots for Mathlib; accessed 2025-08-24.

586

587 Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui
 588 Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu.
 589 Numinamath. [<https://huggingface.co/AI-MO/NuminaMath-1.5>] (https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

590

591 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi Chen,
 592 Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving. *arXiv preprint*
 593 *arXiv:2502.07640*, 2025.

594

595 Zeyuan Lu, Guodong Zhang, Junxiao Chen, Huan Chen, Yilun Chen, Zonglin Li, Yiping Li, Lianmin Wang, Yao Lin,
 596 Ce Zhang, and Jie Chen. Process-driven autoformalization in lean 4. In *The Thirteenth International Conference*
 597 *on Learning Representations*, 2025. URL <https://openreview.net/forum?id=k8KsI84Ds7>.

594 Math Inc. Introducing gauss, an agent for autoformalization, 2025. URL <https://www.math.inc/gauss>.
 595 Announcement of autoformalization agent for formal verification in mathematics.
 596

597 P. R. Mishra, Yogesh Kumar, Susanta Samanta, and Atul Gaur. A new algorithm for computing branch number of
 598 non-singular matrices over finite fields. *arXiv preprint arXiv:2405.07007*, 2024.

599 National Institute of Standards and Technology. Advanced encryption standard (aes). Federal Information Processing
 600 Standards Publication FIPS 197-upd1, U.S. Department of Commerce, Gaithersburg, MD, 2001. URL <https://doi.org/10.6028/NIST.FIPS.197-upd1>. Published November 26, 2001; Updated May 9, 2023.
 601

602 Numina-Team. Numinamath-lean dataset. <https://huggingface.co/datasets/AI-MO/NuminaMath-LEAN>, 2025. Accessed: 2025-08-24.

603 OpenAI. Openai models documentation, 2025. URL <https://platform.openai.com/docs/models>. Accessed: 2025-09-19.
 604

605 Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean collaboration for advanced
 606 formal reasoning. *arXiv preprint arXiv:2505.05758*, 2025.

607 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. In *International
 608 Conference on Learning Representations (ICLR)*, 2020.

609 Stanislas Polu et al. Formal mathematics statement curriculum learning. In *Advances in Neural Information Processing
 610 Systems (NeurIPS)*, 2023.

611 Z.Z. Ren, Zhihong Shao, Wenfeng Liang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via re-
 612 inforcement learning for subgoal decomposition. <https://arxiv.org/abs/2504.21801>, 2025. Accessed:
 613 2025-08-24.

614 Sébastien Rousseau. Bug discovered in quantum algorithm for lattice-based crypto. <https://sebastienrousseau.com/2024-04-22-bug-discovered-in-quantum-algorithm-for-lattice-based-crypto.html>, April 22 2024. Accessed: [add access date here].
 615

616 Stephan Schulz, Simon Cruanes, and Petar Vukmirović. E prover 2.0: Integrating equational and first-order logic. In
 617 *Proceedings of the International Conference on Automated Deduction (CADE)*, pp. 523–541. Springer, 2019.

618 Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Lean copilot: Large language models as copilots for theorem
 619 proving in lean. *arXiv preprint arXiv:2404.12534*, 2024.

620 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, and
 621 Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam mathematical competition.
 622 *Advances in Neural Information Processing Systems*, 37:11545–11569, 2024.

623 Josef Urban, Geoff Sutcliffe, Stefan Petrov, and Josef Vyskočil. Machine learning preselected proof steps. In *Pro-
 624 ceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 2046–2051, 2011.

625 Haiming Wang et al. Kimina-prover preview: Towards large formal reasoning models with reinforcement learning.
 626 <https://arxiv.org/abs/2504.11354>, 2025. Accessed: 2025-08-24.

