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Abstract

The prediction of chemical reactions has gained significant interest within the
machine learning community in recent years, owing to its complexity and crucial
applications in chemistry. However, model evaluation for this task has been mostly
limited to simple metrics like top-k accuracy, which obfuscates fine details of
a model’s limitations. Inspired by progress in other fields, we propose a new
assessment scheme that builds on top of current approaches, steering towards a
more holistic evaluation. We introduce the following key components for this
goal: CHORISO, a curated dataset along with multiple tailored splits to recreate
chemically relevant scenarios, and a collection of metrics that provide a holistic
view of a model’s advantages and limitations. Application of this method to
state-of-the-art models reveals important differences on sensitive fronts, especially
stereoselectivity and chemical out-of-distribution generalization. Our work paves
the way towards robust prediction models that can ultimately accelerate chemical
discovery.

1 Introduction

In recent years, there has been a significant increase in the development and application of machine
learning (ML) algorithms for solving various tasks in science-related fields1–5. Advances in these
models have been greatly accelerated by model developments6–8, acquisition of extensive training
data9,10, and the establishment of benchmarks11–17, which have enabled researchers to evaluate and
compare new models based on multiple aspects relevant to the task at hand. Chemistry has also
experienced remarkable progress in problems such as retrosynthetic planning2,18–23, reaction condition
recommendation24, reaction prediction25–29, and others30–36. Among these, reaction prediction
has gained considerable importance due to its broad applicability in areas such as waste material
valorization37, reaction network analysis38, and even the evaluation of retrosynthesis prediction
models39. Compared to the other tasks, reaction prediction benefits from having a less ambiguous
objective, simplifying the evaluation process.

A wave of progress in this field has been further propelled by the publication of the USPTO re-
action dataset9,40,41, which has led to the emergence of benchmarks for various tasks, including
USPTO_STEREO42 and USPTO_480k43 for reaction prediction. These consist of tailored sub-
sets of the USPTO dataset, randomly split for training and evaluation. From the algorithmic side,
transformer-based sequence-to-sequence models have emerged as the top-performing algorithms for
reaction prediction44, achieving top-1 accuracies of over 91%29 on stereochemistry-free datasets.
Other widely used model types include template-based45 and graph-to-sequence models46, each
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leveraging different inductive biases derived from chemical expertise, achieving comparable top-1
accuracy.

Evaluation has received considerable attention in fields such as computer vision47,48 and language
models (LMs)49,50. Out-of-distribution (OOD) shifts have been thoroughly discussed51,52, and the
need for testing in this domain has been emphasized53. Broader evaluation schemes that aim to
expose the strengths and failure modes of different models have also been proposed for LMs54.
However, standardized model evaluation in the field of reaction prediction has been largely neglected,
with most studies relying solely on top-k reaction outcome accuracies, a restricted measure of
model performance that overlooks a diverse range of complexities inherent to reaction prediction.
Some works perform additional analyses and comparisons, giving more insight into the model’s
performance, however they lack a standardized format and are constrained by the quality of the
reaction data that is used55,56.
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Figure 1: Holistic evaluation of reaction prediction ML models. a. Chemistry-relevant metrics,
out-of-distribution (OOD) robustness tests and sustainability assessments are proposed. Evaluation is
done by using the CHORISO dataset, which provides reaction entries and from which OOD splits are
derived. b. Failure modes of current reaction prediction models include poor performance in reactions
with potential selectivity issues (left), and OOD scenarios such as reactions involving species with
higher molecular weight (right).

In this work, we propose a holistic evaluation pipeline for a better chemical assessment of reaction
prediction models. For this purpose, we introduce CHORISO (CHemical Organic ReactIon SMILES
Omnibus), a curated dataset of academic chemical reactions, along with a suite of chemically
relevant metrics for the standardized evaluation of these models. Addressing the limitations in
existing evaluation methods, we propose multiple slices and splits of CHORISO, serving as distinct
scenarios fortesting, considering OOD scenarios51. Several chemically relevant desiderata have been
implemented in the proposed standard metrics, including different types of chemical selectivity, along
with measures of model efficiency and environmental impact, as shown in Figure 1a. Through a
combination of standardized metrics, curated data, OOD testing, and a collection of models, we aim
to facilitate the development new cutting-edge ML models for reaction prediction (Figure 1b). This
effort could ultimately lead to more accurate and reliable predictions with applications in various
fields.

