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Abstract

We study the problem of network regression, where the graph topology is inferred
for unseen predictor values. We build upon recent developments on generalized
regression models on metric spaces based on Fréchet means and propose a network
regression method using the Wasserstein metric. We show that when representing
graphs as multivariate Gaussian distributions, the regression problem in the Wasser-
stein metric becomes a weighted Wasserstein barycenter problem. In the case of
non-negative weights, such a weighted barycenter can be efficiently computed using
fixed point iterations. Numerical results show that the proposed approach improves
existing procedures by accurately accounting for graph size, randomness, and
sparsity in synthetic experiments. Additionally, real-world experiments utilizing the
proposed approach result in larger metrics of model fitness, cementing improved
prediction capabilities in practice.

1 Introduction

Networks have been shown to be extremely useful in representing complex phenomena, and the
modern explosion of data science has come with data usually represented as graphs. Therefore, the
ability to perform inference tasks for graph data and other correlated observations has been a focus of
recent research [5, 23], with successful applications in ecology [19, 27], brain imaging [25, 27], and
trip scheduling [14, 27].

Regression is typically studied in Euclidean spaces, where regressors and outputs are real (possibly
high-dimensional) multivariate values [3]. For example, in Linear Regression, relationships between
predictor variables and their outputs are quantified through least-squares processes. In the context of
graph prediction, prior work has successfully developed regression models using the Frobenius Norm
as a metric for graphs [27]. Specifically, the distance between two graphs is defined as the Frobenius
norm of the difference between their Laplacians. However, recent results suggest that different graph
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representations, and thus different metrics, namely the Wasserstein distance, better encapsulate the
graph structure for learning purposes [17].

A graph can represented as an appropriately defined multidimensional Gaussian distribution, and
thus, the distance between two graphs is defined as the Wasserstein distance between their two
Gaussian representations. It is hypothesized that Wasserstein distances allow for the prioritization
of different graph structures, like local or global connectivity, which contributes to a more robust
metric [18, 13]. Recent works have studied the average graph problems by finding their uniform
weighted average through Wasserstein barycenters [13] or employing learning methods in Gromov-
Wasserstein computations [4]. Nevertheless, formally defining regressors in the Wasserstein space is
not trivial.

Recent research has enabled and developed the formal definition of regression models in general
metric spaces using Fréchet means based on appropriately defined distance measures. Frechet means
and variances extend notions of averages and standard deviations to metric spaces, which allows for
the definition of regression models beyond Euclidean space [7, 12, 20]. Computationally, regression
in Wasserstein space has been recently studied using quantile functions and empirical one-dimensional
measures [10, 28].

In this paper, we focus on developing a network regression model where we leverage two main ideas:
1) Fréchet means for regression in Wasserstein spaces, and 2) Network (graph) representation as
multidimensional Gaussian distributions. By combining the effective weight function as derived
in Fréchet regression models [27, 20] and the Wasserstein metric [17, 18], we empirically show
better performance of Wasserstein-based network regression models when compared with traditional
Euclidean-based methods.

2 Regression on Network Metric Spaces

Following [27], we consider a random pair (X,G) ∼ F , where X ∈ Rp and G = (V,E,W ) is a
graph with node set V = [1, · · · , n], edge set E ⊆ V ×V , and W ∈ Rn×n

≥0 as the set of edge weights.
Moreover, we assume G takes value in a metric space (G, d), and the marginal distributions FX and
FG and conditional distributions FX|G and FG|X exist. The Fréchet mean and variance [12] are

w⊕ = argmin
w∈G

E[d2(X,w)], V⊕ = E[d2(X,w⊕)].

In the classical Euclidean setting, for jointly distributed random variables X and Y , the conditional
distribution is E[Y | X = x] = argminy∈R E[(Y − y)2 | X = x]. The authors in [27] propose a
conditional Fréchet mean as a natural extension to network-valued and other metric space-valued
responses, where (Y − y)2 is replaced by d2(G,w) for some w in the metric space. Thus, the
corresponding regression function of G given X = x is defined as

m(x) := argmin
w∈G

E[d2(G,w)|X = x].

