
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AX-PROVER: AGENTIC LEAN PROVING WITH LLMS AND MCP
INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Ax-Prover, a domain-agnostic multi-agent system for automated theorem proving in
Lean. Formal proof generation requires both creative reasoning and strict syntactic rigor. Ax-Prover
meets this challenge by combining large language models (LLMs), which provide knowledge and
reasoning, with MCP Lean tools, which ensure correctness. To evaluate performance, we bench-
mark our approach on the large-scale NuminaMath-LEAN dataset and introduce two new Lean
benchmarks in Abstract Algebra and Quantum Theory. Across all domains, Ax-Prover outperforms
state-of-the-art provers, with particularly large gains in the new benchmarks – indicating that while
Ax-Prover adapts readily to novel areas, existing systems remain narrowly specialized and struggle
to generalize.

1 INTRODUCTION

Large Language Models (LLMs) have become the standard approach to address complex tasks in both academic fields
and industry. A relevant application of such models is in the field of mathematics, where they have been used to solve
complex problems achieving outstanding performance (Chervonyi et al., 2025). More recently, considerable effort has
been put into training LLMs to perform formal theorem proving using Lean (de Moura et al., 2015), an open-source
programming language and proof assistant that, together with its community-driven mathlib library (Lean Prover
Community, 2025), provides a rigorous setting where AI systems must engage with symbolic reasoning, structured
formalization, and evolving mathematical knowledge. This makes Lean an attractive testbed for probing the reasoning
capabilities of LLMs.

Recent LLM provers such as the DeepSeek-Prover series (Xin et al., 2024a; DeepSeek-AI, 2024; Ren et al., 2025),
Kimina-Prover-72B (Wang et al., 2025), Goedel-Prover Lin et al. (2025), and Seed-Prover Chen et al. (2025) have
shown that distillations of frontier reasoning models or RL based training, when adapted for theorem proving in Lean,
can reach state-of-the-art performance on benchmarks like Mini-F2F (Zheng et al., 2021) and Putnambench Tsoukalas
et al. (2024). Despite these results, they face several key limitations. First, their ability to generalize beyond the
Lean mathematics distributions on which they were trained remains unclear, which limits their broader applicability.
Relatedly, they depend on fixed versions of the fast-evolving mathlib, making them brittle to new definitions unless
continuously re-trained, which adds significant cost. Second, it is hard to run them, as they require high-spec machines
and expertise to be successfully deployed and used. Third, while distillation improves their ability to produce Lean
proofs, it narrows their capabilities: compared to their parent reasoning models, they lose tool use and interactive
abilities, limiting effective human–AI collaboration. Together, these issues suggest that scaling increasingly large,
specialized provers may yield diminishing returns in both flexibility and usability.

In contrast, general-purpose frontier LLMs like Claude (Anthropic, 2025b) and GPT (OpenAI, 2025) encode sub-
stantial prior knowledge across a variety of domains (e.g., mathematics, physics, and computer science), while also
exhibiting strong natural language understanding, problem-solving skills, and interaction capabilities. Yet, they are
not explicitly trained to formalize statements or construct proofs in Lean and thus cannot natively engage with the
Lean environment. This creates a sharp division: specialized provers are tightly integrated with Lean but narrow and
hard to use, whereas general-purpose models are broad and easily accessible but lack the ability to access the formal
reasoning infrastructure required for theorem proving.

To address this gap, we introduce Ax-Prover,1 a new agentic workflow for Lean theorem proving that equips general-
purpose LLMs with direct access to the Lean proof environment through external tools (Dressler, 2025a). Ax-Prover
enables LLMs to reason about unproven theorems, propose proof sketches, and generate step-by-step Lean code, while
using the lean-lsp-mcp (Dressler, 2025a;b) to inspect goals, search for relevant results, locate errors, and verify code

1“Ax” stands for “axiomatic”, indicating the base principles in mathematics and physics, the domains explored in this work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

– capabilities essential for formal theorem proving. Ax-Prover overcomes the main limitations of current state-of-the-
art provers. First, it avoids domain overspecialization and obsolescence tied to fixed Mathlib versions. Second, by
leveraging existing frontier models, it sidesteps the need to host and deploy specialized systems. Third, it preserves
tool-use and conversational abilities, enabling interactive collaboration with both experts (for targeted feedback) and
non-experts (for guidance and advice).

We evaluated Ax-Prover on three datasets. The first is NuminaMath-LEAN, an established benchmark of mathemat-
ics competition problems. To broaden the evaluation, we also introduce two new datasets. AbstractAlgebra focuses
on algebraic structures such as groups, rings, and fields, testing the prover’s ability to reason in a more abstract,
research-oriented setting rather than the competition-driven style of NuminaMath. QuantumTheorems explores the
domain of quantum physics, assessing whether the prover can extend beyond pure mathematics and transfer its reason-
ing to scientific applications. Our experiments show that Ax-Prover outperforms general-purpose LLMs not equipped
with Lean tools as well as state-of-the-art specialized provers across the board, gaining flexibility and robustness
without sacrificing accuracy.

Our contributions are twofold: (1) We design Ax-Prover, a lightweight agentic workflow that connects general-
purpose LLMs to Lean via lean-lsp-mcp, and demonstrate it outperforms both general-purpose LLMs and specialized
provers on competition-level mathematics, abstract algebra, and quantum physics; (2) We contribute new formalized
Lean datasets covering physics and abstract algebra, complementing existing benchmarks.

2 RELATED WORK

Automated theorem proving in Lean has roots in classical approaches such as decision procedures (de Moura &
Bjørner, 2008; Barbosa et al., 2022) and heuristic-guided proof search (Kovács & Voronkov, 2013; Schulz et al., 2019),
but they face scalability challenges and rarely generate proofs in a form usable by mathematicians. More recent work
integrates machine learning: from heuristic tuning (Urban et al., 2011) to premise selection and tactic prediction (Irving
et al., 2016; Huang et al., 2019), culminating in transformer-based language models capable of generating Lean proofs
(Polu & Sutskever, 2020; Lample & Charton, 2022; Polu et al., 2023; Xin et al., 2024b). Recent large-scale systems
extend this trend by distilling and fine-tuning massive base models (e.g., Kimina from Qwen2.5-72B (Wang et al.,
2025); DeepSeek-Prover-V2 from DeepSeek-V3 (Ren et al., 2025)). These pipelines achieve impressive performance
but demand enormous GPU resources and engineering efforts, producing specialized provers that don’t generalize
across domains. Also, Mathlib’s rapid growth – now containing over 220,000 theorems and adding thousands more
each month (Lean Prover Community, 2025) – highlights the need for tools that are both efficient and adaptable to
evolving mathematical libraries. Moreover, these models usually cannot engage in collaboration with human experts:
given an input theorem, they move on straight to its formalization and proof. This is the main approach among current
provers, implemented also in Lin et al. (2025), Baba et al. (2025), and Ospanov et al. (2025).

A parallel line of work has explored classical machine learning for supporting experts in Lean proving, for exam-
ple in premise selection and tactic prediction (Gauthier et al., 2021; Blaauwbroek et al., 2020), and more recently
through LLMs that connect to Lean via external interfaces (Ayers et al., 2023; Azerbayev et al., 2023; Song et al.,
2024). These approaches illustrate the promise of AI-assisted proving, but they remain resource-intensive and difficult
to adapt across domains. Recent efforts, such as Kumarappan et al. (2024), attempt to remedy this by emphasizing
greater adaptability within Lean. At the same time, there is growing interest in human–AI collaboration: conversa-
tional assistants (Collins et al., 2023) and “copilot”-style integrations (Chen et al., 2021) suggest how formal tools
can augment, rather than replace, human reasoning. Our work builds on this trajectory by closing the gap between
heavyweight, specialized provers and lightweight, researcher-friendly systems that can be more readily adapted to the
evolving Lean ecosystem.

