Adversarial Detector for Decision Trees Ensembles Using Representation Learning

Anonymous authors

Paper under double-blind review

Abstract

Research on adversarial evasion attacks focuses mainly on neural network models. Among other reasons, this is because of their popularity in certain fields (e.g., computer vision and NLP) and the models' properties, making it easier to search for adversarial examples with minimal input change. Decision trees and tree ensembles are still very popular due to their high performance in fields dominated by tabular data and their explainability. In recent years, several works have defined new adversarial attacks targeting decision trees and tree ensembles. As a result, several papers were published focusing on robust versions of tree ensembles. This research aims to create an adversarial detector for attacks on an ensemble of decision trees. While several previous works have demonstrated the generation of more robust tree ensembles, the process of considering evasion attacks during ensemble generation can affect model performance. We demonstrate a method to detect adversarial samples without affecting either the target model structure or its original performance. We showed that by using representation learning based on the structure of the trees, we achieved better detection rates than the state-ofthe-art technique and better than using the original representation of the dataset to train an adversarial detector.

1 INTRODUCTION

In recent decades we have seen the introduction of machine learning algorithms in production environments into various fields such as medical imaging (Zhou et al., 2021), autonomous driving (Huang & Chen, 2020) and law enforcement (Vestby & Vestby, 2019). With the leap in performance of those models and their integration into real-life systems, people began to investigate how to bypass classifiers and defend against those malicious attempts (Dalvi et al., 2004; Lowd & Meek, 2005).

Many papers have addressed examples of adversarial attacks that make small changes that are hard for a human to notice in the inputs of a machine learning model, usually a neural network, so their predictions are wrong. These can be exploited by a malicious actor and used to bypass a model that might, for example, be responsible for a critical classification task affecting people's lives. As a result, various researchers published techniques to detect and defend against adversarial attempts. Most of the research is focused on adversarial attacks targeting neural network models, among other things, because of the nature of their continuous learning space, which allows a gradient ascent process to maximize the model's loss function given a specific input. Thus defenses and detectors mainly target neural network models as well.

Tree-based models continue to be very popular, especially for tabular data tasks (Nielsen, 2016; Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022), because they usually demand less data and are more interpretable. There are fewer studies on adversarial attacks and defenses affecting decision tree models. Gradient-descent-based methods commonly used in earlier attack models cannot be applied directly to evade decision trees due to the discrete nature of their non-differentiable decision-making paths and tree-splitting rules. Unfortunately, this does not mean that decision trees are unaffected by evasion attacks.

In this work, we present a detection technique for adversarial evasion attacks against tree-based classifiers, focusing on boosting ensembles. Our main contributions are: (i) We defined a task that allows us to generate sample representations that rely on the distribution of the dataset in the

different routes of a tree ensemble. (*ii*) We designed a pipeline to train and evaluate adversarial detection with reduced possibilities of overfitting or bias.

2 MOTIVATION

Chen et al. (2019) proposed a robust decision trees technique against adversarial evasion attacks. The model training algorithm was changed, as a result of which model itself was changed. As part of the experiment, the new model's accuracy was checked and compared to the non-robust model. Of the eleven datasets tested, seven showed a decrease in accuracy.

Our primary motivation for this work is to create a defense layer for a decision tree ensemble against adversarial attacks. Our defense layer does not affect the model itself, allowing the model owner to decide if they want defense applied to their existing system.

Secondly, production tree-based models use well-known open-source libraries such as XGBoost (Chen & Guestrin, 2016b), CatBoost (Dorogush et al., 2018), and LightGBM (Ke et al., 2017). These libraries are heavily used, tested, and improved, which is partly why they were chosen in the first place. Currently, as of writing this paper, the above libraries do not contain an official version that is robust against adversarial attacks. Therefore, to add adversarial robustness to a model, it is necessary to use a different third-party version of the model or develop a new one.

3 BACKGROUND

3.1 RELATED WORK

We can split the field of adversarial learning into three primary sectors: attacking methods, defending methods, and detectors which aim to detect whether or not a sample is adversarial without changing the model itself.

Generating Adversarial Samples. Early work around generating adversarial samples (Goodfellow et al., 2014; Kurakin et al., 2016) used backpropagation to try and discover which input features we should change to maximize the loss function of a model. In the face of more recent attacks, a different loss functions was suggested to find an adversarial sample (Papernot et al., 2016); Carlini & Wagner, 2017; Cheng et al., 2018). Other works used concepts from geometry and the location of the boundaries between decision spaces to search for a minimal perturbation for creating an adversarial sample (Moosavi-Dezfooli et al., 2016; Yang et al., 2020).

Because decision tree classifiers are not a continuous space model, earlier backpropagation methods will not work in these cases. Black-box methods, which ignore the internal inner structure of the model, try to approximate the gradients and can generate attacks for decision-trees-based classifiers using multiple queries to find the boundary between different classes in the unknown decision space (Cheng et al., 2018; Chen et al., 2020).

Some relevant white-box techniques focus specifically on the nature of decision trees (Papernot et al., 2016a; Kantchelian et al., 2016; Zhang et al., 2020). Papernot et al. (2016a) defined an algorithm to search for a given sample, the closest leaf in the neighborhood of the original leaf, and perturb the features between them. Kantchelian et al. (2016) formulated a set of equality and inequality constraints based on the tree structure to generate an optimal adversarial sample for tree ensembles using a mixed-integer linear program.

Model Defenses Against Adversarial Attacks. Common approach for protecting models is to train a robust model for evasion attacks. Adversarial training (Goodfellow et al., 2014) is one of these methods, with which one can generate adversarial samples and add them to the training data. Other suggested solutions use known techniques with other purposes, such as knowledge distillation, as shown in Papernot et al. (2016c), which used its traits to create a newer model version with smaller gradients to make it more difficult to generate adversarial samples. Another work is Wang et al. (2018), which used dropout in prediction time to reduce the dependency on specific neurons in a neural network.

Defending decision tree classifiers combine the structure of the trees with the methods mentioned above. Adversarial boosting was suggested in Kurakin et al. (2016) with an idea similar to adversarial training, and in each boosting round, adversarial samples are created and added to the next round's training data. Other works show how to generate more robust tree models with new optimization formulations while considering evasion attacks and perturbations (Chen et al., 2019; Andriushchenko & Hein, 2019; Calzavara et al., 2020; Vos & Verwer, 2021; 2022).

Adversarial Detectors. There are two main approaches when building an adversarial attack detector: using statistics and hypothesis testing to investigate if there is any difference between the regular samples distribution and the adversarial sample's distribution (Feinman et al., 2017; Grosse et al., 2017; Katzir & Elovici, 2019), and training a machine learning classifier to act as a detector of adversarial attempts (Metzen et al., 2017; Fidel et al., 2020). Recent work used the combinations of leaves in tree ensemble predictions, called output configurations, to detect abnormal leaves configuration of a sample compared to a reference dataset to detect an adversarial sample using a defined metric called OC-score (Devos et al., 2022). We will compare our work to Devos et al. (2022), which is considered the state-of-the-art in detecting adversarial samples on decision trees at the time of writing this paper.

3.2 PROBLEM FORMULATION

For a given classifier C, a given sample x, with set of features F and a label y in which C(x) = y, an adversarial sample x' is defined using an adversarial perturbation $\delta : x' = x + \delta$. An adversarial sample can be generated by a targeted or untargeted attack. For an untargeted attack we want to find δ that meet with the condition:

$$C(x') \neq y$$
 s.t. $||\delta||_p < \epsilon$ (1)

Which means that $C(x) \neq C(x')$ where the *p*-norm of δ will be limited by a value ϵ . For a targeted attack we need to define a target class t where $t \neq y$ and:

$$C(x') = t \quad \text{s.t.} \quad ||\delta||_p < \epsilon \tag{2}$$

For $p \in \mathbb{N}_1$ (All natural numbers without zero) the *p*-norm is defined: $||\delta||_p := (\Sigma_{i=1}^F (\delta_i)^p)^{\frac{1}{p}})$

For $p = \infty$ - measures the largest absolute difference between two features and is defined: $||\delta||_{\infty} = \max_{x_i} |x_i - x'_i|$

Given a decision tree model \mathcal{T} and a sample x, our classification task is to detect whether the sample is normal or is an attempted adversarial attack.

4 Method

4.1 METHOD GENERAL FLOW

Our method consists of 11 main steps:

- 1. Split the dataset into four different parts for different purposes: S_T to train the tree model, $S_{\mathcal{E}}$ to train our basic representation model, $S_{\mathcal{D}-train}$ to train our adversarial detector and $S_{\mathcal{D}-test}$ to evaluate our adversarial detector.
- 2. Train a tree model.
- 3. Generate a triplets dataset that will be used to initialize the new representations. This is explained more fully in Subsection 4.2.
- 4. Train our basic embedding model \mathcal{E} . This is explained more fully in Subsection 4.3.
- 5. Split $S_{D-train}$ and S_{D-test} into two parts.
- 6. Generate adversarial samples using an attack method A.
- 7. Generate a new triplet dataset for each of the new sub-datasets. This is explained more fully in Subsection 4.4.
- 8. Optimize the representations of the new sub-datasets to our new embeddings using \mathcal{E} , more details in Subsection 4.4.

- 9. Concatenate the new representation of every set to the original ones.
- 10. Train our adversarial detector. This is explained more fully in Subsection 4.5.
- 11. Evaluate our adversarial detector. This is explained more fully in Section 5.

A detailed visualization sketch shown in Figure 28 in Appendix H, together with a further explanation about the dataset splitting.

4.2 DATASET REPRESENTATION

At the heart of our method is the idea that we want to extract a new representation of a dataset based on the structure of a target tree ensemble model to understand the behavior of normal samples and detect adversarial samples. To extract a meaningful representation, we took inspiration from an embedding process. For each sample, we assign a vector of random numbers with d dimensions, called latent features, that will be optimized using a gradient descent process using a simple feed-forward neural network based on the structure and traits of the tree.

For a given dataset S and a trees model T we define a new dataset:

$$\mathcal{R}_{\mathcal{S}}^{\mathcal{T}} = \{(s_i, s_j, n_k) | s_i, s_j \in \mathcal{S}, n_k \in \mathcal{N}_{\mathcal{S}}^{\mathcal{T}}, s_i \in n_k \land s_j \in n_k\}$$
(3)

Where $\mathcal{N}_{\mathcal{S}}^{\mathcal{T}}$ is the set of all internal nodes of \mathcal{T} reached by at least one sample from \mathcal{S} , n is a single node, and s is a single sample. Each triplet in $\mathcal{R}_{\mathcal{S}}^{\mathcal{T}}$ contains two samples and a node. Both samples reach the internal node n_k in \mathcal{T} . We define the supervised task below:

$$f(s_i, s_j, n_k) = \begin{cases} 1 & \text{if } s_i \text{ and } s_j \text{ pass to the same child of } n_k \\ 0 & \text{otherwise} \end{cases}$$
(4)

To collect this new dataset, we take our original dataset and traverse with each of the samples through the different routes in the trees in the ensemble and save the routes aside. During the process, we document which sample passes in which node and create the mapping:

$$\mathcal{M}_{\mathcal{S}}^{\mathcal{T}}(n_k) = \mathcal{S}_{n_k} \tag{5}$$

Which returns for a given node all the samples which reached it during the above traverse. Then to generate $\mathcal{R}_{\mathcal{S}}^{\mathcal{T}}$ we can use Algorithm 1.

Algorithm 1 Generating triplets dataset to train the basic embedding model to fine-tune future representations

input : set of nodes $\mathcal{N}_{\mathcal{S}}^{\mathcal{T}}$, model $\overline{\mathcal{T}}$, nodes to samples mapping $\mathcal{M}_{\mathcal{S}}^{\mathcal{T}}$, size of final dataset N **output:** $\mathcal{R}_{\mathcal{S}}^{\mathcal{T}}$, labels

1: **for** i = 1 to N **do** Sample a random node n_k from $\mathcal{N}_{\mathcal{S}}^{\mathcal{T}}$ 2: Sample 2 random samples s_i, s_j from $\mathcal{M}_{\mathcal{S}}^{\mathcal{T}}(n_k)$ 3: 4: $\mathsf{triplet}_i \leftarrow (s_i, s_j, n_k)$ 5: if s_i and s_j agree on the condition in n_k then 6: $label_i \leftarrow 1$ 7: else 8: $label_i \leftarrow 0$ 9: end if

10: end for

Algorithm 1 returns a list of triplets constructed from 2 samples and one node and a list of labels based on the above logic. For a chosen N, which is the final size we choose for the dataset $\mathcal{R}_{\mathcal{S}}^{\mathcal{T}}$, we generate the triplets described above. After sampling for a node and relevant samples, in line 5, we check if both samples agree on the condition of the feature threshold in n_k , in which case they move to the same child on n_k , and the label of the new sample is set to 1. Otherwise, it is set to 0.

