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ABSTRACT

Reinforcement learning under safety constraints remains a fundamental challenge.
While primal–dual formulations provide a principled framework for enforcing
such constraints, their effectiveness depends critically on accurate modeling of
cost distributions. Existing approaches often impose Gaussian assumptions and
approximate risk either by the mean or by CVaR, yet these formulations inherently
fail to capture complex, multimodal, or heavy-tailed risks. To overcome these lim-
itations, we propose GMM-SSAC (Gaussian Mixture Model-Based Supremum
CVaR-Guided Safe Soft Actor-Critic), whose core is the Supremum Conditional
Value-at-Risk (SCVaR) criterion: a coherent and robust safety measure that ex-
plicitly targets the worst-case tail across all components of a Gaussian mix-
ture. To support accurate SCVaR estimation online, we introduce an incremen-
tal EM-based update that refines the GMM parameters by blending instantaneous
safety samples with Bellman-transformed estimates—ensuring unbiased, conver-
gent parameter estimates for reliable SCVaR computation. Empirical evaluations
on standard safety benchmarks demonstrate that GMM-SSAC substantially im-
proves risk sensitivity and safety while maintaining competitive task performance,
validating SCVaR as a principled and effective cost estimator for safe reinforce-
ment learning.

1 INTRODUCTION

Figure 1: Demonstration of how Gaussian-based
CVaR’s underestimation of tail risks can lead to
dangerous driving behaviors, as the model fails to
properly account for extreme events that deviate
from normal distribution assumptions.

Safe Reinforcement Learning (Safe RL) aims
to enable autonomous agents to learn effec-
tive policies while satisfying safety constraints.
With RL increasingly applied in safety-critical
domains such as healthcare (Yu et al., 2021),
robotics (Tang et al., 2024), finance (Hambly
et al., 2023), and autonomous driving (Kiran
et al., 2021), ensuring safe and reliable oper-
ation has become crucial. Standard RL meth-
ods, which focus on maximizing cumulative re-
wards, often overlook risks and safety viola-
tions during training, leading to unsafe behav-
iors and potentially catastrophic failures. This
highlights the need for principled frameworks
that explicitly integrate safety into the learning
process.

A principled framework for Safe RL is the
Constrained Markov Decision Process (CMDP)
(Altman, 2021), where the agent maximizes re-
wards subject to cost constraints. Primal–dual
methods are commonly used to solve CMDPs (Achiam et al., 2017; Tessler et al., 2018; Chow et al.,
2018), with a safety critic estimating the distribution of cumulative costs, where “cost” denotes
penalties from safety violations or undesirable actions. To better capture risk, prior studies have
introduced measures such as Conditional Value-at-Risk (CVaR) (Tamar et al., 2015; Chow et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2018; Coache et al., 2023), which focuses on tail losses, and upper confidence bounds (UCBs) (Wu
et al., 2024), which provide conservative cost estimates.

However, most existing approaches approximate long-term costs with a single Gaussian, which is
often too simplistic for safety-critical settings. As shown in Fig. 1, the empirical cost distribution
can be complex and multi-modal, while its Gaussian fit fails to capture tail behavior, leading CVaR
to underestimate extreme risks and induce hazardous policies. This motivates the need for more
expressive distributional models. Gaussian Mixture Models (GMMs) provide a natural choice: they
have universal approximation capability for continuous distributions (Chacko & Viceira, 2003; Jalali
et al., 2019) and can represent distinct safety-critical modes through different components, offering
both flexibility and interpretability.

GMMs have also been applied in RL for Q-function approximation (Agostini & Celaya, 2010; Vu
& Slavakis, 2024), improving function accuracy, sample efficiency, and robustness in non-stationary
environments. However, these works do not address the critical issue of risk modeling in Safe RL.
To fill this gap, we introduce the Supremum Conditional Value-at-Risk (SCVaR), defined as the
maximum CVaR across GMM components. SCVaR is a coherent risk measure (Artzner et al., 1999),
providing a conservative estimate that explicitly accounts for the worst-case risks captured by each
component. To estimate GMM parameters robustly, we design an incremental EM refinement that
blends Bellman-updated samples with new observations (Moon, 1996), ensuring unbiased online
updates. Integrating this safety critic into the Soft Actor-Critic (SAC) framework (Haarnoja et al.,
2018), we obtain the proposed GMM-SSAC algorithm.

Our contributions are threefold: (1) introducing SCVaR as a coherent risk measure that captures
worst-case tail risks across mixture components; (2) developing an incremental EM-based update
for accurate online GMM estimation; and (3) designing GMM-SSAC, which achieves improved
safety with competitive performance on standard benchmarks.

2 PRELIMINARIES

2.1 CONSTRAINED MARKOV DECISION PROCESSES

A CMDP extends the standard MDP by incorporating safety constraints into the optimization frame-
work. Formally, a CMDP is defined as a tupleM = (S,A, P, r, c, γ,D), where S andA denote the
state and action spaces, P (s′|s, a) is the transition probability from state s to state s′ given action a,
r(s, a) is the reward function, and c(s, a) is the cost function associated with safety risks. The dis-
count factor γ ∈ [0, 1) balances immediate and future returns. The scalar D represents the threshold
on the expected cumulative cost, defining the safety constraint.

The goal of a CMDP is to find a policy π that maximizes the expected cumulative reward while
ensuring that the cumulative cost remains below the threshold D. This constrained optimization
problem is formulated as:

max
π

E(st,at)∼ρπ

[ ∞∑
t=0

γtr(st, at)

]
, s.t. E(st,at)∼ρπ

[ ∞∑
t=0

γtc(st, at)

]
≤ D, (1)

where ρπ is the state-action distribution induced by the policy π. The inequality ensures that the
policy satisfies the specified safety requirement.

2.2 PRIMAL–DUAL METHOD FOR CMDPS

To solve the constrained optimization in Eq. 1, a standard approach is to adopt the primal–dual
method, which introduces a non-negative Lagrange multiplier λ associated with the safety con-
straint. The resulting Lagrangian is given by:

L(π, λ) = E(st,at)∼ρπ

[ ∞∑
t=0

γtr(st, at)

]
− λ

(
E(st,at)∼ρπ

[ ∞∑
t=0

γtc(st, at)

]
−D

)
. (2)

The optimization then proceeds by solving the following saddle-point problem:

max
π

min
λ≥0

L(π, λ). (3)
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Intuitively, the policy π (primal variable) is updated to maximize the Lagrangian objective, while
the multiplier λ (dual variable) is adjusted to penalize constraint violations. In practice, this leads
to an iterative update scheme where policy optimization and dual variable adjustment are alternated,
ensuring that the learned policy balances task performance and safety satisfaction.

2.3 CONDITIONAL VALUE AT RISK

Conditional Value at Risk (CVaR) is a coherent risk measure that captures the expected loss in the
tail of a distribution. For a random variableX , the Value at Risk (VaR) at confidence level α ∈ (0, 1]
is defined as

VaRα(X) = inf{x ∈ R | FX(x) ≥ 1− α}, (4)
where FX denotes the cumulative distribution function of X .

The CVaR at level α is formally defined, for distributions that are absolutely continuous, as
CVaRα(X) = E[X | X ≥ VaRα(X)]. (5)

For general distributions, equivalent formulations can be obtained through integral representations
of the quantile function (see, e.g., Rockafellar & Uryasev (2000)), but in this work we focus on the
Gaussian case, where absolute continuity holds.

For Gaussian random variables X ∼ N (µ, σ2), the CVaR has the closed-form expression

CVaRα(X) = µ+ σ · ϕ(Φ
−1(1− α))
1− α

, (6)

where ϕ(·) and Φ(·) are the PDF and CDF of the standard normal distribution, respectively. Here,
α controls the degree of risk aversion: smaller values emphasize extreme tail risks, whereas larger
values consider broader outcomes.

