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An Analysis of Causal Effect Estimation using
Outcome Invariant Data Augmentation

Anonymous Author(s)

Abstract

The technique of data augmentation (DA) is often used in machine learning for
regularization purposes to better generalize under i.i.d. settings. In this work, we
present a unifying framework with topics in causal inference to make a case for the
use of DA beyond just the i.i.d. setting, but for generalization across interventions
as well. Specifically, we argue that when the outcome generating mechanism is
invariant to our choice of DA, then such augmentations can effectively be thought of
as interventions on the treatment generating mechanism itself. This can potentially
help to reduce the amount of bias in our estimation of causal effects arising from
hidden confounders. In the presence of such unobserved confounding we typically
make use of instrumental variables (IVs) — sources of treatment randomization that
are conditionally independent of the outcome. However, IVs may not be as readily
available as DA for many applications, which is the main motivation behind this
work. By appropriately regularizing IV based estimators, we introduce the concept
of IV-like (IVL) regression, which leverages sources of treatment randomization
even when they are irrelevant to the outcome. We show that this approach can still
improve predictive performance across interventions and reduce confounding bias.
Finally, we cast parameterized DA as an IVL regression problem and show that
when used in composition can simulate a worst-case application of such DA, further
improving performance on causal estimation and generalization tasks beyond what
simple DA may offer. This is shown both theoretically for the population case and
via simulation experiments for the finite sample case using a simple linear example.
We also present real data experiments to support our case.

1 Introduction

One of the classical problems in machine learning is that of regression — predicting target Y from a
predictor X using appropriate models. Using i.i.d. samples from some fixed, unknown distribution
Px.,y, we would like to infer the Y values for unlabelled X values. The use of regularization
techniques is crucial for this task to achieve good generalization from training to test data [1]. One
such method of regularization is that of data augmentation (DA) [2, 3] — randomly perturbing data
samples multiple times to grow the size of the dataset. Nevertheless, we generally cannot interpret
these regression models as being causal since the statistical relationship between X and Y may not
necessarily be due to the influence or effect of X on Y. Rather, it could be due to X and Y sharing
common causes, known as confounders. One way to remove such confounders is to independently
assign values of X during the data generation process, also known as an intervention [4, 5].

Unfortunately, we seldom have access to the data generation process to be able to intervene on
variables. Alternatively, for cases where such common causes are observed, we can employ a number
of different methods to estimate the causal effect [0]. However, when they are not observed, estimating
the effect of X on Y becomes very difficult. But if we are allowed observation of any further variables
in addition to X and Y, we can use so-called instrumental variables (IVs) to simulate interventions
on X using certain conditional independences, allowing us to identify its causal effect on Y [7-9].
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However, I'Vs are generally hard to come by in most popular applications, such as computer vision and
natural language processing. Such applications may benefit from more accessible ways to potentially
reduce bias due to unobserved confounding, which is the main motivation behind this work.

As such, there has been an effort to study the application of common regularization techniques, such
as ¢, and ¢5 [10-12], in reducing the estimation bias due to hidden confounding even when the
causal effect itself is not identifiable. Mitigation of these confounding effects also allows for better
generalization of predictions under treatment interventions, which is in contrast to the canonical
application of such regularizers for i.i.d. generalization. Other popular regularization methods,
however, remain understudied in a similar context of un-identifiable causal effect estimation.

Our contributions. To this end, we provide a first analysis of DA for estimating un-identifiable
causal effects using only observational data for (X,Y"). Our contributions, summarized in Tab. 1,
include: (i) DA as a soft intervention (Sec. 4.1): We show that DA can synthesize treatment inter-
ventions when the labeling function is invariant to DA, lowering bias in causal effect estimates when
the intervention acts along spurious features. (ii) Introducing I'V-like regression (Sec. 3): Relaxing
the properties of IVs, we introduce the concept of IV-like (IVL) variables. Such a generalization
may render IV regression ineffective at identifying causal effects, but when regularized appropriately
via our proposed IVL regression, may still reduce confounding bias and improve prediction gener-
alization across treatment interventions. (iii) DA parameters as IVL (Sec. 4.2): We observe that
parameterized DA can act as IVLs, and consequently its composition DA+IVL with IVL regression
further reduces confounding bias beyond just simple DA by essentially simulating a worst-case or
adversarial application of the DA.

We validate our approach with theoretical results in a linear setting for the infinite-sample case, and
simulation and real-data experiments in the finite-sample case.