4.3 Embedding Model

To generate our The basic embedding model is trained using $\mathcal{R}_{S_{\mathcal{E}}}^{\mathcal{T}}$. We can see in Figure 1-(a) a general sketch of the architecture we used. During the embedding model-training phase, we use two embedding matrices, one for the samples and one for the nodes, and we optimize the representation with a gradient descent process based on the task defined earlier.

Each sample vector is initiated with a random vector of dimension d_s and each node with a random vector of dimension d_n . The vectors of each sample and the one representing the node are concatenated and passed through a single feed-forward layer with a ReLU activation function and finish in a feed-forward layer with a sigmoid activation function used to evaluate the loss value. The model is trained with a binary cross-entropy loss function and an Adam optimizer. Then, the model weights will be saved to optimize the new sample's representations.

4.4 NEW SAMPLES EMBEDDING

When we want to extract the representation of new samples set S_{new} , we first create a new dataset:

$$\mathcal{R}_{\mathcal{S}_{\mathcal{E}},\mathcal{S}_{new}}^{\mathcal{T}} = \{(s_i, s_j, n_k) | s_i \in \mathcal{S}_{\mathcal{E}}, s_j \in \mathcal{S}_{new}, n_k \in \mathcal{N}_{\mathcal{S}_{new}}^{\mathcal{T}}, s_i \in n_k \land s_j \in n_k\}$$
(6)

This means the triplet in this new dataset is constructed from one sample from the samples used to train the embedding model ($\mathcal{S}_{\mathcal{E}}$) and another sample from the new sample set whose representation we want to optimize. The labels are set in the same manner as we described before, based on the fact that the two samples align with the feature threshold in the relevant node. We use algorithm 2 to construct this dataset.

Algorithm 2 Generating triplets dataset from a new sample set to optimize its new representations

input : set of nodes $\mathcal{N}_{\mathcal{S}_{new}}^{\mathcal{T}}$, model \mathcal{T} , a mapping between nodes to samples which were used to train the embedding model $\mathcal{M}_{\mathcal{S}_{\mathcal{E}}}^{\mathcal{T}}$, mapping between nodes to samples from the new dataset $\mathcal{M}_{\mathcal{S}_{new}}^{\mathcal{T}}$, size of final dataset N

output: $\mathcal{R}_{\mathcal{S}_{\mathcal{E}},\mathcal{S}_{new}}^{\mathcal{T}^{new}}$, labels

1: **for** i = 1 to N **do**

- 2:
- 3:
- Sample a random node n_k from $\mathcal{N}_{\mathcal{S}_{new}}^{\mathcal{T}}$ Sample a random samples s_i from $\mathcal{M}_{\mathcal{S}_{\mathcal{E}}}^{\mathcal{T}}(n_k)$ Sample a random samples s_j from $\mathcal{M}_{\mathcal{S}_{new}}^{\mathcal{T}}(n_k)$ 4:
- 5: $\text{triplet}_i \leftarrow (s_i, s_j, n_k)$
- 6: if s_i and s_j agree on the condition in n_k then
- 7: $label_i \leftarrow 1$
- 8: else
- $label_i \leftarrow 0$ 9:
- 10: end if

```
11: end for
```

Similarly to Algorithm 1, in Algorithm 2 we choose N, which is the size we choose for the dataset $\mathcal{R}_{\mathcal{S}_{\mathcal{E}},\mathcal{S}_{new}}^{\mathcal{T}}$. In line 3, we take random samples from $\mathcal{M}_{\mathcal{S}}^{\mathcal{T}}(n_k)$, a sample that was used to train the basic representations that reached n_k . In line 4, we sample random samples from $\mathcal{M}_{S_{new}}^{\mathcal{T}}(n_k)$ which is a sample from the new dataset whose representation we want to optimize.

Then, in line 6, we check if both samples agree on the condition of the feature threshold in n_k , in which case they move to the same child of n_k , and the label of the new sample is set to 1. Otherwise, it is set to 0. Algorithm 2 returns a list of triplets constructed from two samples and one node and a list of labels.

Then the weights of the trained embedding model are loaded to the same architecture with all weights frozen (both layers' weights and biases, embedding matrix of the $S_{\mathcal{E}}$ samples and embedding matrix of the nodes), and a new unfrozen embedding matrix for the new samples is initialized as described in Figure 1-(b).

The representations are then optimized with a gradient descent process while using $\mathcal{R}_{\mathcal{S}_{\mathcal{F}},\mathcal{S}_{new}}^{\mathcal{T}}$.

Figure 1: (a) - General architecture sketch of embedding model. (b) - changes were done to fine-tune the new samples' representations. The elements in red are frozen weights and biases which remain unchanged during a gradient descent process.

4.5 ADVERSARIAL CLASSIFIER

As suggested by Metzen et al. (2017), we trained an adversarial samples detector based on a classifier to try and classify whether a specific sample is a normal sample that came from the original distribution of the input samples of the original dataset or an adversarial sample. We extract four new sub-datasets from the datasets used for training and evaluating the detector. We extract two from each one, a set that stayed as the normal samples, and using the other set, we generate adversarial samples and then throw the original samples away. Afterward, we extracted each dataset's new representations using the process described in Subsection 4.4. We used an XGBoost as the classifier of the detector. As an input to the classifier, we concatenated our new extracted representations to the original features and used them together as the final features set.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

In our experiments, we tested the performance of our method of creating new representations by training an adversarial-evasion-attack detector on 18 datasets, described in Subsection 5.2, with five different attacks, described in Subsection 5.3. We compared our method to OC-score (Devos et al., 2022), considered the state-of-the-art for that task, and to detector classifiers that we trained on the original representations of the datasets. We tested our method against two tree-based ensembles: XGBoost and RandomForest - both implemented by Chen & Guestrin (2016a). The full results tables for XGBoost are given in Appendix B and for RandomForest in Appendix C. To train our adversarial classifier, we used a second XGBoost model; our positive samples are the adversarial samples, and the negative samples are the normal ones. To train and test our detector, we used no more than 100 samples for black-box attacks and 1000 for the white-box attack from $S_{D-train}$ and S_{D-test} . While generating adversarial samples, we only attacked using samples originally classified correctly by the target model. For the embedding dimensions we chose $d_s = 250$ and $d_n = 100$. We used ROC-AUC and PR-AUC as our metrics. For multi-class datasets, each metric is calculated for each of the different labels in a 1-vs-all manner, and eventually, an average is calculated. Our code is online in github¹.

5.2 EVALUATED DATASETS

In our experiments, we tested with 18 classification datasets, some of them binary and others multiclass. The datasets are described in Table 1. The top section of Table 1 describes datasets that

¹https://github.com/anonymous/anonymous

were used in Chen et al. (2019) as benchmarks for their experiments, already preprocessed and split into training and test sets, and published publicly in a very convenient way on github². The bottom section of Table 1 describes more datasets that we added, mainly small binary-classification datasets, to have more variety. The datasets vary by the number of samples, features, and classes.

Dataset name	#Samples	#Featues	#Classes	References
breast-cancer	546	10	2	Chen et al. (2019)
covtype	400000	54	7	Chen et al. (2019)
cod-rna	59535	8	2	Chen et al. (2019)
diabetes	614	8	2	Chen et al. (2019)
Fashion-MNIST	60000	784	10	Chen et al. (2019)
ijcnn1	49990	22	2	Chen et al. (2019)
MNIST	60000	784	10	Chen et al. (2019)
sensorless	48509	48	11	Chen et al. (2019)
webspam	300000	254	2	Chen et al. (2019)
MNIST 2 vs. 6	11876	784	2	Chen et al. (2019)
electricity	45312	8	2	https://www.openml.org/d/151
drybean	13611	16	7	Koklu & Ozkan (2020); mis (2020)
adult	32561	14(*)	2	mis (1996)
banknote	1372	4	2	mis (2013)
gender-by-voice	3168	20	2	https://www.openml.org/d/43437
waveform	5000	40	2	https://www.openml.org/d/979
wind	6574	14	2	https://www.openml.org/d/847
speech	3686	400	2	https://www.openml.org/d/40910

Table 1: Datasets used to evaluate our method. (*) - dataset contained categorical features, which were preprocessed with label encoding.

5.3 EVALUATED ADVERSARIAL ATTACKS

We evaluated our method with untargeted attacks, with 2 different norms - L_2 and L_{∞} . For the attack methods, we used four black-box attacks which are relevant to tree-based models: Sign-Opt attack (Cheng et al., 2019), OPT attack (Cheng et al., 2018), HopSkipJump attack (Chen et al., 2020) and Cube attack (Andriushchenko & Hein, 2019). We used one white-box attack specifically for trees-based models: Leaf-Tuple attack (Zhang et al., 2020). To execute our attacks we used implementation published by Zhang et al. (2020) on github³.

5.4 EXPERIMENTS RESULTS

We applied our method and calculated ROC-AUC and PR-AUC for each combination of the norm, attack method, dataset, and model algorithm. We calculated the difference between our method's performance, the OC-score method's performance, and the performance of a detector trained on the original representation. All of the distributions of the differences are shown in Appendix A as boxplots. Due to space constraints, we only show here plots comparing our method to OC-score for L_2 norm, in Figure 2, for experiments targeting XGBoost tree ensembles and in Figure 3, for experiments that targeting RandomForest tree ensembles. Each row is a different attack method, each white point is an experiment on a specific dataset, and the red vertical line is a total mean of all the experiments together.

The figures show the spread of the differences in ROC-AUC and PR-AUC for each norm and attack combination. The boxplot shows us the different quartiles and the median. As we can see in the figures, the total mean and the median of each section is positive, which means that our metrics yielded better results for the new representation in most of our experiments.

The full raw metrics for each one of the experiments are shown in tables in Appendix B for XGBoost and in appendix C for RandomForest.

²https://github.com/chenhongge/RobustTrees/blob/master/data/download_data.sh ³https://github.com/chong-z/tree-ensemble-attack

Figure 2: XGBoost experiments metrics differences between the new method and OC-score for L_2 norm.

Figure 3: RandomForest experiments metrics differences between the new method and OC-score for L_2 norm.

Of our 338 experiments, our method had the best performance in 107 of them and was tied with one of the other methods as the best in 134 other experiments, which means our method was successful in 71.73% of the experiments. We used the Friedman test on the ROC-AUC metric to validate the statistical significance of differences between the evaluated methods and datasets (Demšar, 2006). The above test is a non-parametric test that does not assume anything about the results distributions and is used when dealing with multiple methods and multiple datasets. The null hypothesis that the 3 methods perform the same was rejected with $F_F(338,3) = 288$ with p < 0.01. As a second step, we used Nemneyi post-hoc test, which is often used as a second step if it is possible to reject the null hypothesis with a Friedman test and test for superiority between the different methods, and concluded that our new representation method outperforms the OC-score method and the usage of a machine learning detector based on the original representations with p < 0.01.

6 DISCUSSION

As we showed in our experiments, using representation learning to learn a better version of the dataset given a trained model helps to extract better performance when trying to protect our model against adversarial evasion attacks. We showed this on different datasets, different tree-based ensembles, and with different attack methods.

An important area for discussion is adversarial attacks on tabular data, which are not as intuitive as adversarial attacks on more continuous inputs such as images or audio. These usually clip the data to a valid range of values, which is not straightforward for tabular data. This issue is not yet heavily researched but was already approached and discussed by Calzavara et al. (2020) and Vos & Verwer (2021), where for each dataset, they defined a set of rewriting rules and possible budget with which to change the features. We chose not to take up that challenge in this work, but for full context, we added in Appendix D statistics regarding our generated adversarial samples.

While analyzing our results, we noticed an interesting outcome of our new representationsgeneration process. We used UMAP (McInnes et al., 2018) to extract 2-dimensional versions of the original representations and our new ones. As we can see in Figure 4 on the left side, the reduction of the original representations, there the adversarial samples are scattered between the normal samples. When looking at the reduced version of our representations on the right, we see that the adversarial samples gather closely to each other and are separated from most of the rest of the normal samples.

