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ABSTRACT

Research on adversarial evasion attacks focuses mainly on neural network mod-
els. Among other reasons, this is because of their popularity in certain fields (e.g.,
computer vision and NLP) and the models’ properties, making it easier to search
for adversarial examples with minimal input change. Decision trees and tree en-
sembles are still very popular due to their high performance in fields dominated by
tabular data and their explainability. In recent years, several works have defined
new adversarial attacks targeting decision trees and tree ensembles. As a result,
several papers were published focusing on robust versions of tree ensembles. This
research aims to create an adversarial detector for attacks on an ensemble of de-
cision trees. While several previous works have demonstrated the generation of
more robust tree ensembles, the process of considering evasion attacks during en-
semble generation can affect model performance. We demonstrate a method to
detect adversarial samples without affecting either the target model structure or
its original performance. We showed that by using representation learning based
on the structure of the trees, we achieved better detection rates than the state-of-
the-art technique and better than using the original representation of the dataset to
train an adversarial detector.

1 INTRODUCTION

In recent decades we have seen the introduction of machine learning algorithms in production en-
vironments into various fields such as medical imaging (Zhou et al., 2021), autonomous driving
(Huang & Chen, 2020) and law enforcement (Vestby & Vestby, 2019). With the leap in perfor-
mance of those models and their integration into real-life systems, people began to investigate how
to bypass classifiers and defend against those malicious attempts (Dalvi et al., 2004; Lowd & Meek,
2005).

Many papers have addressed examples of adversarial attacks that make small changes that are hard
for a human to notice in the inputs of a machine learning model, usually a neural network, so their
predictions are wrong. These can be exploited by a malicious actor and used to bypass a model
that might, for example, be responsible for a critical classification task affecting people’s lives. As
a result, various researchers published techniques to detect and defend against adversarial attempts.
Most of the research is focused on adversarial attacks targeting neural network models, among other
things, because of the nature of their continuous learning space, which allows a gradient ascent
process to maximize the model’s loss function given a specific input. Thus defenses and detectors
mainly target neural network models as well.

Tree-based models continue to be very popular, especially for tabular data tasks (Nielsen, 2016;
Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022), because they usually demand less data and are
more interpretable. There are fewer studies on adversarial attacks and defenses affecting decision
tree models. Gradient-descent-based methods commonly used in earlier attack models cannot be
applied directly to evade decision trees due to the discrete nature of their non-differentiable decision-
making paths and tree-splitting rules. Unfortunately, this does not mean that decision trees are
unaffected by evasion attacks.

In this work, we present a detection technique for adversarial evasion attacks against tree-based
classifiers, focusing on boosting ensembles. Our main contributions are: (i) We defined a task
that allows us to generate sample representations that rely on the distribution of the dataset in the
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different routes of a tree ensemble. (ii) We designed a pipeline to train and evaluate adversarial
detection with reduced possibilities of overfitting or bias.

2 MOTIVATION

Chen et al. (2019) proposed a robust decision trees technique against adversarial evasion attacks.
The model training algorithm was changed, as a result of which model itself was changed. As part
of the experiment, the new model’s accuracy was checked and compared to the non-robust model.
Of the eleven datasets tested, seven showed a decrease in accuracy.

Our primary motivation for this work is to create a defense layer for a decision tree ensemble against
adversarial attacks. Our defense layer does not affect the model itself, allowing the model owner to
decide if they want defense applied to their existing system.

Secondly, production tree-based models use well-known open-source libraries such as XGBoost
(Chen & Guestrin, 2016b), CatBoost (Dorogush et al., 2018), and LightGBM (Ke et al., 2017).
These libraries are heavily used, tested, and improved, which is partly why they were chosen in the
first place. Currently, as of writing this paper, the above libraries do not contain an official version
that is robust against adversarial attacks. Therefore, to add adversarial robustness to a model, it is
necessary to use a different third-party version of the model or develop a new one.

3 BACKGROUND

3.1 RELATED WORK

We can split the field of adversarial learning into three primary sectors: attacking methods, defending
methods, and detectors which aim to detect whether or not a sample is adversarial without changing
the model itself.

Generating Adversarial Samples. Early work around generating adversarial samples (Goodfellow
et al., 2014; Kurakin et al., 2016) used backpropagation to try and discover which input features
we should change to maximize the loss function of a model. In the face of more recent attacks, a
different loss functions was suggested to find an adversarial sample (Papernot et al., 2016b; Carlini
& Wagner, 2017; Cheng et al., 2018). Other works used concepts from geometry and the location
of the boundaries between decision spaces to search for a minimal perturbation for creating an
adversarial sample (Moosavi-Dezfooli et al., 2016; Yang et al., 2020).

Because decision tree classifiers are not a continuous space model, earlier backpropagation methods
will not work in these cases. Black-box methods, which ignore the internal inner structure of the
model, try to approximate the gradients and can generate attacks for decision-trees-based classifiers
using multiple queries to find the boundary between different classes in the unknown decision space
(Cheng et al., 2018; Chen et al., 2020).

Some relevant white-box techniques focus specifically on the nature of decision trees (Papernot
et al., 2016a; Kantchelian et al., 2016; Zhang et al., 2020). Papernot et al. (2016a) defined an
algorithm to search for a given sample, the closest leaf in the neighborhood of the original leaf,
and perturb the features between them. Kantchelian et al. (2016) formulated a set of equality and
inequality constraints based on the tree structure to generate an optimal adversarial sample for tree
ensembles using a mixed-integer linear program.

Model Defenses Against Adversarial Attacks. Common approach for protecting models is to train
a robust model for evasion attacks. Adversarial training (Goodfellow et al., 2014) is one of these
methods, with which one can generate adversarial samples and add them to the training data. Other
suggested solutions use known techniques with other purposes, such as knowledge distillation, as
shown in Papernot et al. (2016c), which used its traits to create a newer model version with smaller
gradients to make it more difficult to generate adversarial samples. Another work is Wang et al.
(2018), which used dropout in prediction time to reduce the dependency on specific neurons in a
neural network.
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Defending decision tree classifiers combine the structure of the trees with the methods mentioned
above. Adversarial boosting was suggested in Kurakin et al. (2016) with an idea similar to ad-
versarial training, and in each boosting round, adversarial samples are created and added to the
next round’s training data. Other works show how to generate more robust tree models with new
optimization formulations while considering evasion attacks and perturbations (Chen et al., 2019;
Andriushchenko & Hein, 2019; Calzavara et al., 2020; Vos & Verwer, 2021; 2022).

Adversarial Detectors. There are two main approaches when building an adversarial attack de-
tector: using statistics and hypothesis testing to investigate if there is any difference between the
regular samples distribution and the adversarial sample’s distribution (Feinman et al., 2017; Grosse
et al., 2017; Katzir & Elovici, 2019), and training a machine learning classifier to act as a detector of
adversarial attempts (Metzen et al., 2017; Fidel et al., 2020). Recent work used the combinations of
leaves in tree ensemble predictions, called output configurations, to detect abnormal leaves config-
uration of a sample compared to a reference dataset to detect an adversarial sample using a defined
metric called OC-score (Devos et al., 2022). We will compare our work to Devos et al. (2022),
which is considered the state-of-the-art in detecting adversarial samples on decision trees at the time
of writing this paper.

3.2 PROBLEM FORMULATION

For a given classifier C, a given sample x, with set of features F and a label y in which C(x) = y,
an adversarial sample x′ is defined using an adversarial perturbation δ : x′ = x+ δ. An adversarial
sample can be generated by a targeted or untargeted attack. For an untargeted attack we want to find
δ that meet with the condition:

C(x′) ̸= y s.t. ||δ||p < ϵ (1)

Which means that C(x) ̸= C(x′) where the p-norm of δ will be limited by a value ϵ. For a targeted
attack we need to define a target class t where t ̸= y and:

C(x′) = t s.t. ||δ||p < ϵ (2)

For p ∈ N1 (All natural numbers without zero) the p-norm is defined: ||δ||p := (ΣF
i=1(δi)

p)
1
p )

For p =∞ - measures the largest absolute difference between two features and is defined: ||δ||∞ =
maxxi

|xi − x′
i|

Given a decision tree model T and a sample x, our classification task is to detect whether the sample
is normal or is an attempted adversarial attack.

4 METHOD

4.1 METHOD GENERAL FLOW

Our method consists of 11 main steps:

1. Split the dataset into four different parts for different purposes: ST to train the tree model,
SE to train our basic representation model, SD−train to train our adversarial detector and
SD−test to evaluate our adversarial detector.

2. Train a tree model.
3. Generate a triplets dataset that will be used to initialize the new representations. This is

explained more fully in Subsection 4.2.
4. Train our basic embedding model E . This is explained more fully in Subsection 4.3.
5. Split SD−train and SD−test into two parts.
6. Generate adversarial samples using an attack method A.
7. Generate a new triplet dataset for each of the new sub-datasets. This is explained more

fully in Subsection 4.4.
8. Optimize the representations of the new sub-datasets to our new embeddings using E , more

details in Subsection 4.4.
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9. Concatenate the new representation of every set to the original ones.
10. Train our adversarial detector. This is explained more fully in Subsection 4.5.
11. Evaluate our adversarial detector. This is explained more fully in Section 5.

A detailed visualization sketch shown in Figure 28 in Appendix H, together with a further explana-
tion about the dataset splitting.

4.2 DATASET REPRESENTATION

At the heart of our method is the idea that we want to extract a new representation of a dataset
based on the structure of a target tree ensemble model to understand the behavior of normal samples
and detect adversarial samples. To extract a meaningful representation, we took inspiration from an
embedding process. For each sample, we assign a vector of random numbers with d dimensions,
called latent features, that will be optimized using a gradient descent process using a simple feed-
forward neural network based on the structure and traits of the tree.

For a given dataset S and a trees model T we define a new dataset:

RT
S = {(si, sj , nk)|si, sj ∈ S, nk ∈ N T

S , si ∈ nk ∧ sj ∈ nk} (3)

Where N T
S is the set of all internal nodes of T reached by at least one sample from S, n is a single

node, and s is a single sample. Each triplet in RT
S contains two samples and a node. Both samples

reach the internal node nk in T . We define the supervised task below:

f(si, sj , nk) =

{
1 if si and sj pass to the same child of nk

0 otherwise
(4)

To collect this new dataset, we take our original dataset and traverse with each of the samples through
the different routes in the trees in the ensemble and save the routes aside. During the process, we
document which sample passes in which node and create the mapping:

MT
S (nk) = Snk

(5)

Which returns for a given node all the samples which reached it during the above traverse. Then to
generateRT

S we can use Algorithm 1.