3 SYSTEM ARCHITECTURE

We implement Ax-Prover as a modular multi-agent architecture with three specialized agents: the Orchestrator, the
Prover, and the Verifier. Following recent agentic designs for complex tasks such as scientific discovery (Gottweis
et al., 2025; Yamada et al., 2025), we avoid a monolithic setup by assigning each sub-agent2 a distinct role. This sep-
aration enables specialization and modularity: agents can be independently optimized, replaced, or extended allowing
researchers to adapt Ax-Prover to new domains, integrate additional tools, or tailor workflows to their own expertise
without destabilizing the system.

2We use “sub-agent” and “specialized agent” interchangeably.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our workflow is straightforward. The Orchestrator receives an unproven Lean statement and forwards it to the Prover,
which iteratively generates a proof. The Verifier then checks the proof and reports back. If valid, the Orchestrator
closes the task; otherwise, it provides feedback to the Prover, which attempts a new proof. Through this closed-loop
process, the system incrementally converts unproven theorems into formally verified Lean proofs. We next describe
each agent in detail and the tools underlying our workflow.

3.1 SPECIALIZED AGENTS

3.1.1 ORCHESTRATOR

The Orchestrator’s role is analogous to a scheduler in distributed systems: it does not perform computation itself but
ensures that computation flows smoothly across agents. It holds three main responsibilities. First, it handles task
assignment, as it receives user input and instructs the Prover accordingly. Next, it manages feedback routing by
taking diagnostic outputs from the Verifier and giving structured feedback to the Prover. This separation ensures that
proof synthesis and evaluation remain distinct while still enabling iterative refinement. Finally, it decides when to stop
the refinement loop. Termination occurs either when the Verifier certifies the proof as complete and error-free, or
when repeated failures exceed a configurable threshold, deeming the theorem irrecoverable under the given resource
budget.

3.1.2 PROVER

Figure 1: Prover steps.

The Prover is the constructive core of the system. Its task is to transform unproven Lean theorems into completed
proofs. Theorem proving requires both creativity – finding the right lemma or using the right tactic – and discipline
– ensuring that the structure and Lean code are syntactically correct. To achieve this, the Prover balances LLM-based
heuristic exploration with rigorous Lean formalization aided by the Lean tools made available by the lean-lsp-mcp
(see Section 3.2).

We instruct the Prover to carry out its task following this general approach. Note that at each stage, the Prover
writes the updated version of the theorem to a .lean file. This is for two reasons: first, it complies with Lean tools
requirements, which require filepaths to function. Second, writing to a file at each step allows the user to inspect the
proving process in real time (see Figure 1):

1. Theorem identification: The Prover scans Lean files for unfinished proofs marked with sorry - for exam-
ple, the Unitary Idempotent is Identity theorem in box 1 in Figure 1. This step guarantees that
the prover attempts to prove all valid theorem statements.

2. Sketch construction: Next the Prover generates a coarse-grained natural language outline of the proof’s
logical flow (box 2), breaking down a complex proof into more manageable steps, and briefly describing the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

key ideas for each step (e.g., algebraic manipulation). This mirrors how human mathematicians would break
down a complex problem, starting with a high-level sketch before filling in the details.

3. Stepwise formalization: Then the Prover formalizes each of the steps in Lean (box 3). Each formalized step
starts with and have and ends with a sorry.

4. Sequential Solving: The Prover goes through each step sequentially, proposing Lean tactics to substitute the
sorry (box 4).

5. Verification check: After completing each step, the Prover uses lean diagnostic messages to assess
if the generated step is correct. If a severity 1 error is detected, the Prover halts progress, backtracks, and
attempts an alternative strategy. If the check is correct and there are no sorrys left, the Prover ends its task
(box 5).

This approach allows the Prover to function like an automated yet cautious mathematician: it incrementally explores
and implements ideas, verifies their correctness in Lean, and advances only once each step has been validated.

3.1.3 VERIFIER

The Verifier serves as the final gatekeeper of correctness in our workflow. It neither generates nor modifies
proofs: it only assesses the correctness of the proof generated by the Prover. Similarly to the Prover, the Veri-
fier has access to filesystem tools – required to access the file produced by the Prover – and a single Lean tool,
lean diagnostic messages, to assess the correctness of the proof.

Concretely, the Verifier operates in two steps: First, it compiles the Lean file produced by the Prover using
lean diagnostic messages. Second, it parses the diagnostic message, generate a reports of the errors, and
emits a verdict: a proof is considered verified if and only if no level-1 error exists and there are no sorrys or admit
statements present (see Section 3.2).

At first glance the Verifier may seem redundant, since it uses the same lean diagnostic messages tool as the
Prover. However, it is needed for two reasons: (i) the Prover may run out of steps and return an incomplete or incorrect
proof, and (ii) it sometimes terminates early despite remaining errors. An independent Verifier thus ensures robustness,
mirroring software pipelines where aggressive testing is always checked by a conservative compiler.

3.2 MCP TOOLS

As mentioned above, tools are essential for the Prover to complete a proof. We provide tool access via the MCP pro-
tocol, a standard interface that lets LLM agents invoke external services in a uniform, controlled way. The Prover uses
two categories of tools: Filesystem tools and Lean tools. Filesystem tools handle file operations such as read file,
write file, and list directory (see Appendix A.1). Lean tools allow the Prover to perform a variety of ac-
tions crucial for theorem proving. We access these tools through the lean-lsp-mcp project Dressler (2025a), which
provides a standardized interface to the Lean environment and ensures that the Prover always operates on the latest
version of Mathlib , maintaining compatibility for imports, theorem references, and proof construction. The tools
themselves fall into four main groups, summarized in Table 1.

Category Tools
Project and
File Management

build: Compile and build the Lean project
file contents: Get contents of a Lean file
declaration file: Find which file contains a declaration

Diagnostics and
Feedback

lean diagnostic messages: Compile code and return diagnostic messages
goal: Get the current proof goal at a position
term goal: Get goal information for a term
hover info: Get hover information for symbols

Code Assistance completions: Get completion suggestions
multi attempt: Try multiple proof attempts
run code: Execute Lean code

Search and
Reasoning

leansearch: Search for theorems and lemmas
loogle: Search for lemmas by type signature
state search: Search proof states
hammer premise: Use automated theorem proving

Table 1: Lean tools available on lean-lsp-mcp, organized by functionality.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Note that lean diagnostic messages returns a diagnostic with the error log and a scalar: 0 if no error is found;
1 for incorrect/incomplete proofs; and 2 for a valid but incomplete proof, e.g. with sorry, warning, or linter error.

4 DATASETS

While the application of LLMs to mathematical verification in Lean is evolving rapidly, the availability of comprehen-
sive datasets remains limited. At present, only a few open-source datasets are available, with some of the most notable
being MiniF2F (Zheng et al., 2021), Putnambench Tsoukalas et al. (2024), and NuminaMath-LEAN (Numina-
Team, 2025). These benchmarks include hard, high-level math problems from competitions such as the International
Mathematical Olympiad (IMO) or the Putnam exam. Other datasets exist, but have clear limitations: For example,
the Deepseek-Prover-V1 Train(DeepSeek-AI, 2024) includes 27k LLM-generated statements and proofs, but most of
them are very simple, with 2–3 line proofs. Also Lean Workbook(Ying et al., 2024) (57k) gathers LLM-generated for-
malizations of mathematical problems. While it reports a 93.5% statement-level accuracy after filtering, subsequent
analyses note that a nontrivial fraction of examples still suffer from semantic errors and hallucinations (Lu et al., 2025;
Wu et al., 2025), which limits its reliability.

All in all, current valuable datasets (MiniF2F, Putnambench, and NuminaMath-LEAN), not only cover a single domain
- mathematics - but they also focus on a very specific type of math problem, i.e, competition-level problems. To enrich
the current ecosystem and expand the coverage of Lean datasets, we create and release two new datasets.