Several works (Yang et al., 2021; Wu et al., 2024) have extended the primal–dual formulation of
CMDPs by replacing the expectation of cumulative costs in the Lagrangian (Eq. 2) with a CVaR-
based risk term. Specifically, the modified Lagrangian becomes

LCVaR(π, λ) = E(st,at)∼ρπ

[ ∞∑
t=0

γtr(st, at)

]
− λ

(
CVaRα

( ∞∑
t=0

γtc(st, at)

)
−D

)
. (7)

This CVaR-based primal–dual formulation provides a more conservative alternative to expectation-
based constraints by explicitly regularizing the tail of the cost distribution.

3 METHODOLOGY

3.1 SUPREMUM CONDITIONAL VALUE AT RISK

Figure 2: SCVaR illustration showing how it iden-
tifies the worst-case risk (red line) beyond indi-
vidual CVaR components (green and blue) in a
GMM.

Fig. 1 illustrates the limitations of single
Gaussian approximations in capturing complex
safety cost distributions. To overcome this chal-
lenge, we propose a more expressive distribu-
tional framework using GMMs, defined as:

Gπ(s, a) ≈
K∑

k=1

ωkN (µk, σ
2
k), (8)

where Gπ(s, a), represents the probabilis-
tic distribution of cumulative safety costs∑∞

t=0 γ
tc(st, at) under the policy π, ωk are the

mixing coefficients satisfying
∑K

k=1 ωk = 1,
and N (µk, σ

2
k) represents the k-th Gaussian

component with mean µk and variance σ2
k.

To quantify extreme tail risks in GMMs, we introduce the concept of SCVaR as shown in Fig. 2.
SCVaR extends the traditional CVaR framework by focusing on the worst-case tail risk among all
components in a multimodal distribution. We define SCVaR as follows.
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Definition 1 (Supremum Conditional Value at Risk). SCVaR is the maximum CVaR across all com-
ponents of the GMM, capturing the worst-case tail risk:

SCVaRα = sup
k∈{1,...,K}

CVaR(k)
α , (9)

where CVaR(k)
α is the CVaR at level α of the k-th Gaussian component, and K is the total number of

components.

Theorem 1 (Proof in Appendix A.1). SCVaR provides a conservative upper bound on the overall
mixture CVaR under a GMM, i.e.,

SCVaRα ≥ CVaRGMM
α ,

where CVaRGMM
α is the CVaR of the full GMM distribution at level α.

Proposition 1 (Proof in Appendix A.2). SCVaR is a coherent risk measure; it satisfies monotonicity,
translation invariance, positive homogeneity, and subadditivity.

To illustrate the distinction between SCVaR and CVaR, we provide an investment portfolio example
involving bonds and stocks in Appendix A.3.

3.2 INCREMENTAL UPDATING SAFETY CRITIC WITH BELLMAN OPERATOR

Our next challenge is to estimate the parameters {(µk, σk, ωk)}Kk=1 in Gπ(s, a). Unlike traditional
distribution parameter estimation problems, in the CMDP environment, since the safety cost is the
discounted sum of the instantaneous safety measures over time, we cannot directly obtain samples
of the cost. The only data we can collect are the instantaneous safety measures. To overcome these
challenges, we employ an incremental updating approach that blends instantaneous safety measures
from the Bellman operator with historical distribution estimates.

1) Sampling Operation X .

We first sample from the existing parameter estimates, which results in a sampling operation:

X (Gπ(s, a), N) =

K⋃
k=1

Xk(N (µk, σ
2
k), Nk), (10)

where Xk denotes Nk samples drawn independently from the k-th Gaussian component. The allo-
cation of Nk is calculated as:

Nk = ⌊ωkN⌋, ∀k ∈ {1, . . . ,K}. (11)

If
∑K

k=1Nk ̸= N due to rounding, the remaining samples are assigned to components with the
highest ωk. We denote the final sample set as Ψ(s, a) = X (Gπ(s, a), N).

2) Bellman Sampling with Operator B. Next, we use the Bellman Equation to generate a new
estimate based on the instantaneous safety measures. For a given state-action pair (s, a), the Bellman
operator B updates the safety critic by combining the real-time observed safety cost c(s, a) and
the expected discounted future safety costs. Samples x′i are drawn from the target safety critic
distribution Gπtarget(s

′, a′) using the sampling operator X . The transformed sample set is then defined
as:

ΨB(s, a) = {c(s, a) + γx′i | x′i ∈ X (Gπtarget(s
′, a′),M)}, (12)

where M represents the total number of samples.

3) Incremental Refinement with OperatorR.

The incremental refinement operator R blends the historical sample set Ψ(s, a) with the Bellman-
transformed sample set ΨB(s, a) by applying a weight parameter β. Specifically, it updates the
target sample set by sampling from each set according to the weights 1−β and β, respectively. This
results in a new target sample set: Ψupdate(s, a). The parameter β allows for flexible control over
the mixture, with larger values of β giving more weight to the Bellman-transformed samples, while
smaller values emphasize the current estimation.
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4) EM Estimation (Projection P). The EM algorithm (Moon, 1996) is used to estimate the GMM
parameters from samples inR, alternating between the following steps:

E-step: Compute the responsibility of each Gaussian component k for each sample xm ∈
Ψupdate(s, a). Specifically:

γmk =
ωkφ(xm | µk, (σk)

2)∑K
j=1 ωjφ(xm | µj , (σj)2)

, (13)

where φ(xm | µk, (σk)
2) is the Gaussian density function for the k-th component, defined as:

φ(xm | µk, (σk)
2) =

1√
2πσk

exp

(
− (xm − µk)

2

2σ2
k

)
. (14)

M-step: Update the GMM parameters based on the computed responsibilities:

µupdate
k =

∑M
m=1 γmkxm∑M
m=1 γmk

, (σupdate
k )2 =

∑M
m=1 γmk(xm − µupdate

k )2∑M
m=1 γmk

, ωupdate
k =

∑M
m=1 γmk

M
.

(15)

Finally, normalize the mixing coefficients ωupdate
k to ensure they sum to 1:

ωupdate
k ←

ωupdate
k∑K

j=1 ω
update
j

, ∀k ∈ {1, . . . ,K}. (16)

5) Neural Network Update. The neural network F for safety critic is updated by mini-
mizing the MSE loss between predicted GMM parameters (µk, σk, ωk) and update parameters
(µupdate

k , σupdate
k , ωupdate

k ).

By executing these steps in sequence, we obtain the Safety Critic with Mixture Gaussian Represen-
tation (SC-MGR) algorithm (detailed in Alg. 2), and we establish its convergence.

3.2.1 CONVERGENCE ANALYSIS

We analyze the convergence of SC-MGR via the composite Bellman–EM operator PT π , where T π

is the distributional Bellman operator and P the EM-based projection onto the GMM space.

Lemma 1. For any ν1, ν2 ∈ P1(R), the set of probability measures on R with finite first moment,
we have

W1(T πν1, T πν2) ≤ γW1(ν1, ν2), W1(Pν1,Pν2) ≤W1(ν1, ν2),

so that
W1(PT πν1,PT πν2) ≤ γW1(ν1, ν2), γ ∈ (0, 1).

Thus, PT π is a γ-contraction on P1(R).
Theorem 2. In a finite MDP with |S|, |A| <∞ and γ ∈ (0, 1), let the safety critic be modeled as a
GMM and updated by PT π . Then:

1. (Bellman contraction) T π is a γ-contraction in W1 (Bellemare et al., 2017).

2. (EM projection non-expansiveness, proof in Appendix B) P is non-expansive in W1, since EM
matches first moments: E[γmk] = ωk ⇒ E[µnew

k ] = µk.

3. (Preservation of contraction) Combining (1) and (2), the composite operator PT π is a γ-
contraction.