Algorithm 1 Generating triplets dataset to train the basic embedding model to fine-tune future rep-
resentations
input : set of nodes N T

S , model T , nodes to samples mappingMT
S , size of final dataset N

output:RT
S , labels

1: for i = 1 to N do
2: Sample a random node nk from N T

S
3: Sample 2 random samples si,sj fromMT

S (nk)
4: tripleti ← (si, sj , nk)
5: if si and sj agree on the condition in nk then
6: labeli ← 1
7: else
8: labeli ← 0
9: end if

10: end for

Algorithm 1 returns a list of triplets constructed from 2 samples and one node and a list of labels
based on the above logic. For a chosen N, which is the final size we choose for the dataset RT

S , we
generate the triplets described above. After sampling for a node and relevant samples, in line 5, we
check if both samples agree on the condition of the feature threshold in nk, in which case they move
to the same child on nk, and the label of the new sample is set to 1. Otherwise, it is set to 0.
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4.3 EMBEDDING MODEL

To generate our The basic embedding model is trained using RT
SE

. We can see in Figure 1-(a) a
general sketch of the architecture we used. During the embedding model-training phase, we use two
embedding matrices, one for the samples and one for the nodes, and we optimize the representation
with a gradient descent process based on the task defined earlier.

Each sample vector is initiated with a random vector of dimension ds and each node with a random
vector of dimension dn. The vectors of each sample and the one representing the node are concate-
nated and passed through a single feed-forward layer with a ReLU activation function and finish in
a feed-forward layer with a sigmoid activation function used to evaluate the loss value. The model is
trained with a binary cross-entropy loss function and an Adam optimizer. Then, the model weights
will be saved to optimize the new sample’s representations.

4.4 NEW SAMPLES EMBEDDING

When we want to extract the representation of new samples set Snew, we first create a new dataset:

RT
SE ,Snew

= {(si, sj , nk)|si ∈ SE , sj ∈ Snew, nk ∈ N T
Snew

, si ∈ nk ∧ sj ∈ nk} (6)

This means the triplet in this new dataset is constructed from one sample from the samples used to
train the embedding model (SE ) and another sample from the new sample set whose representation
we want to optimize. The labels are set in the same manner as we described before, based on the
fact that the two samples align with the feature threshold in the relevant node. We use algorithm 2
to construct this dataset.

Algorithm 2 Generating triplets dataset from a new sample set to optimize its new representations
input : set of nodes N T

Snew
, model T , a mapping between nodes to samples which were used to

train the embedding modelMT
SE

, mapping between nodes to samples from the new dataset
MT

Snew
, size of final dataset N

output:RT
SE ,Snew

, labels

1: for i = 1 to N do
2: Sample a random node nk from N T

Snew

3: Sample a random samples si fromMT
SE

(nk)

4: Sample a random samples sj fromMT
Snew

(nk)
5: tripleti ← (si, sj , nk)
6: if si and sj agree on the condition in nk then
7: labeli ← 1
8: else
9: labeli ← 0

10: end if
11: end for

Similarly to Algorithm 1, in Algorithm 2 we choose N, which is the size we choose for the dataset
RT

SE ,Snew
. In line 3, we take random samples fromMT

S (nk), a sample that was used to train the
basic representations that reached nk. In line 4, we sample random samples fromMT

Snew
(nk) which

is a sample from the new dataset whose representation we want to optimize.

Then, in line 6, we check if both samples agree on the condition of the feature threshold in nk, in
which case they move to the same child of nk, and the label of the new sample is set to 1. Otherwise,
it is set to 0. Algorithm 2 returns a list of triplets constructed from two samples and one node and a
list of labels.

Then the weights of the trained embedding model are loaded to the same architecture with all
weights frozen (both layers’ weights and biases, embedding matrix of the SE samples and embed-
ding matrix of the nodes), and a new unfrozen embedding matrix for the new samples is initialized
as described in Figure 1-(b).
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The representations are then optimized with a gradient descent process while usingRT
SE ,Snew

.

(a) Embedding architecture. (b) Embedding architecture to fine-tune
new samples representations.

Figure 1: (a) - General architecture sketch of embedding model. (b) - changes were done to fine-tune
the new samples’ representations. The elements in red are frozen weights and biases which remain
unchanged during a gradient descent process.

4.5 ADVERSARIAL CLASSIFIER

As suggested by Metzen et al. (2017), we trained an adversarial samples detector based on a clas-
sifier to try and classify whether a specific sample is a normal sample that came from the original
distribution of the input samples of the original dataset or an adversarial sample. We extract four
new sub-datasets from the datasets used for training and evaluating the detector. We extract two from
each one, a set that stayed as the normal samples, and using the other set, we generate adversarial
samples and then throw the original samples away. Afterward, we extracted each dataset’s new rep-
resentations using the process described in Subsection 4.4. We used an XGBoost as the classifier of
the detector. As an input to the classifier, we concatenated our new extracted representations to the
original features and used them together as the final features set.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

In our experiments, we tested the performance of our method of creating new representations by
training an adversarial-evasion-attack detector on 18 datasets, described in Subsection 5.2, with five
different attacks, described in Subsection 5.3. We compared our method to OC-score (Devos et al.,
2022), considered the state-of-the-art for that task, and to detector classifiers that we trained on the
original representations of the datasets. We tested our method against two tree-based ensembles:
XGBoost and RandomForest - both implemented by Chen & Guestrin (2016a). The full results
tables for XGBoost are given in Appendix B and for RandomForest in Appendix C. To train our
adversarial classifier, we used a second XGBoost model; our positive samples are the adversarial
samples, and the negative samples are the normal ones. To train and test our detector, we used no
more than 100 samples for black-box attacks and 1000 for the white-box attack from SD−train and
SD−test. While generating adversarial samples, we only attacked using samples originally classified
correctly by the target model. For the embedding dimensions we chose ds = 250 and dn = 100.
We used ROC-AUC and PR-AUC as our metrics. For multi-class datasets, each metric is calculated
for each of the different labels in a 1-vs-all manner, and eventually, an average is calculated. Our
code is online in github1.

5.2 EVALUATED DATASETS

In our experiments, we tested with 18 classification datasets, some of them binary and others multi-
class. The datasets are described in Table 1. The top section of Table 1 describes datasets that

1https://github.com/anonymous/anonymous
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were used in Chen et al. (2019) as benchmarks for their experiments, already preprocessed and split
into training and test sets, and published publicly in a very convenient way on github2. The bottom
section of Table 1 describes more datasets that we added, mainly small binary-classification datasets,
to have more variety. The datasets vary by the number of samples, features, and classes.

Dataset name #Samples #Featues #Classes References
breast-cancer 546 10 2 Chen et al. (2019)

covtype 400000 54 7 Chen et al. (2019)
cod-rna 59535 8 2 Chen et al. (2019)
diabetes 614 8 2 Chen et al. (2019)

Fashion-MNIST 60000 784 10 Chen et al. (2019)
ijcnn1 49990 22 2 Chen et al. (2019)

MNIST 60000 784 10 Chen et al. (2019)
sensorless 48509 48 11 Chen et al. (2019)
webspam 300000 254 2 Chen et al. (2019)

MNIST 2 vs. 6 11876 784 2 Chen et al. (2019)

electricity 45312 8 2 https://www.openml.org/d/151
drybean 13611 16 7 Koklu & Ozkan (2020); mis (2020)

adult 32561 14(*) 2 mis (1996)
banknote 1372 4 2 mis (2013)

gender-by-voice 3168 20 2 https://www.openml.org/d/43437
waveform 5000 40 2 https://www.openml.org/d/979

wind 6574 14 2 https://www.openml.org/d/847
speech 3686 400 2 https://www.openml.org/d/40910

Table 1: Datasets used to evaluate our method. (*) - dataset contained categorical features, which
were preprocessed with label encoding.

5.3 EVALUATED ADVERSARIAL ATTACKS

We evaluated our method with untargeted attacks, with 2 different norms - L2 and L∞. For the
attack methods, we used four black-box attacks which are relevant to tree-based models: Sign-Opt
attack (Cheng et al., 2019) , OPT attack (Cheng et al., 2018) , HopSkipJump attack (Chen et al.,
2020) and Cube attack (Andriushchenko & Hein, 2019). We used one white-box attack specifically
for trees-based models: Leaf-Tuple attack (Zhang et al., 2020). To execute our attacks we used
implementation published by Zhang et al. (2020) on github3.

5.4 EXPERIMENTS RESULTS

We applied our method and calculated ROC-AUC and PR-AUC for each combination of the norm,
attack method, dataset, and model algorithm. We calculated the difference between our method’s
performance, the OC-score method’s performance, and the performance of a detector trained on
the original representation. All of the distributions of the differences are shown in Appendix A as
boxplots. Due to space constraints, we only show here plots comparing our method to OC-score
for L2 norm, in Figure 2, for experiments targeting XGBoost tree ensembles and in Figure 3, for
experiments that targeting RandomForest tree ensembles. Each row is a different attack method,
each white point is an experiment on a specific dataset, and the red vertical line is a total mean of all
the experiments together.

The figures show the spread of the differences in ROC-AUC and PR-AUC for each norm and attack
combination. The boxplot shows us the different quartiles and the median. As we can see in the
figures, the total mean and the median of each section is positive, which means that our metrics
yielded better results for the new representation in most of our experiments.

The full raw metrics for each one of the experiments are shown in tables in Appendix B for XGBoost
and in appendix C for RandomForest.

2https://github.com/chenhongge/RobustTrees/blob/master/data/download data.sh
3https://github.com/chong-z/tree-ensemble-attack
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(a) ROC-AUC (b) PR-AUC

Figure 2: XGBoost experiments metrics differences between the new method and OC-score for L2

norm.

(a) ROC-AUC (b) PR-AUC

Figure 3: RandomForest experiments metrics differences between the new method and OC-score
for L2 norm.

Of our 338 experiments, our method had the best performance in 107 of them and was tied with one
of the other methods as the best in 134 other experiments, which means our method was successful
in 71.73% of the experiments. We used the Friedman test on the ROC-AUC metric to validate the
statistical significance of differences between the evaluated methods and datasets (Demšar, 2006).
The above test is a non-parametric test that does not assume anything about the results distributions
and is used when dealing with multiple methods and multiple datasets. The null hypothesis that
the 3 methods perform the same was rejected with FF (338, 3) = 288 with p < 0.01. As a second
step, we used Nemneyi post-hoc test, which is often used as a second step if it is possible to reject
the null hypothesis with a Friedman test and test for superiority between the different methods, and
concluded that our new representation method outperforms the OC-score method and the usage of a
machine learning detector based on the original representations with p < 0.01.

6 DISCUSSION

As we showed in our experiments, using representation learning to learn a better version of the
dataset given a trained model helps to extract better performance when trying to protect our model
against adversarial evasion attacks. We showed this on different datasets, different tree-based en-
sembles, and with different attack methods.

An important area for discussion is adversarial attacks on tabular data, which are not as intuitive as
adversarial attacks on more continuous inputs such as images or audio. These usually clip the data
to a valid range of values, which is not straightforward for tabular data. This issue is not yet heavily
researched but was already approached and discussed by Calzavara et al. (2020) and Vos & Verwer
(2021), where for each dataset, they defined a set of rewriting rules and possible budget with which
to change the features. We chose not to take up that challenge in this work, but for full context, we
added in Appendix D statistics regarding our generated adversarial samples.