627 Qihao Wu, Haotian Zhang, Jialin Chen, Yizhou Li, Xingjian Zhang, Ce Zhang, and Jie Chen. Autoformalization in
 628 the era of large language models: A survey. *arXiv preprint arXiv:2505.23486*, 2025. URL <https://arxiv.org/abs/2505.23486>.
 629

630 Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan
 631 Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data. <https://arxiv.org/abs/2405.14333>, 2024a. Accessed: 2025-08-24.

632 Zhangir Xin et al. Leandojo: Theorem proving with large language models. In *International Conference on Learning
 633 Representations (ICLR)*, 2024b.

634 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune, and David
 635 Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree search. *arXiv preprint
 636 arXiv:2504.08066*, 2025.

648 Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale lean
 649 problem set formalized from natural language math problems. <https://arxiv.org/abs/2406.03847>,
 650 2024. Accessed: 2025-08-24.
 651

652 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: A cross-system benchmark for formal olympiad-level
 653 mathematics. <https://arxiv.org/abs/2109.00110>, 2021. Accessed: 2025-08-24.
 654
 655

656 A TOOLS

658 A.1 FILE SYSTEM

660 Full list of File system tools:

- 662 • `read_file`
- 663 • `read_multiple_files`
- 664 • `write_file`
- 666 • `edit_file`
- 667 • `create_directory`
- 668 • `list_directory`
- 669 • `list_directory_with_sizes`
- 670 • `directory_tree`
- 671 • `move_file`
- 672 • `search_files`
- 673 • `get_file_info`
- 674 • `list_allowed_directories`

679 B DATASETS

681 B.1 ABSTRACT ALGEBRA

683 B.1.1 DATASET GENERATION

684 We used a basic pipeline to build the abstract algebra dataset. First, we extracted all raw text from PDFs of material
 685 from *Abstract Algebra* textbooks by Dummit and Foote (Dummit & Foote, 2004) and Judson (Judson, 2020)
 686 using Mistral’s API. We then processed the raw text by using Claude-sonnet-3.7 to extract a list of natural language
 687 math statements. These natural language math statements contained exercises, derivations, lemmas, propositions, and
 688 theorems from the text.
 689

690 Next, we used a Claude-sonnet-3.7 agent to autoformalize each of these natural language statements. To ground the
 691 formalization in Mathlib and prevent the agent from reinventing definitions, we passed the agent a lean file at the
 692 start of the process containing relevant definitions for that section, e.g. *dihedral groups*, *roots of unity*, or the *field*
 693 *extension* $\mathbb{Q}(\sqrt{2})$. The agent could reference these definitions and was required to add each formalized statement
 694 directly to this file, but explicitly prohibited from introducing new definitions. The agent generated the top 3 lean
 695 formal statements for each natural language statement and refined each attempt up to 3 times with feedback from
 696 the lean compiler. We then built the dataset by retaining only those pairs of natural language and formal language
 697 statements that corresponded to exercises from the source texts.
 698