Moreover, by characterizing the regression function as a weighted least square problem, the authors
in [27] propose a global Fréchet Regression model given X = x as the weighted barycenter

mG(x) := argmin
w∈G

E[sG(X,x)d2(G,w)].

for a weight function sG(X,x) = 1 + (X + µ)TΣ−1(x− µ), which replicates Euclidean regression
properties in metric spaces [20]. Here, µ = E[X] and Σ = cov(X). Similarly, when a finite set of
i.i.d. pairs (Xi, Gi) ∼ F for i = 1, · · · , n is available, the model becomes the empirical regressor

m̂G(x) := argmin
w∈G

1

n

n∑
i=1

siG(Xi, x)d
2(Gi, w), (1)

where siG(Xi, x) = 1 + (Xi − X̄)T Σ̂−1(x − X̄), X̄ = n−1
∑n

k=1 Xi is the sample mean, and
Σ̂ = n−1

∑n
k=1(Xi−X̄)(Xi−X̄)T is the sample covariance matrix. Here, siG represents the sample

weight function. Through incorporating a smoothing kernel [21], we define the Local Regression
model [27] to reduce bias from sampling effects on our data distribution, outlined in Appendix A.1.
Next, we describe the two metrics d we will study the network regression problem with.
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Figure 1: Graphs G1, G2, G3, and G4 are responses for covariates X1 = 2, X2 = 4, X3 = 6, and X4 = 8,
with global results for an input value of x = 5. Error from the expected graph is below each output.

Regression on Metric Networks: The space of networks can be defined for many metrics, each
encapsulating network difference separately [15]. We will focus on the Frobenius and the Wasserstein
metrics and demonstrate their formulations for undirected graphs with real-valued edge weights. The
Frobenius Norm is a baseline metric for initial network regression models [27]. However, recent
results suggest that Wasserstein distances outperform dF when comparing network structures [17].

Frobenius Norm [27]: All graphs with positive edge weights wij have a one-to-one correspondence
with their Laplacians which are always positive semi-definite matrices by definition [2]. Given two
graphs G1 and G2 with their corresponding graph Laplacians, L1 and L2 respectively, the Frobenius
Norm, dF (G1, G2), between graphs G1 and G2 is defined as

dF (G1, G2) = dF (L1, L2) = ∥L1 − L2∥F = {tr[(L1 − L2)
T (L1 − L2)]}1/2.

Wasserstein Distance [17]: The 2-Wasserstein distance between graphs G1, G2 is defined as

dW (G1, G2) = W 2
2 (ν

G1 , µG2) = inf
T#νG1=µG2

∫
X
∥x− T (x)∥2dνG1 ,

where νGi = N (0, L†
i ) with L†

i denoting the pseudo-inverse of Laplacian Li [11]. Given that
νG1 and µG2 are zero-mean Gaussian distributions, the authors in [17] showed their 2-Wasserstein
Distance has the closed-form

W 2
2 (ν

G1 , µG2) = Tr(L†
1 + L†

2)− 2Tr(

√
L
†/2
1 L†

2L
†/2
1 ).

Figure 1 shows a toy example where a Wasserstein regressor outperforms the Frobenius distance
regressor. Specifically, we have four random pairs {Xi, Gi}4i=1 independently observed, with weights
shown next to the corresponding edges. Thus, each graph Gi has an associated covariate Xi. We seek
to estimate G at x = 5 by finding the conditional expectation of G with response to x = 5 through
the regression models defined above. The unknown ground truth model is w1,2 = w1,3 = 1/X and
w2,3 = 2/X , thus we expect w1,2 = w1,3 = 0.2 and w2,3 = 0.4.

3 Computational Aspects of Wasserstein Network Regressions

The empirical regressor in (1) takes the form of an affine combination of convex functions, where the
weights are defined by the function skG since E[skG(X,x)] = 1. Frobenius regression models thus
require solving a convex quadratic problem [27]. Similarly, for Wasserstein regression models, the
problem turns into the computation of a weighted Wasserstein barycenter problem.

In general, it follows from [29, Theorem 2.4] that the Wasserstein barycenter of a set of zero-
mean Gaussian random distributions {N (0,Σi)}ki=1 each with non-negative weights λi such that∑k

i=1 λi = 1 is a zero-mean Gaussian distribution with covariance S =
∑k

i=1 λi(S
1
2ΣiS

1
2 )

1
2 .