While analyzing our results, we noticed an interesting outcome of our new representations-
generation process. We used UMAP (McInnes et al., 2018) to extract 2-dimensional versions of
the original representations and our new ones. As we can see in Figure 4 on the left side, the reduc-
tion of the original representations, there the adversarial samples are scattered between the normal

8



Under review as a conference paper at ICLR 2023

samples. When looking at the reduced version of our representations on the right, we see that the ad-
versarial samples gather closely to each other and are separated from most of the rest of the normal
samples.

Figure 4: Dimensionality-reduction visualization using UMAP (McInnes et al., 2018). Green points
are normal samples, and red points are adversarial samples. On the left, we can see a reduction of
the original representations, and on the right, we can see a reduction of the new embedded represen-
tations.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a method to train an adversarial samples detector based on new rep-
resentations of a dataset based on the target model trained on it. We showed that using our new
representation shows overall improvement compared to the current state-of-the-art detection of ad-
versarial samples on tree models without changing the original model internals and compared to
using the original samples representations to train a detector classifier.

As for future work, our new method should also be tested on robust versions of tree ensembles to see
if it affects the results. Another direction is to create a unified detector for all attacks together. Our
detector method was based on generating adversarial samples for each attack method and training a
separate model. However, the normal data behave the same regardless of the attack method, and a
new unified approach should be researched.
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Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on tabular data? arXiv preprint arXiv:2207.08815, 2022.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On
the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

Yu Huang and Yue Chen. Autonomous driving with deep learning: a survey of state-of-art technolo-
gies. arXiv preprint arXiv:2006.06091, 2020.
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A APPENDIX A - FULL METRICS DIFFERENCES FIGURES

Here are all the different figures comparing our method to OC-Score and a detector based on the
original representations of the dataset. For the experiments compared to the OC-score (Figures 5,
6, 9, and 10) the total mean and the median of each section is positive in all of them, which means
that our metrics yielded better results for the new representation in most of our experiments. When
looking at figures that compare our new method to the original representations (Figures 7, 8, 11, and
12) we can see the ROC-AUC and PR-AUC overall mean of the experiments is positive beside the
experiments targeted XGBoost with L∞ norm which the overall mean is negative.

(a) ROC-AUC (b) PR-AUC

Figure 5: XGBoost experiments metrics differences between the new method and OC-score for L2

norm.

(a) ROC-AUC (b) PR-AUC

Figure 6: XGBoost experiments metrics differences between the new method and OC-score for L∞
norm.

12



Under review as a conference paper at ICLR 2023

(a) ROC-AUC (b) PR-AUC

Figure 7: XGBoost experiments metrics differences between the new method and original represen-
tation for L2 norm.

(a) ROC-AUC (b) PR-AUC

Figure 8: XGBoost experiments metrics differences between the new method and original represen-
tation for L∞ norm.

(a) ROC-AUC (b) PR-AUC

Figure 9: RandomForest experiments metrics differences between the new method and OC-score
for L2 norm.
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(a) ROC-AUC (b) PR-AUC

Figure 10: RandomForest experiments metrics differences between the new method and OC-score
for L∞ norm.

(a) ROC-AUC (b) PR-AUC

Figure 11: RandomForest experiments metrics differences between the new method and original
representation for L2 norm.

(a) ROC-AUC (b) PR-AUC

Figure 12: RandomForest experiments metrics differences between the new method and original
representation for L∞ norm.

B APPENDIX B - XGBOOST FULL EXPERIMENTS RESULTS

List of tables with the raw experiments metrics for each dataset, attack method, and norm for the
XGBoost target experiments. In bold is the method or methods that achieved the highest value.
Rows that fill in hyphens are cases where the adversarial sample creation process failed.

C APPENDIX C - RANDOMFOREST FULL EXPERIMENTS RESULTS

List of tables with the raw experiments metrics for each dataset, attack method, and norm for the
RandomForest target experiments. In bold is the method or methods that achieved the highest value.
Rows that fill in hyphens are cases where the adversarial sample creation process failed.
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Sign-OPT L2 Sign-OPT L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.988 0.9919 0.958 0.987 0.9919 0.965 0.9971 0.997 0.960 0.997 0.997 0.970
covtype 1.0 1.0 0.049 1.0 1.0 0.843 1.0 1.0 0.053 1.0 1.0 0.833
cod-rna 0.743 0.7655 0.161 0.9795 0.955 0.880 0.7773 0.599 0.238 0.9808 0.936 0.889
diabetes 0.672 0.855 0.730 0.707 0.8432 0.772 0.580 0.8668 0.445 0.702 0.8678 0.615
Fashion-MNIST 1.0 1.0 0.157 1.0 1.0 0.839 0.9999 0.9999 0.237 1.0 1.0 0.908
ijcnn1 1.0 1.0 0.181 1.0 1.0 0.907 1.0 1.0 0.276 1.0 1.0 0.935
MNIST 1.0 1.0 0.327 1.0 1.0 0.945 1.0 1.0 0.434 1.0 1.0 0.960
MNIST2-6 0.9999 0.9999 0.994 1.0 1.0 0.999 1.0 1.0 0.991 1.0 1.0 0.999
Sensorless 0.887 0.803 0.9111 0.980 0.934 0.9982 0.9709 0.939 0.887 0.997 0.987 0.9984
webspam 1.0 1.0 0.253 1.0 1.0 0.985 1.0 1.0 0.354 1.0 1.0 0.990
electricity 0.751 0.9763 0.129 0.955 0.997 0.883 0.829 0.9661 0.300 0.970 0.9968 0.901
drybean 0.942 0.9617 0.705 0.975 0.9862 0.974 0.9585 0.914 0.796 0.9868 0.955 0.967
adult 1.0 1.0 0.109 1.0 1.0 0.813 1.0 1.0 0.128 1.0 1.0 0.817
banknote 0.968 0.99 0.768 0.970 0.9918 0.961 0.9699 0.961 0.798 0.9822 0.982 0.957
gender-by-voice 0.9854 0.983 0.887 0.9897 0.989 0.978 0.982 0.9964 0.960 0.990 0.9975 0.993
waveform 0.540 0.5538 0.380 0.803 0.801 0.8628 0.467 0.5575 0.461 0.717 0.779 0.8665
wind 0.695 0.8821 0.183 0.858 0.9414 0.730 0.526 0.7558 0.205 0.819 0.8812 0.742
speech 0.990 0.915 1.0 0.999 0.995 1.0 0.9943 0.965 0.967 0.9987 0.990 0.998

Table 2: Sign-OPT XGBoost Experiments Results

OPT L2 OPT L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.992 0.9956 0.867 0.992 0.9952 0.925 0.973 0.9737 0.920 0.9788 0.978 0.968
covtype 1.0 1.0 0.056 1.0 1.0 0.768 1.0 1.0 0.072 1.0 1.0 0.856
cod-rna 0.804 0.716 0.183 0.9808 0.958 0.892 0.8035 0.647 0.234 0.9774 0.953 0.907
diabetes 0.652 0.8434 0.594 0.675 0.8612 0.741 0.8455 0.751 0.699 0.8174 0.745 0.736
Fashion-MNIST 1.0 1.0 0.370 1.0 1.0 0.923 1.0 1.0 0.445 1.0 1.0 0.936
ijcnn1 1.0 1.0 0.273 1.0 1.0 0.926 1.0 1.0 0.246 1.0 1.0 0.941
MNIST 1.0 1.0 0.476 1.0 1.0 0.971 1.0 1.0 0.566 1.0 1.0 0.975
MNIST2-6 1.0 1.0 0.996 1.0 1.0 1.0 1.0 1.0 0.986 1.0 1.0 0.999
sensorless 0.9929 0.974 0.883 0.9998 0.999 0.999 0.9871 0.965 0.877 0.999 0.993 0.998
webspam 1.0 1.0 0.399 1.0 1.0 0.992 1.0 1.0 0.387 1.0 1.0 0.991
electricity 0.774 0.8818 0.248 0.948 0.982 0.887 0.852 0.891 0.286 0.9731 0.960 0.904
drybean 0.9536 0.935 0.848 0.9861 0.969 0.984 0.9396 0.934 0.877 0.964 0.970 0.9869
adult 1.0 1.0 0.076 1.0 1.0 0.791 1.0 1.0 0.058 1.0 1.0 0.702
banknote 0.9893 0.950 0.911 0.9906 0.984 0.976 0.956 0.942 0.876 0.974 0.967 0.9767
gender-by-voice 0.964 0.9943 0.812 0.981 0.9964 0.964 0.976 0.9926 0.842 0.987 0.9951 0.974
waveform 0.538 0.6195 0.392 0.784 0.777 0.8524 0.590 0.6673 0.395 0.819 0.800 0.8813
wind 0.476 0.7908 0.210 0.777 0.9054 0.785 0.423 0.7694 0.176 0.755 0.8653 0.729
speech 0.9917 0.983 0.973 0.9986 0.997 0.998 0.9957 0.799 0.984 0.9996 0.977 1.0

Table 3: OPT XGBoost Experiments Results

HSJA L2 HSJA L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.9909 0.988 0.799 0.9905 0.988 0.923 0.982 0.9956 0.934 0.987 0.9958 0.954
covtype 1.0 1.0 0.159 1.0 1.0 0.832 1.0 1.0 0.230 1.0 1.0 0.811
cod-rna 0.8193 0.669 0.107 0.9879 0.926 0.817 0.8389 0.594 0.185 0.9891 0.944 0.847
diabetes 0.7947 0.786 0.522 0.834 0.830 0.708 0.787 0.8219 0.516 0.790 0.8325 0.710
Fashion-MNIST 0.994 0.998 0.235 1.0 1.0 0.881 1.0 0.9997 0.266 1.0 1.0 0.868
ijcnn1 1.0 1.0 0.089 1.0 1.0 0.846 1.0 1.0 0.132 1.0 1.0 0.893
MNIST 1.0 1.0 0.493 1.0 1.0 0.954 1.0 1.0 0.420 1.0 1.0 0.945
MNIST2-6 1.0 1.0 0.965 1.0 1.0 0.998 1.0 1.0 0.972 1.0 1.0 0.998
sensorless 0.8562 0.729 0.839 0.972 0.920 0.9973 0.9175 0.782 0.893 0.990 0.934 0.9984
webspam 0.9859 0.986 0.232 0.9999 1.0 0.986 1.0 1.0 0.212 1.0 1.0 0.984
electricity 0.795 0.9084 0.098 0.962 0.9789 0.824 0.8877 0.853 0.189 0.9841 0.953 0.852
drybean 0.9568 0.943 0.872 0.9826 0.974 0.977 0.9561 0.953 0.846 0.9795 0.979 0.978
adult 1.0 1.0 0.458 1.0 1.0 0.905 1.0 1.0 0.366 1.0 1.0 0.883
banknote 0.8879 0.851 0.742 0.889 0.9017 0.901 0.895 0.901 0.658 0.9265 0.907 0.869
gender-by-voice 0.920 0.9668 0.787 0.952 0.9758 0.962 0.961 0.9882 0.721 0.975 0.9927 0.947
waveform 0.6012 0.592 0.493 0.774 0.768 0.883 0.680 0.692 0.372 0.8323 0.815 0.831
wind 0.763 0.7846 0.309 0.881 0.8814 0.824 0.712 0.8311 0.328 0.870 0.9151 0.789
speech 0.9965 0.994 0.989 0.9993 0.999 0.999 0.996 0.994 0.9995 0.999 0.998 1.0