699 B.1.2 EXAMPLE

700 This is an example proof of the triangle inequality for norms, which is fundamental in the mathematical structure of
 701 quantum state spaces.

```

702 import Mathlib
703
704 -- Variables for dihedral group
705 variable {n : } {i : }
706 local notation D => DihedralGroup n
707 local notation r => DihedralGroup.r (1 : ZMod n)
708 local notation s => DihedralGroup.sr (0 : ZMod n)
709
710 --Use the generators and relations to show that every element of D not a power of r has order 2. -/
711 theorem exercise_3_part1 {x : D} (h : x = s * r^i) : orderOf x = 2 := by
712     sorry
713
714 B.2 QUANTUM-THEOREMS
715
716 B.2.1 DATASET GENERATION
717
718 The dataset was generated through an iterative human-in-the-loop process combining automated proof synthesis with
719 expert curation. An automated coding agent first generated formal statements and proof attempts for all 134 quantum
720 theorems, producing both complete proofs and partial derivations. A quantum physics expert then reviewed each
721 statement, proof, identifying gaps, correcting errors, and standardizing operator definitions to ensure that each question
722 was well formed and solvable. The final dataset replaces these proofs with sorry statements.
723
724 B.2.2 EXAMPLE
725
726 This is an example proof of the triangle inequality for norms, which is fundamental in the mathematical structure of
727 quantum state spaces.
728
729 import Mathlib.Analysis.InnerProductSpace.Basic
730 import Mathlib.LinearAlgebra.UnitaryGroup
731 import Mathlib.LinearAlgebra.Matrix.Hermitian
732 import Mathlib.LinearAlgebra.Matrix.Trace
733 import Mathlib.Data.Complex.Basic
734 import Mathlib.Analysis.InnerProductSpace.FiL2
735
736 /-
737 # Observable Linear Combination with Real Coefficients
738 -/
739
740 /-- Quantum state: normalized vector in Hilbert space (from KG) -/
741 def QuantumState (n : ) : Type :=
742     { : EuclideanSpace (Fin n) //  = 1}
743
744 /-- Observable: Hermitian matrix (from KG) -/
745 def Observable (n : ) : Type :=
746     {A : Matrix (Fin n) (Fin n) // A.conjTranspose = A}
747
748 theorem observable_real_linear_combination {n : } [NeZero n]
749     (A B : Observable n) ( : )
750     (C : Observable n), C.val = ( : ) A.val + ( : ) B.val := by
751         sorry
752
753 C DETECTED AUTOFORMALIZATION ERROR
754
755 As noted in Section 5.2, 19.7% of Numina's problems were generated using autoformalization models. While these
756 pipelines enable large-scale dataset construction, they occasionally produce ill-posed theorems that cannot be satisfied
757 in Lean.
758
759 During evaluation, Ax-Prover successfully identified – and proved the contrapositive – of such a case.
760

```

```

756 import Mathlib
757
758 theorem number_theory_3098 (p1 p2 p3 p4 : ) (hp1 : p1.Prime) (hp2 : p2.Prime)
759   (hp3 : p3.Prime) (hp4 : p4.Prime) (h1 : p1 < 100) (h2 : p2 < 100) (h3 : p3 < 100)
760   (h4 : p4 < 100) (h5 : p1 p2) (h6 : p1 p3) (h7 : p1 p4) (h8 : p2 p3)
761   (h9 : p2 p4) (h10 : p3 p4) (h11 : p1 = 1 p1 = 2 p1 = 3 p1 = 4 p1 = 5 p1 = 6 p1 = 7 p1 =
762   (h12 : p2 = 1 p2 = 2 p2 = 3 p2 = 4 p2 = 5 p2 = 6 p2 = 7 p2 = 9)
763   (h13 : p3 = 1 p3 = 2 p3 = 3 p3 = 4 p3 = 5 p3 = 6 p3 = 7 p3 = 9)
764   (h14 : p4 = 1 p4 = 2 p4 = 3 p4 = 4 p4 = 5 p4 = 6 p4 = 7 p4 = 9)
765   (h15 : p1 p2 p1 p3 p1 p4 p2 p3 p2 p4 p3 p4) :
766   p1 + p2 + p3 + p4 = 190 := by sorry

```

The first line of the proof sketch for this problem was

This theorem has contradictory premises: the sum must be 17, not 190.

Upon inspection, it is clear that 4 natural numbers belonging to the set $\{2, 3, 5, 7\}$ cannot sum to 190. As an additional exercise, we changed

```
772 p1 + p2 + p3 + p4 = 190 := by sorry
```

to

```
775 p1 + p2 + p3 + p4 != 190 := by sorry
```

changing the original theorem statement to prove the negation which Ax-Prover was able to do, thus proving that the original theorem was not provable. This behavior highlights two strengths of the agentic loop:

1. **Robustness to noise.** The agent does not blindly attempt to complete invalid statements but can detect contradictions early.
2. **Transparency.** By surfacing diagnostic messages directly from Lean, Ax-Prover provides clear evidence that the statement is ill-posed, enabling researchers to filter or repair dataset items.

