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Abstract
Contrastive learning has been a leading paradigm
for self-supervised learning, but it is widely ob-
served that it comes at the price of sacrificing
useful features (e.g., colors) by being invariant to
data augmentations. Given this limitation, there
has been a surge of interest in equivariant self-
supervised learning (E-SSL) that learns features
to be augmentation-aware. However, even for
the simplest rotation prediction method, there is
a lack of rigorous understanding of why, when,
and how E-SSL learns useful features for down-
stream tasks. To bridge this gap between practice
and theory, we establish an information-theoretic
perspective to understand the generalization abil-
ity of E-SSL. In particular, we identify a critical
explaining-away effect in E-SSL that creates a
synergy between the equivariant and classification
tasks. This synergy effect encourages models to
extract class-relevant features to improve its equiv-
ariant prediction, which, in turn, benefits down-
stream tasks requiring semantic features. Based
on this perspective, we theoretically analyze the
influence of data transformations and reveal sev-
eral principles for practical designs of E-SSL. Our
theory not only aligns well with existing E-SSL
methods but also sheds light on new directions by
exploring the benefits of model equivariance. We
believe that a theoretically grounded understand-
ing on the role of equivariance would inspire more
principled and advanced designs in this field.

1. Introduction
Self-supervised learning (SSL) of data representations has
made remarkable progress. Existing SSL methods can be
categorized into two types: invariant SSL (I-SSL) and equiv-
ariant SSL (E-SSL). The idea of I-SSL is to encourage
the representation to be invariant to input augmentations
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(e.g., color jittering). Contrastive learning that pulls pos-
itive samples closer and pushes negative samples apart is
widely believed to be a prominent I-SSL paradigm, leading
to rapid progress in recent years (Chen et al., 2020; He et al.,
2020a). Nevertheless, since invariant representations lose
augmentation-related information (e.g., color information),
their performance on downstream tasks can be hindered, as
frequently observed in practice (Lee et al., 2021; Dangovski
et al., 2021; Gupta et al., 2023).

In view of these limitations of I-SSL, there has been a grow-
ing interest in revisiting E-SSL. Contrary to I-SSL, E-SSL
learns representations that are sensitive to (or aware of) the
applied transformation. For instance, RotNet (Gidaris et al.,
2018) is an early exemplar of E-SSL that learns discrimina-
tive features by predicting the rotation angles from randomly
rotated images (Kolesnikov et al., 2019). It has also been
exploited in recent works and achieves promising improve-
ments in conjunction with I-SSL (Xiao et al., 2020; Wang
et al., 2021; Dangovski et al., 2021; Devillers and Lefort,
2023; Garrido et al., 2023c; Park et al., 2022; Gupta et al.,
2023). Recently, E-SSL shows potential for serving as the
foundation for building visual world models (Garrido et al.,
2024).

Despite this intriguing progress in practice, compared to
invariant SSL methods with a vast literature of theoretical
analyses (Saunshi et al., 2019; Wang and Isola, 2020; Lee
et al., 2020; HaoChen et al., 2021; Wang et al., 2022; Saun-
shi et al., 2022), there is little theoretical understanding of
equivariant SSL methods. A particular difficulty lies in the
understanding of the pretraining tasks, which may seem
quite irrelevant to downstream classification. Taking RotNet
as an example, the random rotation angle is independent of
the image class, so it is unclear how rotation-equivariant rep-
resentations are helpful for image classification. Generally
speaking, it is unclear why, when, and how equivariant
representations can generalize to downstream tasks.

Given this situation, the primary goal of this paper is not to
design a new E-SSL variant, but to revisit the basic E-SSL
methods and understand their essential working mecha-
nisms. We fulfil this goal by proposing a simple yet theo-
retically grounded explanation for understanding general
E-SSL from an information-theoretic perspective. We show
that the effectiveness of E-SSL can be understood via the
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“explaining-away” effect in statistics, which implies an in-
triguing synergy effect between the image class C and the
equivariant transformation A (e.g., rotation) such that almost
surely, they have strictly positive mutual information when
given the input X , i.e., I(C;A|X) > 0 that explains the
effectiveness of E-SSL. Theoretically, we also quantitatively
analyze the influence of data transformation on the synergy
effect with a theory model. This understanding also pro-
vides valuable guidelines for practical E-SSL design with
three principles to pursue a large synergy effect I(C;A|X):
lossy transformations, class relevance, and shortcut pruning,
as been validated on practical datasets (Appendix B). It also
provides valuable insights for understanding advanced E-
SSL methods in the recent literature (Appendix C). Overall,
our E-SSL theory provides a general and practically useful
explanation for understanding and designing E-SSL meth-
ods that have the potential to guide future E-SSL designs.

2. Background
Notations. We introduce existing SSL methods from a
probabilistic perspective. Generally, we denote a random
variable by a capital letter such as X , its sample space
as X , and its outcome as x. We learn a representation
(Z/Z/zx) from the input (X/X/x) through a deterministic
encoder function F : X → Z . The general goal of SSL is
to learn discriminative representations that are predictive
of the image classes (labels) without actual access to label
information. For ease of discussion, we mainly adopt the
common Shannon information, where the entropy of X is
H(X) = −EP (X) logP (X) and the mutual information
between X and Y is I(X;Y ) = H(X)−H(X|Y ).

For each raw input X̄ sampled from the training set D, we
independently draw a random augmentation A and get the
augmented sample X = T (X̄, A) with a transformation
mapping T : X̄ × A → X . The general objective of Equiv-
ariant SSL (E-SSL) is to learn representations Z = F (X)
that are sensitive to the applied transformation A. For exam-
ple, RotNet (Gidaris et al., 2018) utilizes random four-fold
rotation A = {0◦, 90◦, 180◦, 270◦} for data augmentation,
and learns feature equivariance by predicting the rotation an-
gles from the representation Z. Therefore, E-SSL is driven
by maximizing the following mutual information between
the augmentation A and the representation Z:

max I(A;Z). (1)

2.1. Equivariance is Not All You Need: The Challenges
of Understanding Equivariant SSL

A common intuition among E-SSL methods is that better
downstream performance comes from better feature equiv-
ariance (Devillers and Lefort, 2023; Garrido et al., 2023c;
Park et al., 2022; Gupta et al., 2023). Here, we begin our
discussion by showing a counterexample in the following
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Figure 1. Comparison between different transformations for E-SSL
on CIFAR-10 with ResNet-18. Note that different pretraining tasks
may have different classes (e.g., 4 for rotation and 2 for horizontal
flip). The baseline is a random initialized encoder with 34% test
accuracy under linear probing.

proposition. All proofs can be found in Appendix D.