Table 4: HSJA XGBoost Experiments Results
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Cube L2 Cube L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.537 0.212 0.7413 0.756 0.591 0.8878 0.869 0.9257 0.303 0.931 0.9665 0.575
covtype 0.9823 0.020 0.045 0.9998 0.649 0.838 1.0 1.0 0.043 1.0 1.0 0.893
cod-rna 0.7678 0.212 0.183 0.985 0.800 0.873 0.8643 0.732 0.343 0.9841 0.944 0.915
diabetes 0.5437 0.458 0.258 0.7935 0.717 0.724 0.567 0.6097 0.532 0.7316 0.667 0.710
Fashion-MNIST 0.9094 0.538 0.098 0.9951 0.798 0.850 0.8929 0.750 0.014 0.9996 0.999 0.903
ijcnn1 0.773 0.310 0.246 0.987 0.915 0.905 0.998 0.9998 0.216 1.0 1.0 0.912
MNIST 0.7755 0.263 0.202 0.9846 0.735 0.926 1.0 1.0 0.028 1.0 1.0 0.917
MNIST2-6 0.968 0.9853 0.977 0.990 0.995 0.9979 1.0 1.0 0.987 1.0 1.0 0.999
sensorless 0.8793 0.650 0.595 0.994 0.916 0.9961 1.0 1.0 0.770 1.0 1.0 0.996
webspam 0.9185 0.843 0.297 0.9987 0.984 0.990 0.9994 0.9994 0.390 1.0 1.0 0.990
electricity 0.7746 0.671 0.312 0.9666 0.887 0.904 0.9931 0.986 0.652 0.9996 0.995 0.969
drybean 0.9954 0.987 0.720 0.9996 0.999 0.975 1.0 1.0 0.610 1.0 1.0 0.937
adult 0.944 0.9454 0.315 0.993 0.985 0.941 1.0 1.0 0.551 1.0 1.0 0.998
banknote 0.6201 0.538 0.469 0.971 0.862 0.9893 0.9973 0.9973 0.364 0.9992 0.9992 0.923
gender-by-voice 0.811 0.866 0.663 0.915 0.943 0.9439 1.0 1.0 0.117 1.0 1.0 0.671
waveform 0.9614 0.959 0.426 0.9754 0.969 0.838 1.0 1.0 0.188 1.0 1.0 0.705
wind 1.0 1.0 0.754 1.0 1.0 0.966 1.0 1.0 0.017 1.0 1.0 0.119
speech - - - - - - - - - - - -

Table 5: Cube XGBoost Experiments Results

Leaf-Tuple L2 Leaf-Tuple L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.9954 0.989 0.921 0.9954 0.988 0.915 0.871 0.835 0.9399 0.893 0.854 0.9356
covtype 0.9962 0.723 0.118 0.9995 0.934 0.761 0.9969 0.783 0.110 0.9999 0.950 0.782
cod-rna 0.932 0.9477 0.540 0.981 0.9822 0.861 0.951 0.97 0.614 0.986 0.9891 0.891
diabetes 0.7227 0.653 0.557 0.7826 0.688 0.685 0.561 0.5782 0.419 0.643 0.6522 0.611
Fashion-MNIST 0.9627 0.948 0.367 0.9891 0.973 0.759 0.9544 0.951 0.393 0.9868 0.978 0.786
ijcnn1 0.946 0.9584 0.668 0.984 0.9867 0.906 0.960 0.9711 0.744 0.988 0.9899 0.935
MNIST 0.995 0.9953 0.410 0.9982 0.997 0.773 0.9972 0.997 0.435 0.9993 0.999 0.800
MNIST2-6 0.999 0.9997 0.981 0.999 0.9997 0.989 0.999 0.9995 0.983 0.999 0.9995 0.988
Sensorless 0.9657 0.965 0.889 0.9855 0.985 0.969 0.9712 0.969 0.891 0.9886 0.986 0.956
webspam 1.0 1.0 0.322 1.0 1.0 0.946 1.0 1.0 0.318 1.0 1.0 0.942
electricity 0.987 0.987 0.712 0.9955 0.995 0.925 0.9935 0.992 0.700 0.9976 0.997 0.933
drybean 1.0 1.0 0.836 1.0 1.0 0.963 1.0 1.0 0.807 1.0 1.0 0.952
adult 1.0 1.0 0.982 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0
banknote 0.997 1.0 0.728 0.998 1.0 0.920 1.0 1.0 0.756 1.0 1.0 0.953
gender-by-voice 1.0 1.0 0.947 1.0 1.0 0.986 1.0 1.0 0.922 1.0 1.0 0.974
waveform 1.0 1.0 0.164 1.0 1.0 0.757 1.0 1.0 0.172 1.0 1.0 0.776
wind 1.0 1.0 0.995 1.0 1.0 0.999 1.0 1.0 0.834 1.0 1.0 0.999
speech 1.0 1.0 0.976 1.0 1.0 0.995 1.0 0.9999 0.992 0.9999 0.9999 0.998

Table 6: Leaf-Tuple XGBoost Experiments Results

Sign-OPT L2 Sign-OPT L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.992 0.983 0.9952 0.992 0.986 0.9962 0.965 0.997 0.997 0.961 0.997 0.9974
covtype 1.0 1.0 0.097 1.0 1.0 0.859 1.0 1.0 0.080 1.0 1.0 0.731
cod-rna 0.9572 0.918 0.248 0.9982 0.995 0.925 0.9266 0.749 0.178 0.996 0.979 0.898
diabetes 0.840 0.8485 0.593 0.8593 0.854 0.764 0.738 0.8493 0.669 0.815 0.8735 0.809
Fashion-MNIST 1.0 1.0 0.147 1.0 1.0 0.919 1.0 1.0 0.223 1.0 1.0 0.943
ijcnn1 1.0 1.0 0.375 1.000 1.0 0.972 1.0 1.0 0.390 1.0 1.0 0.958
MNIST 1.0 1.0 0.238 1.0 1.0 0.929 1.0 1.0 0.553 1.0 1.0 0.967
MNIST2-6 1.0 1.0 0.869 1.0 1.0 0.990 1.0 1.0 0.872 1.0 1.0 0.990
sensorless 0.8165 0.735 0.637 0.9842 0.942 0.981 0.973 0.968 0.641 0.9982 0.994 0.975
webspam 1.0 1.0 0.161 1.0 1.0 0.981 1.0 1.0 0.138 1.0 1.0 0.979
electricity 0.939 0.9644 0.295 0.995 0.9975 0.892 0.968 0.9696 0.406 0.9981 0.993 0.917
drybean 0.9808 0.914 0.810 0.9897 0.946 0.987 0.9739 0.948 0.866 0.9945 0.977 0.991
adult 1.0 0.9998 0.227 1.0 1.0 0.863 1.0 1.0 0.300 1.0 1.0 0.910
banknote 0.886 0.9614 0.875 0.941 0.969 0.9809 0.9847 0.982 0.920 0.9888 0.985 0.981
gender-by-voice 0.969 0.9988 0.751 0.986 0.9992 0.946 0.9957 0.989 0.942 0.9976 0.995 0.989
waveform 0.8227 0.756 0.447 0.9182 0.868 0.897 0.787 0.9148 0.516 0.914 0.9552 0.918
wind 0.784 0.9087 0.309 0.943 0.9661 0.897 0.745 0.8765 0.379 0.934 0.9551 0.894
speech - - - - - - - - - - - -

Table 7: Sign-OPT RandomForest Experiments Results
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OPT L2 OPT L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.975 0.9926 0.947 0.982 0.9935 0.973 0.980 0.9932 0.834 0.978 0.9937 0.909
covtype 1.0 1.0 0.127 1.0 1.0 0.868 1.0 1.0 0.114 1.0 1.0 0.807
cod-rna 0.9316 0.927 0.163 0.9977 0.994 0.878 0.9069 0.747 0.148 0.9948 0.973 0.915
diabetes 0.747 0.7514 0.509 0.784 0.8161 0.719 0.8889 0.842 0.545 0.913 0.878 0.701
Fashion-MNIST 1.0 1.0 0.236 1.0 1.0 0.938 1.0 1.0 0.220 1.0 1.0 0.932
ijcnn1 1.0 1.0 0.366 1.0 1.0 0.947 1.0 1.0 0.379 1.0 1.0 0.945
MNIST 1.0 1.0 0.555 1.0 1.0 0.971 1.0 1.0 0.484 1.0 1.0 0.961
MNIST2-6 1.0 0.9997 0.859 1.0 1.0 0.989 1.0 1.0 0.800 1.0 1.0 0.977
Sensorless 0.9705 0.911 0.704 0.9978 0.967 0.977 0.9772 0.938 0.694 0.9984 0.973 0.967
webspam 1.0 1.0 0.187 1.0 1.0 0.984 1.0 1.0 0.217 1.0 1.0 0.985
electricity 0.936 0.9646 0.429 0.991 0.9964 0.956 0.975 0.992 0.529 0.997 0.9995 0.976
drybean 0.983 0.917 0.902 0.996 0.958 0.993 0.9779 0.951 0.806 0.9937 0.971 0.984
adult 1.0 1.0 0.398 1.0 1.0 0.918 1.0 1.0 0.278 1.0 1.0 0.864
banknote 0.954 0.9975 0.908 0.968 0.9982 0.982 0.942 0.9504 0.815 0.949 0.964 0.9672
gender-by-voice 0.973 0.995 0.812 0.984 0.9968 0.968 0.985 0.9947 0.950 0.991 0.9967 0.991
waveform 0.8013 0.799 0.447 0.899 0.893 0.9103 0.659 0.6708 0.481 0.826 0.824 0.8952
wind 0.752 0.8612 0.236 0.922 0.9273 0.810 0.740 0.8563 0.354 0.923 0.9465 0.870
speech - - - - - - - - - - - -