Abstract-Algebra (AA) is a Lean 4 dataset of problems drawn from standard abstract algebra textbooks. Unlike
MiniF2F (Zheng et al., 2021), Putnambench Tsoukalas et al. (2024), and NuminaMath-LEAN (Numina-Team, 2025),
which focus on undergraduate level competition-style puzzles, AA targets graduate or research-level mathematics,
emphasizing deeper abstract concepts over lengthy step-by-step manipulations.

Quantum-Theorems (QT) covers core topics in foundational quantum mechanics, spanning problems from density
matrices to scaling laws for quantum repeater networks. By bridging theoretical physics with formal verification
methods, QT offers an unprecedented opportunity to test prover agents outside the field of Math, providing a rigorous
testbed for evaluating automated Lean theorem proving systems on quantum mechanical theorems.

In the section below, we provide more information about each dataset that we use for our experiments.

4.1 ABSTRACT-ALGEBRA

Abstract-Algebra (AA) is a curated dataset of 100 Lean problems inspired by exercises in Dummit & Foote’s abstract
algebra textbook (Dummit & Foote, 2004). The dataset consists of two subsets: 50 easy problems from Chapter 1.1
and 50 intermediate problems from Chapters 1.2–2.5. An in-depth description of the pipeline used to generate AA and
examples from AA are provided in the Appendix B.1. While MiniF2F (Zheng et al., 2021), Putnambench Tsoukalas
et al. (2024), and NuminaMath-LEAN (Numina-Team, 2025) focus on high school to undergraduate level competition
mathematics, the AA dataset is aimed toward research-level mathematics. The key distinction is that competition-
level math typically involves elementary content framed as puzzles that require many reasoning steps. For example, a
competition problem may ask to determine all positive integers a, b such that

a2 + b2

ab+ 1
∈ Z,

which is conceptually elementary but requires a sequence of clever number-theoretic transformations. In contrast,
research-level mathematics involves deeper concepts with fewer reasoning steps per exercise; for instance, an AA
problem may ask: Prove every subgroup of a cyclic group is cyclic. This example highlights the focus on abstract
structures rather than intricate manipulations, echoing the distinction between competition-level and research-level
mathematics.

The creation of the AA dataset is motivated by two main reasons. First, abstract algebra is foundational to much of
mathematics, providing essential tools for research in number theory, geometry, topology, and beyond—indeed, 22 of
the 32 primary mathematics categories on arXiv build upon it (arx, 2025) It also underpins advances outside math, in
fields such as cryptography, physics, and chemistry, making it a natural setting for formal reasoning. Second, there
is a practical gap between AI-focused formalization efforts, which largely targets elementary mathematics, and the
advanced topics studied by research mathematicians. By formalizing problems from standard textbooks, AA bridges
this gap and offers a research-oriented dataset that supports deeper mathematical reasoning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 QUANTUM-THEOREMS

Quantum-Theorems (QT) includes 134 problems spanning core areas of quantum theory. These problems introduce
unique challenges, as they require integrating finite-dimensional linear algebra, complex analysis, and matrix theory
with quantum principles such as unitarity, Hermiticity, and measurement postulates. This domain-specific knowledge
is largely absent from existing prover datasets, making QT a valuable benchmark for testing and advancing formal
reasoning in physics.

QT was generated through an iterative human-in-the-loop process, combining automated proof synthesis with expert
curation. An automated coding agent first generated proof attempts, producing both complete proofs and partial
derivations. A quantum physics expert then reviewed each proof identifying gaps, correcting errors, and standardizing
operator definitions. The final dataset replaces these proofs with sorry statements.

We generated problems at two levels of difficulty: Basic problems are short (1–10 lines) and often solvable with
standard automation (simp, linarith), e.g., proving that the diagonal entries of a Hermitian matrix are real. In-
termediate level problems require 10–50 lines, systematic case analysis, and orchestration of rewrite rules, such as
proving simultaneous diagonalization of commuting observables. An in-depth description of the process used to cre-
ate QT and examples from QT are provided in Appendix B.2.

QT represents a first step toward computer-verified quantum mechanics, addressing the challenge of ensuring cor-
rectness in quantum information protocols and algorithms. The dataset has practical importance beyond research: as
quantum technologies grow more complex, errors in proofs or hidden assumptions can have serious consequences.
For instance, a recent bug in a proof claiming to break lattice-based cryptography—only identified weeks later by ex-
perts—illustrates the risks of unchecked reasoning in high-stakes domains (Rousseau, 2024; Chen, 2024). QT provides
a resource to begin developing tools which can help in detect these kind of mistakes earlier.

4.3 NUMINAMATH-LEAN

NuminaMath-LEAN (Numina-Team, 2025) is a large-scale collection of approximately 104,000 competition-level
mathematics problems formalized in Lean 4. The dataset is created by the same research group that developed the
Kimina-Prover. They derived NuminaMath-LEAN from NuminaMath 1.5 (LI et al., 2024), with problems drawn
from prestigious contests such as the International Mathematical Olympiad (IMO) and the United States of America
Mathematical Olympiad (USAMO).

Each problem includes a formal statement in Lean 4, written either by a human annotator (19.3% of the problems)
or by an autoformalizer model (80.7%) (Numina-Team, 2025). Out of the total problems, 25% were correctly proved
by Kimina-Prover during its RL training phase (Solved-K), 11% were proved by humans (Solved-H), while the
remaining 64% do not have any proof (Unsolved) (Wang et al., 2025; LI et al., 2024; Numina-Team, 2025). We
analyzed problems across the three groups and observed a clear difficulty gradient: Solved-K < Solved-H <
Unsolved. This ordering aligns with the fact that Unsolved problems could not be handled by Kimina-Prover,
providing an implicit measure of hardness. For problems with available proofs, this qualitative assessment is further
supported quantitatively: Solved-K proofs are shorter on average than Solved-H (98 vs. 155 lines), indicating greater
proof complexity.

5 EXPERIMENTS

We evaluated Ax-Prover against frontier LLMs and specialized provers using the datasets from Section 4. For AA and
QT, we used the full datasets. From NuminaMath-LEAN, we sampled 300 problems – 100 each from Solved-K,
Solved-H, and Unsolved – to balance difficulty levels while keeping experiments budget-friendly. We chose to
test NuminaMath-LEAN over MiniF2F and Putnambench because they contains similar problems types, and including
these benchmarks would have increased costs unnecessarily. Furthermore, Ren et al. (2025) and Wang et al. (2025)
both report results on MiniF2F with pass@32 and pass@8192, and on Putnambench with pass@192 for Kimina put
and pass@1024 for DeepSeek put which would be too expensive for us to run or compare against using Ax-Prover.
The following subsections outline our setup and present the results.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 EXPERIMENTAL SETUP

For our experiments, each Ax-Prover agent was powered by Claude Sonnet 4 (Anthropic, 2025a). Since the agentic
flow can run indefinitely, we capped Prover API calls at 100,3 limited Orchestrator–Prover–Verifier loops to 2, and set
a 25-minute timeout per theorem. We compare our approach against three strong baselines:

• Claude Sonnet 4 (Sonnet), without access to any tools. This baseline allows us to assess how the same LLM
used for our agentic flow performs if used outside the agentic flow, and without access to MCP tools.

• DeepSeek-Prover-V2-671B (DS-Prover), a specialized Lean prover.

• Kimina-Prover (Kimina), another specialized Lean prover.

We applied the 25-minutes timeout to all baselines, and run them with pass@1.4

5.2 RESULTS

Dataset Subset Ax-Prover Sonnet DS-Prover Kimina
NuminaMath solved-K 81% 7% 48% 100%

solved-H 47% 8% 14% 0%
unsolved 26% 1% 18% 0%
total 51% 5% 28% 31%

AbstractAlgebra easy 72% 10% 26% 12%
intermediate 56% 6% 22% 14%
total 64% 8% 24% 13%

QuantumTheorems easy 100% 54% 88% 72%
intermediate 92% 18% 48% 34%
total 96% 40% 61% 57%

Table 2: AX Agent compared to Claude Sonnet 4 and DeepSeek-Prover-V2-671B across algebra and physics domains.
Note that results on NuminaMath for Kimina are reported from Numina-Team (2025), and where obtained during its
RL training phase with, on average, pass@68.