Proposition 1 (Useless equivariance). Assume that the orig-
inal input X̄ ∈ Rd and the augmentation A ∈ Rd′

are
independent, and X = [X̄, A] ∈ Rd+d′

is obtained with
direct concatenation (DC). Then, there exists a simple lin-
ear encoder that has perfect equivariance to A, but yields
random guessing on downstream classification.

Proposition 1 shows an extreme case when perfect equivari-
ance is unhelpful for feature learning at all. Inspired by this
finding, we further examine common image transformations
for E-SSL: horizontal flip, grayscale, four-fold rotation, ver-
tical flip, jigsaw, four-fold blur and color inversion (details
in Appendix E). Figure 1 reveals big differences between
different choices of transformations: with linear probing,
four-fold rotation and vertical flip perform the best and at-
tain more than 60% accuracy, while the others do not even
attain significant gains over random initialization (34%).
This distinction cannot be simply understood via feature
usefulness, since color information imposed by learning
grayscale and color inversion is known to be important for
classification (Xie et al., 2022). Meanwhile, in Figure 1a,
we find that the degree of equivariance (measured by the
training loss of E-SSL) does not explain the difference ei-
ther, since among ineffective ones, some with large training
loss have very low equivariance (e.g., horizontal flip), while
some have very high equivariance with nearly zero equiv-
ariant loss (e.g., grayscale). These phenomena show that
equivariance alone does not have a good or bad indication
of downstream performance, which motivates us to provide
a more general understanding of E-SSL.

3. A Theory of Equivariant SSL
In Section 2.1, we have shown that feature equivariance
alone does not guarantee effective downstream performance,
which makes it even unclear how equivariant learning ex-
tracts useful features. To resolve these puzzles, we provide
an information-theoretic analysis for E-SSL that serves as a
natural explanation for the phenomena above.
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Figure 2. The causal diagram of equivariant self-supervised learn-
ing. The observed variables are in grey. C: class; S: style; X̄: raw
input; A: augmentation; X: augmented input; Z: representation.

3.1. Explaining E-SSL via Explaining-away

Collider structure in E-SSL. We start by establishing a
causal diagram of the data generation process of E-SSL,
where we assume that the original input X̄ is generated from
its class variable C (relevant to input semantics, e.g., shape)
and style variable S (irrelevant to semantics, e.g., color and
texture) through some unknown processes. The causal dia-
gram shows that the class variable C and the augmentation
variable A are independent. However, there exists a so-
called collider structure where the augmented sample X
is a common child of C and A. A well-known fact from
statistics called the explaining-away effect (a.k.a. selection
bias) (Pearl, 2009; Koller and Friedman, 2009) says that in
a collider block, when conditioning on the collider X or
its descendent like Z, the parents C and A are no longer
independent. For example, the weather (A) and the road
condition (C) are independent factors that can contribute to
car accidents (X). However, given that an accident happens
(X is known), if we know that it rains today, it would be
less likely that the road is broken, and vice versa. In this
case, we say that the weather A explains away the possi-
bility of road conditions C. The theorem below formally
characterises the explain-effect effect in the E-SSL process
and its information-theoretic implication. A caveat is that
Lemma 1 guarantees that explaining-away happens in most,
but not all cases (e.g., Proposition 1), and we explain these
exceptions in Section B.

Lemma 1 (Explaining-away in E-SSL). If the data gener-
ation obeys the diagram in Figure 2, then almost surely, A
and C are not independent given X or Z, i.e., A ⊥̸⊥ C|X
and A ⊥̸⊥ C|Z. It implies that I(A;C|X) > 0 and
I(A;C|Z) > 0 hold almost surely.

Explaining-away helps E-SSL. In statistics, explaining-
away often appears as the selection bias in observational
data that misleads causal inference (e.g., the Berkson’s para-
dox (Berkson, 1946)) and demands careful treatment (Yu
and Eng, 2020; Brewer and Carlson, 2024). In contrast,
explaining-away plays a critical positive role in E-SSL. In
particular, the fact I(A;C|Z) > 0 implies an important
synergy effect between A and C during equivariant learning,

as shown below:
I(A;C|Z) = H(A|Z)−H(A|Z,C) > 0

=⇒ H(A|Z) > H(A|Z,C).
(2)

Eq. (2) implies that for the same feature Z, using class infor-
mation C gives a better prediction of A (lower uncertainty
H(A|C,Z)) than without using class features. Intuitively,
given a rotated image, recognizing the object class C in the
first place makes it easier to determine the rotation angle
A. Driven by this synergy effect, the encoder will learn to
encode class information C in the representation to assist
the equivariant prediction of A. We formally characterize
this intuition in the following theorem.
Theorem 1 (Class features improve equivariant prediction).
Under the data generation process in Figure 2, consider
an E-SSL task with input X , its class CX , and its represen-
tation Z. Assume a class representation ZC = ϕ(CX)
that can perfectly predict the label CX (ϕ is an invert-
ible mapping). Then, almost surely, the combined fea-
ture Z̃ = [Z,ZC ] obtained by appending ZC to Z will
strictly improve the equivariant prediction with larger mu-
tual information I(A; Z̃) > I(A;Z). Also, we have
I(C; Z̃) ≥ I(C;Z), so the classification performance im-
proves in the meantime.

As an implication of Theorem 1, to achieve better equiv-
ariant prediction, during E-SSL, the model will try to ex-
tract more class features, which will jointly improve down-
stream classification. This explains why during E-SSL with
rotation prediction, the classification accuracy also rises
along the process, outperforming the random encoder (Fig-
ure 1b). To summarize, we provide a simple understanding
of how E-SSL learns class features by predicting a seem-
ingly independent variable A: when conditioning on X , the
explaining-away effect implies that A and C become depen-
dent, making class features useful for equivariant learning.
This synergy effect drives E-SSL to learn more class fea-
tures during pretraining, yielding promising downstream
performance for classification.

3.2. Analysis on the Influence of Transformation

The theory in Section 3.1 guarantees that E-SSL will learn
class features almost surely under general conditions. Yet,
without further knowledge, it is generally hard to derive
more quantitative results for downstream performance. For
a concrete discussion, we consider a simplified data genera-
tion process as an exemplar. Note that simplified data mod-
els are frequently adopted in the literature of self-supervised
learning theory (Tian et al., 2021; Wen and Li, 2021) to gain
insights for their real-world behaviors.