2 Holistic Evaluation of Chemical Reaction Models

Prediction of chemical reaction outcomes is a key problem in organic chemistry. Achieving accurate,
trustworthy, and scalable chemical reaction prediction could accelerate chemistry discovery37,57.
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Excellent performance in this task is thus crucial for the development of chemical models in general.
These models are typically tested and compared in the literature using the top-k accuracy —with
k ∈ [1, 5], with the best models reaching top-1 accuracies higher than 91% on patent reaction
benchmarks without stereochemical information46. However, the utility of these models is limited,
as they tend to underperform in real-world use cases28,55. The disconnection between such high
accuracies and poor practical performance thus highlights the need for better evaluation methods.

The recent work of Liang et al. 54 sets the basis for the Holistic Evaluation of Language Models
(HELM). The authors argue that, given the flexibility and generality of LMs, it is desirable to establish
an evaluation scheme that more transparently assesses the capacities and flaws of these types of
models. Holistic evaluation requires the identification of potential scenarios —encoding use-cases—
and metrics —encoding desiderata— that are of interest to LMs. In this setting, the authors can
adequately test the models in terms of accuracy, robustness, and toxicity, among other metrics, across
a wide range of scenarios, exposing the advantages and trade-offs of popular LMs. Building upon
this work, our aim in this section is to identify relevant settings where chemical reaction models need
to be tested and to develop metrics that align with key desired characteristics of these models.

2.1 Data

A critical piece on the road toward holistic evaluation is data. Data not only feeds the models with
latent knowledge but also allows researchers to model scenarios for testing, ultimately allowing to
gauge and compare the adequacy of reaction prediction models in such scenarios. Despite the wave
of reaction prediction models fueled by the USPTO dataset41,58, these models learn from regions of
the chemical space that are not necessarily typical targets of academic researchers, mostly featuring
well-established, industry-relevant reactions.

To alleviate this, we propose CHORISO, a curated reaction dataset of diverse academic reactions.
CHORISO is a mix betweencleaned and processed versions of CJHIF, a dataset of reactions extracted
from high-impact academic journals59, and USPTO, a dataset of reactions extracted from patents9 (see
Appendix A.1). As shown in Figure 2, CHORISO features around 2.2M reactions, including a high
ratio of C-C bond formation and functional group interconversion reactions, which are fundamental
for strategic synthetic planning60. CHORISO additionally exhibits heavier-tailed distributions of
molecular weight and number of stereocenters in products, covering a larger and more relevant
portion of the chemical space. This is particularly important for applications where stereocontrol
is fundamental61, as well as for investigations regarding the scope of chemical reactions, where
extrapolation to higher Product’s Molecular Weight (PMW) —e.g. larger substituents— is desired.
We use this dataset as the data source for our holistic evaluation.
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Figure 2: Dataset distributions comparison. Differences between the two datasets (CHORISO and
USPTO) are highlighted. a. Reaction types across various bins of product molecular weight (PMW).
The distribution of reaction types varies considerably across PMW for CHORISO. Unrecognized
reactions in the datasets are not plotted for clarity. b. Distribution of number of stereocenters in
products shows that products in CHORISO overall contain a higher number of chiral centers. c.
PMW distribution. CHORISO’s distribution makes it suitable for OOD splits on both ends of the
PMW distribution.
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2.2 Desiderata for models

A number of properties are expected from reaction prediction models. High accuracy is certainly
one of them, but over-reliance on this metric can be misleading, especially in unbalanced datasets55.
From the chemical side, good handling of stereo- and regiochemistry is desired, as well as a correct
understanding of functional group effects, effects of catalysts, reagents and other additives, and
conditions like temperature and pressure55. Proper modelling of these variables is necessary to have
an accurate prediction system, and measuring how models perform in each variable is central to
identifying trade-offs between them. Other, less field-specific properties are also desired, such as low
inference speeds, low carbon footprint, and low energy consumption, which become important in
high-demand applications like chemical networks space exploration57.