Moreover, from [29, Theorem 4.2], we know the sequence generated by the fixed-point iteration

S ← S− 1
2

(
k∑

i=1

λi(S
1
2L†

iS
1
2 )

1
2

)2

S− 1
2 ,
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has the following property: W 2
2 (N (0, St),N (0, S)) → 0 as t → 0. Therefore, as t grows, St

approaches the covariance of the weighted barycenter of the set of Gaussian distributions. However,
by representing each graph Gi as a multivariate Gaussian νGi = N (0, L†

i ), graph Laplacians have a
zero eigenvalue; thus, the conditions in [29, Theorem 4.2] do not hold.

The degeneracy issue of graph Laplacians can be solved by considering the modified fixed-point
iteration proposed in [13] that shifts the covariances before iteration,

S ← S− 1
2

 k∑
i=1

λi

(
S

1
2

(
Li +

1

n
1n,n

)−1

S
1
2

) 1
2

2

S− 1
2 ,

and then shifts the resulting barycenter back. In our case, the weights are defined as λi = siG(Xi, x).
Another approach to tackle the non-degeneracy is to consider Entropy Regularized Wasserstein
distances [16], where the fixed-point iteration is defined as

S =
ϵ

4

k∑
i=1

siG(Xi, x)

(
−I +

(
I +

16

ϵ2
S

1
2L†

iS
1
2

) 1
2

)
.

Note that even though E[skG(X,x)] = 1, the weights as defined for m̂G(x) can be negative.
Convergence of the previously described fixed-point iterations is not guaranteed as one must consider
General Fréchet Means [24]. However, in practice, convergence occurs for the studied scenarios.
As discussed in [10], the computation of Wasserstein barycenters with possibly negative weights,
which turns the problem into an affine combination instead of a convex combination, remains an open
problem. We propose these fixed-point iteration methods for computational purposes and leave a
connection between Fréchet Means and General Fréchet Means as a future extension.

4 Numerical Analysis
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Figure 2: Scalability of the Toy Problem: The Frobe-
nious distance between the predicted graph for X = 5
and ground truth when trained on cycle graphs with an
increasing number of nodes for Wasserstein, Frobenius,
and Entropic Wasserstein-based regressors.

In this section, we show metric comparisons
over simulated graphs with various topologies
and real data. Appendix A.2 shows additional
results for the improved performance of dW over
dF in cases where networks are large and non-
deterministic, with an example test in Fig. 2.

Interpolating Topologies: We considered 5
named graphs: path, cycle, star, wheel, and com-
plete graphs, each with 10 nodes and integer
covariates from 1 to 5 in order of increasing con-
nectivity. We then input values from 1 to 5 with
a step size of 0.1 to our local models, summariz-
ing the distance from each output graph to the
named graphs in Fig. 3. We find that interpolating our sample graphs with dW is more accurate
as output graphs maintain smaller distances to graphs in the sample space. Additionally, graphs at
covariates of step size 0.5 for Wasserstein predictions have smaller distances to their adjacent named
graphs. In contrast, Frobenius predictions vary greatly from their adjacent named graphs, not main-
taining structural patterns. These synthetic results encourage further exploration into non-synthetic
applications. Results for each named graph on independent plots can be found in Appendix A.3.

Large Scale Real Data: Initial applications of these regression models focus on taxi data in
the Manhattan region as a response to COVID-19 case numbers and weekend indicators, mea-
suring distances between Laplacians with the Frobenius metric. We take rider data, which con-
tains the number of passengers, the pickup and dropoff location, and the day the trip occurs.
For a given day, we construct a graph where each node represents one of 13 Manhattan re-
gions [8], and the edge weights represent the number of riders traveling between regions. From
these graphs, we compute 172 graph Laplacians from April 12, 2020 to September 30, 2020.
We then regress over these Laplacians in response to a binary weekend indicator, equaling 1
if the day is a weekend and 0 if not, and the daily number of COVID-19 cases [26], with an
example result for local regression in Fig. 5 with edge weights represented by edge brightness.
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Figure 2: The error from our output graph and each named graph, where each color denotes a different named
graph. Below each covariate at 0.5 steps, the output graph is shown, with color corresponding to the named
graph line which should be minimal at this point, with non-integer covariates expected to have outputs inbetween
their adjacent named graphs. The first plot shows results when modeling with Frobenius distances, and the
second shows results when modeling with Wasserstein distances.