We compute results by running an external Lean compiler on the files generated by the model – if the file compiles with
no sorrys we mark it as correct, otherwise it is incorrect. We report overall accuracy in Table 2. In both mathematics
and physics domains, Ax-Prover consistently surpasses both specialized prover models (DS-Prover and Kimina) and
the standalone LLM baseline (Sonnet), highlighting its superior performance across the board.

On the Numina dataset, Ax-Prover largely outperformed all the baselines. Across all three NuminaMath-LEAN ques-
tions we benchmarked on, Ax-Prover scored 51% accuracy while DS-Prover (28%) and Kimina (31%) achieve similar
performace, while Sonnet only gets 5% accuracy. Particularly notable is the performance of Ax-Prover on Solved-H,
where it solves almost half of the problems, and on Unsolved (26%). Furthermore, due to autoformalization (see
Section 4.3), some theorems are ill-posed: during testing, Ax-Prover encountered them, spotted the error, and reported
it (see Appendix C).

On AA the gap in performance is striking, with Ax-Prover (64%) outperforming DS-Prover by 40%. Both Kimina
(13%) and Sonnet get a very poor performance (8%). This is expected, as the AA dataset is largely out-of-distribution
for DS-Prover, Sonnet, and Kimina, which are trained primarily on Mathlib — covering only a minimal subset of
abstract algebra — or on undergraduate competition-level math problems.

On the QT dataset, Ax-Prover achieves an almost perfect performance (96%). DS-Prover also performed strongly
(61%), while Kimina lagged significantly (57%), and Sonnet drops to 40%. To showcase the differences between
the models, let’s consider the proofs that quantum observables are Hermitian matrices (full proofs available in Ap-
pendix D.1). DeepSeek misused the Hermitian field, misunderstanding its type, while Sonnet made a more sophisti-
cated effort but encountered a rewrite pattern mismatch, which highlights its difficulties in managing Lean environ-
ment. In contrast, Ax-Prover succeeded through a systematic approach, explicitly applying the Hermitian property to
diagonal elements, using the definition of conjugate transpose, and connecting it to the fact that a complex number

3Each call may produce code or a tool invocation – for example, a call to read file or diagnostic messages.
4We could not test the baselines with pass@>1 due to budget restrictions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

equal to its conjugate is real. The case highlights that successful formal theorem proving requires careful, step-by-
step reasoning, a solid grasp of type theory, and familiarity with library theorems – demonstrating that clarity and
correctness outweigh clever shortcuts in formal verification.

These results highlight two key limitations of current approaches: general-purpose LLMs alone cannot effectively
manage the Lean environment or leverage its tools, while specialized provers fail to generalize beyond their narrow
training domains. The fact that Ax-Prover, built on Sonnet, nearly doubles the performance of the standalone LLM
demonstrates that combining agentic reasoning with Lean tool integration is essential for robust theorem proving
across domains.

5.3 ANALYSIS OF TACTIC USAGE

The large performance gap between Ax-Prover and standalone Sonnet underscores the importance of Lean tools. We
measured tool usage over 100 runs on the challenging Numina unsolved subset, and found that the Prover makes
an average of 100.76 tool calls per run.

However, one might still ask: do frequent tool calls actually enhance proofs quality and variety? To answer this
question, we check the tactics used in the proofs by Ax-Prover, Kimina, and DeepSeek. (full stats in Table 3). While
the three models share 28 tactics, Ax-Prover uses 10 tactics not employed by DS-Prover or Kimina, whereas the
specialized provers use only one tactic absent in Ax-Prover. This supports our hypothesis that integrating frontier
LLMs with Lean tools enhances both creative exploration and proof construction. Beyond performance, tool usage
mirrors human Lean development, where interactive debugging and iterative proof refinement are central.

5.4 DEPLOYMENT ANALYSIS

As stressed in Section 1, deployment complexity is critical when using AI models. Here we compare models under
this aspect. DeepSeek-Prover-V2-671B and Kimina-Prover-72B require GPU-accelerated, high-spec machines and
are not available through model as a service (MaaS) providers – for instance, while DeepSeek-Prover-V2-671B was
previously hosted by Novita (deepseek ai, 2025), this endpoint now redirects to the general DeepSeek-V3 model. We
hosted DeepSeek and Kimina on Google Cloud: DeepSeek on an A3 Ultra VM with eight H200-141GB GPUs, and
Kimina on an A2 High GPU VM with eight A100-40GB GPUs.

Deployment is burdensome and demands MLOps expertise: users must match hardware specs, configure distributed
runtimes, debug serving issues, and contend with scarce GPU availability. Cloud providers enforce strict quotas and
long queues for H100/H200 GPUs, hindering reproducibility even for well-funded teams.

In contrast, Ax-Prover relies only on making Anthropic API calls within an agentic loop, requiring no infrastructure
beyond basic client access. It can be executed locally on a client machine or remotely in a lightweight container,
enabling hundreds of problems per dataset to be evaluated without any engineering burden.

On monetary costs, running DS-Prover and Kimina on 1000 datapoints cost approximately $300 and $2000, respec-
tively, while Ax-Prover cost about $4000. At first glance, our approach appears more expensive, but only because we
evaluate specialized models with pass@1. Had we followed the common practice of running them with pass@32 or
even pass@8192 (!), the cost of these specialized models would have far exceeded ours. Moreover, general-purpose
LLMs are on a rapid trajectory of improvement: each new generation delivers stronger reasoning at lower cost, sug-
gesting that the relative efficiency of Ax-Prover will only increase over time.

The deployment and cost barriers of specialized models also help explain why they have not achieved widespread
use beyond benchmark settings such as IMO-style mathematics problems. For most researchers, the need to manage
specialized hardware, navigate GPU quotas, and bear high costs makes these systems effectively unusable in practice.
These barriers are eliminated with Ax-Prover. In the following section, we show how Ax-Prover can be directly
used by domain experts, highlighting its potential as a researcher-friendly tool for real mathematical and scientific
verification tasks.

6 USE CASE: RESEARCHER-FRIENDLY VERIFICATION

Besides being easily accessible, Ax-Prover supports interactive, collaborative workflows. Unlike large-scale provers
that attempt to complete a proof in one shot, Ax-Prover allows researchers to inspect intermediate states, guide proof
direction, and incorporate domain knowledge. This makes it not just a backend system, but a partner in mathematical
and scientific reasoning. We provide a concrete example below.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We applied Ax-Prover to a recent cryptography result, A New Algorithm for Computing Branch Number of Non-
Singular Matrices over Finite Fields (Mishra et al., 2024) (see the full case study in Appendix F). The task involved
formalizing the paper’s statments in Lean, and verifying the main claim. One of our mathematics domain experts
collaborated with Ax-Prover to structure the proof, validate lemmas, and complete the verification all locally on their
own laptop. Ax-Prover not only supported the process by checking intermediate lemmas and guiding proof strategies,
but also revealed an error in the original approach – showing that it can not only reproduce known arguments, but also
advance the state of knowledge. The whole process lasted two working days and resulted in over 2,000 lines of lean
code and the resulting lean blueprint can be made available upon request.

Our case study marks one of the first concrete examples of AI systems directly assisting professional mathematicians.
However, without Ax-Prover such successes currently require massive computational resources. For comparison,
consider the formalization of the Prime Number Theorem (PNT): Terence Tao and Alex Kontorovich initiated the
Lean translation, but the project was only completed weeks later by Math, Inc.’s Gauss agent running on Morph.AI’s
Infinibranch cluster (Math Inc., 2025). While ultimately successful, this was a massive engineering effort for a well-
known proof of comparable difficulty to our cryptography case study.

This comparison underscores the contribution of Ax-Prover in enabling fast and efficient verification of research-level
proofs of new results. Crucially, it acts as a teammate, by exposing intermediate reasoning, accepting guidance, and
enforcing rigor.