Figure 4: Dimensionality-reduction visualization using UMAP (McInnes et al., 2018). Green points are normal samples, and red points are adversarial samples. On the left, we can see a reduction of the original representations, and on the right, we can see a reduction of the new embedded representations.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a method to train an adversarial samples detector based on new representations of a dataset based on the target model trained on it. We showed that using our new representation shows overall improvement compared to the current state-of-the-art detection of adversarial samples on tree models without changing the original model internals and compared to using the original samples representations to train a detector classifier.

As for future work, our new method should also be tested on robust versions of tree ensembles to see if it affects the results. Another direction is to create a unified detector for all attacks together. Our detector method was based on generating adversarial samples for each attack method and training a separate model. However, the normal data behave the same regardless of the attack method, and a new unified approach should be researched.

REFERENCES

Adult. UCI Machine Learning Repository, 1996.

banknote authentication. UCI Machine Learning Repository, 2013.

- Dry Bean Dataset. UCI Machine Learning Repository, 2020.
- Maksym Andriushchenko and Matthias Hein. Provably robust boosted decision stumps and trees against adversarial attacks. *arXiv preprint arXiv:1906.03526*, 2019.
- Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore Orlando. Treant: training evasion-aware decision trees. *Data Mining and Knowledge Discovery*, pp. 1–31, 2020.
- Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 *ieee symposium on security and privacy (sp)*, pp. 39–57. IEEE, 2017.
- Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees against adversarial examples. In *International Conference on Machine Learning*, pp. 1122–1131. PMLR, 2019.

- Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient decision-based attack. In 2020 ieee symposium on security and privacy (sp), pp. 1277–1294. IEEE, 2020.
- Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp. 785–794, New York, NY, USA, 2016a. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/ 2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.
- Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the* 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016b.
- Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Queryefficient hard-label black-box attack: An optimization-based approach. *arXiv preprint arXiv:1807.04457*, 2018.
- Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-opt: A query-efficient hard-label adversarial attack. *arXiv preprint arXiv:1909.10773*, 2019.
- Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin, and George D. C. Cavalcanti. Deslib: A dynamic ensemble selection library in python. *Journal of Machine Learning Research*, 21(8): 1–5, 2020. URL http://jmlr.org/papers/v21/18-144.html.
- Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial classification. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '04, pp. 99–108, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138881. doi: 10.1145/1014052.1014066. URL https://doi.org/10.1145/1014052.1014066.
- Janez Demšar. Statistical comparisons of classifiers over multiple data sets. *The Journal of Machine learning research*, 7:1–30, 2006.
- Laurens Devos, Wannes Meert, and Jesse Davis. Adversarial example detection in deployed tree ensembles. *arXiv preprint arXiv:2206.13083*, 2022.
- Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with categorical features support. *arXiv preprint arXiv:1810.11363*, 2018.
- Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial samples from artifacts. *arXiv preprint arXiv:1703.00410*, 2017.
- Gil Fidel, Ron Bitton, and Asaf Shabtai. When explainability meets adversarial learning: Detecting adversarial examples using shap signatures. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2020.
- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on tabular data? *arXiv preprint arXiv:2207.08815*, 2022.
- Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On the (statistical) detection of adversarial examples. *arXiv preprint arXiv:1702.06280*, 2017.
- Yu Huang and Yue Chen. Autonomous driving with deep learning: a survey of state-of-art technologies. *arXiv preprint arXiv:2006.06091*, 2020.
- Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE Transactions on Big Data*, 7(3):535–547, 2019.
- Alex Kantchelian, J Doug Tygar, and Anthony Joseph. Evasion and hardening of tree ensemble classifiers. In *International Conference on Machine Learning*, pp. 2387–2396, 2016.

- Ziv Katzir and Yuval Elovici. Detecting adversarial perturbations through spatial behavior in activation spaces. In 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE, 2019.
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information processing systems*, 30, 2017.
- Murat Koklu and Ilker Ali Ozkan. Multiclass classification of dry beans using computer vision and machine learning techniques. *Computers and Electronics in Agriculture*, 174:105507, 2020.
- Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. *arXiv* preprint arXiv:1611.01236, 2016.
- Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD '05, pp. 641–647, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.1081950. URL https://doi.org/10.1145/ 1081870.1081950.
- Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.
- Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial perturbations. *arXiv preprint arXiv:1702.04267*, 2017.
- Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2574–2582, 2016.
- Didrik Nielsen. Tree boosting with xgboost-why does xgboost win" every" machine learning competition? Master's thesis, NTNU, 2016.
- Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. *arXiv preprint arXiv:1605.07277*, 2016a.
- Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P), pp. 372–387. IEEE, 2016b.
- Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a defense to adversarial perturbations against deep neural networks. In 2016 IEEE symposium on security and privacy (SP), pp. 582–597. IEEE, 2016c.
- Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. *Information Fusion*, 81:84–90, 2022.
- Annette Vestby and Jonas Vestby. Machine learning and the police: asking the right questions. *Policing: A Journal of Policy and Practice*, 2019.
- Daniël Vos and Sicco Verwer. Efficient training of robust decision trees against adversarial examples. In *International Conference on Machine Learning*, pp. 10586–10595. PMLR, 2021.
- Daniël Vos and Sicco Verwer. Robust optimal classification trees against adversarial examples. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8520–8528, 2022.
- Siyue Wang, Xiao Wang, Pu Zhao, Wujie Wen, David Kaeli, Peter Chin, and Xue Lin. Defensive dropout for hardening deep neural networks under adversarial attacks. In *Proceedings of the International Conference on Computer-Aided Design*, pp. 1–8, 2018.
- Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. Robustness for nonparametric classification: A generic attack and defense. In *International Conference on Artificial Intelligence and Statistics*, pp. 941–951. PMLR, 2020.

Chong Zhang, Huan Zhang, and Cho-Jui Hsieh. An efficient adversarial attack for tree ensembles. arXiv preprint arXiv:2010.11598, 2020.

S Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S Duncan, Bram van Ginneken, Anant Madabhushi, Jerry L Prince, Daniel Rueckert, and Ronald M Summers. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. *Proceedings of the IEEE*, 2021.

A APPENDIX A - FULL METRICS DIFFERENCES FIGURES

Here are all the different figures comparing our method to OC-Score and a detector based on the original representations of the dataset. For the experiments compared to the OC-score (Figures 5, 6, 9, and 10) the total mean and the median of each section is positive in all of them, which means that our metrics yielded better results for the new representation in most of our experiments. When looking at figures that compare our new method to the original representations (Figures 7, 8, 11, and 12) we can see the ROC-AUC and PR-AUC overall mean of the experiments is positive beside the experiments targeted XGBoost with L_{∞} norm which the overall mean is negative.

Figure 5: XGBoost experiments metrics differences between the new method and OC-score for L_2 norm.

Figure 6: XGBoost experiments metrics differences between the new method and OC-score for L_{∞} norm.

Figure 7: XGBoost experiments metrics differences between the new method and original representation for L_2 norm.

Figure 8: XGBoost experiments metrics differences between the new method and original representation for L_{∞} norm.

Figure 9: RandomForest experiments metrics differences between the new method and OC-score for L_2 norm.

Figure 10: Random Forest experiments metrics differences between the new method and OC-score for L_∞ norm.

Figure 11: RandomForest experiments metrics differences between the new method and original representation for L_2 norm.

Figure 12: RandomForest experiments metrics differences between the new method and original representation for L_{∞} norm.

B APPENDIX **B** - XGBOOST FULL EXPERIMENTS RESULTS

List of tables with the raw experiments metrics for each dataset, attack method, and norm for the XGBoost target experiments. In bold is the method or methods that achieved the highest value. Rows that fill in hyphens are cases where the adversarial sample creation process failed.

C APPENDIX C - RANDOMFOREST FULL EXPERIMENTS RESULTS

List of tables with the raw experiments metrics for each dataset, attack method, and norm for the RandomForest target experiments. In bold is the method or methods that achieved the highest value. Rows that fill in hyphens are cases where the adversarial sample creation process failed.

		Sign-OPT L ₂							Sign-C	PT L_{∞}		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.988	0.9919	0.958	0.987	0.9919	0.965	0.9971	0.997	0.960	0.997	0.997	0.970
covtype	1.0	1.0	0.049	<u>1.0</u>	1.0	0.843	1.0	<u>1.0</u>	0.053	1.0	1.0	0.833
cod-rna	0.743	0.7655	0.161	<u>0.9795</u>	0.955	0.880	<u>0.7773</u>	0.599	0.238	<u>0.9808</u>	0.936	0.889
diabetes	0.672	<u>0.855</u>	0.730	0.707	<u>0.8432</u>	0.772	0.580	<u>0.8668</u>	0.445	0.702	0.8678	0.615
Fashion-MNIST	<u>1.0</u>	<u>1.0</u>	0.157	<u>1.0</u>	<u>1.0</u>	0.839	<u>0.9999</u>	0.9999	0.237	<u>1.0</u>	<u>1.0</u>	0.908
ijenn1	<u>1.0</u>	<u>1.0</u>	0.181	<u>1.0</u>	<u>1.0</u>	0.907	<u>1.0</u>	<u>1.0</u>	0.276	<u>1.0</u>	<u>1.0</u>	0.935
MNIST	<u>1.0</u>	<u>1.0</u>	0.327	<u>1.0</u>	<u>1.0</u>	0.945	<u>1.0</u>	<u>1.0</u>	0.434	<u>1.0</u>	<u>1.0</u>	0.960
MNIST2-6	<u>0.9999</u>	<u>0.9999</u>	0.994	<u>1.0</u>	<u>1.0</u>	0.999	<u>1.0</u>	<u>1.0</u>	0.991	<u>1.0</u>	<u>1.0</u>	0.999
Sensorless	0.887	0.803	<u>0.9111</u>	0.980	0.934	<u>0.9982</u>	<u>0.9709</u>	0.939	0.887	0.997	0.987	<u>0.9984</u>
webspam	1.0	<u>1.0</u>	0.253	<u>1.0</u>	<u>1.0</u>	0.985	<u>1.0</u>	<u>1.0</u>	0.354	<u>1.0</u>	<u>1.0</u>	0.990
electricity	0.751	0.9763	0.129	0.955	<u>0.997</u>	0.883	0.829	<u>0.9661</u>	0.300	0.970	<u>0.9968</u>	0.901
drybean	0.942	0.9617	0.705	0.975	0.9862	0.974	0.9585	0.914	0.796	0.9868	0.955	0.967
adult	<u>1.0</u>	<u>1.0</u>	0.109	<u>1.0</u>	<u>1.0</u>	0.813	<u>1.0</u>	<u>1.0</u>	0.128	<u>1.0</u>	<u>1.0</u>	0.817
banknote	0.968	<u>0.99</u>	0.768	0.970	<u>0.9918</u>	0.961	<u>0.9699</u>	0.961	0.798	0.9822	0.982	0.957
gender-by-voice	0.9854	0.983	0.887	0.9897	0.989	0.978	0.982	0.9964	0.960	0.990	0.9975	0.993
waveform	0.540	0.5538	0.380	0.803	0.801	0.8628	0.467	0.5575	0.461	0.717	0.779	<u>0.8665</u>
wind	0.695	0.8821	0.183	0.858	0.9414	0.730	0.526	0.7558	0.205	0.819	0.8812	0.742
speech	0.990	0.915	<u>1.0</u>	0.999	0.995	<u>1.0</u>	<u>0.9943</u>	0.965	0.967	<u>0.9987</u>	0.990	0.998