Figure 3: An example of the
graph construction process for
Taxi Cab data in Manhattan, with
nodes representing regions and
their edges representing trips be-
tween them.

which contains the number of passengers, the pickup and dropoff100

location, and the day on which the trip occurs, we formulate graph101

Laplacians for each of the 172 days from April 12, 2020, to Septem-102

ber 30, 2020 with 13 nodes, each representing a region in Manhat-103

tan [8], with edge weights equal to the riders traveling from region104

to region. Fig. 3 is an example of such a graph overlaid on a map105

of Manhattan. We then locally regress over these Laplacians in106

response to a binary weekend indicator, equaling 1 if the day is a107

weekend and 0 otherwise, and the daily number of COVID cases [24].108

Then, for each metric, we calculate the Fréchet version of the R2109

coefficient, which has similar interpretations of model fitness [12]110

and is defined as follows.111

R2
⊕ = 1− E[d2(Y,m⊕(X))]

V⊕
We calculate the sample version of this coefficient for our local112

models, with R̂2
⊕ = 0.428 for the Frobenius metric and R̂2

⊕ = 0.515113

for the Wasserstein metric. We can see in this system the Wasserstein114

metric fitting and predicting graph structure to an extent which the Frobenius does not.115

5 Conclusion116

We provided evidence for the superior performance of Wasserstein distances over the Frobenius117

norm in graph regression problems via experiments focused on network size, network structure,118

network variability, and analysis of real-world networks. While our models are translatable to other119

metric spaces or distance measures, the accuracy and speed of computation unique to Wasserstein120

Regression is vital to its applicability. We hope to motivate future efforts in network prediction by121

using the Wasserstein metric applied to a wider breadth of real-world systems which are larger, more122

varied, and equally as important in understanding our world.123
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Figure 3: The error from our output graph and each named
graph, where each color denotes a different named graph. The
output graph is shown below each covariate at 0.5 steps, with
a color corresponding to the named graph line. It should
be minimal, with non-integer covariates expected to have
outputs between their adjacent named graphs. The first plot
shows results when modeling with Frobenius distances, and
the second shows results with Wasserstein distances.

Then, we calculate the Fréchet version of
the R2 coefficient, which has similar in-
terpretations of model fitness [20], and
is defined for global models as R2

⊕ =
1−E[d2(G,mG(X))]/V⊕. Global results
are R̂2

⊕ = 0.433 for the Frobenius met-
ric, R̂2

⊕ = 0.453 for the Power metric,
an adaption of the Frobenius [27], and
R2

⊕ = 0.607 for the Wasserstein metric.
We can see in this system the Wasserstein
metric predicts graph structure to an extent
the Frobenius doesn’t.

Additionally, we use 10-fold cross-
validation [27] to compute the mean square
prediction error with both the Frobenius
and Wasserstein metrics. Prediction can
occur with either distance, but error com-
putation should be consistent to have com-
parable accuracy of results. Thus, we have
two results: error of Frobenius and Wasser-
stein predictions measured with the Frobe-
nius distance and error measured with the
Wasserstein distance. When averaging over
100 iterations, the MSPE can be seen in
Fig.4, leading to 3 main conclusions. Re-
gardless of the metric used for error computation, our methods have smaller MSPE than methods
in [27]. However, two particular results are encouraging. First, even when measuring error with the
Frobenius distance, the Wasserstein metric is still an improvement over the power metric, which is an
adaptation of the Frobenius distance [27] that we would assume to have a smaller error for a similar
metric. Secondly, when we compute the error with Wasserstein distances, we see a large decrease,
showing the extent of our improved predictions for this case.

Figure 4: Accuracy Relative to Frobenius

Distance used % MSPE of Frobenius

Power Metric 96.4%
Wasserstein (Prediction)

Frobenius (Error) 95.995%

Wasserstein (Prediction)
Wasserstein (Error) 86.375%

5 Conclusion Figure 5: Graph prediction for Taxi Cab
ridership on April 12, 2020, with Frobe-
nius (left), Wasserstein (center), and true
network (right). Wasserstein output recre-
ates edge weights more accurately, as seen
in the lower and upper regions.