Hence, SC-MGR converges to a unique fixed point V∗ ∈ P1(R), defining the stable distributional
safety critic.

The key is that EM yields unbiased GMM parameter estimates, allowing the contraction mapping
property of T π (Tsitsiklis & Van Roy, 1996) to ensure convergence.

5
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Figure 3: Framework overview of our proposed method. The architecture consists of three main
components: (1) Update GMM-Based Safety Critic (top), which employs a cycle of sampling,
Bellman updates, refinement, and EM projection operations to maintain the safety distribution; (2)
Update Reward Critic (right), which follows the standard soft actor-critic architecture with twin Q-
functions; and (3) Update Policy (bottom), which integrates both safety and reward signals through
SCVaR-constrained policy optimization.

3.3 POLICY UPDATE WITH SCVAR

After obtaining the GMM parameters using the safety critic, we use SCVaRα to guide safe explo-
ration and improve policy optimization. At each iteration, the GMM parameters {(µk, σk, ωk)}Kk=1
are estimated, enabling the computation of the safety measure Λπ(s, a, α) for a specified risk level
α:

Λπ(s, a, α)
.
= SCVaRα

(
{(µk, σk, ωk)}Kk=1

)
. (17)

The policy is optimized under the constraint:

Λπ(s, a, α) ≤ d, ∀t, (18)

where d is a discounted safety threshold derived from the episodic constraint D. The threshold is
given by

d =
D ·
(
1− γT

)
(1− γ) · T

, (19)

where γ is the discount factor and T is the maximum episode length. This formulation ensures con-
sistency between the per-step discounted constraint and the original episodic bound D; the detailed
derivation is provided in Appendix D.3.

To balance task performance and safety, we extend the SAC framework (Haarnoja et al., 2018) by
introducing a safety-adjusted target distribution. Specifically, the policy πθ is optimized by mini-
mizing the KL divergence between the current policy and a target distribution that incorporates both
reward maximization and safety regularization:

min
π
DKL

(
π(· | st)

∥∥∥∥∥exp
(
1
λ (Qπ

r (st, ·)− κΛπ(st, ·, α))
)

Zπ(st)

)
, (20)

where Zπ(st) is the partition function ensuring normalization, λ > 0 is the temperature parameter
controlling entropy, and κ > 0 is the safety weight trading off rewards against constraint violations.

From this formulation, we derive the actor loss function:

Jπ(θ) = E(st,at)∼ρπθ

[
λ log πθ(at | st)−Xπθ

α,κ(st, at)
]
, (21)

whereXπθ
α,κ(s, a) = Qπ

r (s, a)−κΛπ(s, a, α), withQπ
r (s, a) denoting the standard state-action value

function.
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To further guarantee adherence to safety constraints, the safety weight κ is not fixed but adaptively
tuned. This is achieved by minimizing

Js(κ) = E(st,at)∼ρπθ
[κ (d− Λπ(st, at, α))] . (22)

3.4 OVERALL FRAMEWORK

Algorithm 1 Overview of GMM-SSAC
1: Initialize policy, reward critics, safety critic

(GMM), weights λ, κ, replay buffer D.
2: while not converged do
3: Collect transitions and store in D.
4: Update safety critic via Bellman–EM and

GMM fitting.
5: Update reward critic via double-Q learning.

6: Compute SCVaR from GMM components.

7: Update policy with reward–risk trade-off.
8: Adapt safety weight κ to enforce con-

straint.
9: Soft update target networks.

10: end while
11: Output optimized policy πθ.

The overall framework of our GMM SCVaR-
Guided SAC (GMM-SSAC) is illustrated in
Fig. 3, which integrates reward maximization
with explicit safety regulation via SCVaR. Con-
cretely, the framework follows the SAC struc-
ture but augments it with a GMM-based safety
critic, SCVaR-based risk evaluation, and adap-
tive adjustment of the safety weight κ. For
clarity, we also present a compact pseudocode
overview of the training loop in Alg. 1, while
full details and derivations are deferred to Ap-
pendix C.

4 EXPERIMENTS

We conduct a comparative evaluation using
CarGoal1, CarButton1, and CarCircle1 from
the Safety-Gymnasium benchmark 1 (Ji et al., 2023) and Hopper and Ant from the velocity-
constrained MuJoCo benchmark 2 (Todorov et al., 2012). A comprehensive description of the tested
tasks and hyper-parameters is provided in Appendix D.

The baselines considered in our experiments are as follows: (1) SAC (Haarnoja et al., 2018), a
method without safety constraints, allowing us to analyze the reward-cost trade-offs in each ex-
perimental environment; (2) SAC-Lag (Stooke et al., 2020), which employs a Lagrange multiplier
update method that leverages the derivatives of the safety constraint; (3) WC-SAC (Yang et al.,
2021), which uses a Gaussian distribution and CVaR estimation to model the safety constraint; and
(4) CAL (Wu et al., 2024), which models the safety constraint using multiple Gaussian distributions
and derives an UCB by aggregating multiple independent cost distribution estimates.

In addition to the baseline methods, we categorize the GMM-SSAC method into three variants based
on different risk level values α for SCVaR: GMM-0.1 (α = 0.1, the most conservative), GMM-
0.5 (α = 0.5, moderate risk aversion), and GMM-0.9 (α = 0.9, nearly disregarding risk). The
implementation detail and hyperparameter settings of all models are given in Appendix D.2.

We conducted several ablation studies to assess the robustness and interpretability of our approach.
In the main text, we highlight two key experiments: (i) varying the number of Gaussian components
and (ii) tuning the sample–set blending ratio β. Additional ablations, including comparisons with
alternative risk measures, integration into baseline methods, and component-level interpretability
analyses, are provided in the Appendix E.

4.1 MAIN RESULTS

Fig. 4 presents the benchmark results averaged over 5 random seeds, demonstrating the effectiveness
of the GMM-based approach compared to conventional Gaussian-based methods. The top/middle
rows present the tested reward/cost using extra episodes after each training iteration. The bottom row
presents the cost induced during training, where the training episodes are quartered in time order and
respectively represented by the four boxes for each algorithm. In CarGoal1, CarButton1, CarCircle1,
and Hopper environments, GMM-SSAC with α = 0.1 and α = 0.5 demonstrates reduced safety
violations after 750k steps while achieving comparable or superior reward and constraint satisfaction
levels compared to state-of-the-art off-policy methods. By tuning the α parameter, we can effectively

1https://github.com/PKU-Alignment/safety-gymnasium
2https://github.com/google-deepmind/mujoco
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Figure 4: Comparison with off-policy baselines on five benchmark environments. Top/middle rows
show average rewards and costs, bottom row shows training costs (divided into four phases). GMM-
SSAC consistently reduces safety violations while maintaining competitive rewards, with α con-
trolling the reward–cost trade-off. In Ant and Hopper, SCVaR adapts to the intrinsic reward–cost
coupling, achieving balanced performance.