Setup. We consider a simple combination of the class C
and the augmentation A as a weighted sum,

X = A+ λC, (3)
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Figure 3. A controlled experiment on the influence of class information on equivariant prediction. We include three methods: 1) equivariant
prediction (baseline); 2) by jointly minimizing equivariant and classification losses (“+cls”); 3) minimizing the equivariant loss while
adversarially maximizing the classification loss (Ganin et al., 2015) (“- cls”). (c) (d) are conducted on CIFAR-10.

where λ ∈ R is the mixing coefficient. Here, we assume a
balanced class setting, where C ∼ Cat(NC) follows a uni-
form categorical variable over NC classes: 0, 1, . . . , NC−1.
Similarly, we assume that the augmentation A ∼ Cat(NA)
is an independent uniform categorical variable over NA

classes: 0, 1, . . . , NA−1. In this simple setting, it is easy to
see that given X , when C is known, we will have a perfect
knowledge of A as A = X−C, indicating H(A|X,C) = 0.
Therefore, we have I(A;C|X) = H(A|X). In other words,
transformations only influence the explaining-away effect
through the uncertainty of predicting A. This is an extreme
case for the ease of theoretical analysis. Nevertheless, the
following theorem shows that under this setup, we can have
a quantitative characterization of the optimal choice of NA

and λ that sheds light on the design of E-SSL methods.

Theorem 2. The following results hold for the additive
problem in Eq. (3):

1) Balanced Mixing is Optimal. With constant NC and
NA, I(A;C|X) is maximized under λ = 1.

2) Large Action Space is Beneficial. With NC and λ
held constant, we have a lower bound of the mu-
tual information I(A;C|X) ≥ (NC − 1) lnNC −
(NC−1)2

NC
ln (NC − 1)+NC−2

2 , which is monotonically
increasing with respect to NA.

Theorem 2 has two important implications. First, it suggests
that balanced mixing of A and C gives the optimal synergy
effect, since it can maximize the uncertainty of using X for
predicting A alone (agreeing with Principle I). Second, it
shows that a large action space (|A|) is preferred, making
it harder to use spurious features (e.g., the boundary values
of C and A) as a shortcut to determine A (agreeing with
Principles II and III). These theoretical results illustrate
our analyses above and provide insights for understanding
advanced designs in E-SSL methods, as elaborated below.

3.3. Verification via controlled experiments

To validate the above analysis in practice, we further carry
out a controlled experiment to study how class information

affects the equivariant pretraining task. Specifically, tak-
ing the rotation prediction task as an example, we add or
substitute a class prediction loss with an additional linear
head in the pretraining objective. In the former case, we
explicitly inject class information into the presentation by
joint training with the classification loss; in the latter, we ex-
plicitly eliminate class information from the representation
by adversarially maximizing the classification loss (Ganin
et al., 2015) (see Appendix E). As shown in Figure 3, we get
slightly better rotation prediction accuracy when explicitly
incorporating the class information, while getting worse
performance (with a larger margin) when discouraging class
information, which agrees well with Theorem 1. Note that
there is still nontrivial training accuracy because the class is
not the only factor that can explain equivariant prediction
(style features S can also play a role).

Based on these theoretical insights, we further provide three
principles for practical E-SSL designs (Appendix B) and
connect them to advanced E-SSL methods (Appendix C).

4. Conclusion
In this paper, we have provided a general theoretical under-
standing of how learning from seemingly irrelevant equivari-
ance (such as, random rotations, masks and instance indices)
can benefit downstream generalization in self-supervised
learning. Leveraging the causal structure of data generation,
we have discovered the explaining-away effect in equivari-
ant learning. Based on this finding, we have established
theoretical guarantees on how E-SSL extracts class-relevant
features from an information-theoretic perspective. Further,
we identify several key factors that influence the explaining-
away: task difficulty, class relevance, and shortcut pruning,
which provides principled guidelines for E-SSL design. Fol-
lowing these principles, we show that many advanced E-SSL
designs, such as, fine-grained equivariance, multivariate
equivariance, and model equivariance, can be understood as
enhancing the synergy effect between class information and
equivariant prediction. With the fruitful insights developed
in this work, we believe that it could inspire more principled
designs of E-SSL methods in future research.
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A. Related Work
Invariant and Equivariant SSL. Without access to labels, SSL methods design various surrogate tasks that create self-
supervision for representation learning. Early SSL methods, often in the form of predictive learning, learn from predicting
the transformation of randomly transformed images, such as, RotNet (Gidaris et al., 2018), Jigsaw (Noroozi and Favaro,
2016), Relative Patch Location (Doersch et al., 2015). Later, discriminating instances in the latent space with contrastive
learning demonstrates prominent performance (Dosovitskiy et al., 2014; Wu et al., 2018; Oord et al., 2018; Hjelm et al.,
2018; Chen et al., 2020; He et al., 2020b; Radford et al., 2021), with variants including non-contrastive methods (Grill
et al., 2020), clustering methods (Caron et al., 2020a;b; 2021), regularization methods (Zbontar et al., 2021). However, data
augmentations used in contrastive learning to avoid shortcuts often come at the cost of information lost for downstream
tasks (e.g., color for flower classification). To address this issue, there is a surge of interest in E-SSL that learns features to
be sensitive to the applied transformations. Among them, Xiao et al. (2020) use separate embeddings for each augmentation.
Wang et al. (2021) apply equivariant prediction on residual vectors between positive views. Dangovski et al. (2021) combine
contrastive learning and rotation prediction. Devillers and Lefort (2023); Garrido et al. (2023b) utilize conditional predictors
with augmentation parameters. Park et al. (2022); Gupta et al. (2023) model latent equivariant transformations explicitly.

Theory of SSL. Most existing theories of SSL methods focus on contrastive learning (CL) and its variants from different
perspectives: information maximization (Oord et al., 2018; Hjelm et al., 2018; Tschannen et al., 2020), downstream
generalization (Saunshi et al., 2019; Wang and Isola, 2020; Lee et al., 2020; HaoChen et al., 2021; Wang et al., 2022;
Saunshi et al., 2022), feature dynamics (Wang and Isola, 2020; Wang et al., 2023), asymmetric designs (Tian et al., 2021;
Zhuo et al., 2023), etc. But for general E-SSL methods, there is little, if any, theoretical understanding on how they learn
meaningful features for downstream tasks (in particular, image classification). Our work fills this gap by establishing a
general information-theoretic framework for understanding E-SSL.