We see this as an important complement to raw accuracy metrics: beyond solving valid theorems, a reliable prover should be able to recognize when formalization errors make a proof impossible.

D PROOFS

D.1 QUANTUM-THEOREMS ANALYSIS EXAMPLE

We present here the attempts to prove that quantum observables are Hermitian matrices in Lean 4, specifically proving the theorem:

For an observable $A : \text{Observable } n$, $A.\text{matrix}^\dagger = A.\text{matrix}$ (1)

where A^\dagger denotes the conjugate transpose (Hermitian conjugate) of matrix A .

D.1.1 DEEPSEEK'S ATTEMPT (FAILED)

DeepSeek's approach was fundamentally flawed from the start:

```

801 theorem observable_diagonal_real {n : } (A : Observable n) (i : Fin n) :
802   (A.matrix i i).im = 0 := by
803   have h := A.hermitian
804   have h := congr_arg (fun x => x i i) h
805   simp [Matrix.ext_iff, Matrix.conjTranspose_apply, Complex.ext_iff] at h
806   < ; >
807   aesop

```

Critical Error:

tactic 'aesop' failed, made no progress

810 **Analysis:** DeepSeek attempted to use `A.hermitian` directly as a proof, but this field has type
 811 `matrix.IsHermitian`, not the required equality type. The error message indicates that the tactic `aesop` failed
 812 because there was a fundamental type mismatch. This shows a misunderstanding of Lean's type system. The
 813 `hermitian` field is a proof that the matrix satisfies the Hermitian property, but it's not directly the equality we
 814 need to prove.

815
 816 **D.1.2 SONNET'S ATTEMPT (FAILED)**
 817
 818 Sonnet made a more sophisticated attempt but still failed:

```
819 theorem observable_diagonal_real {n : } (A : Observable n) (i : Fin n) :  

  820   (A.matrix i i).im = 0 := by  

  821   have h := A.hermitian  

  822   rw [Matrix.IsHermitian.ext_iff] at h  

  823   specialize h i i  

  824   rw [Matrix.conjTranspose_apply, Matrix.star_apply] at h  

  825   exact Complex.ext_iff.mp h.symm |>.2
```

826 **Critical Error:**
 827
 828 Tactic `rewrite` failed: Did not find an occurrence of the pattern
 829 `Matrix.conjTranspose ?M ?j ?i`
 830 in the target expression
 831 `star (A.matrix i i) = A.matrix i i`

832 **Analysis:** Sonnet understood that it needed to work with the Hermitian property and tried to extract information about
 833 diagonal elements, but made an error in pattern matching during the rewrite step. The approach was on the right track
 834 but executed incorrectly.

835
 836 **D.1.3 AX-PROVER'S ATTEMPT (SUCCESSFUL)**
 837
 838 Ax-Prover succeeded with a systematic, step-by-step approach:

```
839 theorem observable_diagonal_real {n : } (A : Observable n) (i : Fin n) :  

  840   (A.matrix i i).im = 0 := by  

  841   -- Step 1: Use the fact that A is Hermitian  

  842   have h1 : A.matrix.conjTranspose = A.matrix := by  

  843     exact A.hermitian  

  844   -- Step 2: Apply this to diagonal element (i,i)  

  845   have h2 : (A.matrix.conjTranspose i i) = (A.matrix i i) := by  

  846     rw [h1]  

  847   -- Step 3: By definition of conjugate transpose  

  848   have h3 : (A.matrix.conjTranspose i i) = star (A.matrix i i) := by  

  849     exact Matrix.conjTranspose_apply -- --  

  850   -- Step 4: Combine to get star (A.matrix i i) = A.matrix i i  

  851   have h4 : star (A.matrix i i) = A.matrix i i := by  

  852     rw [h3, h2]  

  853   -- Step 5: A complex number equals its conjugate iff it's real  

  854   have h5 : (A.matrix i i).im = 0 := by  

  855     have : (starRingEnd) (A.matrix i i) = A.matrix i i := h4  

  856     exact Complex.conj_eq_iff_im.mp this  

  857  

  858   exact h5
```

859
 860
 861 **E TACTICS**
 862
 863 In Table 3 we report the tactics used by each model.