Figure 5: Ablation on the number of GMM components (K = 2, 4, 6, 8). Fewer components yield
higher rewards but weaker cost control, while larger K improves safety by better modeling heavy-
tailed distributions. Results show that K = 6, 8 achieve lower and more stable training costs across
environments, especially in CarGoal1, CarButton1, and CarCircle1.

balance the reward-cost trade-off. With α = 0.9, the model approaches the reward performance
of unconstrained SAC while eventually reducing costs to acceptable levels, attributed to SCVaR’s
inherent conservative property in considering worst-case scenarios. In the Ant environment, while
our model achieves higher rewards and maintains acceptable costs compared to baselines, it incurs
slightly higher costs due to its adaptive balancing of efficiency and risk. Rewards and costs in
Ant are intrinsically linked to velocity, where surpassing a predefined threshold incurs penalties,
while higher speeds correspond to increased rewards. Our GMM-based method iteratively adjusts
the mixture distribution, driving SCVaR closer to the threshold d while maintaining it just below
the limit. Models like α = 0.1 exhibit greater risk sensitivity, cautiously approaching D without
exceeding it, unlike other baselines that fail to achieve this precise balance.
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4.2 ABLATION STUDY

4.2.1 NUMBER OF GAUSSIAN COMPONENTS

Fig. 5 compares the performance of models using 2, 4, 6, and 8 GMM components. The results
demonstrate a clear trade-off between reward performance and safety constraints across environ-
ments. While models with fewer components (K = 2, 4) achieve higher rewards, configurations
with more components (K = 6, 8) consistently maintain lower costs during training. This is partic-
ularly evident in CarGoal1, CarButton1, and CarCircle1, where K = 8 achieves the lowest safety
violations. In the Hopper environment, K = 6 and K = 8 demonstrate more stable cost con-
trol compared to K = 2, which shows higher variance in constraint satisfaction. The bottom row
statistics further confirm this pattern, showing that models with more components generally main-
tain lower training costs across different stages, especially in the later phases (750k-3000k steps).
Given the complex nature of cumulative cost value distributions, incorporating additional compo-
nents enables more accurate modeling of heavy-tailed values. This improved representation of tail
distributions leads to more precise estimation of worst-case scenarios, thereby enhancing the model’s
conservative behavior and safety guarantees.

4.2.2 SAMPLE-SET BLENDING RATIO

Figure 6: Ablation Study on the Impact of Blending Ratio β.

To examine the impact of the blending ratio β in the incremental updating process, we use β = 0.5
as the baseline. The relative performance is defined as:

PR(x) =
1

2
× Rβ=x

Rβ=0.5
+

1

2
× Cβ=0.5

Cβ=x
, (23)

where Rβ=x and Cβ=x are the reward and cost values under a specific β. This metric reflects the
balance between rewards and costs for different β settings.

Fig. 6 shows the performance comparison of various blending ratios β during incremental updates,
based on results averaged over ten runs with the same random seed in the same environment. For
Safety-Gymnasium, the optimal β lies between 0.5 and 0.8, while for Mujoco, it is between 0.5 and
0.7. The optimal range highlights the importance of weighting newer learning targets more heavily
in RL to avoid early stagnation due to the dynamic nature of the targets. We observe that setting
β = 0.9 yields suboptimal performance. This can be attributed to the variance introduced in GMM
parameters when using EM updates alongside Bellman equation updates.

5 CONCLUSION

We present GMM-SSAC, a Safe RL framework that combines GMMs with SCVaR-based risk as-
sessment to improve safety in complex environments. Experiments show that GMM-SSAC achieves
stronger safety guarantees while maintaining competitive reward performance. Key findings include:
(1) GMM-based safety critics better capture complex risk distributions compared to single Gaussian
approaches; (2) SCVaR effectively manages worst-case risks by considering the maximum CVaR
across mixture components; and (3) the incremental updating mechanism enables stable learning in
dynamic environments. These results suggest that more expressive risk modeling through mixture
distributions, combined with conservative risk measures, provides a promising direction for devel-
oping robust safe RL systems. Future work could explore adaptive component selection strategies
and extend the framework to handle more complex safety constraints.

9
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A SCVAR ADVANTAGE ANALYSIS

A.1 THEORETICAL PROOF: SCVAR EXCEEDS CVAR IN GMMS

Proof. Assume the loss variable L follows a GMM with K components:

fL(x) =

K∑
i=1

wi · ϕi(x), (24)

where wi are the mixture weights (
∑
wi = 1), and ϕi(x) = N (x | µi, σ

2
i ) is the PDF of the i-th

Gaussian component.

The VaR at confidence level α is defined as the (1− α)-quantile:

VaRα(L) = inf{q | Pr[L ≥ q] ≤ 1− α} = ICDFL(1− α),

which for a GMM satisfies:
K∑
i=1

wi · Φ
(

VaRα − µi

σi

)
= 1− α,

where Φ(·) is the standard normal CDF.

The Conditional Value-at-Risk (CVaR) is defined as the expected loss conditional on exceeding VaR:

CVaRα(L) = E[L | L ≥ VaRα] =
1

1− α

∫ ∞

VaRα

x · fL(x) dx.

Expanding over the mixture:

CVaRGMM
α =

1

1− α

K∑
i=1

wi

∫ ∞

VaRα

x · ϕi(x) dx.

For each Gaussian component, we apply the change of variables:

zi =
x− µi

σi
, t = µi + σizi, dt = σi dzi.

This transforms the integral:∫ ∞

VaRα

t · ϕi(t) dt =
∫ ∞

zi

(µi + σiz) · ϕ(z) dz, zi =
VaRα − µi

σi
.

Splitting the terms, we get:

µi

∫ ∞

zi

ϕ(z) dz + σi

∫ ∞

zi

z · ϕ(z) dz.

These evaluate as: ∫ ∞

zi

ϕ(z) dz = 1− Φ(zi),

∫ ∞

zi

z · ϕ(z) dz = ϕ(zi),

yielding: ∫ ∞

VaRα

t · ϕi(t) dt = µi(1− Φ(zi)) + σiϕ(zi).

Therefore, the overall CVaR is:

CVaRGMM
α =

1

1− α

K∑
i=1

wi [µi(1− Φ(zi)) + σiϕ(zi)] .

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

To express this as a convex combination, define the posterior tail weights:

PostWeighti =
wi(1− Φ(zi))

1− α
,

which satisfy
∑K

i=1 PostWeighti = 1.

Thus, we can write:

CVaRGMM
α =

K∑
i=1

PostWeighti · CVaR(i)
α .

We define the SCVaR as:
SCVaRα = max

i
CVaR(i)

α ,

which captures the worst-case per-component tail risk (based only on its own distribution).

Since CVaRGMM
α is a convex combination of per-component contributions, it holds that:∑

piai ≤ max
i
ai for pi ≥ 0,

∑
pi = 1,

implying:
CVaRGMM

α ≤ SCVaRα.

Therefore, SCVaR always provides a conservative upper bound on the mixture CVaR, explicitly
focusing on the worst-case per-component tail risk.

This completes the proof.

A.2 DETAILED PROOF OF SCVAR COHERENCE

Proof. Let the (cost) distribution be modeled by a Gaussian mixture. For

X =

K∑
k=1

ωkN (µk, σ
2
k),

∑
k

ωk = 1, ωk ≥ 0,

define

SCVaRα(X) := sup
k=1,...,K

CVaR(k)
α (X), CVaRα

(
N (µ, σ2)

)
= µ+cα σ, cα :=

ϕ
(
Φ−1(1− α)

)
1− α

.

Note that CVaR(k)
α (X) depends only on the component parameters (µk, σk), not on the mixture

weight.

Monotonicity. If X ≤ Y almost surely, then for all k, CVaR(k)
α (X) ≤ CVaR(k)

α (Y ) (monotonic-
ity of CVaR). Taking the supremum over k yields

SCVaRα(X) = sup
k

CVaR(k)
α (X) ≤ sup

k
CVaR(k)

α (Y ) = SCVaRα(Y ).

Translation invariance. For any constant a ∈ R,

CVaR(k)
α (X + a) = CVaR(k)

α (X) + a ⇒ SCVaRα(X + a) = SCVaRα(X) + a.

Positive homogeneity. For any λ ≥ 0,

CVaR(k)
α (λX) = λCVaR(k)

α (X) ⇒ SCVaRα(λX) = λ SCVaRα(X).

15
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Subadditivity. Let

X =

K∑
k=1

ωkN (µk, σ
2
k), Y =

L∑
l=1

λlN (νl, τ
2
l ),

∑
k

ωk =
∑
l

λl = 1, ωk, λl ≥ 0,

and set Z := X + Y . Each pair (k, l) induces a Gaussian component of Z with

µk,l = µk + νl, σk,l =
√
σ2
k + τ2l , weight ωkλl.