Equivariance in Deep Learning. Invariance and equivariance represent data symmetries that can be exploited during
learning. There are two approaches to utilize invariance and equivariance. One is equivariant learning (to which E-
SSL belongs) that uses equivariant training regularization such that features are approximately equivariant; the other is
equivariant models that obey exact equivariance by design w.r.t. groups like rotation and scaling (Cohen and Welling, 2016;
Gerken et al., 2023; Bronstein et al., 2021). Equivariant models find wide applications in graph, manifold, and molecular
domains (Bronstein et al., 2021; Gerken et al., 2023), but are rarely explored for equivariant SSL. In this work, we find that
model equivariance can be particularly helpful for equivariant learning in terms of both training and generalization, which
opens an interesting direction to explore on the interplay between equivariant learning and equivariant models for future
research.

B. Maximizing the Synergy Effect: Principles for Practical Designs of E-SSL
Our theoretical understanding above not only establishes theoretical explanations for downstream performance, but also
provides principled guidelines for E-SSL design. The overall principle is to maximize the synergy I(A;C|Z) = H(A|Z)−
H(A|Z,C), which can be understood from the following aspects that explain various E-SSL behaviors that we observe in
Section 2.1.

Principle I: “Lossy” Transformations. First, let us look at H(A|Z), which determines the upper bound of the explaining-
away effect. A higher H(A|Z) means that the equivariant prediction task is inherently harder. Revisiting Proposition 1,
our theory gives a natural and rigorous explanation for why direct concatenation (DC) fails for E-SSL. Essentially, the DC
output X = [A, X̄] admits a simple linear encoder such that A can be perfectly recovered from X , implying H(A|X) = 0,
which leads to I(A;C|X) = 0, i.e., no explaining-away effect. This implies an intriguing property of E-SSL, that in order
to attain nontrivial performance on downstream tasks, the chosen transformation T must be lossy — in the sense that one
cannot perfectly infer A after the transformation, i.e., H(A|X) > 0.1 Considering computational and model constraints in
practical scenarios, this task should be at least hard for the chosen training configuration (i.e., HV(C|X) > 0). Only when
the transformation is hard enough, neural networks will strive to learn class information to assist its prediction. Indeed,
Figure 1 shows that the transformations whose training loss decreases very quickly (e.g., grayscale and jigsaw) indeed have
relatively poor test accuracy, which further verifies our theory.

Principle II: Class Relevance. Aside from task hardness, we also need to ensure H(A|C,X) is low enough; i.e., knowing

1For rotation prediction, there exist samples whose rotated angle cannot be uniquely determined, such as, frogs and airplane. Thus,
rotation is also a lossy transformation in this sense.
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Table 1. Comparison of rotation prediction under different augmentations (CIFAR-10, ResNet18).

Augmentation Train Rot ACC Test Cls ACC

None 99.98 56.92
Crop+flip 97.71 57.32
SimCLR (Chen et al., 2020) 83.26 59.06

class information can effectively improve equivariant prediction. E.g., with a direct concatenation X = [C,A] as in
Proposition 1, even if we add noise to A such that H(A|X) > 0, knowing the class C is still unhelpful for predicting A.
From an information-theoretic perspective, it satisfies H(A|X) = H(A|X,C), so we always have I(A;C|X) = 0. In
Figure 1, horizontal flip and four-fold blur have large training losses until the end of the training, even if we deliberately inject
class features (see Figures 3c & 3d). This suggests that these equivariant tasks are intrinsically hard and class information
does not contribute much to equivariant prediction. Instead, rotation prediction and vertical flip are hard at the beginning,
but the uncertainty can be decreased significantly via learning class information. These transformations thus have a large
synergy effect that benefits downstream performance. We conjecture that it is because these transformations are global
(compared to local changes like grayscale and color inversion), so class information as global image semantics are more
helpful for such tasks. Another important implication is that the transformation should be class-preserving so as to make
class features helpful for the equivariant task. This rule has been verified extensively in contrastive learning (Saunshi et al.,
2019; Tian et al., 2020; HaoChen et al., 2021; Wang et al., 2022).

Principle III: Shortcut Pruning. Note that in the causal diagram (Figure 2), class C and style S features jointly
determine the raw input X̄ . According to our theory, style features may also explain the equivariant target A. Since style
features are often easier for NN learning, they can become shortcuts for equivariant prediction such that class features are
suppressed (Geirhos et al., 2020; Robinson et al., 2021). Therefore, to ensure the learning of class-related semantic features,
it is important to avoid these shortcuts. One effective approach to corrupt these style features (to some extent) through
aggressive data augmentation, e.g., color jitter, cropping, and blurring commonly adopted in contrastive learning, without
corrupting class features a lot. Indeed Chen et al. (2020) show that the choice of data augmentations plays a vital rule in
the success of contrastive learning, and Tian et al. (2020) point tout its goal is to prune class-irrelevant features. Here, we
generalize this principle to E-SSL as well through our explaining-away framework. As shown in Table 1, the aggressive data
augmentations from SimCLR also bring much better performance for E-SSL methods, bringing RotNet close to SimCLR
(89.49%). It demonstrates that instead of merging with contrastive learning as in all recent E-SSL works (Wang et al., 2021;
Dangovski et al., 2021; Devillers and Lefort, 2023; Garrido et al., 2023c; Park et al., 2022; Gupta et al., 2023), learning
from equivariance alone can potentially achieve competitive performance.
C. Understanding Advanced E-SSL Designs
In Section 3, we have established a theoretical understanding of basic E-SSL through the explaining-away effect. However,
basic E-SSL (like rotation prediction) often fails to achieve satisfactory performance, and many advanced designs have been
proposed to enhance E-SSL performance (Wang et al., 2021; Dangovski et al., 2021; Devillers and Lefort, 2023; Garrido
et al., 2023c; Park et al., 2022; Gupta et al., 2023). In this section, we further explain how these advanced designs improve
performance by enhancing the synergy effect between class information and equivariant prediction.