	Tactic	Ax-agent	DeepSeek	Kimina
864	apply	X	X	X
865	assumption	X	X	X
866	by_cases	X	X	X
867	calc	X	X	X
868	cases	X	X	X
869	change	X		
870	classical	X	X	
871	congr	X	X	X
872	constructor	X	X	X
873	contradiction	X	X	X
874	decide	X	X	
875	exact	X	X	X
876	exact_mod_cast	X	X	X
877	exfalso	X	X	X
878	ext	X	X	X
879	funext		X	X
880	generalize	X		
881	induction	X	X	X
882	injection	X		
883	intro	X	X	X
884	intros	X		
885	left	X		X
886	native_decide	X		X
887	norm_cast	X	?	
888	obtain	X	X	X
889	omega	X	X	X
890	push_cast	X		
891	rcases	X	X	X
892	refine	X	X	X
893	replace	X		X
894	rfl	X	X	X
895	right	X		X
896	rintro	X	X	X
897	rw	X	X	X
898	rwa	X		X
899	show	X		X
900	simp	X	X	X
901	simp_all	X	X	X
902	simpfa	X	X	X
903	specialize			X
904	subst	X	X	X
905	subst_vars		X	
906	suffices	X		
907	trans	X		
908	unfold	X		

Table 3: Tactics used by Ax-agent, DeepSeek, and Kimina. An "X" indicates the model uses the tactic.

F CASE STUDY: VERIFYING MATH IN CRYPTOGRAPHIC PAPERS

In this case study, we illustrate how one of our researchers used Ax-Prover to verify correctness of mathematical results used in cryptographic research.

As a concrete example, we focus on the recent (May 2024) cryptographic paper *A New Algorithm for Computing Branch Number of Non-Singular Matrices over Finite Fields* from arXiv (Mishra et al., 2024). This work introduces a novel algorithm for computing the *branch number* – a fundamental metric used to assess the strength of block ciphers

such as AES (National Institute of Standards and Technology, 2001), PRINCE Borghoff et al. (2012), and Grøst Gauravaram et al. (2008).

The paper begins with **Theorem 1**, which offers an alternative characterization of the branch number. Traditionally, for an square invertible $n \times n$ matrix M of order $n > 1$ over a finite field \mathbb{F}_q of order q , the branch number is defined as

$$\mathcal{B}(M) = \min \{ w_h(x) + w_h(Mx) : x \in \mathbb{F}_q^n \text{ where } x \neq 0 \}$$

where $w_h(x)$ is the Hamming weight (the number of nonzero entries in x). Theorem 1 gives an alternate definition of the branch number that is more amenable to computation than the classical version.

Theorem 1. *The branch number of an invertible matrix $M \in M_n(\mathbb{F}_q)$ is given as*

$$\mathcal{B}(M) = \min \left\{ \min \{ h(M, x), h(M^{-1}, x) \} \mid x \in \mathbb{F}_q^n, 1 \leq w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\},$$

where $h(M, x) = w_h(x) + w_h(Mx)$.

For cryptographers, this makes a practical difference: it enables fast evaluation of candidate matrices when designing new lightweight or high-performance ciphers. The authors demonstrate in (Mishra et al., 2024, Theorem 4) that their algorithm achieves significant complexity gains over the naive $O(n^2 q^n)$ approach for finite fields of order $q \geq 4$ and square matrices of order $n \geq 4$.

F.1 FORMALIZE: SINGLE STEP

To formally verify the math in this paper, we used an autoformalization agent to formalize statements, and then upon verifying that the formalization was correct we passed those statements to Ax-Prover.