Table 2: Sign-OPT XGBoost Experiments Results

		OPT L ₂							OPT	ΓL_{∞}		
		PRC-AU	UC		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.992	0.9956	0.867	0.992	0.9952	0.925	0.973	0.9737	0.920	0.9788	0.978	0.968
covtype	1.0	1.0	0.056	1.0	1.0	0.768	1.0	1.0	0.072	1.0	1.0	0.856
cod-rna	0.804	0.716	0.183	0.9808	0.958	0.892	0.8035	0.647	0.234	0.9774	0.953	0.907
diabetes	0.652	0.8434	0.594	0.675	0.8612	0.741	0.8455	0.751	0.699	0.8174	0.745	0.736
Fashion-MNIST	<u>1.0</u>	<u>1.0</u>	0.370	<u>1.0</u>	<u>1.0</u>	0.923	<u>1.0</u>	<u>1.0</u>	0.445	<u>1.0</u>	<u>1.0</u>	0.936
ijenn1	<u>1.0</u>	<u>1.0</u>	0.273	1.0	<u>1.0</u>	0.926	1.0	<u>1.0</u>	0.246	<u>1.0</u>	<u>1.0</u>	0.941
MNIST	1.0	1.0	0.476	1.0	<u>1.0</u>	0.971	1.0	1.0	0.566	1.0	1.0	0.975
MNIST2-6	<u>1.0</u>	<u>1.0</u>	0.996	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>	0.986	<u>1.0</u>	<u>1.0</u>	0.999
sensorless	<u>0.9929</u>	0.974	0.883	<u>0.9998</u>	0.999	0.999	0.9871	0.965	0.877	<u>0.999</u>	0.993	0.998
webspam	1.0	1.0	0.399	1.0	1.0	0.992	1.0	1.0	0.387	1.0	1.0	0.991
electricity	0.774	0.8818	0.248	0.948	0.982	0.887	0.852	0.891	0.286	0.9731	0.960	0.904
drybean	<u>0.9536</u>	0.935	0.848	0.9861	0.969	0.984	0.9396	0.934	0.877	0.964	0.970	0.9869
adult	<u>1.0</u>	<u>1.0</u>	0.076	<u>1.0</u>	<u>1.0</u>	0.791	<u>1.0</u>	<u>1.0</u>	0.058	<u>1.0</u>	<u>1.0</u>	0.702
banknote	<u>0.9893</u>	0.950	0.911	<u>0.9906</u>	0.984	0.976	<u>0.956</u>	0.942	0.876	0.974	0.967	<u>0.9767</u>
gender-by-voice	0.964	0.9943	0.812	0.981	0.9964	0.964	0.976	0.9926	0.842	0.987	0.9951	0.974
waveform	0.538	0.6195	0.392	0.784	0.777	0.8524	0.590	0.6673	0.395	0.819	0.800	0.8813
wind	0.476	0.7908	0.210	0.777	0.9054	0.785	0.423	0.7694	0.176	0.755	0.8653	0.729
speech	0.9917	0.983	0.973	0.9986	0.997	0.998	0.9957	0.799	0.984	0.9996	0.977	1.0

Table 3: OPT XGBoost Experiments Results

		HSJA L ₂							HSJA	$A L_{\infty}$		
	-	PRC-AU	С		ROC-AU	С	-	PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	<u>0.9909</u>	0.988	0.799	0.9905	0.988	0.923	0.982	0.9956	0.934	0.987	<u>0.9958</u>	0.954
covtype	1.0	1.0	0.159	1.0	1.0	0.832	1.0	1.0	0.230	1.0	1.0	0.811
cod-rna	0.8193	0.669	0.107	0.9879	0.926	0.817	0.8389	0.594	0.185	0.9891	0.944	0.847
diabetes	0.7947	0.786	0.522	0.834	0.830	0.708	0.787	0.8219	0.516	0.790	0.8325	0.710
Fashion-MNIST	0.994	0.998	0.235	1.0	1.0	0.881	1.0	0.9997	0.266	1.0	1.0	0.868
ijcnn1	1.0	1.0	0.089	1.0	1.0	0.846	1.0	1.0	0.132	1.0	1.0	0.893
MNIST	1.0	1.0	0.493	1.0	1.0	0.954	1.0	1.0	0.420	1.0	1.0	0.945
MNIST2-6	1.0	1.0	0.965	1.0	1.0	0.998	1.0	1.0	0.972	1.0	1.0	0.998
sensorless	0.8562	0.729	0.839	0.972	0.920	0.9973	0.9175	0.782	0.893	0.990	0.934	0.9984
webspam	0.9859	0.986	0.232	0.9999	1.0	0.986	1.0	1.0	0.212	1.0	1.0	0.984
electricity	0.795	0.9084	0.098	0.962	0.9789	0.824	0.8877	0.853	0.189	0.9841	0.953	0.852
drybean	0.9568	0.943	0.872	0.9826	0.974	0.977	0.9561	0.953	0.846	0.9795	0.979	0.978
adult	1.0	1.0	0.458	1.0	1.0	0.905	1.0	1.0	0.366	1.0	1.0	0.883
banknote	0.8879	0.851	0.742	0.889	0.9017	0.901	0.895	0.901	0.658	0.9265	0.907	0.869
gender-by-voice	0.920	0.9668	0.787	0.952	0.9758	0.962	0.961	0.9882	0.721	0.975	0.9927	0.947
waveform	0.6012	0.592	0.493	0.774	0.768	0.883	0.680	0.692	0.372	0.8323	0.815	0.831
wind	0.763	0.7846	0.309	0.881	0.8814	0.824	0.712	0.8311	0.328	0.870	0.9151	0.789
speech	0.9965	0.994	0.989	0.9993	0.999	0.999	0.996	0.994	0.9995	0.999	0.998	1.0

Table 4: HSJA XGBoost Experiments Results

		Cube L ₂							Cub	e L_{∞}		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.537	0.212	0.7413	0.756	0.591	0.8878	0.869	0.9257	0.303	0.931	0.9665	0.575
covtype	0.9823	0.020	0.045	0.9998	0.649	0.838	1.0	1.0	0.043	1.0	1.0	0.893
cod-rna	0.7678	0.212	0.183	0.985	0.800	0.873	0.8643	0.732	0.343	0.9841	0.944	0.915
diabetes	0.5437	0.458	0.258	0.7935	0.717	0.724	0.567	0.6097	0.532	0.7316	0.667	0.710
Fashion-MNIST	<u>0.9094</u>	0.538	0.098	0.9951	0.798	0.850	0.8929	0.750	0.014	<u>0.9996</u>	0.999	0.903
ijenn1	<u>0.773</u>	0.310	0.246	0.987	0.915	0.905	0.998	0.9998	0.216	<u>1.0</u>	<u>1.0</u>	0.912
MNIST	0.7755	0.263	0.202	<u>0.9846</u>	0.735	0.926	<u>1.0</u>	<u>1.0</u>	0.028	<u>1.0</u>	<u>1.0</u>	0.917
MNIST2-6	0.968	0.9853	0.977	0.990	0.995	<u>0.9979</u>	<u>1.0</u>	<u>1.0</u>	0.987	<u>1.0</u>	<u>1.0</u>	0.999
sensorless	0.8793	0.650	0.595	0.994	0.916	<u>0.9961</u>	<u>1.0</u>	<u>1.0</u>	0.770	<u>1.0</u>	<u>1.0</u>	0.996
webspam	0.9185	0.843	0.297	0.9987	0.984	0.990	<u>0.9994</u>	<u>0.9994</u>	0.390	<u>1.0</u>	<u>1.0</u>	0.990
electricity	0.7746	0.671	0.312	0.9666	0.887	0.904	0.9931	0.986	0.652	<u>0.9996</u>	0.995	0.969
drybean	0.9954	0.987	0.720	<u>0.9996</u>	0.999	0.975	<u>1.0</u>	<u>1.0</u>	0.610	<u>1.0</u>	1.0	0.937
adult	0.944	<u>0.9454</u>	0.315	<u>0.993</u>	0.985	0.941	<u>1.0</u>	<u>1.0</u>	0.551	<u>1.0</u>	<u>1.0</u>	0.998
banknote	0.6201	0.538	0.469	0.971	0.862	0.9893	0.9973	0.9973	0.364	<u>0.9992</u>	0.9992	0.923
gender-by-voice	0.811	0.866	0.663	0.915	0.943	0.9439	<u>1.0</u>	<u>1.0</u>	0.117	<u>1.0</u>	<u>1.0</u>	0.671
waveform	<u>0.9614</u>	0.959	0.426	<u>0.9754</u>	0.969	0.838	<u>1.0</u>	<u>1.0</u>	0.188	<u>1.0</u>	<u>1.0</u>	0.705
wind	1.0	<u>1.0</u>	0.754	1.0	<u>1.0</u>	0.966	1.0	1.0	0.017	<u>1.0</u>	1.0	0.119
speech	-	-	-	-	-	-	-	-	-	-	-	-

Table 5: Cube XGBoost Experiments Results

		Leaf-Tuple L_2							Leaf-Tu	uple L_{∞}		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.9954	0.989	0.921	0.9954	0.988	0.915	0.871	0.835	0.9399	0.893	0.854	0.9356
covtype	0.9962	0.723	0.118	0.9995	0.934	0.761	0.9969	0.783	0.110	0.9999	0.950	0.782
cod-rna	0.932	0.9477	0.540	0.981	0.9822	0.861	0.951	0.97	0.614	0.986	0.9891	0.891
diabetes	0.7227	0.653	0.557	0.7826	0.688	0.685	0.561	0.5782	0.419	0.643	0.6522	0.611
Fashion-MNIST	0.9627	0.948	0.367	0.9891	0.973	0.759	0.9544	0.951	0.393	0.9868	0.978	0.786
ijenn1	0.946	0.9584	0.668	0.984	0.9867	0.906	0.960	0.9711	0.744	0.988	0.9899	0.935
MNIST	0.995	0.9953	0.410	0.9982	0.997	0.773	0.9972	0.997	0.435	0.9993	0.999	0.800
MNIST2-6	0.999	0.9997	0.981	0.999	0.9997	0.989	0.999	0.9995	0.983	0.999	0.9995	0.988
Sensorless	0.9657	0.965	0.889	0.9855	0.985	0.969	0.9712	0.969	0.891	0.9886	0.986	0.956
webspam	1.0	1.0	0.322	1.0	1.0	0.946	1.0	1.0	0.318	1.0	1.0	0.942
electricity	0.987	0.987	0.712	0.9955	0.995	0.925	0.9935	0.992	0.700	0.9976	0.997	0.933
drybean	1.0	1.0	0.836	1.0	1.0	0.963	1.0	1.0	0.807	1.0	1.0	0.952
adult	1.0	1.0	0.982	<u>1.0</u>	1.0	0.999	1.0	1.0	<u>1.0</u>	1.0	1.0	1.0
banknote	0.997	1.0	0.728	0.998	1.0	0.920	1.0	1.0	0.756	1.0	1.0	0.953
gender-by-voice	1.0	1.0	0.947	<u>1.0</u>	1.0	0.986	1.0	1.0	0.922	1.0	1.0	0.974
waveform	1.0	1.0	0.164	1.0	1.0	0.757	1.0	1.0	0.172	1.0	1.0	0.776
wind	1.0	1.0	0.995	1.0	1.0	0.999	1.0	1.0	0.834	1.0	1.0	0.999
speech	1.0	1.0	0.976	1.0	1.0	0.995	1.0	0.9999	0.992	0.9999	0.9999	0.998

Table 6: Leaf-Tuple XGBoost Experiments Results

		Sign-OPT L ₂							Sign-O	PT L_{∞}		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.992	0.983	<u>0.9952</u>	0.992	0.986	0.9962	0.965	0.997	0.997	0.961	0.997	<u>0.9974</u>
covtype	1.0	1.0	0.097	1.0	1.0	0.859	1.0	1.0	0.080	1.0	1.0	0.731
cod-rna	0.9572	0.918	0.248	0.9982	0.995	0.925	0.9266	0.749	0.178	0.996	0.979	0.898
diabetes	0.840	0.8485	0.593	0.8593	0.854	0.764	0.738	0.8493	0.669	0.815	0.8735	0.809
Fashion-MNIST	1.0	1.0	0.147	1.0	1.0	0.919	1.0	1.0	0.223	1.0	1.0	0.943
ijenn1	1.0	1.0	0.375	1.000	1.0	0.972	1.0	1.0	0.390	1.0	1.0	0.958
MNIST	1.0	1.0	0.238	1.0	1.0	0.929	1.0	1.0	0.553	1.0	1.0	0.967
MNIST2-6	1.0	1.0	0.869	1.0	1.0	0.990	1.0	1.0	0.872	1.0	1.0	0.990
sensorless	0.8165	0.735	0.637	0.9842	0.942	0.981	0.973	0.968	0.641	0.9982	0.994	0.975
webspam	1.0	1.0	0.161	1.0	1.0	0.981	1.0	1.0	0.138	1.0	1.0	0.979
electricity	0.939	0.9644	0.295	0.995	0.9975	0.892	0.968	0.9696	0.406	0.9981	0.993	0.917
drybean	0.9808	0.914	0.810	0.9897	0.946	0.987	0.9739	0.948	0.866	0.9945	0.977	0.991
adult	1.0	0.9998	0.227	1.0	1.0	0.863	1.0	1.0	0.300	1.0	1.0	0.910
banknote	0.886	0.9614	0.875	0.941	0.969	0.9809	0.9847	0.982	0.920	0.9888	0.985	0.981
gender-by-voice	0.969	0.9988	0.751	0.986	0.9992	0.946	0.9957	0.989	0.942	0.9976	0.995	0.989
waveform	0.8227	0.756	0.447	0.9182	0.868	0.897	0.787	0.9148	0.516	0.914	0.9552	0.918
wind	0.784	0.9087	0.309	0.943	0.9661	0.897	0.745	0.8765	0.379	0.934	0.9551	0.894
speech	-	-	-	-	-	-	-	-	-	-	-	-