In this work, we pave the way towards tackling the accurate evaluation of models in these regards, by
implementing two chemically relevant and two performance-related metrics. The first two, regio-
and stereo-accuracy, calculate the product prediction accuracy in subsets of reactions that are flagged
to have regio- and stereo-selectivity issues. These reactions are commonly encountered in aromatic
ring substitutions62 or systems where chirality is affected during the reaction28, among others63.
These metrics thus highlight the models’ capacities to predict the most reactive sites in a given
context correctly, and to predict the dominant isomer in a potential isomer mixture. Furthermore,
measurement of CO2 emissions and training time are also considered, as per raising sustainability
concerns in AI64. Addressing sustainability in models can also improve their accessibility due to
reduced hardware requirements for model execution during inference.

2.3 Scenarios

Identifying and recreating scenarios relevant for testing models is one of the two key points highlighted
by Liang et al. 54 . We pay particular attention to out-of-distribution (OOD) scenarios, where the train
and test set distributions differ. Due to the inherent difficulties in characterizing feature relevance for
this task, we focus mainly on marginal shifts, described by Teney et al. 51 as those where a distribution
shift happens only across features irrelevant to the task. One easily measurable property, that to good
approximation is irrelevant for reaction prediction, is the product molecular weight (PMW). A model
will desirably perform well independent of the molecular size, as reactivity analysis is typically based
on local molecular features such as functional groups, which PMW does not directly influence.

Following this reasoning, two types of data splits are proposed: low PMW and high PMW, where the
test data corresponds to the lowest and highest end of the PMW distribution, respectively (Appendix
A.4). In addition, a standard split by products is proposed, where the set of product molecules in
the train set is disjoint from its counterpart in the test set. These sets are used to evaluate the model
and to provide a wider picture of its capabilities. While we acknowledge the importance of other
types of distribution shifts, and future research should focus on exploring these, our current approach
already proves valuable in revealing several aspects of models, including their limitations and failure
modes, as shown in Section 3. This demonstrates the importance and effectiveness of the scenarios
and distribution shifts considered in our study.

3 Results and discussion

With the proposed holistic evaluation pipeline, two high-performing reaction prediction models from
the literature were trained and evaluated. The models, Graph2SMILES46 (G2S), and Molecular
Transformer27 (MT) both draw elements from the Transformer architecture7. This architecture relies
on the attention mechanism65 to infer inter-dependencies between tokens in token sequences. While
the MT uses a string representation as input and output44, G2S uses a graph encoder with a string
decoder. Figure 1a provides a general comparison of the models, evaluated as proposed in this work
using the CHORISO dataset. Contrary to previous reports46, top-k accuracy indicates an advantage of
MT over G2S. However, extending from this, our approach reveals important differences in models,
namely their distinct performances in stereoselectivity and OOD generalization, both key for an
appropriate evaluation at the chemical level. Figure 1 also illustrates how the implementation of the
proposed holistic evaluation pipeline allows to dissect a model into multiple performance factors,
providing a better picture of model limitations and trade-offs.
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The models in question were trained and tested on multiple splits of the CHORISO dataset. These
splits consisted of a random split, a split by products, and two splits by PMW (see Appendix A.4)
to measure out-of-distribution performance. As displayed in Table 1, in-distribution splits show
advantage of MT over G2S. Notably, results on the random split are systematically higher than those
on the product split, highlighting the more challenging nature of the latter, and supporting previous
claims of random splits leading to misleading results for generalization55. The product split is thus
kept as the standard split for this work and all the top-k and selectivity comparisons are based on the
predictions on this set. At a high level, top-k accuracy shows lower values compared to the reference
reported values. The same training procedure and evaluation on the full USPTO dataset reveal a
similar trend on this dataset (Appendix B). The source of the general performance decrease could be
assigned to the inherent more difficult split by product and to the nature of both datasets (bigger and
noisier than the original USPTO_480k that was used in the original work). Prior studies demonstrated
that Transformer models typically achieve 60-70% top-1 accuracy on noisy datasets, consistent with
the results for CHORISO and USPTO in this study44,66. Finally, a high top-1 accuracy difference
(around 10%) between MT and G2S on the CHORISO dataset compared to USPTO also suggests
that MT adapts better to the different chemical reactions contained in the new CHORISO dataset.