Table 8: OPT RandomForest Experiments Results

HSJA L2 HSJA L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.986 0.983 0.962 0.9875 0.986 0.984 0.980 0.9974 0.774 0.986 0.9982 0.936
covtype 1.0 1.0 0.230 1.0 1.0 0.835 1.0 1.0 0.245 1.0 1.0 0.853
cod-rna - - - - - - - - - - - -
diabetes - - - - - - - - - - - -
Fashion-MNIST 0.9999 0.9999 0.248 1.0 1.0 0.943 1.0 1.0 0.240 1.0 1.0 0.943
ijcnn1 1.0 1.0 0.224 1.0 1.0 0.902 1.0 1.0 0.237 1.0 1.0 0.887
MNIST 1.0 1.0 0.321 1.0 1.0 0.931 1.0 1.0 0.385 1.0 1.0 0.953
MNIST2-6 1.0 1.0 0.775 1.0 1.0 0.985 1.0 1.0 0.700 1.0 1.0 0.975
sensorless 0.9235 0.777 0.550 0.9934 0.931 0.948 0.8885 0.737 0.430 0.9913 0.919 0.951
webspam 1.0 1.0 0.094 1.0 1.0 0.959 1.0 1.0 0.041 1.0 1.0 0.900
electricity 0.9381 0.931 0.297 0.9935 0.991 0.920 0.947 0.9544 0.290 0.9973 0.989 0.882
drybean 0.9676 0.948 0.874 0.991 0.978 0.989 0.9847 0.984 0.828 0.9974 0.997 0.985
adult 1.0 1.0 0.538 1.0 1.0 0.931 1.0 1.0 0.480 1.0 1.0 0.877
banknote 0.9632 0.874 0.747 0.9642 0.916 0.909 0.943 0.9496 0.774 0.9579 0.955 0.921
gender-by-voice 0.955 0.985 0.724 0.973 0.9882 0.944 0.960 0.9684 0.726 0.975 0.9765 0.930
waveform 0.736 0.704 0.308 0.8824 0.836 0.848 0.7729 0.636 0.397 0.8893 0.821 0.849
wind 0.8744 0.860 0.425 0.9495 0.916 0.852 0.843 0.8597 0.311 0.9519 0.941 0.858
speech - - - - - - - - - - - -

Table 9: HSJA RandomForest Experiments Results

Cube L2 Cube L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.435 0.139 0.6983 0.738 0.283 0.9391 1.0 0.932 0.173 1.0 0.979 0.695
covtype 0.7853 0.123 0.106 0.9911 0.710 0.752 1.0 1.0 0.070 1.0 1.0 0.831
cod-rna 0.7844 0.299 0.111 0.9871 0.876 0.815 0.9158 0.833 0.164 0.9955 0.974 0.872
diabetes 0.6343 0.248 0.307 0.9185 0.620 0.750 0.384 0.4718 0.307 0.562 0.6139 0.597
Fashion-MNIST 0.864 0.687 0.149 0.9939 0.898 0.912 0.9947 0.991 0.374 0.9999 1.0 0.954
ijcnn1 0.8503 0.612 0.280 0.9949 0.967 0.883 0.984 1.0 0.120 1.0 1.0 0.870
MNIST 0.9337 0.894 0.335 0.9978 0.972 0.957 1.0 1.0 0.852 1.0 1.0 0.994
MNIST2-6 0.9399 0.933 0.858 0.990 0.971 0.9914 1.0 1.0 0.910 1.0 1.0 0.991
sensorless 0.9066 0.666 0.425 0.9924 0.882 0.947 0.9945 0.988 0.767 0.9998 1.0 0.984
webspam 0.9345 0.735 0.311 0.9984 0.952 0.979 1.0 1.0 0.127 1.0 1.0 0.913
electricity 0.9726 0.914 0.445 0.9978 0.975 0.852 0.9988 0.998 0.095 0.9999 1.0 0.877
drybean 0.938 0.964 0.797 0.9862 0.980 0.964 1.0 1.0 0.838 1.0 1.0 0.990
adult 0.9977 0.995 0.151 0.9999 1.0 0.791 1.0 1.0 0.010 1.0 1.0 0.472
banknote 0.9316 0.865 0.504 0.9853 0.964 0.957 0.944 1.0 0.176 0.996 1.0 0.927
gender-by-voice 0.8822 0.839 0.481 0.9799 0.965 0.941 1.0 1.0 0.347 1.0 1.0 0.869
waveform 0.954 0.9535 0.226 0.9739 0.973 0.799 1.0 1.0 0.083 1.0 1.0 0.542
wind - - - - - - - - - - - -
speech - - - - - - - - - - - -

Table 10: Cube RandomForest Experiments Results
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Leaf-Tuple L2 Leaf-Tuple L∞

PRC-AUC ROC-AUC PRC-AUC ROC-AUC

Dataset New Original OC-score New Original OC-score New Original OC-score New Original OC-score

breast-cancer 0.971 0.9964 0.939 0.972 0.9964 0.947 0.995 0.9964 0.872 0.995 0.9965 0.922
covtype - - - - - - - - - - - -
cod-rna 0.988 0.9895 0.581 0.997 0.997 0.891 0.993 0.9953 0.693 0.998 0.9987 0.940
diabetes - - - - - - - - - - - -
Fashion-MNIST 0.8023 0.578 0.033 0.9918 0.878 0.688 0.8884 0.693 0.021 0.9916 0.849 0.602
ijcnn1 0.9939 0.994 0.912 0.9983 0.998 0.982 0.990 0.9929 0.931 0.997 0.998 0.988
MNIST 0.7772 0.423 0.023 0.986 0.885 0.625 0.8996 0.840 0.108 0.9883 0.934 0.860
MNIST2-6 0.996 0.999 0.962 0.996 0.999 0.973 0.998 0.9989 0.976 0.998 0.9989 0.987
Sensorless 0.6531 0.171 0.030 0.9801 0.709 0.772 0.9427 0.799 0.042 0.9938 0.931 0.677
webspam 1.0 1.0 0.731 1.0 1.0 0.978 1.0 1.0 0.602 1.0 1.0 0.978
electricity 0.999 0.9997 0.822 1.0 0.9999 0.976 0.996 0.999 0.828 0.999 0.9997 0.947
drybean 1.0 1.0 0.503 1.0 1.0 0.946 1.0 1.0 0.636 1.0 1.0 0.946
adult 1.0 1.0 0.469 1.0 1.0 0.991 1.0 1.0 0.812 1.0 1.0 0.995
banknote 1.0 1.0 0.805 1.0 1.0 0.977 1.0 1.0 0.544 1.0 1.0 0.893
gender-by-voice 1.0 1.0 0.892 1.0 1.0 0.981 1.0 1.0 0.867 1.0 1.0 0.968
waveform 1.0 1.0 0.298 1.0 1.0 0.869 1.0 1.0 0.347 1.0 1.0 0.922
wind 1.0 1.0 0.366 1.0 1.0 0.950 1.0 1.0 0.451 1.0 1.0 0.986
speech - - - - - - - - - - - -

Table 11: Leaf-Tuple RandomForest Experiments Results
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D APPENDIX D - ADVERSARIAL SAMPLES INFORMATION

In the following tables, we calculated several statistics about the perturbations generated in our
various experiments split by target model type and attack method. Interesting behaviors we noticed:

• We can see that for SignOPT and OPT attacks in all of the experiments, a perturbation was
applied to all of the features (max features changed is equal to the mean, which is also
equal to the number of features for each dataset).

• The mean perturbation size for datasets adult and drybean seem very high for attack meth-
ods HopSkipJumpAttack, Cube, and LeafTuple.

D.1 XGBOOST PERTURBATION STATISTICS

Sign-OPT L2 Sign-OPT L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| perturbation Max #feature changed Mean #feature changed Mean ||L∞|| perturbation
breast-cancer 10 10.0 0.3148 10 10.0 0.2514
covtype 54 54.0 0.058 54 54.0 0.0433
cod-rna 8 8.0 0.0405 8 8.0 0.0366
diabetes 8 8.0 0.0567 8 8.0 0.0604
Fashion-MNIST 784 784.0 0.0514 784 784.0 0.0423
ijcnn1 22 22.0 0.0425 22 22.0 0.0419
MNIST 784 784.0 0.06 784 784.0 0.048
Sensorless 48 48.0 0.0168 48 48.0 0.0194
webspam 254 254.0 0.0051 254 254.0 0.0065
MNIST 2 vs. 6 784 784.0 0.2907 784 784.0 0.2869
electricity 8 8.0 0.01 8 8.0 0.0072
drybean 16 16.0 0.0176 16 16.0 0.0103
adult 14 14.0 0.93 14 14.0 0.745
banknote 4 4.0 1.6709 4 4.0 1.7985
gender-by-voice 20 20.0 0.0243 20 20.0 0.0296
waveform 40 40.0 0.8176 40 40.0 0.7742
wind 14 14.0 1.1833 14 14.0 0.8493
speech 400 400.0 1.6003 400 400.0 1.1995

Table 12: XGBoost Sign-OPT perturbations statistics

OPT L2 OPT L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 10 10.0 0.2288 10 10.0 0.2274
covtype 54 54.0 0.0568 54 54.0 0.0494
cod-rna 8 8.0 0.0436 8 8.0 0.039
diabetes 8 8.0 0.0462 8 8.0 0.0613
Fashion-MNIST 784 784.0 0.0973 784 784.0 0.1023
ijcnn1 22 22.0 0.0519 22 22.0 0.0418
MNIST 784 784.0 0.089 784 784.0 0.1551
sensorless 48 48.0 0.0201 48 48.0 0.0233
webspam 254 254.0 0.0132 254 254.0 0.0095
MNIST 2 vs. 6 784 784.0 0.2615 784 784.0 0.4055
electricity 8 8.0 0.0081 8 8.0 0.0107
drybean 16 16.0 0.0069 16 16.0 0.0481
adult 14 14.0 0.8486 14 14.0 0.7598
banknote 4 4.0 1.8506 4 4.0 1.3701
gender-by-voice 20 20.0 0.0288 20 20.0 0.0294
waveform 40 40.0 0.8439 40 40.0 0.7449
wind 14 14.0 0.886 14 14.0 0.876
speech 400 400.0 1.3453 400 400.0 1.6119

Table 13: XGBoost OPT perturbations statistics

19



Under review as a conference paper at ICLR 2023

HSJA L2 HSJA L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 10 9.8537 0.3335 10 9.8049 0.2454
covtype 53 43.42 0.1805 52 43.49 0.199
cod-rna 8 7.98 0.0854 8 8.0 0.1099
diabetes 8 7.9091 0.0546 8 7.8235 0.0668
Fashion-MNIST 773 736.66 1.8948 776 740.18 3.2664
ijcnn1 22 20.09 0.0961 22 19.95 0.1031
MNIST 768 707.41 4.0607 762 705.16 1.0578
sensorless 48 48.0 0.0669 48 48.0 0.0747
webspam 253 231.35 0.1992 253 233.32 0.4914
MNIST 2 vs. 6 769 709.69 14.8869 763 723.38 38.2944
electricity 8 7.78 0.0199 8 7.88 0.0185
drybean 16 14.46 1683.5416 16 14.45 2061.8314
adult 14 13.31 95.9496 14 13.42 383.9427
banknote 4 4.0 4.3192 4 4.0 4.3699
gender-by-voice 20 19.85 0.0441 20 19.79 0.046
waveform 40 40.0 4.5889 40 39.96 4.7256
wind 14 13.8 7.9845 14 13.77 9.142
speech 400 400.0 66.9408 400 400.0 86.5313