C.1. Contrastive Learning as E-SSL

Contrary to E-SSL, I-SSL enforces features to be invariant to the applied augmentation A. CL is widely believed to be an
example of invariant learning (Dangovski et al., 2021). In CL, we apply two random data augmentations, A1, A2 to the
same input X̄ and get two positive samples X1, X2 and their representations Z1, Z2 respectively. Since CL is driven by
pulling Z1, Z2 together, their mutual information objective is often formalized as maxZ1=F (X̄,A1),Z2=F (X̄,Z2) I(Z1;Z2)
(Aitchison and Ganev, 2024). However, it is easy to observe that the constant outputs Z = const are also optimal with
maximal I(Z1;Z2), suggesting that invariance alone is sufficient for SSL. In fact, contrastive learning can mitigate feature
collapse with the help of pushing away from the representation of the other instances (i.e., negative samples), making it
essentially an equivariant learning task w.r.t. the instance, known as instance discrimination (Dosovitskiy et al., 2014;
Wu et al., 2018). Indeed, contrastive objectives are essentially non-parametric formulations of instance classification (Wu
et al., 2018), and under similar designs, parametric instance classification achieves similar performance (Cao et al., 2020).
Non-contrastive variants with only positive samples are also shown to have inherent connection to contrastive methods in
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recent studies (Tian et al., 2021; Zhuo et al., 2023; Garrido et al., 2023a).

C.2. Fine-grained Equivariance

A conclusion from Theorem 2 is that a larger action space of the transformation A benefits the explaining-away effect by
increasing the task difficulty H(A|X). Guided by this principle, one way to improve E-SSL is through learning from more
fine-grained equivariance variables with a larger action space (|A|), which encourages models to learn diverse features
and avoid feature collapse for specific augmentations. For example, four-fold rotation is a 4-way classification task while
CIFAR-100 has 100 classes. When the neural networks are expressive enough such that it clusters samples with the same
augmentation to (almost) the same representation (known as neural collapse (Papyan et al., 2020)), the class features also
degrade or vanish, which hinders downstream classification. For example, Table 1 shows that for rotation prediction, stronger
augmentations suffer from less feature collapse (lower training accuracy), while enjoying better classification accuracy.
Indeed, we show that the advantages of state-of-art SSL methods can be understood through this information-theoretic
perspective.

Information-theoretic Understanding of Instance Discrimination. As disclosed in Section 2, contrastive learning is
essentially an E-SSL task with equivariance prediction of instances. Specifically, each raw example x̄i serves as an instance-
wise class, denoted as I , where all augmented samples of x̄i belong to the class i. Therefore, the instance classification
task has an action space of |I| = N , where N is the number of training dataset that is much larger than rotation prediction
with |A| = 4, making instance discrimination a harder task, especially under strong data augmentations (Wu et al., 2018;
Dosovitskiy et al., 2014). Since the instance index I is also independent of the class variable C, it is not fully clear why
it is helpful for learning class-relevant features2 Instead, our explaining-away theory gives a natural explanation from the
instance classification perspective. In this way, our explanation of E-SSL can be regarded as a unified understanding of
existing SSL variants.

Equivariance Beyond Instance. Although contrastive learning already adopts a very large action space with |I| = N ,
there is recent evidence showing that it can still learn shortcuts (Robinson et al., 2021; Xiao et al., 2020) and lack feature
diversity (Wei et al., 2022). Therefore, it is natural to consider even finer-grained equivariance, such as, learning to predict
patch-level or pixel-level features (Assran et al., 2023), inputs (He et al., 2022), or tokenized patches (Bao et al., 2022),
which comprises many variants of SSL methods, ranging from MAE (He et al., 2022), BERT (Devlin et al., 2019), to
diffusion models (Ho et al., 2020; Song et al., 2021). Here, either random mask (Devlin et al., 2019) or Gaussian noise (Ho
et al., 2020) is independent of the class semantics, so they fit into our theory as well. Features learned from these tasks do
show more diversity in practice and benefit downstream tasks requiring fine-grained semantics (He et al., 2022; Hudson
et al., 2023). Therefore, our theory provides a principled way to understanding the benefits of fine-grained supervision in
SSL.

C.3. Multivariate Equivariance
As discussed in Section B, equivariant prediction may have class-irrelevant features as shortcuts, while corrupting these
features (e.g., color) with data augmentation might affect certain downstream tasks (e.g., flower classification that requires
color information too). A more principled way that has been explored recently is through joint prediction of multiple
equivariance variables (Wang et al., 2021; Dangovski et al., 2021; Devillers and Lefort, 2023; Garrido et al., 2023b; Park
et al., 2022; Gupta et al., 2023), which we refer to as multivariate equivariance. xIn the following theorem, we show
that multivariate equivariance is provably beneficial since it monotonically increases the synergy effect between class
information and equivariant prediction, as shown in the following theorem.

Theorem 3. For two transformation variables A1, A2, we will always have I(A1, A2;C|Z) ≥
max{I(A1;C|Z), I(A2;C|Z)}. In other words, multivariate equivariance brings strengthens the explaining-away effect,
with a gain of g = max{I(A2;C|Z,A1), I(A1;C|Z,A2)}.

Theorem 3 can also be easily extended to more equivariant variables. Note that the gains of multivariate equivariance
I(A2;C|Z,A1) reflects the amount of additional information that the class information C can explain away A2 under the
same value of A1; therefore, more diverse augmentations provide a large gain in the synergy effect. Recent works on image
world model show that equivariance to multiple transformation delivers better downstream performance and outperforms
invariant learning (Garrido et al., 2024).

2Existing theories rely on strong assumptions between on data augmentation (such as, the augmentation does not change image
classes), which is often violated in practice. (Saunshi et al., 2019; Wang et al., 2022).
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Table 2. Training rotation prediction accuracy and test linear classification accuracy under different base augmentations (CIFAR-10,
ResNet18).

Augmentation Network Train Rotation ACC Test Classification ACC Gain

None ResNet18 99.98 56.92
EqResNet18 100.00 72.32 +16.40

Crop&Flip ResNet18 97.71 57.32
EqResNet18 99.97 82.54 +25.22

SimCLR ResNet18 83.26 59.06
EqResNet18 91.98 82.26 +23.20

C.4. Model Equivariance

Apart from the design of transformations that is the main focus of E-SSL methods, an often overlooked part is the
equivariance of the backbone models, which we call model equivariance. Intriguingly, we find that equivariant networks can
be very helpful for E-SSL when the transformation equivariance aligns well with model equivariance.

Setup. We compare a standard non-equivariant ResNet18 (He et al., 2016) and an equivariant ResNet18 (EqResNet18)
w.r.t. the p4 group (consisting of all compositions of translations and 90-degree rotations) (Cohen and Welling, 2016) of
similar parameter sizes. The models are pretrained on CIFAR-10 for 200 epochs with rotation prediction, and then the
learned representations are evaluated with a linear probing (LP) head for downstream classification (details in Appendix E).
Note that a rotation-equivariant model does not necessarily predict rotation angles perfectly, since in E-SSL, the model only
has access to the transformed input but not the ground-truth transformation.