Top-1 acc
(%)

Top-2 acc
(%)

Stereo-acc
(%)

Regio-acc
(%)

Split type Model

Product MT 71.9 79.4 35.0 64.4
G2S 62.8 69.4 20.6 55.3

Random MT 72.6 80.2 37.7 64.9
G2S 62.9 69.6 22.2 54.5

low PMW MT 48.2 57.0 23.5 34.8
G2S 48.9 56.6 20.3 31.7

high PMW MT 26.7 29.8 12.8 24.7
G2S 33.6 37.4 17.0 32.8

Table 1: Model benchmarking results. Performance of Molecular Transformer
(MT) and Graph2SMILES (G2S) models for each split of the CHORISO dataset.
The columns display the results of each model/split combination for each of the
proposed metrics. Bold font highlights the best performing model in a metric, for a
given data splitting method.

Chemistry-specific metrics enrich the analysis and reveal important references between both models.
Notably, the performance of both models in selectivity metrics decreases relative to top-k accuracy, an
expected behavior given that these scores are computed by selecting an inherently more challenging
subset of the test data. Apart from representing a smaller subset of the main test data, regioselective
and stereoselective reactions impose an extra layer of difficulty on the reaction prediction task (see
Appendix A.3. In these cases, the model has to learn the preferred site reactivity or product chirality
in addition to the main task of learning the reactive pattern based on molecule functional groups.
MT outperforms G2S both in terms of regio and stereo-accuracy. In terms of regiochemistry, the
performance difference between MT and G2S is similar the one for top-1 accuracy, suggesting that the
source of advantage of MT for this type of reactions is similar than the one for the non-selective ones.
However, stereo-accuracy reveals an extra performance of the MT over G2S, suggesting a special
advantage of MT with respect to G2S when predicting stereoselective transformations. This fact has
been noted and exploited in previous reports28. Likely due to the graph encoder used in G2S, this
model’s stereochemistry performance is substantially lower, with an over 15% loss in stereo-accuracy
relative to MT in the product split. MT is thus a better performing model for reactions where product
chirality plays a key role, such as those with stereocenter inversions and stereocenter formation as
displayed in Figure 3. These results highlight the potential of the proposed evaluation scheme to
reveal otherwise hidden differences between models, otherwise diluted in the top-k accuracy.

Thanks to our proposed metrics, we can locate and rationalize the prediction failure of a model using
a chemical context. This and sources of challenge for , and not simply consider it as a merely wrong
prediction. Focusing on reactions where MT performs better than G2S, we can observe some of
the trends and explain the difference in performance between the models. Figure 3 displays some
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reactions where MT provides the correct product and G2S fails from the selective reactions set.
Reaction a) shows a stereoselective reduction using sodium borohydride where both models predict
the correct molecule (in which the ketone has been reduced to an alcohol), but G2S misses the correct
chirality of the generated stereocenter. Reaction b showcases a Curtius rearrangement that preserves
the original chirality of the reacting center after the transformation. Here G2S also predicts the correct
reacting pattern (even the stereochemistry preservation of the reaction center), but predicts a different
isomer where two non-reacting chiral atoms have been inverted. Finally, in terms of regiochemistry,
reaction c shows how MT predicts the correct regioisomer of a Friedel-Crafts acylation, whereas G2S
generates the incorrect isomer where the acylation happens on the less activated aromatic carbon on
the reacting ring. These examples showcase limitations and differences between the two methods,
and may help to propose model architecture improvements to correct the selectivity difference.
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Figure 3: Model limitations revealed by chemistry-specific metrics. MT performance is better than
G2S in reactions where stereocenters are formed or different regioisomers are possible. a. Example
where MT predicts the correct product and G2S fails because it predicts the opposite chirality in the
reacting center b. Example where MT predicts the correct product and G2S fails because it inverts
the chirality of non-reacting atoms. c. Example where MT predicts the correct product and G2S
generates a different regioisomer.