Table 7: Sign-OPT RandomForest Experiments Results

		OPT L ₂							OPT	ΓL_{∞}		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.975	0.9926	0.947	0.982	0.9935	0.973	0.980	0.9932	0.834	0.978	0.9937	0.909
covtype	1.0	1.0	0.127	1.0	1.0	0.868	1.0	1.0	0.114	1.0	1.0	0.807
cod-rna	<u>0.9316</u>	0.927	0.163	<u>0.9977</u>	0.994	0.878	<u>0.9069</u>	0.747	0.148	<u>0.9948</u>	0.973	0.915
diabetes	0.747	0.7514	0.509	0.784	<u>0.8161</u>	0.719	<u>0.8889</u>	0.842	0.545	<u>0.913</u>	0.878	0.701
Fashion-MNIST	<u>1.0</u>	<u>1.0</u>	0.236	<u>1.0</u>	<u>1.0</u>	0.938	<u>1.0</u>	<u>1.0</u>	0.220	<u>1.0</u>	<u>1.0</u>	0.932
ijenn1	<u>1.0</u>	<u>1.0</u> <u>1.0</u> 0.366		<u>1.0</u>	<u>1.0</u>	0.947	<u>1.0</u>	1.0	0.379	<u>1.0</u>	<u>1.0</u>	0.945
MNIST	<u>1.0</u>	<u>1.0</u>	0.555	<u>1.0</u>	<u>1.0</u>	0.971	<u>1.0</u>	<u>1.0</u>	0.484	<u>1.0</u>	<u>1.0</u>	0.961
MNIST2-6	<u>1.0</u>	<u>0.9997</u>	0.859	<u>1.0</u>	<u>1.0</u>	0.989	<u>1.0</u>	<u>1.0</u>	0.800	<u>1.0</u>	<u>1.0</u>	0.977
Sensorless	0.9705	0.911	0.704	<u>0.9978</u>	0.967	0.977	<u>0.9772</u>	0.938	0.694	0.9984	0.973	0.967
webspam	<u>1.0</u>	<u>1.0</u>	0.187	<u>1.0</u>	<u>1.0</u>	0.984	<u>1.0</u>	<u>1.0</u>	0.217	<u>1.0</u>	<u>1.0</u>	0.985
electricity	0.936	<u>0.9646</u>	0.429	0.991	<u>0.9964</u>	0.956	0.975	0.992	0.529	0.997	0.9995	0.976
drybean	0.983	0.917	0.902	<u>0.996</u>	0.958	0.993	<u>0.9779</u>	0.951	0.806	<u>0.9937</u>	0.971	0.984
adult	<u>1.0</u>	<u>1.0</u>	0.398	<u>1.0</u>	<u>1.0</u>	0.918	<u>1.0</u>	<u>1.0</u>	0.278	<u>1.0</u>	<u>1.0</u>	0.864
banknote	0.954	0.9975	0.908	0.968	0.9982	0.982	0.942	0.9504	0.815	0.949	0.964	<u>0.9672</u>
gender-by-voice	0.973	0.995	0.812	0.984	<u>0.9968</u>	0.968	0.985	0.9947	0.950	0.991	<u>0.9967</u>	0.991
waveform	0.8013	0.799	0.447	0.899	0.893	<u>0.9103</u>	0.659	0.6708	0.481	0.826	0.824	0.8952
wind	0.752	0.8612	0.236	0.922	<u>0.9273</u>	0.810	0.740	0.8563	0.354	0.923	0.9465	0.870
speech	-	-	-	-	-	-	-	-	-	-	-	-

Table 8: OPT RandomForest Experiments Results

		HSJA L ₂							HSJ	$A L_{\infty}$		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.986	0.983	0.962	0.9875	0.986	0.984	0.980	0.9974	0.774	0.986	0.9982	0.936
covtype	1.0	<u>1.0</u>	0.230	1.0	<u>1.0</u>	0.835	<u>1.0</u>	1.0	0.245	<u>1.0</u>	1.0	0.853
cod-rna	-	-	-	-	-	-	-	-	-	-	-	-
diabetes	-	-	-	-		-	-	-	-	-	-	-
Fashion-MNIST	0.9999	0.9999	0.248	1.0	<u>1.0</u>	0.943	1.0	1.0	0.240	1.0	1.0	0.943
ijenn1	1.0	1.0	0.224	1.0	1.0	0.902	1.0	1.0	0.237	1.0	1.0	0.887
MNIST	1.0	1.0	0.321	1.0	1.0	0.931	1.0	1.0	0.385	1.0	1.0	0.953
MNIST2-6	1.0	1.0	0.775	1.0	1.0	0.985	1.0	1.0	0.700	1.0	1.0	0.975
sensorless	0.9235	0.777	0.550	0.9934	0.931	0.948	0.8885	0.737	0.430	0.9913	0.919	0.951
webspam	1.0	1.0	0.094	1.0	1.0	0.959	1.0	1.0	0.041	1.0	1.0	0.900
electricity	0.9381	0.931	0.297	0.9935	0.991	0.920	0.947	0.9544	0.290	0.9973	0.989	0.882
drybean	0.9676	0.948	0.874	0.991	0.978	0.989	0.9847	0.984	0.828	0.9974	0.997	0.985
adult	1.0	1.0	0.538	1.0	<u>1.0</u>	0.931	1.0	1.0	0.480	1.0	1.0	0.877
banknote	0.9632	0.874	0.747	0.9642	0.916	0.909	0.943	0.9496	0.774	0.9579	0.955	0.921
gender-by-voice	0.955	0.985	0.724	0.973	0.9882	0.944	0.960	0.9684	0.726	0.975	0.9765	0.930
waveform	0.736	0.704	0.308	0.8824	0.836	0.848	0.7729	0.636	0.397	0.8893	0.821	0.849
wind	0.8744	0.860	0.425	0.9495	0.916	0.852	0.843	0.8597	0.311	0.9519	0.941	0.858
speech	-	-	-	-	-	-	-	-	-	-	-	-

Table 9: HSJA RandomForest Experiments Results

		Cube L ₂							Cube	$e L_{\infty}$		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.435	0.139	0.6983	0.738	0.283	<u>0.9391</u>	1.0	0.932	0.173	<u>1.0</u>	0.979	0.695
covtype	0.7853	0.123	0.106	0.9911	0.710	0.752	1.0	1.0	0.070	1.0	1.0	0.831
cod-rna	0.7844	0.299	0.111	0.9871	0.876	0.815	0.9158	0.833	0.164	0.9955	0.974	0.872
diabetes	0.6343	0.248	0.307	0.9185	0.620	0.750	0.384	0.4718	0.307	0.562	0.6139	0.597
Fashion-MNIST	0.864	0.687	0.149	0.9939	0.898	0.912	0.9947	0.991	0.374	0.9999	1.0	0.954
ijcnn1	0.8503	0.612	0.280	0.9949	0.967	0.883	0.984	1.0	0.120	1.0	1.0	0.870
MNIST	0.9337	0.894	0.335	0.9978	0.972	0.957	1.0	1.0	0.852	1.0	1.0	0.994
MNIST2-6	0.9399	0.933	0.858	0.990	0.971	0.9914	1.0	1.0	0.910	1.0	1.0	0.991
sensorless	0.9066	0.666	0.425	0.9924	0.882	0.947	0.9945	0.988	0.767	0.9998	1.0	0.984
webspam	0.9345	0.735	0.311	0.9984	0.952	0.979	1.0	1.0	0.127	1.0	1.0	0.913
electricity	0.9726	0.914	0.445	0.9978	0.975	0.852	0.9988	0.998	0.095	0.9999	1.0	0.877
drybean	0.938	0.964	0.797	0.9862	0.980	0.964	1.0	1.0	0.838	1.0	1.0	0.990
adult	0.9977	0.995	0.151	0.9999	1.0	0.791	1.0	1.0	0.010	1.0	1.0	0.472
banknote	0.9316	0.865	0.504	0.9853	0.964	0.957	0.944	1.0	0.176	0.996	1.0	0.927
gender-by-voice	0.8822	0.839	0.481	0.9799	0.965	0.941	1.0	1.0	0.347	1.0	1.0	0.869
waveform	0.954	0.9535	0.226	0.9739	0.973	0.799	1.0	1.0	0.083	1.0	1.0	0.542
wind	-	-	-	-	-	-	- 1	-	-	-	-	-
speech	-	-	-	-	-	-	-	-	-	-	-	-

Table 10: Cube RandomForest Experiments Results

		Leaf-Tuple L_2							Leaf-Tu	uple L_{∞}		
		PRC-AU	С		ROC-AU	С		PRC-AU	С		ROC-AU	С
Dataset	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score	New	Original	OC-score
breast-cancer	0.971	<u>0.9964</u>	0.939	0.972	0.9964	0.947	0.995	0.9964	0.872	0.995	0.9965	0.922
covtype	-	-	-	l -	-	-	-	-	-	-	-	-
cod-rna	0.988	0.9895	0.581	0.997	0.997	0.891	0.993	0.9953	0.693	0.998	0.9987	0.940
diabetes	-	-	-	-	-	-	-	-	-	-	-	-
Fashion-MNIST	0.8023	0.578	0.033	0.9918	0.878	0.688	0.8884	0.693	0.021	0.9916	0.849	0.602
ijenn1	0.9939	0.994	0.912	0.9983	0.998	0.982	0.990	0.9929	0.931	0.997	0.998	0.988
MNIST	0.7772	0.423	0.023	0.986	0.885	0.625	0.8996	0.840	0.108	0.9883	0.934	0.860
MNIST2-6	0.996	0.999	0.962	0.996	0.999	0.973	0.998	0.9989	0.976	0.998	0.9989	0.987
Sensorless	0.6531	0.171	0.030	0.9801	0.709	0.772	0.9427	0.799	0.042	0.9938	0.931	0.677
webspam	1.0	1.0	0.731	1.0	1.0	0.978	1.0	1.0	0.602	1.0	1.0	0.978
electricity	0.999	0.9997	0.822	1.0	0.9999	0.976	0.996	0.999	0.828	0.999	0.9997	0.947
drybean	1.0	1.0	0.503	1.0	1.0	0.946	1.0	1.0	0.636	1.0	1.0	0.946
adult	1.0	1.0	0.469	1.0	1.0	0.991	1.0	1.0	0.812	1.0	1.0	0.995
banknote	1.0	1.0	0.805	1.0	1.0	0.977	1.0	1.0	0.544	1.0	1.0	0.893
gender-by-voice	1.0	1.0	0.892	1.0	1.0	0.981	1.0	1.0	0.867	1.0	1.0	0.968
waveform	1.0	1.0	0.298	1.0	1.0	0.869	1.0	1.0	0.347	1.0	1.0	0.922
wind	1.0	1.0	0.366	1.0	1.0	0.950	1.0	1.0	0.451	1.0	1.0	0.986
speech	-	-	-	i -	-	-	-	-	-	-	- 1	-

Table 11: Leaf-Tuple RandomForest Experiments Results

D APPENDIX D - ADVERSARIAL SAMPLES INFORMATION

In the following tables, we calculated several statistics about the perturbations generated in our various experiments split by target model type and attack method. Interesting behaviors we noticed:

- We can see that for SignOPT and OPT attacks in all of the experiments, a perturbation was applied to all of the features (max features changed is equal to the mean, which is also equal to the number of features for each dataset).
- The mean perturbation size for datasets adult and drybean seem very high for attack methods HopSkipJumpAttack, Cube, and LeafTuple.