2 Preliminaries

Consider treatment X and outcome Y taking values in X C R™ and ) C R! respectively. Given the

set of functions H := {h : X — Y}, the canonical setting described in the literature [4, 13, 14] deals
with estimating the function f € H in the structural equation model (SEM) 9 of the form'
X =7(,Z,C,Nx), Y = f(X) 4+ €(C) + Ny, €))]

where 7, C, Nx, Ny are exogenous (and therefore mutually independent) random variables and the
residual £ :=Y — f(X) = ¢(C) + Ny is assumed to be zero mean, i.e. E™[¢] = 0. Since 91 is
potentially cyclic, a priori it may entail several or no distributions at all. However, here we make the
assumption that for all (xg,yo) € X x Y the unique limits
x = lim x; = lim 7(y¢-1,2,¢,nx), y = lim y; = lim f(x;—1) + €(c) +ny
t—o00 t—o0 t—o0 t—o0

exist for any (z,c,ny,ny) ~ IP"JijC’ Ny .Ny » meaning that the unique distribution entailed by 21 is in
this equilibrium state. Of course, if 991 is acyclic, these limits always exist.

Given a proper convex loss £ : Rl x R! — R, empirical risk minimization (ERM) uses a dataset
D = {(x;,yi)};—o of n samples from M to minimize an empirical version of the statistical risk

R (h) =E™[((Y, h(X))], )

over h € H. However, since the residual ¢ in Eq. (1) is generally correlated with X, i.e., E™[¢ | X] #

0, the ERM minimizer E%J}TQM typically yields a biased estimate of f [5, 4]. This bias arises due to
the exclusion of the (unobserved) common parent C of X and Y, i.e. a confounder, in the ERM
objective (hence fittingly called the omitted-variable bias [ 1 5]) and/or the model is cyclic (simultaneity
bias [14, 16], or reverse causality [5] in the degenerate case). For simplicity we shall refer to either
case by saying that X and Y are confounded and the resulting bias as the confounding bias [5].>

'Throughout this work we shall borrow and overload notation from [4]. See Appendix for a list of symbols.
ZPearl [5, p.78,184] similarly uses the term for any bias causing observational vs. interventional deviation;
this also aligns with econometrics [17, 14], where both are classified as sources of endogeneity (i.e., X U &).
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Table 1: A picture summary of our contributions.
— represents composition of operations or trans- a e C X
formations, and < represents equivalence.

f
Type of Data Topics in Causal
Augmentation Inference e e v @
8 g None; - Data generating
fb £ [ observational data structural model (a) Graph of 9. (b) Graph of 21; do(X).
s @
T2 v G ¥ Figure 1: Graph of 91 depicting an instrument
5 3 Outcome Treatment . .
g & . . . . Z that satisfies treatment relevance, exclusion
‘< %| invariant DA (soft) intervention . founded d )
g = | i restriction, un-confoundedness and outcome rel-
5 3 (i) . evance properties. An intervention on X gives
z § Worst-case or Regularized i us the graph in (b). IV regression simulates such
= 8" adversarial DA IV regression i an intervention using only observational data.

2.1 Intervention for causal effect estimation

We can make X and the residual ¢ uncorrelated via an intervention® do(X := X'), where we
explicitly set X to some independently sampled X’ in Eq. (1) irrespective of its parents, resulting now
in the new SEM 90; do(X := X’) or 9; do(X) as a shorthand for when X’ ~ P%. The distribution
induced by this modified SEM is called an interventional distribution (with respect to 2)t) under

which the ERM objective now defines the causal risk (CR) [11, 12, 18] as
M:do( X M;do( X=X’
RE(h) == RN (1) = Ry ( >(h), s.t. X' ~ P2 3)

Minimizing Eq. (3) is meaningful in two important cases where ERM fails: (i) Causal effect
estimation: The Bayes optimal minimizer of Eq. (3) is the average treatment effect (ATE) [0]
[ (x) = EMdo(X=x)[y" | X = x]. It measures the causal influence of X on Y and is equal to
f(x) for the SEM M in Eq. (1). Any minimizer of Eq. (3) therefore makes for an unbiased estimator
of f. (ii) Robust prediction: ATE based predictions are robust to shifts in the treatment distribution.
Specifically, for a perturbation set Pg,p,p(x) Over interventional distributions of X, the ATE is a
minimizer for the worst case ERM objective over all possible distributions of X' [19],
[ € argmin max R;j}i’l\jo(x'_x )(h)
heH Px/€Psupp(x)

Hence, minimizers of Eq. (3) make for predictors that generalize well under treatment interventions.
To better isolate the estimation error due to confounding, we define the causal excess risk (CER) [12]
CERan(h) = Reg (h) — Rer(f)-

This removes the irreducible noise from Eq. (3) (see Appendix A) and directly measures how far a
hypothesis h deviates from the true causal function f under interventions, so that CERgy (f) = 0.