An opposite trend is observed in the OOD splits (low and high PMW), where G2S outperforms MT
with differences of up to 7% top-1 accuracy in high PMW. As shown in Figure 4, this difference is
further exacerbated as the PMW increases, indicating the strong sensibility of MT to distribution
shifts. When analyzing the accuracy by MW split, MT has an initial performance advantage over G2S
(higher top-1 accuracy for the reactions where PMW is below or above 100 g/mol to the PMW of the
training reactions). MT performance drastically decreases when moving away from training PMW,
especially in the high PWM split. G2S is, on the other hand, more robust, as shown by the lower rate
of decay in Figure 4. This behavior is hypothesized to be due to the graph-based encoder of G2S,
which potentially suffers less from shifts in the molecular size of the input reactants by focusing
on local molecular features. The MT instead suffers more from such distribution shifts as PMW
directly affects input sequence length. This issue becomes more important for longer sequences, a
fact that has been documented previously for language models67,68 and that can be reflected on the
poorer performance of MT on the high PWM. In the out-of-distibution scenarios, MT thus tends to
predict larger molecules in the lowPMW split, and smaller molecules in the highPMW split, as shown
in Figure 4. In addition, the general performance of both models decreases in the ODD scenario,
suggesting that this distribution shift can be used to propose architecture improvements that make
models less susceptible to this shift in non-relevant features. Finally, these results highlight the
strengths of graph-based models and G2S in particular, which make them a more robust option for
scenarios where a shift in property distribution like PMW is expected.

A final perspective based on model efficiency is provided by the sustainability metrics. Detailed
analyses of each model’s CO2 production and training and inference time are possible thanks to
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at extrapolation. In green, the reaction center is highlighted, showing how MT predicts the correct
reaction, whereas G2S selects an incorrect transformation that lowers the MW of the resulting product
and gives an incorrect prediction.

recent tools69 developed as per recent sustainability concerns of computational research, especially
in ML and AI70. MT produced 0.32 kg of CO2 and took 19.8 h to train on the CHORISO data,
whereas G2S produced 0.57 kg CO2 and 40.8 h to train (full training and inference consumption for
the benchmarking in Appendix B.2). The higher consumption and training time of G2S renders it
less environmentally friendly than the MT, however, the environmental impact is still far less than
models in other fields71. On the other hand, inference time is similar for both models (3.1 vs 3.7 h).
Overall, MT is a more efficient model for this task compared to G2S. This metric may help orient
model selection considering a possible sustainability budget for model training and evaluation.

It must be stressed that the goal of holistic evaluation is not to determine the absolute best method
among all the available models, as evaluation with top-k accuracy would. Instead, the objective is to
provide a detailed map of the strengths and weaknesses of each model, ultimately producing a guide
into each model’s scope and applicability. Therefore, we have not performed hyperparameter tuning
of the models, and instead used previously reported parameters to compare general accuracy. As it
has been mentioned, both models were trained for the same number of steps for a fair comparison. As
increasing model accuracy was not the main goal of the work, the performance values may be lower
than others found in previous reports. However, our results gave a complete comparison in terms of
chemistry applicability, robustness, and sustainability of MT and GS2. Following this, MT is a better
choice for stereochemically challenging reactions or a limited computational budget, whereas G2S
is recommended for scenarios where the novel reaction products fall far from the training property
distribution. Furthermore, these efforts will help orient researchers toward addressing specific aspects
of models, leading to increasingly better models across multiple chemically relevant directions.

4 Conclusion

We have introduced a new holistic evaluation method for chemical reaction prediction models. This
work aims to improve current model evaluation practices in chemistry, allowing a stronger assessment
of their real capabilities. Following advances in other fields, we discuss and implement a set of
evaluation metrics and scenarios relevant to the task of reaction outcome prediction. In addition, a
new academic reactions dataset is released —CHORISO, that is better suited for recreating some
of these scenarios, as compared to other existing benchmarks. Leveraging this approach allowed
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us to compare two state-of-the-art reaction prediction models, revealing pitfalls and trade-offs in
the models, as well as limitations in previous evaluation methods. In particular, holistic evaluation
suggests that the Molecular Transformer is better suited for stereochemically challenging reactions,
while requiring a fraction of the energetic budget. On the other hand, Graph2SMILES showed much
stronger performance in certain out-of-distribution scenarios. These results can easily be rationalized
in terms of the models’ architecture, with graph-based methods generalizing better to larger graphs,
while text-based methods encode spatial features like stereochemistry better. More importantly, the
results out-of-the-box reveal key features from models, that are hindered by the commonly used top-k
accuracy.