7 CONCLUSIONS

We introduce Ax-Prover, a novel agentic workflow that combines the broad reasoning capabilities of general-purpose
LLMs with the formal rigor of Lean’s proof environment. Our system addresses three major limitations of current
specialized provers: (i) limited generalizability and rapid obsolescence as libraries like mathlib evolve, (ii) high
engineering and maintenance costs, and (iii) inability to leverage external tools or collaborate effectively with human
experts.

Evaluations across multiple domains show that Ax-Prover consistently outperforms both specialized provers
(DeepSeek-Prover, Kimina-Prover) and a standalone LLM baseline (Sonnet). On NuminaMath-LEAN it achieved
higher overall success rates, including problems in the Unsolved split, and the gains were even more pronounced
on our two new datasets, AbstractAlgebra and Quantum Theorems. These results highlight Ax-Prover’s superior
generalization, adapting to novel domains beyond its training data where specialized systems’ performance worsens.

We attribute this success to our multi-agent architecture and its tight integration with Lean tools via the
lean-lsp-mcp protocol. By iteratively editing proofs, inspecting goals, and diagnosing errors, Ax-Prover behaves
like a cautious mathematician, systematically exploring and verifying each step. The frequency and effectiveness of
tool use in our experiments confirm their essential role in improving proof quality and enabling human-like debugging.

Furthermore, in our case study on cryptography, we showcase the collaboration capabilities of Ax-Prover. One of our
mathematics domain experts worked side-by-side with it, using it not just as an automated prover but as a partner for
structuring arguments, validating intermediate lemmas, and diagnosing proof failures. This interaction demonstrates
how Ax-Prover can adapt to expert guidance, accelerate verification workflows, and even surface errors in the original
reasoning.

In addition, we contribute two new formalized datasets: AbstractAlgebra, which focuses on research-level math-
ematics, and Quantum Theorems. These benchmarks provide new testbeds for cross-domain reasoning in future
agents.

Looking ahead, we plan to (i) enhance agentic performance with memory and parallelized agents to handle more
complex, multi-step proofs; (ii) broaden the scope of our formalization efforts to applied scientific and engineering
domains; and (iii) develop a more collaborative framework for human-agent interaction, enabling experts to guide
agents on the most challenging problems.

7.1 ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics.5 Potential ethical considerations relate to the use of
large language models for formal mathematics. First, compute costs and carbon footprint are a concern: although
our approach requires API calls to frontier models, it avoids the extreme GPU usage required by specialized provers.

5https://iclr.cc/public/CodeOfEthics

9

https://iclr.cc/public/CodeOfEthics

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Second, reproducibility and transparency are prioritized: all datasets used (NuminaMath-LEAN, AbstractAlgebra, and
QuantumTheorems) are either publicly available or provided in our supplementary materials, and details of our setup
are described in the Appendix. There are no other specific ethical concerns that we feel must be highlighted at this
stage; however, we acknowledge the importance of ongoing evaluation of the societal and ethical implications as this
technology is applied.

7.2 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility. Our datasets are either publicly available or attached in our
supplementary materials (NuminaMath-LEAN, AbstractAlgebra, and QuantumTheorems), with details of their con-
struction in Appendix B. All experimental settings, including pass@k values, timeouts, and model configurations, are
specified in Section 5 and Appendix E. We also describe our agentic workflow (Section 3), provide our code in the sup-
plementary materials, provide example Lean proofs and failure cases (Appendix F), and document missing mathlib
lemmas. Together, these materials are intended to allow researchers to fully reproduce our results and extend our
experiments.

REFERENCES

Putnambench leaderboard. https://trishullab.github.io/PutnamBench/leaderboard.html.
Accessed: 2025-09-24.

Mathematics (arxiv archive). arXiv, 2025. URL https://arxiv.org/archive/math. Accessed: 2025-09-24.

Anthropic. Claude 4. https://www.anthropic.com/news/claude-4, 2025a. Accessed: 2025-09-16.

Anthropic. Claude documentation, 2025b. URL https://docs.claude.com/en/home. Accessed: 2025-09-
19.

Ethan Ayers et al. Leanlm: Large language models for lean theorem proving. arXiv preprint arXiv:2306.09264, 2023.

Zhenisbek Azerbayev et al. Formal proving with llms: Lean as a benchmark. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based framework for formal
mathematical proofs. arXiv preprint arXiv:2506.19923, 2025.

Haniel Barbosa, Clark Barrett, Pascal Fontaine, and Andrew Reynolds. Satisfiability modulo theories: An appetizer.
Communications of the ACM, 65(6):69–77, 2022.

Bart Blaauwbroek et al. Tactician: Lean proof automation with knn. In Proceedings of the International Conference
on Interactive Theorem Proving (ITP), pp. 348–366. Springer, 2020.

Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars R. Knudsen, Gregor Lean-
der, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
Prince – a low-latency block cipher for pervasive computing applications. In Xiaoyun Wang and Kazue Sako (eds.),
Advances in Cryptology – ASIACRYPT 2012, Lecture Notes in Computer Science, pp. 208–225, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-34961-4 14.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Cheng-
gang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving. arXiv preprint
arXiv:2507.23726, 2025.

Mark Chen et al. Evaluating large language models trained on code. In arXiv preprint arXiv:2107.03374, 2021.

Yilei Chen. Quantum algorithms for lattice problems. Technical report, Cryptology ePrint Archive, Report 2024/555,
2024. URL https://eprint.iacr.org/2024/555.pdf. Updated April 18: algorithm contains an unfix-
able bug invalidating the main claim (see Section 3.5.9, Page 37).

Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Menegali, Junehyuk Jung,
Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in solving olympiad geometry with
alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

Emily Collins et al. Llms as conversational partners for mathematicians. arXiv preprint arXiv:2305.XXXX, 2023.

10

https://trishullab.github.io/PutnamBench/leaderboard.html
https://arxiv.org/archive/math
https://www.anthropic.com/news/claude-4
https://docs.claude.com/en/home
https://eprint.iacr.org/2024/555.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 337–340. Springer, 2008.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover
(system description). In Automated Deduction – CADE-25, volume 9195 of Lecture Notes in Computer Science,
pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6 26.

DeepSeek-AI. Deepseek-prover-v1 dataset. https://huggingface.co/datasets/deepseek-ai/
DeepSeek-Prover-V1, 2024. Accessed: 2025-08-24.

deepseek ai. Deepseek-prover-v2-671b, 2025. URL https://huggingface.co/deepseek-ai/
DeepSeek-Prover-V2-671B. Accessed: 2025-09-24.

Oliver Dressler. Lean-lsp-mcp: Tools for agentic interaction with the lean theorem prover, 3 2025a. URL https:
//github.com/oOo0oOo/lean-lsp-mcp. Accessed: 2025-08-24.

Oliver Dressler. leanclient: Python client to interact with the lean4 language server, 1 2025b. URL https://
github.com/oOo0oOo/leanclient. Accessed: 2025-08-24.

David S Dummit and Richard M Foote. Abstract algebra. john wile & sons. Inc., Hoboken, NJ, 2004.

Praveen Gauravaram, Lars Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer,
and Søren S. Thomsen. Grøstl – a sha-3 candidate. Submission to nist, NIST, September 2008. URL http:
//www.groestl.info/. Available at http://www.groestl.info/.

Thérèse Gauthier, Cezary Kaliszyk, and Josef Urban. Tactictoe: Learning to prove with tactics. In Proceedings of the
International Conference on Automated Deduction (CADE), pp. 275–294. Springer, 2021.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom Myaskovsky, Felix
Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist. arXiv preprint arXiv:2502.18864,
2025.

Daniel Huang et al. Learning to prove theorems via interacting with proof assistants. In International Conference on
Machine Learning (ICML), pp. 2654–2663, 2019.

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, et al. Deepmath - deep sequence models for premise selec-
tion. In Advances in Neural Information Processing Systems (NeurIPS), pp. 2235–2243, 2016.

Thomas W Judson. Abstract algebra: theory and applications. 2020.

Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In Proceedings of the International
Conference on Computer Aided Verification (CAV), pp. 1–35. Springer, 2013.

Adarsh Kumarappan, Mo Tiwari, Peiyang Song, Robert Joseph George, Chaowei Xiao, and Anima Anandkumar.
Leanagent: Lifelong learning for formal theorem proving. arXiv preprint arXiv:2410.06209, 2024.

Guillaume Lample and François Charton. Deep reinforcement learning for theorem proving. In International Confer-
ence on Learning Representations (ICLR), 2022.

Lean Prover Community. Mathlib statistics. https://leanprover-community.github.io/mathlib_
stats.html, 2025. GitHub repository for generating statistics plots for Mathlib; accessed 2025-08-24.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui
Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu.
Numinamath. [https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi Chen,
Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving. arXiv preprint
arXiv:2502.07640, 2025.

Zeyuan Lu, Guodong Zhang, Junxiao Chen, Huan Chen, Yilun Chen, Zonglin Li, Yiping Li, Lianmin Wang, Yao Lin,
Ce Zhang, and Jie Chen. Process-driven autoformalization in lean 4. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=k8KsI84Ds7.

11

https://huggingface.co/datasets/deepseek-ai/DeepSeek-Prover-V1
https://huggingface.co/datasets/deepseek-ai/DeepSeek-Prover-V1
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
https://github.com/oOo0oOo/lean-lsp-mcp
https://github.com/oOo0oOo/lean-lsp-mcp
https://github.com/oOo0oOo/leanclient
https://github.com/oOo0oOo/leanclient
http://www.groestl.info/
http://www.groestl.info/
http://www.groestl.info/
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover-community.github.io/mathlib_stats.html
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=k8KsI84Ds7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Math Inc. Introducing gauss, an agent for autoformalization, 2025. URL https://www.math.inc/gauss.
Announcement of autoformalization agent for formal verification in mathematics.

P. R. Mishra, Yogesh Kumar, Susanta Samanta, and Atul Gaur. A new algorithm for computing branch number of
non-singular matrices over finite fields. arXiv preprint arXiv:2405.07007, 2024.

National Institute of Standards and Technology. Advanced encryption standard (aes). Federal Information Processing
Standards Publication FIPS 197-upd1, U.S. Department of Commerce, Gaithersburg, MD, 2001. URL https:
//doi.org/10.6028/NIST.FIPS.197-upd1. Published November 26, 2001; Updated May 9, 2023.

Numina-Team. Numinamath-lean dataset. https://huggingface.co/datasets/AI-MO/
NuminaMath-LEAN, 2025. Accessed: 2025-08-24.

OpenAI. Openai models documentation, 2025. URL https://platform.openai.com/docs/models. Ac-
cessed: 2025-09-19.

Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean collaboration for advanced
formal reasoning. arXiv preprint arXiv:2505.05758, 2025.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. In International
Conference on Learning Representations (ICLR), 2020.

Stanislas Polu et al. Formal mathematics statement curriculum learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Z.Z. Ren, Zhihong Shao, Wenfeng Liang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via re-
inforcement learning for subgoal decomposition. https://arxiv.org/abs/2504.21801, 2025. Accessed:
2025-08-24.

Sébastien Rousseau. Bug discovered in quantum algorithm for lattice-based crypto. https://
sebastienrousseau.com/2024-04-22-bug-discovered-in-quantum-algorithm-for-lattice-based-crypto/
index.html, April 22 2024. Accessed: [add access date here].

Stephan Schulz, Simon Cruanes, and Petar Vukmirović. E prover 2.0: Integrating equational and first-order logic. In
Proceedings of the International Conference on Automated Deduction (CADE), pp. 523–541. Springer, 2019.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Lean copilot: Large language models as copilots for theorem
proving in lean. arXiv preprint arXiv:2404.12534, 2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, and
Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam mathematical competition.
Advances in Neural Information Processing Systems, 37:11545–11569, 2024.

Josef Urban, Geoff Sutcliffe, Stefan Petrov, and Josef Vyskočil. Machine learning preselected proof steps. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 2046–2051, 2011.

Haiming Wang et al. Kimina-prover preview: Towards large formal reasoning models with reinforcement learning.
https://arxiv.org/abs/2504.11354, 2025. Accessed: 2025-08-24.

Qihao Wu, Haotian Zhang, Jialin Chen, Yizhou Li, Xingjian Zhang, Ce Zhang, and Jie Chen. Autoformalization in
the era of large language models: A survey. arXiv preprint arXiv:2505.23486, 2025. URL https://arxiv.
org/abs/2505.23486.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan
Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data. https://
arxiv.org/abs/2405.14333, 2024a. Accessed: 2025-08-24.

Zhangir Xin et al. Leandojo: Theorem proving with large language models. In International Conference on Learning
Representations (ICLR), 2024b.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune, and David
Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree search. arXiv preprint
arXiv:2504.08066, 2025.

12

https://www.math.inc/gauss
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://huggingface.co/datasets/AI-MO/NuminaMath-LEAN
https://huggingface.co/datasets/AI-MO/NuminaMath-LEAN
https://platform.openai.com/docs/models
https://arxiv.org/abs/2504.21801
https://sebastienrousseau.com/2024-04-22-bug-discovered-in-quantum-algorithm-for-lattice-based-crypto/index.html
https://sebastienrousseau.com/2024-04-22-bug-discovered-in-quantum-algorithm-for-lattice-based-crypto/index.html
https://sebastienrousseau.com/2024-04-22-bug-discovered-in-quantum-algorithm-for-lattice-based-crypto/index.html
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2505.23486
https://arxiv.org/abs/2505.23486
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2405.14333

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale lean
problem set formalized from natural language math problems. https://arxiv.org/abs/2406.03847,
2024. Accessed: 2025-08-24.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: A cross-system benchmark for formal olympiad-level
mathematics. https://arxiv.org/abs/2109.00110, 2021. Accessed: 2025-08-24.

A TOOLS

A.1 FILE SYSTEM

Full list of File system tools:

• read file

• read multiple files

• write file

• edit file

• create directory

• list directory

• list directory with sizes

• directory tree

• move file

• search files

• get file info

• list allowed directories

B DATASETS

B.1 ABSTRACT ALGEBRA

B.1.1 DATASET GENERATION

We used a basic pipeline to build the abstract algebra dataset. First, we extracted all raw text from PDFs of ma-
terial from Abstract Algebra textbooks by Dummit and Foote (Dummit & Foote, 2004) and Judsen (Judson, 2020)
using Mistral’s API. We then processed the raw text by using Claude-sonnet-3.7 to extract a list of natural language
math statements. These natural language math statements contained exercises, derivations, lemmas, propositions, and
theorems from the text.

Next, we used a Claude-sonnet-3.7 agent to autoformalize each of these natural language statements. To ground the
formalization in Mathlib and prevent the agent from reinventing definitions, we passed the agent a lean file at the
start of the process containing relevant definitions for that section, e.g. dihedral groups, roots of unity, or the field
extension Q(

√
2). The agent could reference these definitions and was required to add each formalized statement

directly to this file, but explicitly prohibited from introducing new definitions. The agent generated the top 3 lean
formal statements for each natural language statement and refined each attempt up to 3 times with feedback from
the lean compiler. We then built the dataset by retaining only those pairs of natural language and formal language
statements that corresponded to exercises from the source texts.

B.1.2 EXAMPLE

This is an example proof of the triangle inequality for norms, which is fundamental in the mathematical structure of
quantum state spaces.

13

https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2109.00110

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

import Mathlib

-- Variables for dihedral group
variable {n : } {i : }
local notation D => DihedralGroup n
local notation r => DihedralGroup.r (1 : ZMod n)
local notation s => DihedralGroup.sr (0 : ZMod n)

/--Use the generators and relations to show that every element of D not a power of r has order 2. -/
theorem exercise_3_part1 {x : D} (h : x = s * rˆi) : orderOf x = 2 := by

sorry

B.2 QUANTUM-THEOREMS

B.2.1 DATASET GENERATION

The dataset was generated through an iterative human-in-the-loop process combining automated proof synthesis with
expert curation. An automated coding agent first generated formal statements and proof attemps for all 134 quantum
theorems, producing both complete proofs and partial derivations. A quantum physics expert then reviewed each
statement, proof, identifying gaps, correcting errors, and standardizing operator definitions to ensure that each question
was well formed and solvable. The final dataset replaces these proofs with sorry statements.