		Sign-OPT L_2			Sign-OPT L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed	Mean L ₂ perturbation	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $ perturbation
breast-cancer	10	10.0	0.3148	10	10.0	0.2514
covtype	54	54.0	0.058	54	54.0	0.0433
cod-ma	8	8.0	0.0405	8	8.0	0.0366
diabetes	8	8.0	0.0567	8	8.0	0.0604
Fashion-MNIST	784	784.0	0.0514	784	784.0	0.0423
ijenn l	22	22.0	0.0425	22	22.0	0.0419
MNIST	784	784.0	0.06	784	784.0	0.048
Sensorless	48	48.0	0.0168	48	48.0	0.0194
webspam	254	254.0	0.0051	254	254.0	0.0065
MNIST 2 vs. 6	784	784.0	0.2907	784	784.0	0.2869
electricity	8	8.0	0.01	8	8.0	0.0072
drybean	16	16.0	0.0176	16	16.0	0.0103
adult	14	14.0	0.93	14	14.0	0.745
banknote	4	4.0	1.6709	4	4.0	1.7985
gender-by-voice	20	20.0	0.0243	20	20.0	0.0296
waveform	40	40.0	0.8176	40	40.0	0.7742
wind	14	14.0	1.1833	14	14.0	0.8493
speech	400	400.0	1.6003	400	400.0	1,1995

D.1 XGBOOST PERTURBATION STATISTICS

Table 12: XGBoost Sign-OPT perturbations statistics

		OPT L_2		OPT L_{∞}			
Dataset name	Max #feature changed	Mean #feature changed	Mean $ L_2 $	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $	
breast-cancer	10	10.0	0.2288	10	10.0	0.2274	
covtype	54	54.0	0.0568	54	54.0	0.0494	
cod-rna	8	8.0	0.0436	8	8.0	0.039	
diabetes	8	8.0	0.0462	8	8.0	0.0613	
Fashion-MNIST	784	784.0	0.0973	784	784.0	0.1023	
ijenn1	22	22.0	0.0519	22	22.0	0.0418	
MNIST	784	784.0	0.089	784	784.0	0.1551	
sensorless	48	48.0	0.0201	48	48.0	0.0233	
webspam	254	254.0	0.0132	254	254.0	0.0095	
MNIST 2 vs. 6	784	784.0	0.2615	784	784.0	0.4055	
electricity	8	8.0	0.0081	8	8.0	0.0107	
drybean	16	16.0	0.0069	16	16.0	0.0481	
adult	14	14.0	0.8486	14	14.0	0.7598	
banknote	4	4.0	1.8506	4	4.0	1.3701	
gender-by-voice	20	20.0	0.0288	20	20.0	0.0294	
waveform	40	40.0	0.8439	40	40.0	0.7449	
wind	14	14.0	0.886	14	14.0	0.876	
speech	400	400.0	1.3453	400	400.0	1.6119	

Table 13: XGBoost OPT perturbations statistics

		HSJA L_2			HSJA L_∞	
Dataset name	Max #feature changed	Mean #feature changed	Mean $ L_2 $	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $
breast-cancer	10	9.8537	0.3335	10	9.8049	0.2454
covtype	53	43.42	0.1805	52	43.49	0.199
cod-rna	8	7.98	0.0854	8	8.0	0.1099
diabetes	8	7.9091	0.0546	8	7.8235	0.0668
Fashion-MNIST	773	736.66	1.8948	776	740.18	3.2664
ijenn1	22	20.09	0.0961	22	19.95	0.1031
MNIST	768	707.41	4.0607	762	705.16	1.0578
sensorless	48	48.0	0.0669	48	48.0	0.0747
webspam	253	231.35	0.1992	253	233.32	0.4914
MNIST 2 vs. 6	769	709.69	14.8869	763	723.38	38.2944
electricity	8	7.78	0.0199	8	7.88	0.0185
drybean	16	14.46	1683.5416	16	14.45	2061.8314
adult	14	13.31	95.9496	14	13.42	383.9427
banknote	4	4.0	4.3192	4	4.0	4.3699
gender-by-voice	20	19.85	0.0441	20	19.79	0.046
waveform	40	40.0	4.5889	40	39.96	4.7256
wind	14	13.8	7.9845	14	13.77	9.142
speech	400	400.0	66.9408	400	400.0	86.5313

Table 14: XGBoost HSJA perturbations statistics

		Cube L_2			Cube L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed		Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $
breast-cancer	4	2.7778	0.3549	10	9.1875	0.6094
covtype	6	2.52	0.0556	39	31.66	0.0592
cod-rna	6	2.92	0.0657	8	7.77	0.1299
diabetes	4	2.2	0.0398	8	7.0	0.0687
Fashion-MNIST	79	16.05	0.0172	658	555.6	0.0154
ijenn1	10	4.02	0.071	21	16.3	0.0389
MNIST	31	11.2344	0.0087	485	445.4375	0.0055
sensorless	26	3.9259	0.0065	48	45.77	0.0049
webspam	18	9.44	0.0032	193	165.21	0.0038
MNIST 2 vs. 6	55	25.69	0.1066	537	478.7344	0.1532
electricity	8	3.26	1.9474	8	7.6	3.1336
drybean	12	4.3333	35279.2292	16	12.93	65949.48
adult	11	6.1042	168527.4792	14	11.9667	178961.0333
banknote	3	1.6	3.2732	4	3.9474	5.7962
gender-by-voice	14	3.8788	2.9815	20	19.7368	46.5609
waveform	25	7.94	3.8412	40	39.3085	4.509
wind	14	5.7111	39.8756	14	13.9167	68.9444
speech	-	-	-	-	-	-

Table 15:	XGBoost	Cube	perturbations	statistics
-----------	---------	------	---------------	------------

		Leaf-Tuple L_2		Leaf-Tuple L_{∞}			
Dataset name	Max #feature changed	Mean #feature changed	Mean L ₂	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $	
breast-cancer	8	5.85	0.2015	10	6.1282	0.228	
covtype	7	2.717	0.044	9	3.7392	0.0404	
cod-rna	8	7.9905	0.0399	8	7.9832	0.035	
diabetes	7	4.25	0.048	7	4.6296	0.0556	
Fashion-MNIST	703	420.8461	0.8065	715	429.9784	0.8169	
ijenn1	12	11.999	0.0385	12	12.0	0.0338	
MNIST	357	179.9864	0.8689	301	181.6677	0.8722	
sensorless	16	4.2944	0.0244	20	6.2854	0.0209	
webspam	34	17.6316	0.4336	31	18.2457	0.4364	
MNIST 2 vs. 6	324	196.8853	0.8665	297	193.2404	0.8729	
electricity	7	2.8221	2.9138	7	3.5814	3.0857	
drybean	16	16.0	39343.4913	16	15.9892	36040.6187	
adult	13	11.179	188393.0498	12	10.9213	198588.9907	
banknote	4	2.4746	4.2745	4	2.9167	4.4112	
gender-by-voice	20	18.1538	55.5696	20	18.3013	31.3279	
waveform	24	19.3467	3.9899	29	22.764	4.0157	
wind	14	13.7389	67.9944	14	13.8936	68.1223	
speech	99	69.6374	2.3355	100	71.9725	2.37	

Table 16: XGBoost Leaf-Tuple perturbations statistics

		Sign-OPT L_2			Sign-OPT L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed	Mean L ₂ perturbation	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $ perturbation
breast-cancer	10	10.0	0.3264	10	10.0	0.2304
covtype	54	54.0	0.0682	54	54.0	0.0699
cod-rna	8	8.0	0.0537	8	8.0	0.0514
diabetes	8	8.0	0.0845	8	8.0	0.0839
Fashion-MNIST	784	784.0	0.0358	784	784.0	0.0258
ijenn l	22	22.0	0.0776	22	22.0	0.059
MNIST	784	784.0	0.0161	784	784.0	0.0105
sensorless	48	48.0	0.018	48	48.0	0.0236
webspam	254	254.0	0.0032	254	254.0	0.0019
MNIST 2 vs. 6	784	784.0	0.2535	784	784.0	0.076
electricity	8	8.0	0.0189	8	8.0	0.0177
drybean	16	16.0	0.0145	16	16.0	0.0119
adult	14	14.0	0.96	14	14.0	1.115
banknote	4	4.0	1.5134	4	4.0	1.4708
gender-by-voice	20	20.0	0.0294	20	20.0	0.027
waveform	40	40.0	0.9492	40	40.0	0.7961
wind	14	14.0	1.1805	14	14.0	1.1561
speech	-	_	-	-	-	-

D.2 RANDOMFOREST PERTURBATION STATISTICS

Table 17: RandomForest Sign-OPT perturbations statistics

		OPT L_2			OPT L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed	Mean $ L_2 $	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $
breast-cancer	10	10.0	0.3403	10	10.0	0.2835
covtype	54	54.0	0.0691	54	54.0	0.0675
cod-rna	8	8.0	0.0604	8	8.0	0.0599
diabetes	8	8.0	0.0976	8	8.0	0.0989
Fashion-MNIST	784	784.0	0.0459	784	784.0	0.0444
ijenn1	22	22.0	0.0665	22	22.0	0.0641
MNIST	784	784.0	0.0253	784	784.0	0.0126
sensorless	48	48.0	0.0403	48	48.0	0.0266
webspam	254	254.0	0.0028	254	254.0	0.0027
MNIST 2 vs. 6	784	784.0	0.1705	784	784.0	0.1734
electricity	8	8.0	0.0214	8	8.0	0.0185
drybean	16	16.0	0.0239	16	16.0	0.0247
adult	14	14.0	0.9111	14	14.0	0.785
banknote	4	4.0	1.5897	4	4.0	1.5036
gender-by-voice	20	20.0	0.0308	20	20.0	0.0271
waveform	40	40.0	1.0321	40	40.0	0.8934
wind	14	14.0	1.3465	14	14.0	0.9985
speech	-	-	-	-	-	-

Table 18: RandomForest OPT perturbations statistics

		HSJA L_2			HSJA L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed	Mean $ L_2 $	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $
breast-cancer	10	9.3714	0.4717	10	9.5926	0.6591
covtype	50	43.42	0.2901	54	43.36	0.2679
cod-rna	-	-	-	-	-	-
diabetes	-	-	-	-	-	-
Fashion-MNIST	783	724.22	3.6077	766	720.79	0.9142
ijenn1	22	19.98	0.1871	22	20.0	0.2578
MNIST	756	672.46	0.5509	753	669.0	0.5491
sensorless	48	48.0	0.089	48	48.0	0.0641
webspam	246	219.8	0.1553	254	218.81	0.1238
MNIST 2 vs. 6	768	667.37	9.4532	763	692.16	1.8106
electricity	8	7.79	0.039	8	7.83	0.031
drybean	16	14.86	3.2014	16	14.55	4.4453
adult	14	13.15	9.2404	14	13.19	6.6426
banknote	4	4.0	3.7265	4	4.0	3.035
gender-by-voice	20	19.78	0.0537	20	19.79	0.0457
waveform	40	40.0	4.6663	40	39.98	3.8479
wind	14	13.67	10.386	14	13.76	7.8599
speech	-	-	-	-	-	-

Table 19: RandomForest HSJ	A perturbations statistics
----------------------------	----------------------------

		Cube L_2			Cube L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed	Mean $ L_2 $	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $
breast-cancer	7	2.5556	0.3326	10	9.2857	0.5759
covtype	6	1.44	0.1144	42	32.34	0.1195
cod-rna	6	2.03	0.0979	8	7.77	0.1724
diabetes	3	1.75	0.1375	8	7.2381	0.124
Fashion-MNIST	22	8.66	0.0348	715	552.09	0.0251
ijenn1	7	2.47	0.094	21	15.83	0.0804
MNIST	12	3.91	0.0122	563	461.19	0.0131
sensorless	9	2.56	0.0306	48	44.74	0.0235
webspam	7	2.83	0.0043	203	164.43	0.0042
MNIST 2 vs. 6	16	7.03	0.1644	581	472.78	0.1066
electricity	5	1.6	0.0972	8	7.74	3.3875
drybean	9	2.68	3976.0933	16	15.66	53221.8
adult	2	1.27	9019.91	12	11.24	186698.07
banknote	3	2.0	5.9102	4	4.0	4.8118
gender-by-voice	15	4.8636	2.4741	20	19.6341	27.7117
waveform	30	9.2778	3.8403	40	34.6364	4.5004
wind	-	-	-	-	-	-
speech	-	-	-	-	-	-

Table 20: RandomForest Cube perturbations statistics

		Leaf-Tuple L_2			Leaf-Tuple L_{∞}	
Dataset name	Max #feature changed	Mean #feature changed	Mean L ₂	Max #feature changed	Mean #feature changed	Mean $ L_{\infty} $
breast-cancer	10	6.3902	0.2507	9	5.8095	0.2807
covtype	-	-	-	-	-	-
cod-rna	8	7.9845	0.0558	8	7.9922	0.0557
diabetes	-	-	-	-	-	-
Fashion-MNIST	655	424.3636	0.8172	666	379.701	0.0023
ijenn1	12	12.0	0.051	12	12.0	0.0568
MNIST	276	184.2766	0.8699	303	184.1649	0.8457
sensorless	2	1.0385	0.0002	3	1.1168	0.0001
webspam	23	11.7593	0.4215	28	13.0909	0.4181
MNIST 2 vs. 6	324	190.5356	0.8724	324	191.279	0.8709
electricity	6	2.7642	3.0778	7	3.5	3.1415
drybean	16	16.0	51659.5417	16	16.0	50043.6164
adult	12	10.5597	199668.9416	12	10.7183	192389.8652
banknote	4	2.8361	5.1703	4	3.1034	5.3954
gender-by-voice	19	18.1154	34.3206	20	18.1325	32.0345
waveform	23	17.78	4.1968	25	18.5915	4.4844
wind	14	13.7556	67.8056	14	13.733	68.983
speech	-	-	-	-	-	-

Table 21: RandomForest Leaf-Tuple perturbations statistics

E APPENDIX E - DETECTOR ABLATION STUDY

We wanted to investigate how three aspects of our detector affect our metrics results:

- 1. The dimensions of our new representations (for the samples and for the nodes).
- 2. The machine learning classifier that was chosen as the final adversarial detector.
- 3. Key hyperparameters of the final adversarial detector.

