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Abstract

Assigning MRI sequence types is essential yet remains a tedious, manual step in prostate
imaging workflows. Current automated approaches relying solely on images or DICOM
metadata often struggle with protocol variability and metadata inaccuracies, limiting their
generalizability. We propose fine-tuning vision foundation models within different fusion
strategies integrating image and metadata. We achieve state-of-the-art F1-score of 1.00 and
0.98 on internal and external test sets, respectively, demonstrating robust generalization.
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1. Introduction

Magnetic resonance imaging (MRI) plays a crucial role in tissue characterization by provid-
ing complementary information through multiple sequences with distinct tissue contrasts,
making it particularly valuable in the diagnosis of prostate cancer (PCa) and the guidance of
subsequent interventions (Turkbey and Choyke, 2018). The PI-RADS guidelines (Weinreb
et al., 2016; Turkbey et al., 2019) recommend acquiring prostate MRI in a multiparamet-
ric fashion, including T2-weighted (T2w), diffusion-weighted imaging (DWI), and dynamic
contrast-enhanced (DCE) sequences. However, machine learning algorithms often require
only a subset of the available prostate MRI scans (Bhattacharya et al., 2022), including
primary sequences or derived images like the apparent diffusion coefficient (ADC) map. In
this context, manual data curation remains a tedious and time-consuming task.

Automatic methods utilizing either DICOM metadata (Gauriau et al., 2020; Cluceru
et al., 2023) or imaging data (Kasmanoff et al., 2023; Salome et al., 2023) have been intro-
duced but face limited generalizability due to variability in acquisition protocols and fre-
quent metadata inaccuracies. To enhance robustness, Krishnaswamy et al. (2024) combined
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Figure 1: Overview of the proposed multi-modal MRI sequence classification approach.

image features with DICOM metadata, achieving improved yet still limited generalization
due to the necessity of training from scratch on relatively small, annotated prostate MRI
datasets.

To overcome the reliance on extensive labeled datasets, we propose fine-tuning pre-
trained vision foundation models for multi-modal MRI sequence classification. Specifically,
we investigate the impact of different pretraining strategies (supervised, self-supervised,
weakly supervised), model sizes, and various fusion strategies integrating image data with
metadata. We validate our approach on internal and external datasets, achieving state-
of-the-art F1 scores of 1.00 and 0.98, respectively, demonstrating superior generalization
capability and robustness.

2. Methodology

Data We use the prostate MRI dataset collection introduced by Krishnaswamy et al.
(2024), comprising two internal datasets (used for training, validation, and testing) and five
external datasets (used exclusively for testing). Following the original preprocessing, we use
the extracted center slices from 3D volumes along with the metadata predefined splits.

Methods We evaluate multiple vision foundation models across different fusion strate-
gies. Specifically, we fine-tune three pretrained vision encoders: supervised Vision Trans-
former (ViT) (Dosovitskiy et al., 2020), self-supervised DINOv2 (Oquab et al., 2023) (both
pretrained on natural images), and weakly-supervised BiomedCLIP (Zhang et al., 2023),
pretrained on scientific biomedical image-text pairs. Additionally, we assess the impact of
varying model sizes.

As baselines, we include image-only and metadata-only approaches. To systematically
study multi-modal fusion, we adopt the strategies described in Imrie et al. (2025): (1) Early
fusion concatenates extracted image features from the vision encoders with metadata before
classification via a multilayer perceptron (MLP); (2) Late fusion ensembles predictions from
separate image-only and metadata-only models (using Autoprognosis (Imrie et al., 2025)
for metadata); and (3) Joint fusion concatenates image and metadata features and trains
the entire model end-to-end. We perform an ablation across all vision encoders and fusion
strategies. Full training details are provided in appendix A.
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Table 1: F1 scores for our proposed multi-modal MRI sequence classification approach.
Avg. best in bold. †= Results taken from (Krishnaswamy et al., 2024)

Internal External
ADC DCE DWI T2w Avg. ADC DCE DWI T2w Avg.