Overall, this holistic evaluation proposes an improved pipeline for thorough reaction prediction model
evaluation. Further development is required in the design of richer chemistry-relevant metrics and
the identification of additional marginal out-of-distribution splits. In spite of this, this methodology
already shows great potential for evaluating models, and opens the way towards the definition of
functional guidelines for enhanced model development and selection in chemistry. Selection and
improvement of the best-performing models for specific types of reactions and chemical spaces would
unlock their routinary application and leverage the current low-data regime. This would lastly enable
a future AI-accelerated chemical research.

Data & Code availability

All the data and code used in this work is made freely available. The CHORISO dataset, along
with the train and test splits described in this paper can be found at https://figshare.com/
s/5e57a3399c52701cbc15 (DOI: 10.6084/m9.figshare.22598230). The code used for data pre-
processing and analysis, metrics, and model evaluation, can be found at https://github.com/
schwallergroup/CHORISO (data processing, analysis and metrics) and at https://github.com/
schwallergroup/CHORISO-models (benchmarking).
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A Data

Recently, Jiang et al. 59 published a dataset containing 3.2M organic reactions mined from high-
impact journals (CJHIF). Each entry contains a reaction SMILES together with the reported yield, as
well as the reagents, solvents, and catalysts used, all given in natural text (i.e. no machine readable
formats).

A.1 Data curation

For the cleaning and curation of the CJHIF dataset, we followed the pipeline described in Figure 5.
In a first step, all the names of reagents, solvents and catalysts are extracted as natural text from the
CJHIF dataset and counted by occurrence. This allowed us to translate individually each name to its
corresponding SMILES string. To do that, we used Py2OPSIN40, and PubChem API72 in case the
name could not be translated by the former. Once this translation dictionary is obtained, we analysed
more deeply the names that could not be translated to SMILES, and corrected them manually based
on the highest occurrence to the lowest. In addition to the manual correction by occurrence and in
order to get high quality data on stereochemical reactions, we also looked for specific symbols in the
names such as “+”, “-”, “r”, “s”, and manually corrected them by occurrence. These characters are
normally present in chiral catalysts and are often present in stereoselective transformations. Since
we still noticed important compounds that were not translated because of typos in the names or
additional characters, we clustered the remaining names based on string similarity using the package
fuzzywuzzy in combination with a DBSCAN algorithm provided in the scikit-learn library73. Once a
quasi-complete translation dictionary is obtained, the compounds names in the CJHIF dataset were
translated to SMILES, to form a set of full reaction SMILES. The resulting reactions are filtered
to keep only those where no species were lost during translation. This guarantees a one to one
correspondance and ensures the fidelity of the resulting reaction SMILES with respect to the original
entry. A second filter is also applied to ensure that the products contain at most fewer atoms than the
reactants, and that no atom appear in the product that was not in the reactants (to avoid uncomplete
entries). A third filter is used to check if the products have any stereocenter that the reactants do not
have. These reactions are then modified to remove any stereocenter, in order to keep the chemistry
associated. Naturally, a catalyst with axial chirality cannot be encoded as SMILES, so we believe
that to be consistent for the transformer model, stereocenters in SMILES have to be induced from the
reactants SMILES. Reactions are then canonicalized, and duplicates are removed.

Data source: CJHIF
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Figure 5: Pipeline used for data curation. The original compounds names in the CJHIF are extracted
and listed by occurrence. Then, Py2OPSIN40 and PubChem72 are used to translate those names to
SMILES strings. A manual correction of untranslated names is performed to get a more complete
translation dictionary. Next, the original rows in the CJHIF are translated to SMILES to form full
reaction SMILES. These reactions SMILES are then mapped using RXNMapper74 and NameRxn75.

The next step involves computing the atom mapping76 for each reaction using both RXNMapper74

and NameRxn75.

13



The resulting dataset, CHORISO, contains 2’224’239 unique chemical reactions, encoded as reaction
SMILES.