To do our tests, we took two different experiments and showed their results:

- XGBoost target with codrna dataset and OPT attack method.
- RandomForest target with sensorless dataset and HopSkipJumpAttack attack method.

Each one of the above with the two different norms.

E.1 DIFFERENT CLASSIFIER & HYPERPARAMETERS

We checked three different classifiers as our models for our adversarial evasion attack detector: XGBoost, RandomForest, and K-nearest neighbors (KNN). For the tree ensemble classifiers, we checked how much the number of estimators and their depth impacts the performance of the detector. For the KNN classifier, we tested the results with different values of K.

E.1.1 XGBOOST DETECTOR HYPERPARAMETERS

As we can see from the results in Figures 13, 14, 15, and 16 that in general the number of estimators has a large impact on both ROC-AUC and on PR-AUC until a certain point which is around 50 estimators and above usually there is improvements, but relatively smaller. In most cases, the maximum depth of the trees has a very light impact on the results when the number of estimators is 50 or more.

Figure 13: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with different hyperparameters. Target: XGBoost, dataset: codrna, attack method: OPT, norm: 2.

Figure 14: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with different hyperparameters. Target: XGBoost, dataset: codrna, attack method: OPT, norm: ∞

Figure 15: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with different hyperparametrs. Target: RandomForest, dataset: sensorless, attack method: HopSkipJumpAt-tack, norm: 2

Figure 16: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with different hyperparameters. Target: RandomForest, dataset: sensorless, attack method: HopSkipJumpAttack, norm: ∞

E.1.2 RANDOMFOREST

As we can see from the results in Figures 17, 18, 19, and 20 that in general the number of estimators and the maximum depth of the trees has a large impact on both ROC-AUC and on PR-AUC. In

experiments with hyperparameters similar to our XGBoost experiments both ROC-AUC and PR-AUC is lower.

Figure 17: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier with different hyperparametrs. Target: XGBoost, dataset: codrna, attack method: OPT, norm: 2

Figure 18: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier with different hyperparameters. Target: XGBoost, dataset: codrna, attack method: OPT, norm: ∞

Figure 19: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier with different hyperparameters. Target: RandomForest, dataset: sensorless, attack method: Hop-SkipJumpAttack, norm: 2

Figure 20: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier with different hyperparameters. Target: RandomForest, dataset: sensorless, attack method: Hop-SkipJumpAttack, norm: ∞

E.1.3 KNN

We tested KNN performance with different Ks to investigate how much it changed the detector performance metrics and compared it to the results we got in our original experiments. We used KNN based on Facebook AI fast similarity search (Johnson et al., 2019) implemented in DESlib (Cruz et al., 2020) due to time consideration for cases where the feature count is relatively high. In Figures 21 and 22 we can see a comparison of ROC-AUC and PR-AUC of KNN classifier with different values of k neighbors. Additionally, added the performance of KNN on the original representation of the dataset and the metric values of the original experiments done with our new method with XGBoost classifier as the detector. In all of the experiments, we can see the relative stability of the values with different K values. Additionally, the metric values with the XGBoost classifier are higher.

Figure 21: KNN classifier adversarial detector performance. Attack: OPT — Dataset: codrna.

Figure 22: KNN classifier adversarial detector performance. Attack: HopSkipJumpAttack — Dataset: sensorless

E.2 EMBEDDINGS DIMENSIONS

Here we tested how much the embedding dimension might affect the performance of our detector. We have two different embeddings - for the samples and for the nodes. In Figures 23, 24, 25, and 26 we can see heatmaps for compare the performance with different embedding size. The general pattern from the heatmaps in Figures 23 and 24 is that as our sample hidden size is larger and the node hidden size is lower the results are better. In Figures 25 and 26 we don't see that pattern.

Figure 23: Performance of different samples and nodes embedding sizes. Target: XGBoost, dataset: codrna, attack method: OPT, norm: 2

Figure 24: Performance of different samples and nodes embedding sizes. Target: XGBoost, dataset: codrna, attack method: OPT, norm: ∞

Figure 25: Performance of different samples and nodes embedding sizes. Target: RandomForest, dataset: sensorless, attack method: HSJA, norm: 2

Figure 26: Performance of different samples and nodes embedding sizes. Target: RandomForest, dataset: sensorless, attack method: HSJA, norm: ∞

F APPENDIX F - TREE ENSEMBLE HYPERPARAMETERS

We used tree ensembles for two tasks: the target model to extract adversarial samples and the base for the adversarial detector. For the target model, we used 40 estimators with a max depth of 5 for both XGBoost and Random forest. For the rest of the hyperparameters, we used the default values set in the XGBoost library package version 1.6.1. To train the adversarial detector, we used the default parameters for XGBoost and RandomForest set in the XGBoost library package version 1.6.1.

G APPENDIX G - TREE MODEL'S PERFORMANCE USING LESS DATA

A potential issue in our method is that we reduce the available data used to train the model; thus, the model performance might be affected. As part of our method, we split each dataset we experimented on into several subsets for different roles described in Subsection 4.1 and Appendix H. We took the original representation of the datasets and compared the trained models from our experiments to a new version of the model trained on all data besides the test set. Below, we can see in Figure 27 a comparison between the ROC-AUC of the model trained on our split version of the dataset (Y-axis) to the same model trained on more data (X-axis) on the test sets. As we can see, there is a decrease in performance most of the time, but most of the degradation is minor. For a complete description of the numbers in every experiment, refer to Tables 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

Figure 27: A comparison between our method models' ROC-AUC on the test set compared to a model trained with the same hyperparameters but with more data which we use in our method to train the representations and detector.

		Sign-OPT L_2		Sign-OPT L_{∞}			
Dataset	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	Splitted Dataset	Original Dataset	$\Delta \text{ROC-AUC}$	
breast_cancer	0.9958	0.9975	0.0017	1.0	0.9989	-0.0011	
covtype	0.9843	0.9865	0.0022	0.9847	0.9868	0.0021	
codrna	0.9928	0.994	0.0012	0.9928	0.994	0.0012	
diabetes	0.7706	0.8154	0.0448	0.8108	0.8075	-0.0033	
fashion	0.9903	0.9924	0.0021	0.9899	0.9925	0.0026	
ijcnn1	0.9954	0.9961	0.0007	0.9951	0.9962	0.0011	
mnist	0.9991	0.9997	0.0006	0.9991	0.9997	0.0006	
mnist26	0.9995	0.9999	0.0004	0.9997	0.9999	0.0002	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.9989	0.9992	0.0003	0.9989	0.9992	0.0003	
electricity	0.9614	0.9783	0.0169	0.9579	0.9782	0.0203	
drybean	0.9957	0.9964	0.0007	0.9941	0.9953	0.0012	
adult	0.913	0.9254	0.0124	0.9149	0.9235	0.0086	
banknote	1.0	0.9992	-0.0008	0.9983	1.0	0.0017	
voice	0.9957	0.9992	0.0035	0.9806	0.9817	0.0011	
waveform	0.962	0.9847	0.0227	0.9274	0.9322	0.0048	
wind	0.9301	0.9391	0.009	0.9294	0.9424	0.013	
speech	0.959	0.9126	-0.0464	0.4699	0.9208	0.4509	

Table 22: Sign-OPT XGBoost Experiments - ROC-AUC Degradation

	OPT L_2			OPT L_{∞}		
Dataset	Splitted Dataset	Original Dataset	$\Delta \text{ROC-AUC}$	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$
breast_cancer	0.9958	0.9969	0.0011	0.9978	0.9978	0.0
covtype	0.9846	0.9868	0.0022	0.9845	0.9864	0.0019
codrna	0.9926	0.9939	0.0013	0.9929	0.9941	0.0012
diabetes	0.7669	0.8217	0.0548	0.8103	0.8055	-0.0048
fashion	0.99	0.9924	0.0024	0.9903	0.9926	0.0023
ijcnn1	0.9942	0.996	0.0018	0.9941	0.9959	0.0018
mnist	0.9992	0.9997	0.0005	0.9992	0.9997	0.0005
mnist26	0.9997	0.9999	0.0002	0.9997	0.9999	0.0002
sensorless	1.0	1.0	0.0	1.0	1.0	0.0
webspam	0.9989	0.9992	0.0003	0.999	0.9993	0.0003
electricity	0.9529	0.9767	0.0238	0.9546	0.9735	0.0189
drybean	0.9945	0.9967	0.0022	0.9951	0.9967	0.0016
adult	0.9191	0.9291	0.01	0.8808	0.8952	0.0144
banknote	1.0	1.0	0.0	1.0	1.0	0.0
voice	0.9986	0.9997	0.0011	1.0	1.0	0.0
waveform	0.9287	0.9341	0.0054	0.9662	0.9777	0.0115
wind	0.9258	0.9395	0.0137	0.9171	0.9336	0.0165
speech	0.6603	0.8665	0.2062	0.8167	0.8467	0.03

Table 23: OPT XGBoost Experiments - ROC-AUC Degradation

	HSJA L_2			HSJA L_∞			
Dataset	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	Splitted Dataset	Original Dataset	$ \Delta \text{ROC-AUC} $	
breast_cancer	0.9994	0.9969	-0.0025	0.9997	0.9989	-0.0005	
covtype	0.9851	0.9856	0.0005	0.9843	0.9867	0.0024	
codrna	0.9929	0.9941	0.0012	0.9927	0.9939	0.0012	
diabetes	0.7996	0.8215	0.0219	0.8119	0.82	0.0204	
fashion	0.99	0.9925	0.0025	0.9901	0.9926	0.0025	
ijenn1	0.9949	0.9956	0.0007	0.9945	0.9959	0.0014	
mnist	0.9991	0.9997	0.0006	0.9992	0.9997	0.0005	
mnist26	0.9996	0.9999	0.0003	0.9998	0.9999	0.0001	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.9989	0.9992	0.0003	0.9989	0.9992	0.0003	
electricity	0.9526	0.9733	0.0207	0.9567	0.98	0.0233	
$dry_b ean$	0.9924	0.9949	0.0025	0.9939	0.9956	0.0017	
adult	0.9103	0.9196	0.0093	0.915	0.9328	0.0178	
banknote	0.9966	1.0	0.0034	1.0	1.0	0.0	
voice	0.994	0.996	0.002	0.9986	0.9995	0.0009	
waveform	0.9605	0.9627	0.0022	0.9466	0.9574	0.0108	
wind	0.9246	0.9282	0.0036	0.9347	0.9463	0.0116	
speech	0.7473	0.7711	0.0238	0.8587	1.0	0.1413	

Table 24: HSJA XGBoost Experiments - ROC-AUC Degradation

	Cube L_2			Cube L_{∞}			
Dataset	Splitted Dataset	Original Dataset	$\Delta \text{ROC-AUC}$	Splitted Dataset	Original Dataset	Δ ROC-AUC	
breast_cancer	0.9997	0.998	-0.0017	0.9964	0.9966	0.0002	
covtype	0.9852	0.9873	0.0021	0.9847	0.9862	0.0015	
codrna	0.9928	0.994	0.0012	0.9929	0.9941	0.0012	
diabetes	0.7477	0.8268	0.0791	0.7765	0.8072	0.0307	
fashion	0.9903	0.9925	0.0022	0.99	0.9927	0.0027	
ijcnn1	0.9948	0.9959	0.0011	0.9945	0.9959	0.0014	
mnist	0.9992	0.9997	0.0005	0.9992	0.9997	0.0005	
mnist26	0.9997	1.0	0.0003	0.9995	0.9999	0.0004	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.9989	0.9993	0.0004	0.9989	0.9993	0.0004	
electricity	0.9619	0.9801	0.0182	0.9528	0.9746	0.0218	
drybean	0.9935	0.9951	0.0016	0.9942	0.9956	0.0014	
adult	0.9153	0.9263	0.011	0.9142	0.9302	0.016	
banknote	1.0	1.0	0.0	1.0	1.0	0.0	
voice	1.0	1.0	0.0	0.9949	0.9973	0.0024	
waveform	0.9475	0.9599	0.0124	0.9581	0.9612	0.0031	
wind	0.9373	0.9451	0.0078	0.9425	0.937	-0.0055	
speech	-	-	-	-	-	-	