Table 14: XGBoost HSJA perturbations statistics

Cube L2 Cube L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 4 2.7778 0.3549 10 9.1875 0.6094
covtype 6 2.52 0.0556 39 31.66 0.0592
cod-rna 6 2.92 0.0657 8 7.77 0.1299
diabetes 4 2.2 0.0398 8 7.0 0.0687
Fashion-MNIST 79 16.05 0.0172 658 555.6 0.0154
ijcnn1 10 4.02 0.071 21 16.3 0.0389
MNIST 31 11.2344 0.0087 485 445.4375 0.0055
sensorless 26 3.9259 0.0065 48 45.77 0.0049
webspam 18 9.44 0.0032 193 165.21 0.0038
MNIST 2 vs. 6 55 25.69 0.1066 537 478.7344 0.1532
electricity 8 3.26 1.9474 8 7.6 3.1336
drybean 12 4.3333 35279.2292 16 12.93 65949.48
adult 11 6.1042 168527.4792 14 11.9667 178961.0333
banknote 3 1.6 3.2732 4 3.9474 5.7962
gender-by-voice 14 3.8788 2.9815 20 19.7368 46.5609
waveform 25 7.94 3.8412 40 39.3085 4.509
wind 14 5.7111 39.8756 14 13.9167 68.9444
speech - - - - - -

Table 15: XGBoost Cube perturbations statistics

Leaf-Tuple L2 Leaf-Tuple L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 8 5.85 0.2015 10 6.1282 0.228
covtype 7 2.717 0.044 9 3.7392 0.0404
cod-rna 8 7.9905 0.0399 8 7.9832 0.035
diabetes 7 4.25 0.048 7 4.6296 0.0556
Fashion-MNIST 703 420.8461 0.8065 715 429.9784 0.8169
ijcnn1 12 11.999 0.0385 12 12.0 0.0338
MNIST 357 179.9864 0.8689 301 181.6677 0.8722
sensorless 16 4.2944 0.0244 20 6.2854 0.0209
webspam 34 17.6316 0.4336 31 18.2457 0.4364
MNIST 2 vs. 6 324 196.8853 0.8665 297 193.2404 0.8729
electricity 7 2.8221 2.9138 7 3.5814 3.0857
drybean 16 16.0 39343.4913 16 15.9892 36040.6187
adult 13 11.179 188393.0498 12 10.9213 198588.9907
banknote 4 2.4746 4.2745 4 2.9167 4.4112
gender-by-voice 20 18.1538 55.5696 20 18.3013 31.3279
waveform 24 19.3467 3.9899 29 22.764 4.0157
wind 14 13.7389 67.9944 14 13.8936 68.1223
speech 99 69.6374 2.3355 100 71.9725 2.37

Table 16: XGBoost Leaf-Tuple perturbations statistics
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D.2 RANDOMFOREST PERTURBATION STATISTICS

Sign-OPT L2 Sign-OPT L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| perturbation Max #feature changed Mean #feature changed Mean ||L∞|| perturbation
breast-cancer 10 10.0 0.3264 10 10.0 0.2304
covtype 54 54.0 0.0682 54 54.0 0.0699
cod-rna 8 8.0 0.0537 8 8.0 0.0514
diabetes 8 8.0 0.0845 8 8.0 0.0839
Fashion-MNIST 784 784.0 0.0358 784 784.0 0.0258
ijcnn1 22 22.0 0.0776 22 22.0 0.059
MNIST 784 784.0 0.0161 784 784.0 0.0105
sensorless 48 48.0 0.018 48 48.0 0.0236
webspam 254 254.0 0.0032 254 254.0 0.0019
MNIST 2 vs. 6 784 784.0 0.2535 784 784.0 0.076
electricity 8 8.0 0.0189 8 8.0 0.0177
drybean 16 16.0 0.0145 16 16.0 0.0119
adult 14 14.0 0.96 14 14.0 1.115
banknote 4 4.0 1.5134 4 4.0 1.4708
gender-by-voice 20 20.0 0.0294 20 20.0 0.027
waveform 40 40.0 0.9492 40 40.0 0.7961
wind 14 14.0 1.1805 14 14.0 1.1561
speech - - - - - -

Table 17: RandomForest Sign-OPT perturbations statistics

OPT L2 OPT L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 10 10.0 0.3403 10 10.0 0.2835
covtype 54 54.0 0.0691 54 54.0 0.0675
cod-rna 8 8.0 0.0604 8 8.0 0.0599
diabetes 8 8.0 0.0976 8 8.0 0.0989
Fashion-MNIST 784 784.0 0.0459 784 784.0 0.0444
ijcnn1 22 22.0 0.0665 22 22.0 0.0641
MNIST 784 784.0 0.0253 784 784.0 0.0126
sensorless 48 48.0 0.0403 48 48.0 0.0266
webspam 254 254.0 0.0028 254 254.0 0.0027
MNIST 2 vs. 6 784 784.0 0.1705 784 784.0 0.1734
electricity 8 8.0 0.0214 8 8.0 0.0185
drybean 16 16.0 0.0239 16 16.0 0.0247
adult 14 14.0 0.9111 14 14.0 0.785
banknote 4 4.0 1.5897 4 4.0 1.5036
gender-by-voice 20 20.0 0.0308 20 20.0 0.0271
waveform 40 40.0 1.0321 40 40.0 0.8934
wind 14 14.0 1.3465 14 14.0 0.9985
speech - - - - - -

Table 18: RandomForest OPT perturbations statistics

HSJA L2 HSJA L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 10 9.3714 0.4717 10 9.5926 0.6591
covtype 50 43.42 0.2901 54 43.36 0.2679
cod-rna - - - - - -
diabetes - - - - - -
Fashion-MNIST 783 724.22 3.6077 766 720.79 0.9142
ijcnn1 22 19.98 0.1871 22 20.0 0.2578
MNIST 756 672.46 0.5509 753 669.0 0.5491
sensorless 48 48.0 0.089 48 48.0 0.0641
webspam 246 219.8 0.1553 254 218.81 0.1238
MNIST 2 vs. 6 768 667.37 9.4532 763 692.16 1.8106
electricity 8 7.79 0.039 8 7.83 0.031
drybean 16 14.86 3.2014 16 14.55 4.4453
adult 14 13.15 9.2404 14 13.19 6.6426
banknote 4 4.0 3.7265 4 4.0 3.035
gender-by-voice 20 19.78 0.0537 20 19.79 0.0457
waveform 40 40.0 4.6663 40 39.98 3.8479
wind 14 13.67 10.386 14 13.76 7.8599
speech - - - - - -

Table 19: RandomForest HSJA perturbations statistics
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Cube L2 Cube L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 7 2.5556 0.3326 10 9.2857 0.5759
covtype 6 1.44 0.1144 42 32.34 0.1195
cod-rna 6 2.03 0.0979 8 7.77 0.1724
diabetes 3 1.75 0.1375 8 7.2381 0.124
Fashion-MNIST 22 8.66 0.0348 715 552.09 0.0251
ijcnn1 7 2.47 0.094 21 15.83 0.0804
MNIST 12 3.91 0.0122 563 461.19 0.0131
sensorless 9 2.56 0.0306 48 44.74 0.0235
webspam 7 2.83 0.0043 203 164.43 0.0042
MNIST 2 vs. 6 16 7.03 0.1644 581 472.78 0.1066
electricity 5 1.6 0.0972 8 7.74 3.3875
drybean 9 2.68 3976.0933 16 15.66 53221.8
adult 2 1.27 9019.91 12 11.24 186698.07
banknote 3 2.0 5.9102 4 4.0 4.8118
gender-by-voice 15 4.8636 2.4741 20 19.6341 27.7117
waveform 30 9.2778 3.8403 40 34.6364 4.5004
wind - - - - - -
speech - - - - - -

Table 20: RandomForest Cube perturbations statistics

Leaf-Tuple L2 Leaf-Tuple L∞

Dataset name Max #feature changed Mean #feature changed Mean ||L2|| Max #feature changed Mean #feature changed Mean ||L∞||
breast-cancer 10 6.3902 0.2507 9 5.8095 0.2807
covtype - - - - - -
cod-rna 8 7.9845 0.0558 8 7.9922 0.0557
diabetes - - - - - -
Fashion-MNIST 655 424.3636 0.8172 666 379.701 0.0023
ijcnn1 12 12.0 0.051 12 12.0 0.0568
MNIST 276 184.2766 0.8699 303 184.1649 0.8457
sensorless 2 1.0385 0.0002 3 1.1168 0.0001
webspam 23 11.7593 0.4215 28 13.0909 0.4181
MNIST 2 vs. 6 324 190.5356 0.8724 324 191.279 0.8709
electricity 6 2.7642 3.0778 7 3.5 3.1415
drybean 16 16.0 51659.5417 16 16.0 50043.6164
adult 12 10.5597 199668.9416 12 10.7183 192389.8652
banknote 4 2.8361 5.1703 4 3.1034 5.3954
gender-by-voice 19 18.1154 34.3206 20 18.1325 32.0345
waveform 23 17.78 4.1968 25 18.5915 4.4844
wind 14 13.7556 67.8056 14 13.733 68.983
speech - - - - - -

Table 21: RandomForest Leaf-Tuple perturbations statistics
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E APPENDIX E - DETECTOR ABLATION STUDY

We wanted to investigate how three aspects of our detector affect our metrics results:

1. The dimensions of our new representations (for the samples and for the nodes).

2. The machine learning classifier that was chosen as the final adversarial detector.

3. Key hyperparameters of the final adversarial detector.

To do our tests, we took two different experiments and showed their results:

• XGBoost target with codrna dataset and OPT attack method.

• RandomForest target with sensorless dataset and HopSkipJumpAttack attack method.

Each one of the above with the two different norms.

E.1 DIFFERENT CLASSIFIER & HYPERPARAMETERS

We checked three different classifiers as our models for our adversarial evasion attack detector:
XGBoost, RandomForest, and K-nearest neighbors (KNN). For the tree ensemble classifiers, we
checked how much the number of estimators and their depth impacts the performance of the detector.
For the KNN classifier, we tested the results with different values of K.

E.1.1 XGBOOST DETECTOR HYPERPARAMETERS

As we can see from the results in Figures 13, 14, 15, and 16 that in general the number of estimators
has a large impact on both ROC-AUC and on PR-AUC until a certain point which is around 50 esti-
mators and above usually there is improvements, but relatively smaller. In most cases, the maximum
depth of the trees has a very light impact on the results when the number of estimators is 50 or more.