As shown in Table 2, we find that equivariant models bring significant gains for rotation prediction by more than 20%
on CIFAR-10. Under aggressive data augmentations (e.g., SimCLR ones), equivariant models provide better equivariant
prediction of rotation with high accuracy (91.98% v.s. 83.26%), which also yields better performance on downstream
classification with 23.20% higher accuracy. Even more surprisingly, with mild augmentations (no or crop&flip), both models
achieve perfect rotation prediction, while equivariant models can still improve classification accuracy a lot.

Therefore, we find that under compatible equivariance, equivariant models have significant advantages for E-SSL in terms of
both self-supervised pretraining (better pretraining accuracy) and downstream generalization (best classification accuracy).
The following theorem justifies this point by showing that the mutual information w.r.t. the transformation A lower bounds
the mutual information w.r.t. the classification C. Therefore, given the same equivariant task (e.g., same data augmentations),
features with better equivariant prediction (larger lower bound) will also have more class information.
Theorem 4. For any representation Z, its mutual information with the equivariant learning target A lower bounds its
mutual information with the downstream task C as follows:

I(Z;A) ≤ I(Z;C)− I(X;A|C). (4)

Here, a small gap I(X;A|C) means a better generalization between these two tasks. Because I(X;A|C) = H(A|X,C) is
a lower bound of I(A;C|X) that indicates class relevance, it further justifies our Principle II (Section B) that better class
relevance brings better E-SSL performance.

D. Omitted Proofs
D.1. Proof of Proposition 1

Proof. It is easy to see that the linear encoder that takes the last d′ dimension of the input does not rely on any class
information while giving a perfect prediction of A, i.e., f(X) = X[d+1:d+d′] = A. Therefore, it gives random guess
prediction on downstream classification.

D.2. Proof of Lemma 1

Proof. We begin by restating an important result in probabilistic graphical models (PGMs) for conditional independence.

Lemma 2 (Theorem 3.5 (rephrased) (Koller and Friedman, 2009)). For almost all distributions P that factorize over the

11



causal diagram G, that is, for all distributions except for a set of measure zero in the space of CPD (conditional probability
distributions) parameterizations, we have that I(P ) = I(G), where I(G) denotes the set of independencies that correspond
to d-separation:

I(G) =
{
(X ⊥ Y | Z) : d-sepG(X;Y | Z)

}
.Lemma 2 shows that almost all distributions that factorize over the causal diagram G obey the d-separation rules. According

to d-separation (Geiger et al., 1990; Koller and Friedman, 2009), the collider structure in Figure 2 implies that A⊥̸⊥ C|X
and A ⊥̸⊥ C|Z. Further, recall that for any three random variables A,B,C, the mutual information I(A;B|C) ≥ 0,
and I(A;B|C) = 0 iff they are conditionally independent, i.e., A ⊥ B|C. Combined the facts above, we will have
I(A;C|X) > 0 and I(A;C|Z) > 0 almost surely.

D.3. Proof of Theorem 1

Proof. Leveraging Lemma 1, we know that I(A;C|Z) holds almost surely, which implies that

H(A|Z) > H(A|Z,C). (5)

Since ZC is a reparameterization of C, we have H(A|Z,C) = H(A|Z,ZC) = H(A|Z̃). Subtracting H(A) on both sides
of Eq. (5) gives

H(A|Z)−H(A) < H(A|ZI)−H(A),

which is equivalent to I(A; Z̃) > I(A;Z). Besides, we also have I(C; Z̃) = I(C;Z,ZC) ≥ I(C;Z), which completes the
proof.

D.4. Proof of Theorem 2

Proof. First, let us consider the first proposition of Theorem 2. We have

I(A;C | X) = I(A;C,X)− I(A;X)

= I(A;C) + I(A;X | C)− I(A;X)

= I(A;A+ λC | C)− I(A;A+ λC)

= I(A;A)− I(A;A+ λC)

= H(A)−H(A+ λC) +H(A+ λC | A)

= H(A)−H(A+ λC) +H(λC).

(6)

Since H(λC) = H(C) and H(A) and H(C) are determined by NA and NC , the goal is then transformed into minimizing
H(A+ λC). In order to address this problem, we first draw a table below to enumerate the possible outcome of A+ λC.
To determine H(A+ λC), we can divide the elements in the table into groups, where they are distributed to the same group
if and only if they have the same value. Let us assume that NA ≤ NC because the opposite condition can be solved in a
similar way.

0 1 2 ... NA − 2 NA − 1
λ 1 + λ 2 + λ ... NA − 2 + λ NA − 1 + λ
2λ 1 + 2λ 2 + 2λ ... NA − 2 + 2λ NA − 1 + 2λ
... ... ... ... ... ...

(NC − 2)λ 1 + (NC − 2)λ 2 + (NC − 2)λ ... NA − 2 + (NC − 2)λ NA − 1 + (NC − 2)λ
(NC − 1)λ 1 + (NC − 1)λ 2 + (NC − 1)λ ... NA − 2 + (NC − 1)λ NA − 1 + (NC − 1)λ

Note that the number of elements in a single group cannot be greater than NA, for at most one element in each column can
be distributed to that group. Therefore, we denote xk as the number of groups that consist of k elements, k ∈ {1, 2, ..., NA}.
Our target is H(A + λC) =

∑NA

t=1 xt
t

NANC
ln NANC

t . For simplicity, we further denote yk = 1
NANC

ln NANC

k , then

H(A+ λC) =
∑NA

t=1 txtyt.

Considering the total number of elements, we have

x1 + 2x2 + ...+NAxNA
= NANC . (7)
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We now pay attention to the top row and the rightmost column, where the elements are bound to be in different groups. Under
closer observation, we find that the element 0 forms a group alone, as does the element NA − 1 + (NC − 1)λ. The element
1 is in a group made up of at most two elements, as are the elements λ, (NA − 1) + (NC − 2)λ, (NA − 2) + (NC − 1)λ.
Based on similar analysis, the following relationship can be deduced:

x1 ≥ 2, x1 + 2x2 ≥ 6, ..., x1 + 2x2 + ...+ (NA − 1)xNA−1 ≥ NA(NA − 1). (8)

We also have

y1 > y2 > ... > yNA
. (9)

H(A+ λC) =

NA∑
t=1

txtyt

= (NANC −
NA−1∑
t=1

txt)yNA
+

NA−1∑
t=1

txtyt

= NANCyNA
+

NA−1∑
t=1

txt(yt − yNA
)

= NANCyNA
+ (yNA−1 − yNA

)

NA−1∑
t=1

txt+

(yNA−2 − yNA−1)

NA−2∑
t=1

txt + ...+ (y2 − y3)(x1 + 2x2) + (y1 − y2)x1

≥ NANCyNA
+NA(NA − 1)(yNA−1 − yNA

)+

(NA − 1)(NA − 2)(yNA−2 − yNA−1) + ...+ 6(y2 − y3) + 2(y1 − y2)

= NA(NC −NA + 1)yNA
+ 2

NA−1∑
t=1

tyt.