Images † 0.99 0.99 0.99 0.99 0.99 0.99 0.89 0.59 0.93 0.85
Metadata † 1.00 1.00 1.00 1.00 1.00 0.91 1.00 0.60 0.98 0.87

Images + metadata † 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.72 0.98 0.92
Autoprognosis 1.00 1.00 1.00 1.00 1.00 0.95 0.99 0.14 0.94 0.76

Im
a
g
in
g
o
n
ly ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.96 0.94 0.82 0.93 0.91

ViT-L/16 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.88 0.87 0.91
DINOv2 ViT-S/14 1.00 1.00 1.00 1.00 1.00 0.93 0.94 0.88 0.93 0.92
DINOv2 ViT-B/14 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.92 0.85 0.92
DINOv2 ViT-L/14 1.00 1.00 1.00 1.00 1.00 0.94 0.92 0.90 0.90 0.91

BiomedCLIP ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.93 0.92 0.95

E
a
rl
y
F
u
si
o
n ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.82 0.97 0.93

ViT-L/16 1.00 1.00 1.00 1.00 1.00 0.81 0.97 0.89 0.67 0.84
DINOv2 ViT-S/14 0.96 1.00 1.00 0.97 0.98 0.87 0.99 0.87 0.88 0.90
DINOv2 ViT-B/14 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.90 0.99 0.97
DINOv2 ViT-L/14 1.00 1.00 0.98 0.96 0.98 0.68 1.00 0.84 0.35 0.72

BiomedCLIP ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.88 0.98 0.96

L
a
te

fu
si
o
n

ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.89 0.99 0.96
ViT-L/16 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.92 0.97 0.96

DINOv2 ViT-S/14 1.00 1.00 1.00 1.00 1.00 0.95 0.98 0.81 0.98 0.93
DINOv2 ViT-B/14 1.00 1.00 1.00 1.00 1.00 0.97 0.94 0.88 0.89 0.92
DINOv2 ViT-L/14 1.00 1.00 1.00 1.00 1.00 0.95 0.98 0.85 0.97 0.94

BiomedCLIP ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.97 0.98 0.91 0.97 0.96

J
o
in
t
fu
si
o
n ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.97 0.88 0.91 0.57 0.83

ViT-L/16 1.00 1.00 1.00 1.00 1.00 0.98 0.95 0.94 0.86 0.93
DINOv2 ViT-S/14 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.86 1.00 0.95
DINOv2 ViT-B/14 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.93 0.99 0.98
DINOv2 ViT-L/14 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.93 0.99 0.97

BiomedCLIP ViT-B/16 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.93 1.00 0.98

3. Results and Discussion

Our results (table 1) show perfect performance (F1 = 1.00) on the internal test dataset for
image-only, late fusion, and joint fusion strategies across all evaluated sequence types. On
the external dataset, joint fusion using either BiomedCLIP ViT-B/16 or DINOv2 ViT-B/14
achieves the best overall performance (F1 = 0.98). Specifically, T2w and DCE sequences
consistently reach perfect scores (F1 = 1.00), while performance slightly drops for ADC
(F1 = 0.98) and notably for DWI (F1 = 0.93). Notably, DWI classification substantially
benefits from image information compared to metadata alone (F1 = 0.93 vs. 0.60), under-
scoring the importance of visual data for this sequence. Across all strategies, BiomedCLIP
ViT-B/16 consistently yields the highest overall performance, likely due to its extensive
weakly-supervised pretraining on biomedical image-text pairs. Additionally, self-supervised
DINOv2 models marginally outperform supervised ViT models on average. Overall, our ap-
proach demonstrates that fine-tuned vision foundation models with joint image-metadata
fusion effectively generalize across datasets, significantly reducing dependence on large-scale
annotated datasets.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
et al. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

P Salome, F Sforazzini, G Brugnara, A Kudak, M Dostal, C Herold-Mende, S Heiland,
J Debus, A Abdollahi, and M Knoll. MR-Class: A python tool for brain mr image
classification utilizing one-vs-all dcnns to deal with the open-set recognition problem.
Cancers, 15:1820, 2023.