(a) ROC-AUC (b) PR-AUC

Figure 13: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with dif-
ferent hyperparametrs. Target: XGBoost, dataset: codrna, attack method: OPT, norm: 2.
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(a) ROC-AUC (b) PR-AUC

Figure 14: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with dif-
ferent hyperparametrs. Target: XGBoost, dataset: codrna, attack method: OPT, norm: ∞

(a) ROC-AUC (b) PR-AUC

Figure 15: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with dif-
ferent hyperparametrs. Target: RandomForest, dataset: sensorless, attack method: HopSkipJumpAt-
tack, norm: 2

(a) ROC-AUC (b) PR-AUC

Figure 16: Comparing ROC-AUC and PR-AUC for detector based on XGBoost classifier with differ-
ent hyperparameters. Target: RandomForest, dataset: sensorless, attack method: HopSkipJumpAt-
tack, norm: ∞

E.1.2 RANDOMFOREST

As we can see from the results in Figures 17, 18, 19, and 20 that in general the number of estimators
and the maximum depth of the trees has a large impact on both ROC-AUC and on PR-AUC. In

24



Under review as a conference paper at ICLR 2023

experiments with hyperparameters similar to our XGBoost experiments both ROC-AUC and PR-
AUC is lower.

(a) ROC-AUC (b) PR-AUC

Figure 17: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier with
different hyperparametrs. Target: XGBoost, dataset: codrna, attack method: OPT, norm: 2

(a) ROC-AUC (b) PR-AUC

Figure 18: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier with
different hyperparameters. Target: XGBoost, dataset: codrna, attack method: OPT, norm: ∞

(a) ROC-AUC (b) PR-AUC

Figure 19: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier
with different hyperparameters. Target: RandomForest, dataset: sensorless, attack method: Hop-
SkipJumpAttack, norm: 2
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(a) ROC-AUC (b) PR-AUC

Figure 20: Comparing ROC-AUC and PR-AUC for detector based on RandomForest classifier
with different hyperparameters. Target: RandomForest, dataset: sensorless, attack method: Hop-
SkipJumpAttack, norm: ∞

E.1.3 KNN

We tested KNN performance with different Ks to investigate how much it changed the detector per-
formance metrics and compared it to the results we got in our original experiments. We used KNN
based on Facebook AI fast similarity search (Johnson et al., 2019) implemented in DESlib (Cruz
et al., 2020) due to time consideration for cases where the feature count is relatively high. In Figures
21 and 22 we can see a comparison of ROC-AUC and PR-AUC of KNN classifier with different
values of k neighbors. Additionally, added the performance of KNN on the original representation
of the dataset and the metric values of the original experiments done with our new method with
XGBoost classifier as the detector. In all of the experiments, we can see the relative stability of
the values with different K values. Additionally, the metric values with the XGBoost classifier are
higher.

(a) L2 (b) L∞

Figure 21: KNN classifier adversarial detector performance. Attack: OPT — Dataset: codrna.

(a) L2 (b) L∞

Figure 22: KNN classifier adversarial detector performance. Attack: HopSkipJumpAttack —
Dataset: sensorless
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E.2 EMBEDDINGS DIMENSIONS

Here we tested how much the embedding dimension might affect the performance of our detector.
We have two different embeddings - for the samples and for the nodes. In Figures 23, 24, 25, and
26 we can see heatmaps for compare the performance with different embedding size. The general
pattern from the heatmaps in Figures 23 and 24 is that as our sample hidden size is larger and the
node hidden size is lower the results are better. In Figures 25 and 26 we don’t see that pattern.

(a) ROC-AUC (b) PR-AUC

Figure 23: Performance of different samples and nodes embedding sizes. Target: XGBoost, dataset:
codrna, attack method: OPT, norm: 2

(a) ROC-AUC (b) PR-AUC

Figure 24: Performance of different samples and nodes embedding sizes. Target: XGBoost, dataset:
codrna, attack method: OPT, norm: ∞

(a) ROC-AUC (b) PR-AUC

Figure 25: Performance of different samples and nodes embedding sizes. Target: RandomForest,
dataset: sensorless, attack method: HSJA, norm: 2

27



Under review as a conference paper at ICLR 2023

(a) ROC-AUC (b) PR-AUC

Figure 26: Performance of different samples and nodes embedding sizes. Target: RandomForest,
dataset: sensorless, attack method: HSJA, norm: ∞

F APPENDIX F - TREE ENSEMBLE HYPERPARAMETERS

We used tree ensembles for two tasks: the target model to extract adversarial samples and the base
for the adversarial detector. For the target model, we used 40 estimators with a max depth of 5
for both XGBoost and Random forest. For the rest of the hyperparameters, we used the default
values set in the XGBoost library package version 1.6.1. To train the adversarial detector, we used
the default parameters for XGBoost and RandomForest set in the XGBoost library package version
1.6.1.

G APPENDIX G - TREE MODEL’S PERFORMANCE USING LESS DATA

A potential issue in our method is that we reduce the available data used to train the model; thus, the
model performance might be affected. As part of our method, we split each dataset we experimented
on into several subsets for different roles described in Subsection 4.1 and Appendix H. We took the
original representation of the datasets and compared the trained models from our experiments to a
new version of the model trained on all data besides the test set. Below, we can see in Figure 27 a
comparison between the ROC-AUC of the model trained on our split version of the dataset (Y-axis)
to the same model trained on more data (X-axis) on the test sets. As we can see, there is a decrease
in performance most of the time, but most of the degradation is minor. For a complete description
of the numbers in every experiment, refer to Tables 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

(a) XGBoost (b) RandomForest

Figure 27: A comparison between our method models’ ROC-AUC on the test set compared to a
model trained with the same hyperparameters but with more data which we use in our method to
train the representations and detector.
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Sign-OPT L2 Sign-OPT L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9958 0.9975 0.0017 1.0 0.9989 -0.0011
covtype 0.9843 0.9865 0.0022 0.9847 0.9868 0.0021
codrna 0.9928 0.994 0.0012 0.9928 0.994 0.0012
diabetes 0.7706 0.8154 0.0448 0.8108 0.8075 -0.0033
fashion 0.9903 0.9924 0.0021 0.9899 0.9925 0.0026
ijcnn1 0.9954 0.9961 0.0007 0.9951 0.9962 0.0011
mnist 0.9991 0.9997 0.0006 0.9991 0.9997 0.0006
mnist26 0.9995 0.9999 0.0004 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9992 0.0003 0.9989 0.9992 0.0003
electricity 0.9614 0.9783 0.0169 0.9579 0.9782 0.0203
drybean 0.9957 0.9964 0.0007 0.9941 0.9953 0.0012
adult 0.913 0.9254 0.0124 0.9149 0.9235 0.0086
banknote 1.0 0.9992 -0.0008 0.9983 1.0 0.0017
voice 0.9957 0.9992 0.0035 0.9806 0.9817 0.0011
waveform 0.962 0.9847 0.0227 0.9274 0.9322 0.0048
wind 0.9301 0.9391 0.009 0.9294 0.9424 0.013
speech 0.959 0.9126 -0.0464 0.4699 0.9208 0.4509

Table 22: Sign-OPT XGBoost Experiments - ROC-AUC Degradation

OPT L2 OPT L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9958 0.9969 0.0011 0.9978 0.9978 0.0
covtype 0.9846 0.9868 0.0022 0.9845 0.9864 0.0019
codrna 0.9926 0.9939 0.0013 0.9929 0.9941 0.0012
diabetes 0.7669 0.8217 0.0548 0.8103 0.8055 -0.0048
fashion 0.99 0.9924 0.0024 0.9903 0.9926 0.0023
ijcnn1 0.9942 0.996 0.0018 0.9941 0.9959 0.0018
mnist 0.9992 0.9997 0.0005 0.9992 0.9997 0.0005
mnist26 0.9997 0.9999 0.0002 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9992 0.0003 0.999 0.9993 0.0003
electricity 0.9529 0.9767 0.0238 0.9546 0.9735 0.0189
drybean 0.9945 0.9967 0.0022 0.9951 0.9967 0.0016
adult 0.9191 0.9291 0.01 0.8808 0.8952 0.0144
banknote 1.0 1.0 0.0 1.0 1.0 0.0
voice 0.9986 0.9997 0.0011 1.0 1.0 0.0
waveform 0.9287 0.9341 0.0054 0.9662 0.9777 0.0115
wind 0.9258 0.9395 0.0137 0.9171 0.9336 0.0165
speech 0.6603 0.8665 0.2062 0.8167 0.8467 0.03

Table 23: OPT XGBoost Experiments - ROC-AUC Degradation

HSJA L2 HSJA L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9994 0.9969 -0.0025 0.9997 0.9989 -0.0005
covtype 0.9851 0.9856 0.0005 0.9843 0.9867 0.0024
codrna 0.9929 0.9941 0.0012 0.9927 0.9939 0.0012
diabetes 0.7996 0.8215 0.0219 0.8119 0.82 0.0204
fashion 0.99 0.9925 0.0025 0.9901 0.9926 0.0025
ijcnn1 0.9949 0.9956 0.0007 0.9945 0.9959 0.0014
mnist 0.9991 0.9997 0.0006 0.9992 0.9997 0.0005
mnist26 0.9996 0.9999 0.0003 0.9998 0.9999 0.0001
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9992 0.0003 0.9989 0.9992 0.0003
electricity 0.9526 0.9733 0.0207 0.9567 0.98 0.0233
drybean 0.9924 0.9949 0.0025 0.9939 0.9956 0.0017
adult 0.9103 0.9196 0.0093 0.915 0.9328 0.0178
banknote 0.9966 1.0 0.0034 1.0 1.0 0.0
voice 0.994 0.996 0.002 0.9986 0.9995 0.0009
waveform 0.9605 0.9627 0.0022 0.9466 0.9574 0.0108
wind 0.9246 0.9282 0.0036 0.9347 0.9463 0.0116
speech 0.7473 0.7711 0.0238 0.8587 1.0 0.1413

Table 24: HSJA XGBoost Experiments - ROC-AUC Degradation
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Cube L2 Cube L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9997 0.998 -0.0017 0.9964 0.9966 0.0002
covtype 0.9852 0.9873 0.0021 0.9847 0.9862 0.0015
codrna 0.9928 0.994 0.0012 0.9929 0.9941 0.0012
diabetes 0.7477 0.8268 0.0791 0.7765 0.8072 0.0307
fashion 0.9903 0.9925 0.0022 0.99 0.9927 0.0027
ijcnn1 0.9948 0.9959 0.0011 0.9945 0.9959 0.0014
mnist 0.9992 0.9997 0.0005 0.9992 0.9997 0.0005
mnist26 0.9997 1.0 0.0003 0.9995 0.9999 0.0004
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9993 0.0004 0.9989 0.9993 0.0004
electricity 0.9619 0.9801 0.0182 0.9528 0.9746 0.0218
drybean 0.9935 0.9951 0.0016 0.9942 0.9956 0.0014
adult 0.9153 0.9263 0.011 0.9142 0.9302 0.016
banknote 1.0 1.0 0.0 1.0 1.0 0.0
voice 1.0 1.0 0.0 0.9949 0.9973 0.0024
waveform 0.9475 0.9599 0.0124 0.9581 0.9612 0.0031
wind 0.9373 0.9451 0.0078 0.9425 0.937 -0.0055
speech - - - - - -