Using the closed form of Gaussian CVaR,

CVaR(k,l)
α (Z) = (µk+νl)+cα

√
σ2
k + τ2l ≤ (µk+cασk)+(νl+cατl) = CVaR(k)

α (X)+CVaR(l)
α (Y ),

where
√
a2 + b2 ≤ a + b for a, b ≥ 0. Taking the supremum and using sup(k,l)(ak + bl) ≤

supk ak + supl bl,

SCVaRα(Z) = sup
(k,l)

CVaR(k,l)
α (Z) ≤ sup

(k,l)

(
CVaR(k)

α (X) + CVaR(l)
α (Y )

)
≤ sup

k
CVaR(k)

α (X) + sup
l

CVaR(l)
α (Y ) = SCVaRα(X) + SCVaRα(Y ).

Therefore, SCVaR satisfies monotonicity, translation invariance, positive homogeneity, and subad-
ditivity, and is thus a coherent risk measure.

A.3 INVESTMENT PORTFOLIO EXAMPLE INVOLVING BONDS AND STOCKS

Consider a portfolio modeled by a two-component Gaussian Mixture Model (GMM), where each
component represents a distinct investment class:

f(x) = ω1N (x;µ1, σ
2
1) + ω2N (x;µ2, σ

2
2).

where the first component represents stocks with parameters:
µ1 = 10, σ1 = 20, ω1 = 0.6,

and the second component represents bonds with parameters:
µ2 = 5, σ2 = 5, ω2 = 0.4.

The mixture weights indicate a 60% probability to stocks and 40% to bonds. For a confidence level
α = 0.95, we employ Monte-Carlo sampling to compute both CVaR and SCVaR for this portfolio.
The results are:

CVaR0.95 = 29.1713, SCVaR0.95 = CVaRStock
0.95 = 30.3136.

In this example, SCVaR accounts for the inherent possibility that an investor may concentrate
investments in stocks. By recognizing that the maximum risk exposure stems from the stock com-
ponent’s inherent volatility, SCVaR provides a more conservative risk estimate compared to the
standard CVaR.

Given that the parameters {µ1, µ2, σ1, σ2, ω1, ω2} are outputs of a neural network, the safety mea-
sure as a function of ωk within the interval (0, 1] satisfies the following two properties:
Theorem 3. For a given risk level α, the safety measure Λπ(s, a, α) = SCVaRα is invariant to
ωk ∈ (0, 1] for each k ∈ {1, 2, · · · ,K}. Specifically,

∂Λπ(s, a, α)

∂ωk
= 0, for k ∈ {1, 2, · · · ,K}, ωk ∈ (0, 1].

Theorem 4. For a given risk level α, the safety measure Λπ(s, a, α) = SCVaRα is invariant to
µk and σk for all k ∈ {1, 2, . . . ,K} except for the kmax-th components associated with the largest
CVaR. Specifically,

∂Λπ(s, a, α)

∂µk
= 0 and

∂Λπ(s, a, α)

∂σk
= 0, ∀k ∈ {1, 2, . . . ,K} \ {kmax},

where kmax is the index of the component associated with the largest CVaR, i.e.,

kmax = arg max
k∈{1,2,...,K}

CVaR(k)
α .
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Through the above two theorems, we know that under the guidance of SCVaR, the RL agent tends to
completely exclude components that may lead to higher risks. In this case, if a stock is considered
a high-risk investment, the RL agent will completely avoid this option, or SCVaR will mitigate the
risk associated with the stock choice (for example, by selecting another stock with relatively lower
return variance). If an investor completely abandons stocks and chooses a less risky investment
compared to bonds, SCVaR would encourage the investor to entirely forgo the bond option as well.

B INCREMENTAL UPDATING FOR SAFETY CRITIC WITH BELLMAN
OPERATOR AND ITS CONVERGENCE

Algorithm 2 Incremental Updating for Safety Critic with Bellman Operator
1: Input: Current GMM parameters Γπ(s, a) = {(µk, σk, ωk)}Kk=1, Immediate cost c(s, a), Dis-

count factor γ, Total samples M , Blending coefficient β, Neural network F for predicting
Γπ(s, a).

2: Output: Updated network parameters for F .
3: Initialize: Generate samples Ψ(s, a) = X (Gπ(s, a),M) using the current GMM.
4: Generate samples Ψ(s′, a′) = X (Gπtarget(s

′, a′),M) using the target safety critic GMM.
Step 1: Bellman Sampling

5: Transform samples using the Bellman operator:

ΨB(s, a) = {x̂i | x̂i = c(s, a) + γx′i, x
′
i ∈ X (Gπtarget(s

′, a′),M)}.

Step 2: Incremental Refinement
6: Blend current and Bellman-transformed samples:

Ψupdate(s, a) = R(Ψ(s, a),ΨB(s, a), β) = {xi, ..., xM1
, c(s, a)+γx′1, ..., c(s, a)+γx

′
M2
|M1 :M2 = (1−β) : β}

Step 3: Projection Operation
7: Perform EM to update GMM parameters:
8: E-step: :

γmk =
ωkφ(xm | µk, (σk)

2)∑K
j=1 ωjφ(xm | µj , (σj)2)

.

9: M-step: :

µupdate
k =

∑M
m=1 γmkxm∑M
m=1 γmk

, (σupdate
k )2 =

∑M
m=1 γmk(xm − µupdate

k )2∑M
m=1 γmk

, ωupdate
k =

∑M
m=1 γmk

M
.

10: Normalize mixing coefficients:

ωupdate
k ←

ωupdate
k∑K

j=1 ω
update
j

, ∀k ∈ {1, . . . ,K}.

Step 4: Neural Network Update
11: Compute the Mean Squared Error (MSE) loss between predicted GMM parameters (µk, σk, ωk)

and update parameters (µupdate
k , σupdate

k , ωupdate
k ):

L =

K∑
k=1

[
(µk − µupdate

k )2 + (σk − σupdate
k )2 + (ωk − ωupdate

k )2
]
.

12: Perform gradient descent on the network parameters of F to minimize L.
13: Return: Updated GMM parameters Γπ

update(s, a) and updated network F .
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Proof. Setup. Fix a policy π. Let ν(· |s, a) ∈ P1(R) denote the (cost) value distribution at (s, a).
Project ν(· |s, a) onto a Gaussian mixture:

V(s, a) =
K∑

k=1

ωkN (x | µk, σk), ωk ≥ 0,

K∑
k=1

ωk = 1.

The distributional Bellman operator (cost form) is

(T πν)(· |s, a) = Law(c(s, a) + γ X ′) , X ′ ∼ ν(· |s′, a′), (s′, a′) ∼ P (·|s, a)× π(·|s′).

One SC-MGR update is the Bellman–EM composition

Bπν ≡ P
(
T πν

)
,

where P denotes the EM projection onto the GMM family.

Bellman contraction under W1. By the Kantorovich–Rubinstein duality,

W1(µ, ν) = sup
∥f∥Lip≤1

∣∣∣ Eµ[f ]− Eν [f ]
∣∣∣.

Two basic invariances of W1 (for any constant b and any a ≥ 0) are

W1(Law(X + b), Law(Y + b)) =W1(Law(X), Law(Y )),

W1(Law(aX), Law(aY )) = aW1(Law(X), Law(Y )).

Fix (s, a) and two distributions ν1, ν2. Conditioning on (s′, a′) and applying the two invariances
gives

W1

(
(T πν1)(·|s, a), (T πν2)(·|s, a)

)
=W1

(
Law(c+ γX ′

1), Law(c+ γX ′
2)
)

= γ W1

(
Law(X ′

1), Law(X
′
2)
)

≤ γ E(s′,a′)

[
W1

(
ν1(·|s′, a′), ν2(·|s′, a′)

)]
≤ γ sup

(s′,a′)

W1

(
ν1(·|s′, a′), ν2(·|s′, a′)

)
.