To illustrate this process, we show the process of proving one step in the paper – the full lean certificate can provide upon request. The figure below shows the current verification state highlighted in green, while the next step awaiting verification appears in yellow.

Note that for the second term of the right-hand side of Equation (2), $h(M, x) = w_h(x) + w_h(Mx) > 2 \lfloor \frac{n+1}{2} \rfloor + 1 \geq n+1$. However, we know that the upper bound for $\mathcal{B}(M)$ is $n+1$. Thus, we conclude that the second term of the right-hand side of (2) will not contribute to the computation of the branch number.

Therefore, from (1) and (2), we have

$$\begin{aligned} \mathcal{B}(M) = \min & \left\{ \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, 1 \leq w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\}, \right. \\ & \left. \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, \left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \leq n, w_h(Mx) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\} \right\}. \end{aligned} \quad (3)$$

Again, we note that

$$\begin{aligned} & \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, 1 \leq w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor, w_h(Mx) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\} \subseteq \\ & \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, 1 \leq w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\}. \end{aligned}$$

972 F.2 VERIFICATION: SINGLE STEP
 973
 974 We highlighted the relevant theorems or lemmas and prompted Ax-Prover to generate a complete proof for each selected statement. Ax-Prover iteratively refined the proof, checking each step for correctness until the system confirmed its validity. Unlike standard LLM output, this process ensured full mathematical soundness, with Ax-Prover automatically searching for relevant results, reading and updating the file, diagnosing errors, and managing proof goals.
 975
 976
 977

978 Some expert human oversight was required on 2 steps to properly formalize statements passed to the prover, but
 979 beyond these isolated interventions, the system operated autonomously. After several iterations, it produced a fully
 980 verified proof of each step in just a few minutes. The following prompt illustrates this process for the example above:
 981

982 Prompt

983 Prove this statement (with the formalized step above highlighted as context).
 984
 985

986 Response

987 The statement is a simple set-theoretic observation. We start with all low-weight vectors x and look at the
 988 values $w_H(x) + w_H(Mx)$, where w_H is the Hamming weight and M is some matrix.
 989

- 990 • Without constraints: We consider all low-weight vectors.
- 991 • With constraints: We only consider those low-weight vectors where the output Mx also has low
 992 weight.

993 Clearly, if you add an extra condition (“ Mx has low weight”), you can only make the set smaller or
 994 equal—never larger—because you’re restricting the set of vectors you’re looking at.

995 The proof just formalizes this obvious fact:

- 996 1. Take any element in the constrained set.
- 997 2. By definition, it comes from some vector x that satisfies the extra condition.
- 998 3. But x also satisfies the conditions for the unconstrained set (because the unconstrained set has fewer
 999 requirements).
- 1000 4. So the element belongs to the unconstrained set as well.

1001 This shows the constrained set is a subset of the unconstrained set.

1002 We now present an example that required expert oversight. Specifically, the Ax-Prover was unable to verify the
 1003 correctness of statement (3) shown below:

1004
 1005 Note that for the second term of the right-hand side of Equation (2), $h(M, x) =$
 1006 $w_h(x) + w_h(Mx) > 2 \lfloor \frac{n+1}{2} \rfloor + 1 \geq n+1$. However, we know that the upper bound
 1007 for $\mathcal{B}(M)$ is $n+1$. Thus, we conclude that the second term of the right-hand
 1008 side of (2) will not contribute to the computation of the branch number.

1009 Therefore, from (1) and (2), we have

$$1010 \mathcal{B}(M) = \min \left\{ \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, 1 \leq w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\}, \right. \\ 1011 \left. \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, \left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \leq n, w_h(Mx) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\} \right\}. \quad (3)$$

1012 To guide the Ax-Prover, an expert user provided the following prompt:
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Prompt

You have defined the sets B, C, D with $A = \min(B, \min(C, D)) \leq n + 1$. Lets do this by cases: If $\min C > \min D$ and $\min D > n + 1$, then $\min(C, D) > n + 1$, so $\min(B, \min(C, D)) = \min(B)$. The other case is easier.