Table 25: Cube XGBoost Experiments - ROC-AUC Degradation

Leaf-Tuple L2 Leaf-Tuple L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9986 0.9978 -0.0008 0.9961 0.9972 0.0011
covtype 0.9845 0.9868 0.0023 0.9842 0.9869 0.0027
codrna 0.993 0.994 0.001 0.9928 0.9939 0.0011
diabetes 0.7662 0.8114 0.0452 0.7695 0.8298 0.0603
fashion 0.9902 0.9923 0.0021 0.99 0.9925 0.0025
ijcnn1 0.9953 0.9963 0.001 0.9944 0.9963 0.0019
mnist 0.9992 0.9997 0.0005 0.9992 0.9997 0.0005
mnist26 0.9997 0.9999 0.0002 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9993 0.0004 0.999 0.9993 0.0003
electricity 0.9553 0.9726 0.0173 0.9509 0.9732 0.0223
drybean 0.9956 0.9962 0.0006 0.9962 0.9963 0.0001
adult 0.9161 0.928 0.0119 0.9004 0.9147 0.0143
banknote 1.0 1.0 0.0 1.0 1.0 0.0
voice 0.9914 0.9971 0.0057 0.9919 0.9948 0.0029
waveform 0.9598 0.9716 0.0118 0.9487 0.9556 0.0069
wind 0.9328 0.9529 0.0201 0.9215 0.9434 0.0219
speech 0.5328 0.8716 0.3388 0.6808 0.8616 0.1808

Table 26: Leaf-Tuple XGBoost Experiments - ROC-AUC Degradation

Sign-OPT L2 Sign-OPT L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9952 0.9972 0.002 0.9965 0.9975 0.001
covtype 0.9841 0.9862 0.0021 0.9844 0.9864 0.002
codrna 0.9926 0.994 0.0014 0.9929 0.994 0.0011
diabetes 0.7954 0.8083 0.0129 0.7848 0.8162 0.0314
fashion 0.9904 0.9924 0.002 0.9901 0.9925 0.0024
ijcnn1 0.9946 0.9964 0.0018 0.9956 0.9958 0.0002
mnist 0.9993 0.9997 0.0004 0.9992 0.9997 0.0005
mnist26 0.9995 0.9999 0.0004 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9993 0.0004 0.9989 0.9993 0.0004
electricity 0.9525 0.9741 0.0216 0.9541 0.9776 0.0235
drybean 0.9968 0.9967 -0.0001 0.9946 0.9952 0.0006
adult 0.9037 0.9209 0.0172 0.9146 0.9218 0.0072
banknote 1.0 1.0 0.0 1.0 1.0 0.0
voice 0.9894 0.9975 0.0081 0.9921 0.993 0.0009
waveform 0.957 0.98 0.023 0.9535 0.9748 0.0213
wind 0.9179 0.9196 0.0017 0.9176 0.9366 0.019
speech - - - - - -

Table 27: Sign-OPT RandomForest Experiments - ROC-AUC Degradation
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OPT L2 OPT L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.9992 0.9972 -0.002 0.9994 0.9975 -0.0019
covtype 0.9844 0.9868 0.0024 0.9851 0.9867 0.0016
codrna 0.9929 0.994 0.0011 0.9928 0.9941 0.0013
diabetes 0.7532 0.8033 0.0501 0.8241 0.8033 -0.0208
fashion 0.9903 0.9924 0.0021 0.9902 0.9924 0.0022
ijcnn1 0.9943 0.9958 0.0015 0.9958 0.996 0.0002
mnist 0.9993 0.9997 0.0004 0.9992 0.9997 0.0005
mnist26 0.9998 0.9999 0.0001 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.999 0.9992 0.0002 0.9989 0.9992 0.0003
electricity 0.9595 0.9787 0.0192 0.9502 0.971 0.0208
drybean 0.9949 0.9958 0.0009 0.9962 0.9969 0.0007
adult 0.9147 0.9307 0.016 0.9106 0.9207 0.0101
banknote 1.0 1.0 0.0 1.0 1.0 0.0
voice 0.999 1.0 0.001 0.996 0.999 0.003
waveform 0.9652 0.9705 0.0053 0.9442 0.9519 0.0077
wind 0.9389 0.9436 0.0047 0.9452 0.9553 0.0101
speech - - - - - -

Table 28: OPT RandomForest Experiments - ROC-AUC Degradation

HSJA L2 HSJA L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.998 0.9975 -0.0005 0.9997 0.9983 -0.0014
covtype 0.9843 0.9865 0.0022 0.9847 0.9865 0.0018
codrna - - - - - -
diabetes - - - - - -
fashion 0.9903 0.9925 0.0022 0.9901 0.9925 0.0024
ijcnn1 0.9944 0.9963 0.0019 0.9951 0.9955 0.0004
mnist 0.9992 0.9997 0.0005 0.9992 0.9997 0.0005
mnist26 0.9995 1.0 0.0005 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9992 0.0003 0.9989 0.9992 0.0003
electricity 0.9575 0.9736 0.0161 0.957 0.976 0.019
drybean 0.995 0.995 0.0 0.9943 0.9964 0.0021
adult 0.9049 0.9154 0.0105 0.8973 0.9133 0.016
banknote 0.9966 1.0 0.0034 1.0 1.0 0.0
voice 1.0 1.0 0.0 0.999 1.0 0.001
waveform 0.9412 0.9548 0.0136 0.9329 0.945 0.0121
wind 0.9345 0.9432 0.0087 0.9292 0.9321 0.0029
speech - - - - - -

Table 29: HSJA RandomForest Experiments - ROC-AUC Degradation

Cube L2 Cube L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 0.998 0.9969 -0.0011 1.0 0.9964 -0.0036
covtype 0.9843 0.9865 0.0022 0.9844 0.9864 0.002
codrna 0.9927 0.994 0.0013 0.9929 0.994 0.0011
diabetes 0.8086 0.8138 0.0052 0.7576 0.8123 0.0547
fashion 0.9901 0.9925 0.0024 0.9903 0.9925 0.0022
ijcnn1 0.9941 0.9958 0.0017 0.9946 0.9962 0.0016
mnist 0.9992 0.9997 0.0005 0.9991 0.9997 0.0006
mnist26 0.9995 0.9999 0.0004 0.9996 0.9999 0.0003
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.9989 0.9992 0.0003 0.9989 0.9992 0.0003
electricity 0.9449 0.9714 0.0265 0.963 0.977 0.014
drybean 0.9947 0.9943 -0.0004 0.9933 0.9951 0.0018
adult 0.9047 0.9158 0.0111 0.9215 0.934 0.0125
banknote 0.9958 0.9958 0.0 1.0 1.0 0.0
voice 0.987 0.9916 0.0046 0.9954 0.9986 0.0032
waveform 0.9731 0.975 0.0019 0.9567 0.9676 0.0109
wind - - - - - -
speech - - - - - -

Table 30: Cube RandomForest Experiments - ROC-AUC Degradation
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Leaf-Tuple L2 Leaf-Tuple L∞

Dataset Splitted Dataset Original Dataset ∆ROC-AUC Splitted Dataset Original Dataset ∆ROC-AUC

breast cancer 1.0 0.9975 -0.0025 0.9969 0.9969 0.0
covtype - - - - - -
codrna 0.9927 0.994 0.0013 0.9928 0.994 0.0012
diabetes - - - - - -
fashion 0.99 0.9924 0.0024 0.9899 0.9925 0.0026
ijcnn1 0.995 0.996 0.001 0.9949 0.9958 0.0009
mnist 0.9992 0.9997 0.0005 0.9992 0.9997 0.0005
mnist26 0.9998 0.9999 0.0001 0.9997 0.9999 0.0002
sensorless 1.0 1.0 0.0 1.0 1.0 0.0
webspam 0.999 0.9992 0.0002 0.999 0.9992 0.0002
electricity 0.9546 0.9785 0.0239 0.948 0.9726 0.0246
drybean 0.9953 0.9959 0.0006 0.9942 0.9951 0.0009
adult 0.9211 0.9298 0.0087 0.9002 0.9208 0.0206
banknote 0.9966 1.0 0.0034 0.9974 1.0 0.0026
voice 0.9992 0.9986 -0.0006 0.9941 0.9974 0.0033
waveform 0.9536 0.9677 0.0141 0.9359 0.9615 0.0256
wind 0.9249 0.9431 0.0182 0.9334 0.9356 0.0022
speech - - - - - -

Table 31: Leaf-Tuple RandomForest Experiments - ROC-AUC Degradation
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H APPENDIX H - METHOD FLOW - FURTHER EXPLANATIONS

Figure 28: The general flow of our method with a color legend at the bottom.

In Figure 28, you can see a visualization of the points in Subsection 4.1, which we added here below
as well, for readers’ convenience:

1. Split the dataset into four different parts for different purposes: ST to train the tree model,
SE to train our basic representation model, SD−train to train our adversarial detector and
SD−test to evaluate our adversarial detector.

2. Train a tree model.
3. Generate a triplets dataset that will be used to initialize the new representations. This is

explained more fully in Subsection 4.2.
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4. Train our basic embedding model E . This is explained more fully in Subsection 4.3.
5. Split SD−train and SD−test into two parts.
6. Generate adversarial samples using an attack method A.
7. Generate a new triplet dataset for each of the new sub-datasets. This is explained more

fully in Subsection 4.4.
8. Optimize the representations of the new sub-datasets to our new embeddings using E , more

details in Subsection 4.4.
9. Concatenate the new representation of every set to the original ones.

10. Train our adversarial detector. This is explained more fully in Subsection 4.5.
11. Evaluate our adversarial detector. This is explained more fully in Section 5.

Our dataset is split into four main sub-datasets:

1. ST - a dataset that will be used to train the target tree model.
2. SE - a dataset that will be used to optimize a base set of embeddings that represent the

general distribution of the original dataset. This base set of embeddings used to optimize
new samples representations.

3. SD−train - a dataset used to train our adversarial detector, it will be split into two sub-sub-
datasets to allow us to collect normal samples and adversarial samples.

4. SD−test - a dataset used to test our adversarial detector, it will be split into two sub-sub-
datasets to allow us to collect normal samples and adversarial samples.

We chose this split method to reduce bias and overfitting when optimizing the representations and
training our adversarial detector. Each of the above datasets is sampled randomly from the original
dataset without replacements, meaning one sample will be only in one of the above sub-datasets. As
a result, the amount of data we use for each one of the steps is reduced, and we added information
about it in Appendix G to show how much it affects the classification performance of the original
tasks.
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