A.2 Data analysis - Comparison with USPTO

The comparison between CHORISO and USPTO reveals differences in terms of reaction types and
product distributions. The same cleaning pipeline was applied in both datasets in order to have a
meaningful comparison. Reaction superclasses obtained with NameRxn for each dataset are shown
in figure 2a. Dominant superclasses are different in both cases. Acylation and heteroatom alkylation
and arylation are the most common classes in USPTO, representing more than 35% of the dataset.
In the case of CHORISO, deprotection reactions are the most abundant (around 20%), followed by
functional group interconversion (FGI) and heteroatom alkylation and arylation. The differences
between classes in both datasets reflect the contrast in data sources. While USPTO samples were
extracted from patents (with a higher proportion of pharma-related processes), CHORISO reactions
come from academic journals, showing a high proportion of protective chemistry. Additionally, in
both datasets more than 30% of the reactions cannot be assigned to a superclass (and therefore not
shown in the previous figure plot).

As shown in Figure 2b and c, the distribution of product molecular weight in CHORISO shows
longer tails than USPTO, with a better representation of lighter and heavier products which makes
it more suitable for the OOD evaluations proposed here. Additionally, the proportion of products
containing stereocenters in CHORISO is bigger than in USPTO. This diversity justifies its use as a
new benchmarking dataset for reaction prediction models.

A.3 Chemistry-specific metrics

Chemistry-specific metrics are designed as a refinement for top-n accuracy that considers a carefully
selected subset of the test set, to test particularly the model’s performance on challenging reactions
with potential stereo- and regio-selectivity issues.

For the stereo-selective accuracy, reactions in the test set are filtered to include only those where the
generation or inversion of a stereocenter occurs (Figure 6a). To do this, a reaction template with
radius=0 is extracted from the queried reaction; if the reaction center in the product contains a ’@’ or
’@@’ character, it is used for model evaluation. Top-1 accuracy is then computed for this subset of
reactions. A similar approach is followed for the regio-selective accuracy, however, the objective is
now to identify reactions that could have undergone different regio-selectivity. For this, a reaction
template with radius=1 is extracted from the queried reaction and then applied to the main reactants
using RDKit RunReactants method. If several products are obtained, the reaction is used for model
evaluation.

The resulting evaluation subsets contain 8440 (6.0%) and 13114 (9.4%) of the reactions in the test set
of CHORISO’s standard split, for stereo and regio, respectively. Despite the comparatively small size
of these subsets with respect to the bigger testing set, these evaluations already permit an insightful
decomposition of the model’s performance across different chemically relevant aspects. Furthermore,
stereo and regio accuracies represent a more realistic estimation of the model’s ability to predict the
results of a subset containing only stereoselective and regioselective reactions respectively.

A.4 Out-of-distribution splits

After doing the splits, the resulting testing sets contain the following number of reaction SMILES:

• Product: 141130

• Random: 121144

• High PMW: 110056

• Low PWM: 90453

The product set contains reactions whose products are not contained in any of the reactions from
the training set. The random split contains a random subset of the training reaction. The high PMW
and low PWM splits contain reactions whose products are above 700 g/mol and below 150 g/mol
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Figure 6: Chemistry-specific metrics workflow. a) Stereo-score checks if a chiral center is created
or inverted in a reaction and flags it if True to compute the accuracy. b) Regio-score extracts the
reaction template with radius=1 and applies it to the reactants. If more than one product is generated,
it flags the reaction to compute the accuracy.

respectively, featuring an out-of-distribution shift on a non-relevant feature for reaction prediction as
it is product molecular weight (PMW).
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B Model benchmarking

In order to demonstrate the benefits of the proposed evaluation scheme with CHORISO, two SOTA
models were selected for benchmarking: Molecular Transformer (MT) and Graph2SMILES (G2S).
Detailed results are shown, including a comparison with models trained on previous benchmarks.

B.1 Model performance

Table 2 displays the results of the evaluation over 4 metrics, across different data sources and split
types (full benchmark).