The Axiomatic Verifier MCP then successfully proved the statement using the provided hint:

Response

VERIFICATION COMPLETE - STEPS:

1. Define the minima: Let

$$\begin{aligned} B &:= \min\{w_H(x) + w_H(Mx) \mid x \in L\}, \\ C &:= \min\{w_H(x) + w_H(Mx) \mid x \in H_1\}, \\ D &:= \min\{w_H(x) + w_H(Mx) \mid x \in H_2\}. \end{aligned}$$

where L = low-weight set, H_1 = high-weight with $w_H(Mx) \leq (n + 1)/2$, H_2 = high-weight with $w_H(Mx) > (n + 1)/2$. Then

$$A := \text{Branchnumber}(M) = \min(B, \min(C, D)).$$

2. Upper bound: For invertible M ,

$$A \leq n + 1.$$

3. High-high set bound: If $x \in H_2$, then

$$w_H(x) + w_H(Mx) > n + 1 \implies D > n + 1.$$

4. Case analysis:

- $C \leq D \Rightarrow \min(C, D) = C \Rightarrow A = \min(B, C)$.
- $C > D \Rightarrow \min(C, D) = D > n + 1$. Since $A = \min(B, D) \leq n + 1$, we get $B \leq n + 1$ and thus $A = B = \min(B, C)$.

5. Conclusion:

$$A = \min(B, C).$$

The term D never affects the branch number.

F.3 CONSOLIDATION: COMPLETE CERTIFICATE

Once all steps were verified, they were integrated into a single proof, producing a final file that formally certifies the alternate definition is equivalent to the original, exactly as proposed in the paper.

1080
1081 F.4 CORRECTNESS, VERIFICATION, AND TAKEAWAYS
1082

1083 The outcome of our work is a formally verified certificate ensuring the correctness of Theorem 1. During the course
1084 of constructing this certificate, we identified a critical error in the original proof. Specifically, the issue arises in **Step**
1085 **2** of the proof:

$$\begin{aligned}
 & \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, \left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \leq n \right\} \\
 &= \min \left\{ \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, \left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \leq n, w_h(Mx) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\}, \right. \\
 & \quad \left. \min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, \left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \leq n, w_h(Mx) > \left\lfloor \frac{n+1}{2} \right\rfloor \right\} \right\}. \tag{2}
 \end{aligned}$$

1099 Here, the authors fail to ensure that the sets over which they take minima are non-empty. For example, in the simplest
1100 case where $M = I$ (the identity matrix), the middle term reduces to
1101

$$\min \left\{ h(M, x) \mid x \in \mathbb{F}_q^n, \left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \leq n, w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor \right\}.$$

1102 In this case, the constraints
1103

$$\left\lfloor \frac{n+1}{2} \right\rfloor < w_h(x) \quad \text{and} \quad w_h(x) \leq \left\lfloor \frac{n+1}{2} \right\rfloor$$

1104 are contradictory, so the underlying set is *empty*. Nevertheless, the original proof proceeds under the assumption that
1105 this minimum is well-defined, a subtle yet significant oversight.
1106

1107 This matters for two reasons:
1108

1109 1. **Logical correctness:** Reasoning about the empty set is problematic (all statements are *vacuously true*) which
1110 can lead to unsound conclusions. For example, let
1111

$$S = \{ x \in \mathbb{Z} \mid x = 3 \text{ and } x \text{ is even} \}.$$

1112 Take $y \in S$, then $y = 3$ and y is even, so this implies that 3 is even.
1113

1114 2. **Software implementation:** Computing the minimum of an empty set is undefined in standard programming
1115 environments and would trigger a runtime error if translated directly into code.
1116

1117 Our formal verification system flagged these issues because it could not establish the truth of the corresponding state-
1118 ments, revealing logical gaps in the proof. Nevertheless, the authors' final result remains correct despite the critical
1119 error in their proof.
1120