Hence, uniformly over (s, a),

W1

(
T πν1, T πν2

)
≤ γ W1(ν1, ν2), γ ∈ (0, 1).

EM projection: responsibilities and unbiased M-step. Given samples {xm}Mm=1 ∼ p(x) (here
p = T πν), the E-step responsibility for component k is

γmk =
ωk φ(xm | µk, σ

2
k)∑K

j=1 ωj φ(xm | µj , σ2
j )
, φ(x | µ, σ2) =

1√
2πσ

exp
(
− (x−µ)2

2σ2

)
.

In the population limit (M →∞), the M-step updates are

µnew
k =

Ep[γk(X)X]

Ep[γk(X)]
, ωnew

k = Ep[γk(X)].

If p equals the current GMM (or is at an EM fixed point), i.e., p(x) =
∑

j ωjφ(x | µj , σ
2
j ), then

Ep[γk(X)] =

∫
ωkφ(x | µk, σ

2
k)∑

j ωjφ(x | µj , σ2
j )
p(x) dx =

∫
ωkφ(x | µk, σ

2
k) dx = ωk,

and

Ep[γk(X)X] =

∫
ωkφ(x | µk, σ

2
k)x dx = ωk µk.

Therefore,
E[µnew

k ] =
ωk µk

ωk
= µk, E[ωnew

k ] = ωk,
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i.e., the EM projection preserves component means and weights in expectation (population unbi-
asedness), hence does not distort first-moment structure.

Bellman–EM composition and convergence. Let νt+1 = PT πνt. Using the Bellman contraction
above and the non-expansiveness of P in W1 (i.e., W1(Pµ,Pν) ≤W1(µ, ν)),

W1(νt+1, ν
′
t+1) =W1

(
PT πνt, PT πν′t

)
≤ W1

(
T πνt, T πν′t

)
≤ γ W1(νt, ν

′
t).

Thus PT π is a γ-contraction under W1. By the Banach fixed-point theorem, there exists a unique
V∗ such that

PT πV∗ = V∗, W1(νt,V∗) ≤ γtW1(ν0,V∗).

Together with the population unbiasedness above, the Bellman–EM updates of SC-MGR converge
stably to the unique distributional fixed point V∗.

C DETAIL DERIVATION OF POLICY UPDATE & COMPLETE ALGORITHM:
GMM-SSAC

C.1 DETAIL DERIVATION OF POLICY UPDATE

Leveraging the GMM-based distributional safety critic, we propose a novel safety metric, SCVaRα,
to guide safe exploration and improve policy optimization. At each iteration, the GMM parame-
ters, Γπ(s, a) = {(µk, σk, ωk)}Kk=1, are estimated, enabling the computation of the safety measure
Λπ(s, a, α) for a specified risk level α:

Λπ(s, a, α)
.
= SCVaRα

= sup
k∈{1,...,K}

CVaR(k)
α

= sup
k∈{1,...,K}

(
µk + σk

ϕ
(
Φ−1(α)

)
1− α

)
.

The policy is optimized under the constraint:

Λπ(s, a, α) ≤ d, ∀t,

where d is a predefined safety threshold.

To achieve a balance between performance and safety, inspired by the SAC framework (Haarnoja
et al., 2018), we optimize the policy πθ by minimizing the Kullback-Leibler (KL) divergence be-
tween the current policy and a safety-adjusted target distribution:

min
π
DKL

(
π(· | st)

∥∥∥∥exp
(
1
λ (Qπ

r (st, ·)− κΛπ(st, ·, α))
)

Zπ(st)

)
,

where Zπ(st) is the partition function ensuring normalization, λ > 0 represents the temperature
parameter controlling entropy, and κ > 0 is the safety weight regulating the trade-off between
maximizing rewards and adhering to safety constraints.

The KL divergence can be equivalently expressed as:

DKL

(
πθ(· | st)

∥∥∥∥ exp( 1λXπθ
α,κ(st, ·)− logZπθ (st)

))

= E(st,at)∼ρπθ

[
− log

πθ(at | st)

exp
(

1
λX

πθ
α,κ(st, at)− logZπθ (st)

)]

= E(st,at)∼ρπθ

[
log πθ(at | st)−

1

λ
Xπθ

α,κ(st, at) + logZπθ (st)

]
,
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where
Xπθ

α,κ(s, a) = Qπ
r (s, a)− κΛπ(s, a, α),

and Qπ
r (s, a) denotes the state-action value function.

As the partition function Zπθ (st) does not influence the gradient of θ, it can be excluded from the
optimization. This results in the actor loss function:

Jπ(θ) = E(st,at)∼ρπθ

[
λ log πθ(at | st)−Xπθ

α,κ(st, at)
]
.

To ensure the policy adheres to safety constraints, the safety weight κ is adjusted dynamically by
minimizing the following loss function:

Js(κ) = E(st,at)∼ρπθ
[κ (d− Λπ(st, at, α))] ,

where d represents a predefined safety threshold.

This approach enables an adaptive trade-off between performance and safety by dynamically up-
dating κ. The reward critic Qπθ

r and the entropy weight λ are updated following the SAC method.
Details on the loss functions Je(λ) for entropy adaptation and Jr(ψ) for the reward critic can be
found in Haarnoja et al. (2018).

C.2 COMPLETE ALGORITHM: GMM-SSAC

See Alg. 3.

D EXPERIMENT DETAILS

D.1 TASK DESCRIPTION

Figure 7: Illustration of five different tasks: Goal1, Button1, Circle1, Hopper, and Ant.

Goal. The agent’s objective is to reach the goal buttons while avoiding static obstacles. Once the
agent presses the correct button, a new goal button is randomly selected. The agent earns positive
rewards for moving toward the goal and a bonus for successfully reaching it. Penalties are applied
as costs for violating safety constraints, such as colliding with static obstacles or pressing the wrong
button. The observation space includes the agent’s ego states and sensory information about the
obstacles and the goal, represented by pseudo LiDAR points. We use a Car robot in this environment
and set the difficulty to level 1, naming it CarGoal1.

Button. This task is a more challenging version of Goal, featuring dynamic obstacles in addition
to static ones. The dynamic obstacles move continuously along circular paths, requiring the agent
to navigate to the goal while avoiding both static and dynamic obstacles. Compared to Circle and
Goal tasks, Button demands greater inference capabilities as the agent must deduce the states of
surrounding obstacles from raw sensory data. We use a Car robot and set the difficulty to level 1,
naming it CarButton1.

Circle. In this task, the agent controls a robot to move clockwise along a circular path. Rewards
increase as the agent’s velocity rises and it stays closer to the circle’s boundary. The safety zone is
defined by two parallel plane boundaries intersecting the circle, and the agent incurs a penalty of 1
for leaving this zone. The observation space includes the car’s ego states and sensory information
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Algorithm 3 GMM-SSAC: Gaussian Mixture Model-Based Supremum CVaR-Guided Safe Soft
Actor-Critic

1: Input: Initial policy πθ, safety critic parameters ϕ, reward critic parameters ψ1, ψ2, entropy
weight λ, safety weight κ, risk level α, safety threshold d, learning rates ηθ, ηϕ, ηκ, target
smoothing factor τ , and replay buffer D.

2: Initialize target networks for safety and reward critics with parameters ϕ′, ψ′
1, ψ′

2.
3: while not converged do
4: Sample action at ∼ πθ(· | st), observe next state st+1, reward rt, and cost ct.
5: Store transition (st, at, rt, ct, st+1) in replay buffer D.
6: for each gradient step do
7: Sample a mini-batch of transitions (s, a, r, c, s′) ∼ D.