Top-1 acc
(%)

Top-2 acc
(%)

Stereo-acc
(%)

Regio-acc
(%)

Data source Split type Model

CHORISOv1

Product MT 71.9 79.4 35.0 64.4
G2S 62.8 69.4 20.6 55.3

Random MT 72.6 80.2 37.7 64.9
G2S 62.9 69.6 22.2 54.5

low PMW MT 48.2 57.0 23.5 34.8
G2S 48.9 56.6 20.3 31.7

high PMW MT 26.7 29.8 12.8 24.7
G2S 33.6 37.4 17.0 32.8

USPTO full*

Product MT 72.4 79.1 35.5 53.1
G2S 70.3 75.5 32.6 51.4

Random MT 73.5 80.1 40.3 54.9
G2S 70.7 76.0 34.4 51.7

low PMW MT 37.4 44.5 11.0 14.1
G2S 45.1 50.5 14.8 17.0

high PMW MT 28.1 30.2 6.4 13.3
G2S 37.5 40.3 9.6 17.8

USPTO MIT** Random MT42 88.6 93.7 – –
G2S46 90.3 – – –

Table 2: Model benchmarking results. The performance of two models is shown, for each of two
data sources, over the different types of data splits discussed here.
* Dataset curated using the same pipeline as for CHORISOv1. **Top-3 accuracies, top-2 accuracies
were not reported in these studies.

As can be seen, the additional evaluation metrics and scenarios add new layers of insight to the
comparison. In particular, MT is better at handling stereochemistry than G2S, while the latter largely
outperforms in OOD scenarios. As highlighted in the main article, this information is instrumental
not only for model selection for different use cases, but also serves to guide the research towards
tackling specific objectives for different applications of the models. The results in Table 2 also shed
light on the influence and importance of proper data splitting. In particular, this has a great influence
on performance in the OOD settings, where performances are heavily affected by this choice of
splitting type.

B.2 Sustainability assessment

Sustainability assessments are central to our approach. More specifically, we focus on measuring CO2

emissions and model traning and inference time . Table 3 shows the results for MT and G2S, across
different data splits. For fair comparison, every model was trained for 200,000 training steps. Other
hyperparameters for each model can be found on the benchmarking repository. All the sustainability
metrics were tracked using the eco2AI package69.
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For purposes of visualization (Figure 1), both sustainability metrics were scaled between 0 and 100
to facilitate comparison between models and compatibility with the ranges of the other metrics. The
resulting magnitudes therefore follow the same rational than top-k accuracy where a higher value
normally means better performance. In particular, a formula of exponential decay was used for each
metric. CO2 production and Duration were scaled using eq. 1, with k = 0.1 for CO2 and k = 0.001
for time.

Sx = 100e−kx (1)

The choice of k was based on the scale of each metric in order to adjust it to the values on the main
plot. These values are only used for visualization, and the ones that can be used for the analysis and
comparison of models are the absolute values. Table 3 shows the sustainability metrics for the MT
and G2S models trained on the CHORISO dataset. Sustainability metrics for the models trained on
USPTO were not fully computed due to an error of the Eco2AI on the hardware. This shows .... and
suggests that further improvement is needed in order to have a standardized energy consumption
report.

CO2 (kg) CO2

scaled
Duration

(h)
Duration

scaled
Model Step

MT Training 0.32 85.01 19.76 90.59
Inference 0.04 97.86 3.14 98.44

G2S Training 0.57 75.08 40.77 81.56
Inference 0.05 97.76 3.71 98.16

Table 3: Model training sustainability benchmarking.

C Extra

All the results obtained for the CHORISO dataset were executed on a single GeForce RTX 3090 (24
GB) GPU. All results obtained for the USPTO dataset were executed on a single Tesla V100-PCIE
(32GB) GPU. The model wrappers for training and evaluation can be found at https://github.
com/schwallergroup/CHORISO-models.

17

https://github.com/schwallergroup/CHORISO-models
https://github.com/schwallergroup/CHORISO-models

	Introduction
	Holistic Evaluation of Chemical Reaction Models
	Data
	Desiderata for models
	Scenarios

	Results and discussion
	Conclusion
	Data
	Data curation
	Data analysis - Comparison with USPTO
	Chemistry-specific metrics
	Out-of-distribution splits

	Model benchmarking
	Model performance
	Sustainability assessment

	Extra