(10)

The equality condition for this inequality is

x1 = x2 = ... = xNA−1 = 2. (11)

This indicates that every secondary diagonal (from upper right to lower left) in the aforementioned table forms a group of
elements, which means λ = 1. This completes the proof of the first claim.

Let us further look at the second proposition. From the discussion above, we know that λ = 1 is the optimal value, and
we want to maximize I(A,C|X) = H(A) +H(C)−H(A+ C). Let us assume that NA ≥ NC . In order to calculate in
detail, we first list the probability distribution of A+ C.

P (A+ C = 0) =
1

NANC
, P (A+ C = 1) =

2

NANC
, ..., P (A+ C = NC − 2) =

NC − 1

NANC

P (A+ C = NC − 1) =
1

NA
, P (A+ C = NC) =

1

NA
, ..., P (A+ C = NA − 1) =

1

NA
,

P (A+ C = NA) =
NC − 1

NANC
, ..., P (A+ C = NC +NA − 2) =

1

NANC
.

(12)
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Now, we have

H(A+ C) = −2

NC−1∑
i=1

(
i

NANC
ln

i

NANC
)− (NA −NC + 1)

1

NA
ln

1

NA

= 2

NC−1∑
i=1

[
i

NANC
(lnNA + lnNC − ln i)] +

NA −NC + 1

NA
lnNA

=
NC − 1

NA
(lnNA + lnNC)−

2

NANC

NC−1∑
i=1

(i ln i) +
NA −NC + 1

NA
lnNA

= lnNA +
NC − 1

NA
lnNC − 2

NANC

NC−1∑
i=1

(i ln i).

(13)

Thus,
H(A) +H(C)−H(A+ C)

=
NA −NC + 1

NA
lnNC +

2

NANC

NC−1∑
i=1

(i ln i)

≥ NA −NC + 1

NA
lnNC +

2

NANC

∫ NC−1

1

x lnx dx

=
NA −NC + 1

NA
lnNC +

1

NANC
[(NC − 1)2 ln (NC − 1)− (NC − 1)2 − 1

2
]

= lnNC − 1

NA
[(NC − 1) lnNC − (NC − 1)2

NC
ln (NC − 1) +

NC − 2

2
].

(14)

Note that (NC − 1) lnNC − (NC−1)2

NC
ln (NC − 1) + NC−2

2 is greater than 0. Therefore, the lower bound of I(A,C|X) is
monotonically non-decreasing with respect to NA. If NA is adequately large, I(A,C|X) approximates lnNC .

D.5. Proof of Theorem 4

Proof. The lower bound can be easily derived by taking the difference between the two quantities:

I(Z;C)− I(Z;A) ≥I(Z;C;A)− I(Z;A) (15)
=− I(Z;A|C) (16)
≥− I(X;A|C), (17)

where the last line comes from the information processing inequality.

E. Experiment Details
In this section, we detail the setting of each individual experiment in this work. All experiments are conducted with a single
NVIDIA RTX 3090 GPU.

E.1. Experiment Details of Different Equivariant Pretraining Tasks

In this experiment, we conduct equivariant pretraining tasks based on seven different types of transformations. In order to
maintain fairness and avoid cross-interactions, we only apply random resized crops to the raw images before we move on
to these tasks. We adopt ResNet-18 as the backbone with a two-layer MLP that has a hidden dimension of 2048 and an
output dimension corresponding to the pretraining tasks. Under each transformation, we train the model for 200 epochs on
CIFAR-10, with batch size 512 and weight decay 10−6. The detailed pretraining tasks are listed as follows:

Horizontal Flip & Vertical Flip & Color Inversion & Grayscale. We randomly(i.e., with probability 0.5) apply the
specific transformation to images and require the model to predict whether or not we have really done the transformation. In
these cases, the output dimension is 2.
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X encoder Z

projector

classifier

R

C
-

Figure 4. The model of this experiment. X: raw input; Z: representation; R: rotation prediction; C: class prediction. For rotation
prediction, unless specified, the gradient flowing from the classifier to the encoder is detached.

Four-fold Rotation. We rotate the images with equal probability(i.e., with probability 0.25) by 0°, 90°, 180°, and 270° and
require the model to predict which rotation angle we have actually adopted. In this case, the output dimension is 4.

Four-fold Blur. We apply Gaussian blurs to the images using kernel sizes of 0, 5, 9, and 15, where kernel size 0 refers to
not applying Gaussian blurs. We then require the model to predict the kernel size. In this case, the output dimension is 4.

Jigsaw. We divide the images into 2× 2 patches, randomly shuffle their order, and then require the model to predict the
original arrangement. In this case, the output dimension is 24, since there are 4! = 24 possible permutations for the shuffled
arrangements.

During the pretraining tasks, we simultaneously train a classifier, which is a single-layer linear head with output dimension
10 and is trained without affecting the rest of the network. Apart from the seven tasks, we also conduct a baseline experiment,
where we fix a random encoder and optimize the classifier alone in order to assess the effectiveness of these pretraining
tasks.

E.2. Experiment Details of How Class Information Affects Equivariant Pretraining Tasks

In this experiment, our goal is to figure out how class information affects rotation prediction. Figure 4 demonstrates the
outline of the model we use to conduct this experiment. We apply random crops with size 32 and horizontal flips with
probability 0.5 to the raw images.

Training objectives. As for the experiment process, we first use rotation prediction as the pretraining task with a cross-
entropy loss between our predicted angles and the actual angles, defined as

Lrot = − 1

N

N∑
i=1

4∑
j=1

pij log(p̂ij), (18)

where N is the image number, the one-hot vector pij refers to the true rotation angle of the ith image, and p̂ij refers to the
prediction of the model. In the case where class information is incorporated, we simply add to the original loss function the
cross-entropy between the classes predicted by the classifier and their corresponding ground truth labels, defined as

Lcls = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij), (19)

where N is the image number, C is the class number, the one-hot vector yij refers to the true class of the ith image, and ŷij
refers to the prediction of the model. In other words, when class information is injected, the loss function is Lrot + λ1Lcls,
where the mixing coefficient λ1 is a hyper-parameter. Furthermore, to eliminate class information from the first setting, we
minimize the classifier loss with Lcls, trying to probe class information in the representation; in the meantime, we optimize
the encoder to maximize the classification loss, aiming to eliminate any class information that can be found by the classifier.
In particular, we adopt a joint training objective for the encoder as Lrot − λ2Lcls, where the mixing coefficient λ2 is also a
hyper-parameter. This leads to a min-max optimization between the encoder and the linear classifier. We choose λ1 = 0.5
and λ2 = 9, under which the class features can be shown to benefit or harm rotation prediction.