Update Safety Critic:
8: Perform incremental Bellman update for safety critic:

Ψupdate(s, a) = R(Ψ(s, a),ΨB(s, a), β)

= {x1, . . . , xM1 , c(s, a) + γx′1, . . . , c(s, a) + γx′M2
|M1 :M2 = (1− β) : β}

9: Fit GMM parameters Γπ
update(s, a) = {(µ

update
k , σupdate

k , ωupdate
k )}Kk=1 to Ψupdate(s, a).

10: Update safety critic network parameters ϕ by minimizing the MSE loss:

Lsafety =

K∑
k=1

[
(µk − µupdate

k )2 + (σk − σupdate
k )2 + (ωk − ωupdate

k )2
]
.

Update Reward Critic:
11: Minimize Bellman residuals for Qπθ

r using double-Q learning.
12: Compute SCVaR:

Λπ(s, a, α) = sup
k∈{1,...,K}

(
µk + σk

ϕ(Φ−1(α))

1− α

)
.

Update Policy:
13: Minimize actor loss:

Jπ(θ) = E(s,a)∼D
[
λ log πθ(a | s)−

(
Qπ

r (s, a)− κΛπ(s, a, α)
)]
.

Update Safety Weight:
14: Minimize safety loss:

Js(κ) = E(s,a)∼D
[
κ
(
d− Λπ(s, a, α)

)]
.

15: Perform gradient steps for θ, κ, ϕ, ψ1, ψ2.
Target Network Updates:

16: Update target networks:

ϕ′ ← τϕ+ (1− τ)ϕ′, ψ′
1 ← τψ1 + (1− τ)ψ′

1, ψ′
2 ← τψ2 + (1− τ)ψ′

2.

17: end for
18: end while
19: Output: Optimized policy πθ.

about the boundary. We use a Car robot in this environment and set the difficulty to level 1, naming
it CarCircle1.

HopperVelocity. This task requires the agent to control a hopper robot to move as quickly as
possible while adhering to velocity constraints. Rewards are given for achieving high speeds, while
penalties of 1 are applied if the velocity exceeds a predefined threshold, set to 50% of the hopper’s
maximum velocity determined after Proximal Policy Optimization (PPO) training for 107 steps.
This task emphasizes balancing speed optimization with safety constraints, naming it Hopper.
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AntVelocity. Similar to HopperVelocity, this task involves controlling a quadruped ant robot under
the same velocity constraints and reward structure. The velocity threshold is set to 50% of the
ant’s maximum velocity obtained after PPO training for 107 steps. Due to the ant’s higher degrees
of freedom, this task presents additional challenges in balancing speed, stability, and adherence to
safety constraints, naming it Ant.

D.2 IMPLEMENTATION DETAILS & HYPER-PARAMETER SETTINGS

Compute Resources. All experiments were run locally on a machine with an NVIDIA RTX 3090
GPU (24GB), 32GB RAM, and an Intel Core i7-12700KF CPU. The system ran Ubuntu 20.04 with
Python 3.9, PyTorch 2.0, and CUDA 11.8. Each training run took 8–12 hours depending on the
environment and GMM complexity, with total compute estimated at 4,000 GPU-hours. Early-stage
experiments and failed runs are not included in this estimate.

Baselines. We use the official implementations from the respective codebases:

• WC-SAC(Yang et al., 2021): https://github.com/AlgTUDelft/WCSAC

• CAL(Wu et al., 2024): https://github.com/ZifanWu/CAL

• SAC & SAC-Lag: https://github.com/PKU-Alignment/omnisafe (a com-
prehensive framework for Safe RL algorithms (Ji et al., 2023))

We adopt the default hyper-parameter settings from the original implementations. Additionally, for
WC-SAC, the risk hyperparameter α is set to 0.1. The safety threshold d is configured as follows: 10
for CarGoal1 and CarButton1, and 25 for CarCircle1, Hopper, and Ant. These settings are consistent
with the on-policy method CVPO (Liu et al., 2022) and the OmniSafe framework (Ji et al., 2023).

GMM-SSAC. The detailed settings for GMM-SSAC are summarized in Table 1.

Table 1: Hyper-parameter settings for GMM-SSAC.
Parameter Setting
Policy network sizes [256, 256]
Q network sizes [256, 256]
Network activation ReLU
Discount factor γ 0.99
Reward Critics learning rate 1× 10−3

Cost Critics learning rate 1× 10−3

Actor learning rate 3× 10−4

NN optimizer Adam
Number of GMM components(K) 4
Blending ratio (β) 0.6
Number of samples(M ) 500

D.3 DERIVATION OF THE DISCOUNTED THRESHOLD

In Safe RL, the cost threshold D ensures safety constraints during training. When using discounted
costs, the total cost must account for the discount factor γ.

The discounted threshold d adjusts the cost limit D to reflect discounting. The total cost in an
episode, discounted by γt, is:

CTotal =

T∑
t=1

γt · Ct.

Assuming constant cost per time step Ct =
D
T , we have:
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CTotal =
D

T
·

T∑
t=1

γt =
D

T
· 1− γ

T

1− γ
.

Thus, the discounted threshold d is:

d =
D · (1− γT )
(1− γ) · T

.

Here, D is the cost limit, γ is the discount factor, and T is the maximum episode length (e.g.,
T = 1000).

The discounted threshold d ensures the total cost stays within the original limit D, even with dis-
counted future costs, and is essential for enforcing safety constraints in RL tasks.

E ABLATION STUDY

E.1 SCVAR VS. CVAR

Figure 8: Comparison of SCVaR and CVaR in terms of reward and cost performance, and GMM
distribution.

We compare GMM-SSAC models trained in the CarGoal1 environment using SCVaR and Monte
Carlo-based CVaR, as shown in Fig. 8.

To establish a fair baseline, CVaR is estimated empirically via Monte Carlo sampling. Given a
learned GMM distribution

fL(x) =

K∑
k=1

wk · N (x | µk, σ
2
k),

we draw N = 5,000 i.i.d. samples {xj}Nj=1 at each state-action pair. The empirical α-level VaR is
the (1− α)-quantile of the sampled values:

V̂aRα = Quantile1−α({xj}Nj=1),

and the corresponding CVaR is the average of samples beyond this threshold:

ĈVaRα =
1

|I|
∑
j∈I

xj , I = {j | xj ≥ V̂aRα}.

This approach avoids reliance on closed-form solutions and provides a flexible, data-driven estimate
of tail risks. We adopt it as the practical CVaR baseline throughout our experiments.

Fig. 8(a) and Fig. 8(b) show that both models achieve similar rewards, but SCVaR achieves lower
costs and consistently satisfies the safety threshold. To further understand this difference, both
models were evaluated under identical random seeds and environment settings. Their estimated
SCVaR (CVaR) values and the means of the GMM density functions are presented in Fig. 8(c) and
Fig. 8(d). While the two methods yield similar tail risk estimates close to the discounted threshold
in Fig. 8(c), SCVaR produces a smaller mean in Fig. 8(d), indicating that it enforces a stronger focus
on the worst-case tail.
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Figure 9: Additional experimental results for all environments.

Overall, these results demonstrate that SCVaR places greater emphasis on rare but extreme risks
than Monte Carlo CVaR, leading to superior cost reduction even when such events occur with low
probability. Consistent improvements across additional settings are reported in Fig. 9.

Figure 10: Visualization of the GMM cost distribution output by the Safety Critics in the SCVaR
and CVaR models.

Figure 11: Cost distribution visualization for four scenarios.
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E.1.1 VISUALIZATION OF COST DISTRIBUTION

We input the same state-action pair into the Safety Critics of both models and visualize the GMM
distributions they output, as shown in Fig. 10. Both models determine that the state-action pair is
safe (SCVaR or CVaR < d). However, from the distribution curves, it is clear that SCVaR is much
more conservative. It only considers the state-action pair safe when the high-risk region has almost
no probability, and continuously adjusts its distribution during training to guide the policy network
toward safer actions. In contrast, CVaR considers the state-action pair safe even when there remains
a significant portion of high-risk areas, suggesting that this Safety Critic is not sufficiently ”reliable.”