We provided evidence for the superior performance of
Wasserstein distances over the Frobenius norm in graph
regression problems via experiments focused on network
size, network structure, network variability, and analysis of
real-world networks. In all of these instances, Wasserstein models’ global and local instances obtain
greater accuracy in response to these variables than their Frobenius counterparts. While our models
are translatable to other metric spaces or distance measures, the accuracy of computation unique to
Wasserstein Regression is vital to its applicability. We hope to motivate future efforts in network
prediction by applying the Wasserstein metric to a wider breadth of real-world systems that are larger,
more varied, and equally important in understanding occurrences in our world and the connections
between them. The main focus of this application is utilizing General Fréchet Means and the Gromov-
Wasserstein distance, which has been used in graph prediction previously [4] and generalizes the
Wasserstein distance over graphs of differing size. Such extensions would theoretically support our
methods over networks with a larger breadth of variance.
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A Appendix

A.1 Metric Regression Local Model Definition

Continued from Section 2, we have the definition of the local Fréchet regression model as

mL(x) := argmin
w∈Ω

ML(w, x), ML(·, x) = E[sL(X,x)d2(G, ·)].

with its corresponding sample version

m̂L(x) := argmin
w∈Ω

M̂L(w, x), M̂L(·, x) = n−1
n∑

k=1

skL(Xk, x)d
2(Gk, ·).

where skL(x, h) = 1

µ̂0−µ̂T
1 µ̂−1

2 µ̂1
Kh(Xk−x)[1−µ̂T

1 µ̂
−1
2 (Xk−x)], with µ̂j = n−1 ∑n

k=1 Kh(Xk−x)(Xk−

x)j for j = 0, 1, 2. When applying this model to our toy example from Fig.1, we get the results summarized in
Fig.6
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Figure 6: Graphs G1, G2, G3, and G4 are responses for covariates X1 = 2, X2 = 4, X3 = 6, and X4 = 8,
with local results for an input value of x = 5. Error from the expected graph is below each output.

7

https://www.sciencedirect.com/science/article/pii/S0304380021000405
https://www.sciencedirect.com/science/article/pii/S0304380021000405
https://proceedings.neurips.cc/paper_files/paper/2012/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://github.com/nychealth/coronavirus-data
https://github.com/nychealth/coronavirus-data
http://jmlr.org/papers/v23/22-0681.html


A.2 Wasserstein Resilience Examples

We want to verify that the Wasserstein distance is effective over graphs with many nodes, as the Frobenius
distance struggles with graph swelling [15]. Thus, we work over graphs of set structure, specifically the path,
cycle, star, and complete. For each, we use a sample set of 4 graphs with covariates 2, 4, 6, and 8, with their
value denoting edge weights similarly to Fig.1. We then output the graph with covariate 5 and find the error
from this graph to the true graph, iterating until said error for the Wasserstein model reaches a certain baseline.
As can be seen in Fig.7, our models use the Frobenius, Wasserstein, and Entropic-Wasserstein distances and
have two important findings: the Wasserstein error grows slower than the Frobenius, and the Wasserstein and
Entropic-Wasserstein have nearly identical results when using a sufficiently small epsilon (ϵ = 1e−5).
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Figure 7: Error between the predicted and ground true graphs for cycle graphs above and complete graphs below.
Graphs are shown until the error is greater than 1 for cycle and 50 for complete graphs, which occurs around 500
and 180 nodes, respectively. The final points are labeled with their number of nodes and errors.
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Figure 8: Graphs of the distance between the local predicted graphs and the true graph for Fiedler values from 1
to 9 for a graph with 10 nodes. The Wasserstein barycenter’s distance from the expected graph is violet, and the
Frobenius barycenter’s distance is teal.