B.2.2 EXAMPLE

This is an example proof of the triangle inequality for norms, which is fundamental in the mathematical structure of
quantum state spaces.

import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.LinearAlgebra.UnitaryGroup
import Mathlib.LinearAlgebra.Matrix.Hermitian
import Mathlib.LinearAlgebra.Matrix.Trace
import Mathlib.Data.Complex.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2

/-!
Observable Linear Combination with Real Coefficients
-/

/-- Quantum state: normalized vector in Hilbert space (from KG) -/
def QuantumState (n :) : Type :=

{ : EuclideanSpace (Fin n) // = 1}

/-- Observable: Hermitian matrix (from KG) -/
def Observable (n :) : Type :=

{A : Matrix (Fin n) (Fin n) // A.conjTranspose = A}

theorem observable_real_linear_combination {n : } [NeZero n]
(A B : Observable n) (:) :
(C : Observable n), C.val = (:) A.val + (:) B.val := by

sorry

C DETECTED AUTOFORMALIZATION ERROR

As noted in Section 5.2, 19.7% of Numina’s problems were generated using autoformalization models. While these
pipelines enable large-scale dataset construction, they occasionally produce ill-posed theorems that cannot be satisfied
in Lean.

During evaluation, Ax-Prover successfully identified – and proved the contrapositive – of such a case.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

import Mathlib

theorem number_theory_3098 (p1 p2 p3 p4 :) (hp1 : p1.Prime) (hp2 : p2.Prime)
(hp3 : p3.Prime) (hp4 : p4.Prime) (h1 : p1 < 100) (h2 : p2 < 100) (h3 : p3 < 100)
(h4 : p4 < 100) (h5 : p1 p2) (h6 : p1 p3) (h7 : p1 p4) (h8 : p2 p3)
(h9 : p2 p4) (h10 : p3 p4) (h11 : p1 = 1 p1 = 2 p1 = 3 p1 = 4 p1 = 5 p1 = 6 p1 = 7 p1 = 9)
(h12 : p2 = 1 p2 = 2 p2 = 3 p2 = 4 p2 = 5 p2 = 6 p2 = 7 p2 = 9)
(h13 : p3 = 1 p3 = 2 p3 = 3 p3 = 4 p3 = 5 p3 = 6 p3 = 7 p3 = 9)
(h14 : p4 = 1 p4 = 2 p4 = 3 p4 = 4 p4 = 5 p4 = 6 p4 = 7 p4 = 9)
(h15 : p1 p2 p1 p3 p1 p4 p2 p3 p2 p4 p3 p4) :
p1 + p2 + p3 + p4 = 190 := by sorry

The first line of the proof sketch for this problem was

This theorem has contradictory premises: the sum must be 17, not 190.

Upon inspection, it is clear that 4 natural numbers belonging to the set {2, 3, 5, 7} cannot sum to 190. As an additional
excercise, we changed

p1 + p2 + p3 + p4 = 190 := by sorry

to

p1 + p2 + p3 + p4 != 190 := by sorry

changing the original theorem statement to prove the negation which Ax-Prover was able to do, thus proving that the
original theorem was not provable. This behavior highlights two strengths of the agentic loop:

1. Robustness to noise. The agent does not blindly attempt to complete invalid statements but can detect
contradictions early.

2. Transparency. By surfacing diagnostic messages directly from Lean, Ax-Prover provides clear evidence that
the statement is ill-posed, enabling researchers to filter or repair dataset items.

We see this as an important complement to raw accuracy metrics: beyond solving valid theorems, a reliable prover
should be able to recognize when formalization errors make a proof impossible.

D PROOFS

D.1 QUANTUM-THEOREMS ANALYSIS EXAMPLE

We present here the attempts to prove that quantum observables are Hermitian matrices in Lean 4, specifically proving
the theorem:

For an observable A : Observable n, A.matrix† = A.matrix (1)

where A† denotes the conjugate transpose (Hermitian conjugate) of matrix A.

D.1.1 DEEPSEEK’S ATTEMPT (FAILED)

DeepSeek’s approach was fundamentally flawed from the start:

theorem observable_diagonal_real {n : } (A : Observable n) (i : Fin n) :
(A.matrix i i).im = 0 := by

have h := A.hermitian
have h := congr_arg (fun x => x i i) h
simp [Matrix.ext_iff, Matrix.conjTranspose_apply, Complex.ext_iff] at h
<;>
aesop

Critical Error:
tactic 'aesop' failed, made no progress

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Analysis: DeepSeek attempted to use A.hermitian directly as a proof, but this field has type
matrix.IsHermitian, not the required equality type. The error message indicates that the tactic aesop failed
because there was a fundamental type mismatch. This shows a misunderstanding of Lean’s type system. The
hermitian field is a proof that the matrix satisfies the Hermitian property, but it’s not directly the equality we
need to prove.

D.1.2 SONNET’S ATTEMPT (FAILED)

Sonnet made a more sophisticated attempt but still failed:

theorem observable_diagonal_real {n : } (A : Observable n) (i : Fin n) :
(A.matrix i i).im = 0 := by

have h := A.hermitian
rw [Matrix.IsHermitian.ext_iff] at h
specialize h i i
rw [Matrix.conjTranspose_apply, Matrix.star_apply] at h
exact Complex.ext_iff.mp h.symm |>.2

Critical Error:

Tactic `rewrite` failed: Did not find an occurrence of the pattern
Matrix.conjTranspose ?M ?j ?i

in the target expression
star (A.matrix i i) = A.matrix i i

Analysis: Sonnet understood that it needed to work with the Hermitian property and tried to extract information about
diagonal elements, but made an error in pattern matching during the rewrite step. The approach was on the right track
but executed incorrectly.

D.1.3 AX-PROVER’S ATTEMPT (SUCCESSFUL)

Ax-Prover succeeded with a systematic, step-by-step approach:

theorem observable_diagonal_real {n : } (A : Observable n) (i : Fin n) :
(A.matrix i i).im = 0 := by

-- Step 1: Use the fact that A is Hermitian
have h1 : A.matrix.conjTranspose = A.matrix := by
exact A.hermitian

-- Step 2: Apply this to diagonal element (i,i)
have h2 : (A.matrix.conjTranspose i i) = (A.matrix i i) := by
rw [h1]

-- Step 3: By definition of conjugate transpose
have h3 : (A.matrix.conjTranspose i i) = star (A.matrix i i) := by
exact Matrix.conjTranspose_apply _ _ _

-- Step 4: Combine to get star (A.matrix i i) = A.matrix i i
have h4 : star (A.matrix i i) = A.matrix i i := by
rw [h3, h2]

-- Step 5: A complex number equals its conjugate iff it's real
have h5 : (A.matrix i i).im = 0 := by
have : (starRingEnd) (A.matrix i i) = A.matrix i i := h4
exact Complex.conj_eq_iff_im.mp this

exact h5

E TACTICS

In Table 3 we report the tactics used by each model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Tactic Ax-agent DeepSeek Kimina
apply X X X
assumption X X X
by cases X X X
calc X X X
cases X X X
change X
classical X X
congr X X X
constructor X X X
contradiction X X X
decide X X
exact X X X
exact mod cast X X X
exfalso X X X
ext X X X
funext X X
generalize X
induction X X X
injection X
intro X X X
intros X
left X X
native decide X X
norm cast X ?
obtain X X X
omega X X X
push cast X
rcases X X X
refine X X X
replace X X
rfl X X X
right X X
rintro X X X
rw X X X
rwa X X
show X X
simp X X X
simp all X X X
simpa X X X
specialize X
subst X X X
subst vars X
suffices X
trans X
unfold X

Table 3: Tactics used by Ax-agent, DeepSeek, and Kimina. An ”X” indicates the model uses the tactic.