In the pretraining process, we use Resnet-18 as the backbone with a two-layer MLP that has a hidden dimension of 2048
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and an output dimension of 4, and a single-layer linear head as a classifier. For each setting, we train the model for 200
epochs on CIFAR-10 and CIFAR-100 respectively with batch size 512 and weight decay 10−6.

Furthermore, we are interested the effects of class information on the accuracy of the pretraining tasks based on other
transformations such as horizontal flips and four-fold blurs that are regarded as intrinsically hard. We simply inject class
information into the representation by adding a classification loss to the original loss as well. Slightly different from the
operation in rotation prediction, we apply random resized crops before conducting the pretraining tasks to avoid interfering
with the prediction in these tasks. The other details and parameters are the same as those in rotation prediction.

E.3. Experiment Details in the study of model equivariance

In order to compare the performance of Resnet and EqResnet, we use rotation prediction as our pretraining task and obtain
the linear probing results. We apply various augmentations to the raw images, such as no augmentation, a combination of
random crops with size 32 and horizontal flips, and SimCLR augmentations with an output of 32x32. To be more specific,
a SimCLR augmentation refers to a sequence of transformations, including a random resized crop with size 32 and scale
0.2-1.0, horizontal flip with probability 0.5, color jitter with probability 0.8, and finally grayscale with probability 0.2.

In these experiments, we predict rotation angles with a two-layer MLP that has a hidden dimension of 2048 and an output
dimension of 4, and a single-layer linear head as a classifier. For each setting, we train the model for 200 epochs on
CIFAR-10 and CIFAR-100 with batch size 128 and weight decay 5× 10−4.

Besides, we use different pretraining tasks to further compare the performance of Resnet and EqResnet. To elaborate, our
first task is contrastive learning, where we adopt SimCLR as our framework. Next, we use rotation prediction alone as the
pretraining task to train both models. In the third comparative experiment, we combine contrastive learning and rotation
prediction, and the loss function is obtained by adding the previous two loss functions together in a ratio of 1 to λ, where λ
is a hyper-parameter and its default value is 0.4. In all these settings, we apply the SimCLR augmentations mentioned above,
where the output size is 32.

In these experiments, we predict rotation angles with a two-layer MLP that has a hidden dimension of 2048 and an output
dimension of 4, and a single-layer linear head as a classifier. For each setting, we train the model for 200 epochs on
CIFAR-10 with batch size 512 and weight decay 10−6.

F. V-information: Background and Extensions
In this section, we introduce V-information (Xu et al., 2020), which is a computation-aware and model-aware extension of
Shannon’s notation that is more suitable for modeling neural representation learning. Then, we extend our theory and show
that the main results still hold under V-information.

F.1. Definitions and Properties of V-information

V-information is proposed by Xu et al. (2020) under the consideration of computational constraints, which happens to be
one of the drawbacks of traditional Shannon information theory. An additional merit of V-information is that it can be
estimated from high-dimensional data. The formal definition of V-information is derived as follows. Denote Y as the target
random variable that the model is trying to predict and X as another random variable that provides side information for the
prediction of Y . Let X and Y be the sample spaces of X and Y . Define Ω := {f : X ∪∅ → P(Y)} as a set of the functions
that maps X to a family of probability distributions over Y .

Definition 1 (Predictive Family). V ⊆ Ω is called a predictive family if ∀f ∈ V , ∀P ∈ range(f), ∃f ′ ∈ V that satisfies
∀x ∈ X , f ′[x] = P, f ′[∅] = P .

In other words, a predictive family is a set of probability measures that are allowed to be used under computational
constraints. The existence of f ′ indicates that the agent can optionally ignore the side information.

Next, we introduce predictive conditional V-entropy and predictive V-information.

Definition 2 (Predictive Conditional V-entropy). HV(Y |X) = inff∈VEx,y∼X,Y [− log f [x](y)]. Specifically, HV(Y |∅) =
inff∈VEy∼Y [− log f [∅](y)].

Definition 3 (Predictive V-information). IV(X → Y ) = HV(Y |∅)−HV(Y |X).
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Apart from the definitions, we have to highlight an important property of predictive V-information.

Lemma 3 (Xu et al. (2020)). IV(A → B) = 0 iff A and B are independent variables.

F.2. Extension to V-information

First, we present the V-information version of Lemma 1.

Theorem 5 (Explaining-away in E-SSL). If the data generation process obeys the diagram in Figure 2, then almost
surely, A and C is no dependent given X or Z, i.e., A ⊥̸⊥ C|X and A ⊥̸⊥ C|Z. It implies that IV(C → A|X) > 0 and
IV(C → A|Z) > 0 hold almost surely.

Proof. Lemma 3 indicates that for any three random variables A,B,C, the inequality IV(A → B|C) ≥ 0 always holds and
that IV(A → B|C) = 0 iff A ⊥ B|C. Based on the analysis of the collider structure in Appendix D.2, we know that A and
C are not independent given either X or Z. Thus, we have IV(C → A|X) > 0 and IV(C → A|Z) > 0 almost surely.

Then, we present the V-information version of Theorem 1.

Theorem 6. Assume that the representation Z consists of two parts Z = [ZI , ZC ], where ZI is class-irrelevant, and ZC =
ϕ(C) is a representation of the class C with an invertible mapping ϕ. If there is a positive synegy effect IV(C → A|ZI) > 0,
we will have IV(ZI → A) < IV(Z → A), showing that with class features ZC we can attain strictly better equivariant
prediction. As a consequence, the optimal features of equivairant learning will contain class features.

Proof. We have the assumption IV(C → A|ZI) = HV(A|ZI)−HV(A|C,ZI) > 0. Given that the function ϕ is invertible
and ZC = ϕ(C), we have HV(A|C,ZI) = HV(A|ZC , ZI) = HV(A|Z) < HV(A|ZI). Subtracting HV(A) from both
sides and rewriting the inequality, we finally obtain IV(Z → A) > IV(ZI → A).
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