A Singanamalli, M Rusu, RE Sparks, NN Shih, A Ziober, L Wang, J Tomaszewski, M Rosen,
M Feldman, and A Madabhushi. Identifying in vivo DCE MRI markers associated with
microvessel architecture and gleason grades of prostate cancer. Journal of Magnetic
Resonance Imaging, 43:149–158, 2016.

GA Sonn, S Natarajan, DJ Margolis, M MacAiran, P Lieu, J Huang, FJ Dorey, and
LS Marks. Targeted biopsy in the detection of prostate cancer using an office based
magnetic resonance ultrasound fusion device. Journal of Urology, 189(1):86–91, 2013.

Baris Turkbey and Peter L Choyke. Future perspectives and challenges of prostate mr
imaging. Radiologic Clinics, 56(2):327–337, 2018.

Baris Turkbey, Andrew B Rosenkrantz, Masoom A Haider, Anwar R Padhani, Geert
Villeirs, Katarzyna J Macura, Clare M Tempany, Peter L Choyke, Francois Cornud,
Daniel J Margolis, et al. Prostate imaging reporting and data system version 2.1: 2019
update of prostate imaging reporting and data system version 2. European urology, 76
(3):340–351, 2019.

5

https://wiki.cancerimagingarchive.net/display/Public/Prostate-3T
https://wiki.cancerimagingarchive.net/display/Public/Prostate-3T
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691514
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691514
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=68550661
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=68550661


Denner et al.

Jeffrey C Weinreb, Jelle O Barentsz, Peter L Choyke, Francois Cornud, Masoom A Haider,
Katarzyna J Macura, Daniel Margolis, Mitchell D Schnall, Faina Shtern, Clare M Tem-
pany, et al. PI-RADS prostate imaging–reporting and data system: 2015, version 2.
European urology, 69(1):16–40, 2016.

Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn,
Sam Preston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal
biomedical foundation model pretrained from fifteen million scientific image-text pairs.
arXiv preprint arXiv:2303.00915, 2023.

6



Fine-tuning VFMs for MR Sequence Classification

Table 2: Dataset collection. Number of MR series (patients in parentheses) included for
the analysis. ERC = endorectal coil used, †=multiple manufacturers, ‡=multiple
magnetic field strengths. Table adapted with minor modifications from (Krish-
naswamy et al., 2024)

Dataset ERC T2W DWI ADC DCE Train Val Test

In
te

rn
a
l QIN-Prostate-Repeatability ✓ 30 (15) 30 (15) 30 (15) 30 (15) ✓ ✓ ✓

(Fedorov et al., 2018)
ProstateX† – 431 (346) 357 (346) 356 (346) 15456 (346) ✓ ✓ ✓

(Litjens et al., 2014, 2017)

E
x
te

rn
a
l

Prostate-MRI ✓ 26 (26) 52 (26) – 51 (26) – – ✓
(Choyke et al., 2016)

Prostate-3T† – 64 (64) – – – – – ✓
(Litjens et al., 2016)
Prostate-Diagnosis ✓ 93 (91) – – – – – ✓
(Bloch et al., 2015)

Prostate-MRI-US-Biopsy†‡ ✓ 958 (792) 110 (108) 1019 (836) – – – ✓
(Natarajan et al., 2013)

(Sonn et al., 2013)
Prostate-Fused-MRI-Pathology ✓ 46 (27) 13 (12) 12 (12) 102 (28) – – ✓

(Singanamalli et al., 2016)
(Madabhushi and Feldman, 2016)

Appendix A. Trainings details

We fine-tune the vision foundation models using a two step approach. We first freeze the
backbone and only fine-tune the last layer with a learning rate of 0.0001 for 5 epochs.
Then, we unfreeze the whole model and continue fine-tuning with a learning rate of 1e-6
until convergence of the weighted cross entropy validation loss. We ensemble the four cross-
fold validation trained models to generate the final prediction. For autoprognosis (Imrie
et al., 2023), used in late fusion, we utilize the default configurations with the number of
folds set to four.
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