The Wasserstein Distance’s improved predictions should also apply to less-deterministic graph structures. This
randomness is simulated using Erdös-Renyi processes, where networks are generated with a set number of nodes
and probability of edge existence [6]. Graphs of 10 nodes are generated, each with random probabilities, which
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almost surely create connected graphs, ranging from ln(n)
n

to 1. Then, each graph’s Fiedler value [2], λF , is
computed and trained over, correlated with each network’s Laplacian. Then, graphs for connectivity ranging
from 1 to 9 are output, λF is recomputed, the absolute difference between the expected λF , the network’s
covariate, and its true λF is found. As shown in Fig.8, training over 100 and 10000 randomly generated graphs,
Wasserstein performs significantly better, especially in less-connected graphs with Fielder values ranging from
1 to 5. This indicates that even in cases where our output networks are randomly generated, details about the
graph structure are discoverable more accurately with the Wasserstein distance than the Frobenius.

A.3 Direct Metric Comparison for Varied Topologies

In this section, we separate Fig.3 into 5 different figures, comparing performance for each named graph.
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Figure 9: An excerpt of Fig.3 but only considering the Path Graph, comparing the performance of the Frobenius
and Wasserstein predictions

For the path graph in Fig.9, the main performance difference occurs in the higher predictor inputs, where the
Wasserstein predictions take longer for the error to increase rapidly than the Frobenius, indicating adherence to
sample graph structure in the methods.
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Figure 10: An excerpt of Fig.3 but only considering the Cycle Graph, comparing the performance of the
Frobenius and Wasserstein predictions

When focusing on the cycle graph in Fig.10, the results are almost identical to the path, except we now see the
trough of each line occurring at a predictor of 1.5. When we consider the similarity between the path and cycle
graphs, this location makes sense, and reassuringly, the variance between the error at predictors 1.5 and 1 and 2
is smaller for the Wasserstein than Frobenius, again suggesting a greater adherence to graph structure and slower
error growth.
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Figure 11: An excerpt of Fig.3 but only considering the Star Graph, comparing the performance of the Frobenius
and Wasserstein predictions
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In Fig.11, we see the star graph errors for the metrics have the trough at the true predictor for the star graph and
continued trends from earlier of smaller errors and error growth from more distant graphs.
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Figure 12: An excerpt of Fig.3 but only considering the Wheel Graph, comparing the performance of the
Frobenius and Wasserstein predictions

The Wasserstein predictions improved performance for the wheel in Fig.12, in particular because the trough of
each line occurs at different inputs for each distance. For the Frobenius, the trough happens around 0.5 before the
true predictor for the wheel graph. However, the Wasserstein’s trough occurs around 0.2 after the wheel graph’s
true predictor, indicating that our model’s closest graph to the wheel graph is produced at a closer covariate
when using the Wasserstein distance.
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Figure 13: An excerpt of Fig.3 but only considering the Complete Graph, comparing the performance of the
Frobenius and Wasserstein predictions

Finally, the performances are comparable for the complete graph in Fig.13, as the predictions only approach the
complete graph at very large covariates.

A.4 Ecological Applications
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Figure 14: These graphs represent the relationship between the changing ocean level and the Fiedler Value of
our networks. There is no clear correlation between the two variables for both the global case on the left and the
local one on the right.

An important application of this network analysis lies in ecology and conservation. Environments can be
modeled as food webs, which are graphical structures where nodes and predation patterns represent organisms
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represented by edges. Food webs thus encapsulate the flow of energy through an ecosystem, and by analyzing
the response of graph robustness to changing environmental factors, we can understand the future impact of
global warming on the strength of our ecosystems. [1]

Our basic food webs come from [22], with sample marine life in 1995, 2005, and 2015. In these years, we
also utilized ocean temperature data from the National Oceanic and Atmospheric Administration [9], creating a
model where our sample set was these 3 Laplacians with their covariates. To adapt the food webs for our needs,
we removed any self-loops in the Laplacians, assuming that species do not prey on themselves, and we then
added the Laplacian to its transpose to transform the directed food web into a symmetric undirected version. We
then trained our model and found the local regression model output on covariates less than, between, and greater
than our sample covariates. The results are summarized in Fig.14

As can be seen, there is no direct correlation between the changing ocean level and the connectivity of our graphs.
This can be for various reasons, but it indicates that further exploration in this field is necessary, specifically over
larger data sets and with more impacting variables on the ecosystems, to understand the connections between
our changing world and the organisms that live in it.
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