Fig. 11 visualizes the cost distribution for four cases, representing safe, less safe, less dangerous,
and dangerous scenarios. The SCVaR values accurately reflect risk levels, increasing with danger
and exhibiting heavier upper tails. Note that the agent’s policy is not optimal, as a fully converged
policy would rarely encounter dangerous situations.

E.2 GMM-BASED VARIANT IN BASELINES

Figure 12: Performance comparison of SAC-Lag
and CAL before and after substituting their cost
critics with GMM-based variants.

We extend GMM-based safety critics to exist-
ing SafeRL baselines by replacing their original
cost critics with GMM-based variants. Specif-
ically, we implement GMM variants for SAC-
Lag and CAL. Since SAC lacks a safety critic
and WC-SAC with GMM + SCVaR already
forms the basis of GMM-SSAC, no further vari-
ants are constructed for these algorithms.

We evaluate the modified baselines on two
representative tasks—CarGoal1 from Safety-
Gymnasium and Ant-Velocity from MuJoCo.
As shown in Fig. 12, both SAC-Lag and CAL
benefit significantly from the incorporation of
GMM-based critics. In particular, the GMM
variants yield higher reward performance while
maintaining lower cumulative cost, indicating
improved safety-reward trade-offs. This im-
provement is consistent across both tasks, sug-
gesting that GMM critics can serve as a plug-in
module to enhance the performance of diverse
SafeRL frameworks.

These findings demonstrate that the use of
GMM-based safety critics is not limited to our
proposed method but can generalize to other
constrained RL algorithms, offering a princi-
pled and effective alternative to conventional
cost estimators.

E.3 COMPONENT-LEVEL INTERPRETABILITY

We analyze whether GMM-based SCVaR components align with specific safety violations, as shown
in Fig. 13. The CarButton1 environment was selected for its clear delineation of different safety
risks, with three distinct violation types: Gremlins (contact-based penalties), Wrong Buttons (costs
from incorrect button presses), and Hazards (proximity-based risks). This setup allows us to evalu-
ate the relationship between GMM components and different violation types.

In total, we evaluate 10,000 (s, a) samples, with 2,500 samples per category: Safe, Gremlins, Wrong
Buttons, and Hazards. Fig. 13(a) shows the normalized proportion of each SCVaR component acti-
vated under these violation types, while Fig. 13(b) visualizes the sample counts with a heatmap. The
results show clear alignment between components and violation types: Component 3 predominantly
captures Gremlins, Component 2 specializes in Wrong Buttons with some overlap with Gremlins,
Component 1 is mainly associated with Hazards, and Component 0 is more evenly distributed across

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 13: SCVaR component activation across safety violation types. (a) Normalized stacked bar
chart of component dominance per violation type; (b) Heatmap of sample counts per component-
violation pair. Components 3/2/1 correspond to Gremlins, Wrong Buttons, and Hazards respectively,
while Component 0 serves as a fallback across mixed cases.

all types, acting as a fallback in ambiguous cases. These findings highlight that GMM-based SCVaR
naturally separates distinct violation types without explicit supervision, demonstrating its potential
for uncovering structured risk semantics in safety-critical environments. Further visualization are
provided in Fig. 14.

Figure 14: Cost distribution and GMM component visualization for four representative states in the
CarButton1 environment. Each GMM component is assigned a consistent color across subplots (e.g.,
components 0–3 are colored orange, blue, gray, and green, respectively), and grouped according to
their output order. The figure reveals that different types of safety-violating states are primarily
associated with distinct GMM components, as indicated by color-coded contributions to SCVaR.
This highlights the ability of GMM-based satety critics to disentangle different risk patterns via
distinct components.

F RELATED WORKS

F.1 SAFE REINFORCEMENT LEARNING

Recent advances in Safe RL have introduced a variety of methods to ensure safety during RL train-
ing. Early Safe RL approaches were heavily influenced by control theory. Lyapunov functions are
widely used in control theory to guarantee safety by constraining the action space during exploration
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(Chow et al., 2019; Huh & Yang, 2020; Jeddi et al., 2021). However, defining suitable Lyapunov
functions often requires a system model, which may not be readily available in general RL sce-
narios. In contrast, Lagrangian-based approaches, particularly primal-dual optimization (Paternain
et al., 2022), have gained significant attention due to their flexibility and broad applicability. These
methods have been shown to achieve a zero duality gap under certain conditions, providing theo-
retical guarantees for constraint satisfaction (Paternain et al., 2019). Among these approaches, risk-
constrained primal-dual methods (Chow et al., 2018) focus on developing efficient reinforcement
learning algorithms for risk-constrained MDPs, where risk is typically represented through chance
constraints or constraints on the CVaR of the cumulative cost. Additionally, reward-constrained
methods (Tessler et al., 2018) utilize alternative penalty signals to guide the policy towards satis-
fying safety constraints. Alternatively, robust MDP methods (Iyengar, 2005; Wang & Zou, 2021)
aim to learn policies that perform well under worst-case transition dynamics, but they often lead
to overly conservative strategies and require specifying uncertainty sets. Furthermore, the Natural
Policy Gradient Primal-Dual (NPG-PD) method (Ding et al., 2020) is the first to establish non-
asymptotic convergence guarantees.

Similarly, our work builds upon primal-dual optimization methods. Among the most relevant recent
developments, two works are particularly aligned with our framework. WCSAC (Yang et al., 2021)
estimates the risk distribution using a unimodal Gaussian and extends the SAC-Lag method by
incorporating a variance estimator to enhance risk control. CAL (Wu et al., 2024), on the other
hand, addresses cost underestimation by employing an upper confidence bound (UCB) for the cost
value, thereby improving risk management during policy optimization. However, these methods rely
on Gaussian distributions to approximate risk distributions, overlooking the inherent limitations in
their expressiveness.

F.2 GMMS IN RL

GMMs have demonstrated significant potential in RL by effectively modeling complex data dis-
tributions, particularly in state-action spaces, policy representations, and value functions. Initially
proposed to address challenges in continuous state-action spaces (Agostini & Celaya, 2010), GMMs
model the density of observed samples in the joint space of states, actions, and Q-values. This ap-
proach provides substantial modeling flexibility. In policy optimization, GMMs have been widely
used to construct mixture-based policies, where components are selected dynamically at each step
to enable adaptive and robust decision-making (Baram et al., 2021; Haarnoja et al., 1861; Kim et al.,
2022). To address the intractability of computing entropy in diffusion-based policies, a recent on-
line RL algorithm estimates policy entropy using a GMM fitted to periodically sampled actions, en-
abling a more effective trade-off between exploration and exploitation during training (Wang et al.,
2024). In value function approximation, GMM-based Q-function approximators (GMM-QFs) are
integrated into the Bellman residual to enable efficient optimization (Vu & Slavakis, 2024). Addi-
tionally, in distributed RL, mixture density networks have been applied to model reward distribu-
tions. The introduction of the Jensen-Tsallis distance metric further refines distance computations
between Gaussian mixture distributions, enhancing the performance of methods such as DQN and
C51 (Choi et al., 2019). Our work also leverages GMMs for value function approximation but
focuses specifically on safety (risk-sensitive) value functions.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models (LLMs) in preparing this paper. LLMs were em-
ployed exclusively as an assistive tool for language refinement, including improving clarity, gram-
mar, and readability of the manuscript. They were not used for research ideation, algorithm design,
experimental implementation, or result generation. All technical contributions, theoretical analyses,
and experimental results are solely the work of the authors.

The authors take full responsibility for the correctness and integrity of the paper’s content.
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