Table 25: Cube XGBoost Experiments - ROC-AUC Degradation

	Leaf-Tuple L_2				Leaf-Tuple L_{∞}	
Dataset	Splitted Dataset	Original Dataset	$\Delta \text{ROC-AUC}$	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$
breast_cancer	0.9986	0.9978	-0.0008	0.9961	0.9972	0.0011
covtype	0.9845	0.9868	0.0023	0.9842	0.9869	0.0027
codrna	0.993	0.994	0.001	0.9928	0.9939	0.0011
diabetes	0.7662	0.8114	0.0452	0.7695	0.8298	0.0603
fashion	0.9902	0.9923	0.0021	0.99	0.9925	0.0025
ijenn1	0.9953	0.9963	0.001	0.9944	0.9963	0.0019
mnist	0.9992	0.9997	0.0005	0.9992	0.9997	0.0005
mnist26	0.9997	0.9999	0.0002	0.9997	0.9999	0.0002
sensorless	1.0	1.0	0.0	1.0	1.0	0.0
webspam	0.9989	0.9993	0.0004	0.999	0.9993	0.0003
electricity	0.9553	0.9726	0.0173	0.9509	0.9732	0.0223
drybean	0.9956	0.9962	0.0006	0.9962	0.9963	0.0001
adult	0.9161	0.928	0.0119	0.9004	0.9147	0.0143
banknote	1.0	1.0	0.0	1.0	1.0	0.0
voice	0.9914	0.9971	0.0057	0.9919	0.9948	0.0029
waveform	0.9598	0.9716	0.0118	0.9487	0.9556	0.0069
wind	0.9328	0.9529	0.0201	0.9215	0.9434	0.0219
speech	0.5328	0.8716	0.3388	0.6808	0.8616	0.1808

Table 26: Leaf-Tuple XGBoost Experiments - ROC-AUC Degradation

	Sign-OPT L_2			Sign-OPT L_{∞}			
Dataset	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	
breast_cancer	0.9952	0.9972	0.002	0.9965	0.9975	0.001	
covtype	0.9841	0.9862	0.0021	0.9844	0.9864	0.002	
codrna	0.9926	0.994	0.0014	0.9929	0.994	0.0011	
diabetes	0.7954	0.8083	0.0129	0.7848	0.8162	0.0314	
fashion	0.9904	0.9924	0.002	0.9901	0.9925	0.0024	
ijenn1	0.9946	0.9964	0.0018	0.9956	0.9958	0.0002	
mnist	0.9993	0.9997	0.0004	0.9992	0.9997	0.0005	
mnist26	0.9995	0.9999	0.0004	0.9997	0.9999	0.0002	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.9989	0.9993	0.0004	0.9989	0.9993	0.0004	
electricity	0.9525	0.9741	0.0216	0.9541	0.9776	0.0235	
drybean	0.9968	0.9967	-0.0001	0.9946	0.9952	0.0006	
adult	0.9037	0.9209	0.0172	0.9146	0.9218	0.0072	
banknote	1.0	1.0	0.0	1.0	1.0	0.0	
voice	0.9894	0.9975	0.0081	0.9921	0.993	0.0009	
waveform	0.957	0.98	0.023	0.9535	0.9748	0.0213	
wind	0.9179	0.9196	0.0017	0.9176	0.9366	0.019	
speech	-	-	-	-	-	-	

Table 27: Sign-OPT RandomForest Experiments - ROC-AUC Degradation

	OPT L_2			OPT L_{∞}		
Dataset	Splitted Dataset	Original Dataset	Δ ROC-AUC	Splitted Dataset	Original Dataset	Δ ROC-AUC
breast_cancer	0.9992	0.9972	-0.002	0.9994	0.9975	-0.0019
covtype	0.9844	0.9868	0.0024	0.9851	0.9867	0.0016
codrna	0.9929	0.994	0.0011	0.9928	0.9941	0.0013
diabetes	0.7532	0.8033	0.0501	0.8241	0.8033	-0.0208
fashion	0.9903	0.9924	0.0021	0.9902	0.9924	0.0022
ijenn1	0.9943	0.9958	0.0015	0.9958	0.996	0.0002
mnist	0.9993	0.9997	0.0004	0.9992	0.9997	0.0005
mnist26	0.9998	0.9999	0.0001	0.9997	0.9999	0.0002
sensorless	1.0	1.0	0.0	1.0	1.0	0.0
webspam	0.999	0.9992	0.0002	0.9989	0.9992	0.0003
electricity	0.9595	0.9787	0.0192	0.9502	0.971	0.0208
drybean	0.9949	0.9958	0.0009	0.9962	0.9969	0.0007
adult	0.9147	0.9307	0.016	0.9106	0.9207	0.0101
banknote	1.0	1.0	0.0	1.0	1.0	0.0
voice	0.999	1.0	0.001	0.996	0.999	0.003
waveform	0.9652	0.9705	0.0053	0.9442	0.9519	0.0077
wind	0.9389	0.9436	0.0047	0.9452	0.9553	0.0101
speech	-	-	-	-	-	-

Table 28: OPT RandomForest Experiments - ROC-AUC Degradation

	HSJA L_2			HSJA L_{∞}			
Dataset	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	
breast_cancer	0.998	0.9975	-0.0005	0.9997	0.9983	-0.0014	
covtype	0.9843	0.9865	0.0022	0.9847	0.9865	0.0018	
codrna	-	-	-	-	-	-	
diabetes	-	-	-	-	-	-	
fashion	0.9903	0.9925	0.0022	0.9901	0.9925	0.0024	
ijenn1	0.9944	0.9963	0.0019	0.9951	0.9955	0.0004	
mnist	0.9992	0.9997	0.0005	0.9992	0.9997	0.0005	
mnist26	0.9995	1.0	0.0005	0.9997	0.9999	0.0002	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.9989	0.9992	0.0003	0.9989	0.9992	0.0003	
electricity	0.9575	0.9736	0.0161	0.957	0.976	0.019	
$dry_b ean$	0.995	0.995	0.0	0.9943	0.9964	0.0021	
adult	0.9049	0.9154	0.0105	0.8973	0.9133	0.016	
banknote	0.9966	1.0	0.0034	1.0	1.0	0.0	
voice	1.0	1.0	0.0	0.999	1.0	0.001	
waveform	0.9412	0.9548	0.0136	0.9329	0.945	0.0121	
wind	0.9345	0.9432	0.0087	0.9292	0.9321	0.0029	
speech	-	-	-	-	-	-	

Table 29: HSJA RandomForest Experiments - ROC-AUC Degradation

	Cube L_2			Cube L_∞			
Dataset	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	
breast_cancer	0.998	0.9969	-0.0011	1.0	0.9964	-0.0036	
covtype	0.9843	0.9865	0.0022	0.9844	0.9864	0.002	
codrna	0.9927	0.994	0.0013	0.9929	0.994	0.0011	
diabetes	0.8086	0.8138	0.0052	0.7576	0.8123	0.0547	
fashion	0.9901	0.9925	0.0024	0.9903	0.9925	0.0022	
ijenn1	0.9941	0.9958	0.0017	0.9946	0.9962	0.0016	
mnist	0.9992	0.9997	0.0005	0.9991	0.9997	0.0006	
mnist26	0.9995	0.9999	0.0004	0.9996	0.9999	0.0003	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.9989	0.9992	0.0003	0.9989	0.9992	0.0003	
electricity	0.9449	0.9714	0.0265	0.963	0.977	0.014	
drybean	0.9947	0.9943	-0.0004	0.9933	0.9951	0.0018	
adult	0.9047	0.9158	0.0111	0.9215	0.934	0.0125	
banknote	0.9958	0.9958	0.0	1.0	1.0	0.0	
voice	0.987	0.9916	0.0046	0.9954	0.9986	0.0032	
waveform	0.9731	0.975	0.0019	0.9567	0.9676	0.0109	
wind	-	-	-	-	-	-	
speech	-	-	-	-	-	-	

Table 30: Cube RandomForest Experiments - ROC-AUC Degradation

	Leaf-Tuple L_2			Leaf-Tuple L_{∞}			
Dataset	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	Splitted Dataset	Original Dataset	$\Delta ROC-AUC$	
breast_cancer	1.0	0.9975	-0.0025	0.9969	0.9969	0.0	
covtype	-	-	-	-	-	-	
codrna	0.9927	0.994	0.0013	0.9928	0.994	0.0012	
diabetes	-	-	-	-	-	-	
fashion	0.99	0.9924	0.0024	0.9899	0.9925	0.0026	
ijenn1	0.995	0.996	0.001	0.9949	0.9958	0.0009	
mnist	0.9992	0.9997	0.0005	0.9992	0.9997	0.0005	
mnist26	0.9998	0.9999	0.0001	0.9997	0.9999	0.0002	
sensorless	1.0	1.0	0.0	1.0	1.0	0.0	
webspam	0.999	0.9992	0.0002	0.999	0.9992	0.0002	
electricity	0.9546	0.9785	0.0239	0.948	0.9726	0.0246	
drybean	0.9953	0.9959	0.0006	0.9942	0.9951	0.0009	
adult	0.9211	0.9298	0.0087	0.9002	0.9208	0.0206	
banknote	0.9966	1.0	0.0034	0.9974	1.0	0.0026	
voice	0.9992	0.9986	-0.0006	0.9941	0.9974	0.0033	
waveform	0.9536	0.9677	0.0141	0.9359	0.9615	0.0256	
wind	0.9249	0.9431	0.0182	0.9334	0.9356	0.0022	
speech	-	-	-	-	-	-	

Table 31: Leaf-Tuple RandomForest Experiments - ROC-AUC Degradation

H APPENDIX H - METHOD FLOW - FURTHER EXPLANATIONS

Figure 28: The general flow of our method with a color legend at the bottom.

In Figure 28, you can see a visualization of the points in Subsection 4.1, which we added here below as well, for readers' convenience:

- 1. Split the dataset into four different parts for different purposes: S_T to train the tree model, $S_{\mathcal{E}}$ to train our basic representation model, $S_{\mathcal{D}-train}$ to train our adversarial detector and $S_{\mathcal{D}-test}$ to evaluate our adversarial detector.
- 2. Train a tree model.
- 3. Generate a triplets dataset that will be used to initialize the new representations. This is explained more fully in Subsection 4.2.

- 4. Train our basic embedding model \mathcal{E} . This is explained more fully in Subsection 4.3.
- 5. Split $S_{D-train}$ and S_{D-test} into two parts.
- 6. Generate adversarial samples using an attack method A.
- 7. Generate a new triplet dataset for each of the new sub-datasets. This is explained more fully in Subsection 4.4.
- 8. Optimize the representations of the new sub-datasets to our new embeddings using \mathcal{E} , more details in Subsection 4.4.
- 9. Concatenate the new representation of every set to the original ones.
- 10. Train our adversarial detector. This is explained more fully in Subsection 4.5.
- 11. Evaluate our adversarial detector. This is explained more fully in Section 5.

Our dataset is split into four main sub-datasets:

- 1. S_T a dataset that will be used to train the target tree model.
- 2. $S_{\mathcal{E}}$ a dataset that will be used to optimize a base set of embeddings that represent the general distribution of the original dataset. This base set of embeddings used to optimize new samples representations.
- 3. $S_{D-train}$ a dataset used to train our adversarial detector, it will be split into two sub-subdatasets to allow us to collect normal samples and adversarial samples.
- 4. S_{D-test} a dataset used to test our adversarial detector, it will be split into two sub-subdatasets to allow us to collect normal samples and adversarial samples.

We chose this split method to reduce bias and overfitting when optimizing the representations and training our adversarial detector. Each of the above datasets is sampled randomly from the original dataset without replacements, meaning one sample will be only in one of the above sub-datasets. As a result, the amount of data we use for each one of the steps is reduced, and we added information about it in Appendix G to show how much it affects the classification performance of the original tasks.