F CASE STUDY: VERIFYING MATH IN CRYPTOGRAPHIC PAPERS

In this case study, we illustrate how one of our researchers used Ax-Prover to verify correctness of mathematical
results used in cryptographic research.

As a concrete example, we focus on the recent (May 2024) cryptographic paper A New Algorithm for Computing
Branch Number of Non-Singular Matrices over Finite Fields from arXiv (Mishra et al., 2024). This work introduces a
novel algorithm for computing the branch number – a fundamental metric used to assess the strength of block ciphers

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

such as AES (National Institute of Standards and Technology, 2001), PRINCE Borghoff et al. (2012), and Grøst
Gauravaram et al. (2008).

The paper begins with Theorem 1, which offers an alternative characterization of the branch number. Traditionally,
for an square invertible n x n matrix M of order n > 1 over a finite field Fq of order q, the branch number is defined
as

B(M) = min
{
wh(x) + wh(Mx) : x ∈ Fn

q where x ̸= 0
}

where wh(x) is the Hamming weight (the number of nonzero entries in x). Theorem 1 gives an alternate definition of
the branch number that is more amenable to computation than the classical version.

For cryptographers, this makes a practical difference: it enables fast evaluation of candidate matrices when designing
new lightweight or high-performance ciphers. The authors demonstrate in (Mishra et al., 2024, Theorem 4) that their
algorithm achieves significant complexity gains over the naive O(n2qn) approach for finite fields of order q ≥ 4 and
square matrices of order n ≥ 4.

F.1 FORMALIZE: SINGLE STEP

To formally verify the math in this paper, we used an autoformalization agent to formalize statements, and then upon
verifying that the formalization was correct we passed those statements to Ax-Prover.

To illustrate this process, we show the process of proving one step in the paper – the full lean certificate can provide
upon request. The figure below shows the current verification state highlighted in green, while the next step awaiting
verification appears in yellow.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F.2 VERIFICATION: SINGLE STEP

We highlighted the relevant theorems or lemmas and prompted Ax-Prover to generate a complete proof for each se-
lected statement. Ax-Prover iteratively refined the proof, checking each step for correctness until the system confirmed
its validity. Unlike standard LLM output, this process ensured full mathematical soundness, with Ax-Prover automat-
ically searching for relevant results, reading and updating the file, diagnosing errors, and managing proof goals.

Some expert human oversight was required on 2 steps to properly formalize statements passed to the prover, but
beyond these isolated interventions, the system operated autonomously. After several iterations, it produced a fully
verified proof of each step in just a few minutes. The following prompt illustrates this process for the example above:

Prompt

Prove this statement (with the formalized step above highlighted as context).

Response

The statement is a simple set-theoretic observation. We start with all low-weight vectors x and look at the
values wH(x) + wH(Mx), where wH is the Hamming weight and M is some matrix.

• Without constraints: We consider all low-weight vectors.
• With constraints: We only consider those low-weight vectors where the output M x also has low

weight.
Clearly, if you add an extra condition (“M x has low weight”), you can only make the set smaller or
equal—never larger—because you’re restricting the set of vectors you’re looking at.
The proof just formalizes this obvious fact:

1. Take any element in the constrained set.
2. By definition, it comes from some vector x that satisfies the extra condition.
3. But x also satisfies the conditions for the unconstrained set (because the unconstrained set has fewer

requirements).
4. So the element belongs to the unconstrained set as well.

This shows the constrained set is a subset of the unconstrained set.

We now present an example that required expert oversight. Specifically, the Ax-Prover was unable to verify the
correctness of statement (3) shown below:

To guide the Ax-Prover, an expert user provided the following prompt:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt

You have defined the sets B,C,D with A = min
(
B,min(C,D)

)
≤ n+ 1. Lets do this by cases: If minC >

minD and minD > n + 1, then min(C,D) > n + 1, so min(B,min(C,D)) = min(B). The other case is
easier.

The Axiomatic Verifier MCP then successfully proved the statement using the provided hint:

Response

VERIFICATION COMPLETE - STEPS:

1. Define the minima: Let
B := min{wH(x) + wH(Mx) | x ∈ L},
C := min{wH(x) + wH(Mx) | x ∈ H1},
D := min{wH(x) + wH(Mx) | x ∈ H2}.

where L = low-weight set, H1 = high-weight with wH(Mx) ≤ (n + 1)/2, H2 = high-weight with
wH(Mx) > (n+ 1)/2. Then

A := Branchnumber(M) = min(B, min(C,D)).

2. Upper bound: For invertible M ,
A ≤ n+ 1.

3. High–high set bound: If x ∈ H2, then

wH(x) + wH(Mx) > n+ 1 =⇒ D > n+ 1.

4. Case analysis:
• C ≤ D ⇒ min(C,D) = C ⇒ A = min(B,C).

• C > D ⇒ min(C,D) = D > n+ 1. Since A = min(B,D) ≤ n + 1, we get B ≤ n + 1 and
thus A = B = min(B,C).

5. Conclusion:
A = min(B,C).

The term D never affects the branch number.

F.3 CONSOLIDATION: COMPLETE CERTIFICATE

Once all steps were verified, they were integrated into a single proof, producing a final file that formally certifies the
alternate definition is equivalent to the original, exactly as proposed in the paper.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.4 CORRECTNESS, VERIFICATION, AND TAKEAWAYS

The outcome of our work is a formally verified certificate ensuring the correctness of Theorem 1. During the course
of constructing this certificate, we identified a critical error in the original proof. Specifically, the issue arises in Step
2 of the proof:

Here, the authors fail to ensure that the sets over which they take minima are non-empty. For example, in the simplest
case where M = I (the identity matrix), the middle term reduces to

min
{
h(M,x) | x ∈ Fn

q ,

⌊
n+ 1

2

⌋
< wh(x) ≤ n,wh(x) ≤

⌊
n+ 1

2

⌋}
.

In this case, the constraints ⌊
n+1
2

⌋
< wh(x) and wh(x) ≤

⌊
n+1
2

⌋
are contradictory, so the underlying set is empty. Nevertheless, the original proof proceeds under the assumption that
this minimum is well-defined, a subtle yet significant oversight.

This matters for two reasons:

1. Logical correctness: Reasoning about the empty set is problematic (all statements are vacuously true) which
can lead to unsound conclusions. For example, let

S = {x ∈ Z | x = 3 and x is even }.

Take y ∈ S, then y = 3 and y is even, so this implies that 3 is even.
2. Software implementation: Computing the minimum of an empty set is undefined in standard programming

environments and would trigger a runtime error if translated directly into code.

Our formal verification system flagged these issues because it could not establish the truth of the corresponding state-
ments, revealing logical gaps in the proof. Nevertheless, the authors’ final result remains correct despite the critical
error in their proof.

21

	Introduction
	Related Work
	System Architecture
	Specialized Agents
	Orchestrator
	Prover
	Verifier

	MCP Tools

	Datasets
	Abstract-Algebra
	Quantum-Theorems
	NuminaMath-LEAN

	Experiments
	Experimental Setup
	Results
	Analysis of Tactic Usage
	Deployment Analysis

	Use Case: Researcher-Friendly Verification
	Conclusions
	Ethics Statement
	Reproducibility Statement

	Tools
	File system

	Datasets
	Abstract Algebra
	Dataset Generation
	Example

	Quantum-Theorems
	Dataset Generation
	Example

	Detected Autoformalization Error
	Proofs
	Quantum-Theorems Analysis Example
	DeepSeek's Attempt (Failed)
	Sonnet's Attempt (Failed)
	Ax-Prover's Attempt (Successful)

	Tactics
	Case Study: Verifying math in cryptographic papers
	 Formalize: Single Step
	 Verification: Single Step
	Consolidation: Complete Certificate
	Correctness, Verification, and Takeaways