Since interventions are often inaccessible for computing the risk in Eq. (3), we usually rely on observa-
tional data/ distribution and additional variables to approximate them, as outlined in the next section.

2.2 Instrumental variable regression

One way to get an unbiased estimate of f from the observational distribution of 9 is to use so-called
instrumental variables Z with the properties [5] of: (i) Treatment Relevance: Z [{ X. (ii) Exclusion
Restriction: Z enters Y only through X, i.e. Z 1 Y™:do(X) # (iii) Unconfoundedness: Z 1L ¢.
(iv) Outcome Relevance: Z carries information about Y, i.e. Y U Z.

Conditioning Eq. (1) on Z and using E[§ | Z] = E[¢] = 0 from the unconfoundedness property gives
E™Y | 2] = E™[f(X) | Z). “)

3A soft intervention constitutes replacing the mechanism 7 in Eq. (1) with some alternative 7' [4, p. 34].
*Counterfactual definition of the exclusion restriction property [3, p. 248].
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We can then solve Eq. (4) by minimizing the risk
RE(h) = E™[¢(Y,E™[h(X) | Z])]. )

For linear h(.) := h € R™ and squared loss £(y,y’) := ||y — y’||°, this is equivalent to the two-
stage-least-squares (2SLS) [20] solution where we regress X from Z in the first stage, and then in the

second stage we regress Y from the predictions E[X | Z] of the first stage to get the estimate fz?\j}

2.3 Data augmentation

In this work we restrict ourselves to data augmentation with respect to which f is invariant [3, 21].
The action of a group G is a mapping § : X x G — X which is compatible with the group operation.
For convenience we shall write gx = §(x, g). We say that f is invariant under G (or G-invariant) if

flgx)=f(x), Vg€ g, xe X,

Less formally, we say that the map gx, henceforth assumed to be continuous in X, is a valid outcome-
invariant DA transformation parameterized by the vector g € G. Let G have a (unique) normalized
Haar measure and P be the corresponding distribution defined over it. For some G ~ Pg, the
canonical application of DA seeks to minimize the empirical version of the risk

RPA e erm(R) = E™ (Y, h(GX))]. (6)

Note that it is sufficient to have some prior information about the invariances of f in order to be able
to construct such a DA. For example, when classifying images of cats and dogs we already know that
whatever the true labeling function may be, it would certainly be invariant to rotations on the images.
G would then represent the random rotation angle, whereas Gx would be the rotated image x.

We wish to contrast the use of DA in this work with the canonical setting — to mitigate overfitting,
DA is used to grow the sample size by generating multiple augmentations (Gx,y) for a single data
sample (x,y) ~ P%,. [3, 21]. Such regularization, overfitting, or i.i.d. generalization is not the
focus of this work and we intentionally provide Eq. (6) along with theoretical results that follow in
the population case to emphasize that DA is not being used as a conventional regularizer.

3 Faithfulness and Outcome Relevance in IVs

The distribution P%Y’ z.c 18 faithful to the graph of DT if it only exhibits independences implied by

the graph [4, 22].° This standard assumption in IV settings renders outcome-relevance implicit and
therefore rarely mentioned. In this section we discuss the case where only the first three IV properties
are satisfied, i.e. outcome-relevance may not hold. Since such a Z may not be a valid IV, therefore
identifiability of ATE is not possible in general as the problem in Eq. (4) can now be misspecified,
having multiple, potentially infinitely many solutions when Y 1l Z. Nevertheless, we shall refer to
such a Z as IV-like (IVL) to emphasize that while Z may not be an IV, it may still be ‘instrumental’
for reducing confounding bias when estimating the ATE compared to the standard ERM baseline.

ERM regularized IV regression. Despite problem miss-specification for a IVL Z, the target
function f remains a minimizer for the IV risk in Eq. (5). Albeit, potentially not unique — for example,
a linear h with squared loss leads to an under-determined problem in Eq. (5). We therefore propose
the following regularized version of the IV risk for such an IVL setting,

Ry, (h) = Ry (h) + aRggum(h), )

where o > 0 is the regularization parameter. The ERM risk as a penalty allows our estimations to
have good predictive performance while the IV risk encourages solution search within the subspace
where we know f to be present. We refer to minimising the risk in Eq. (7) as IVL regression.

Note that the motivation behind IVL regression is not the identifiability of f, but rather potentially
better estimations of f with lower confounding bias. The next section provides a concrete example.

3 Also known as stability in some texts [5, p. 48].
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(a) Graph of 2 post DA. (b) Graph of ; do(T := GT)

Figure 2: The observational distribution of  Figure 3: The ground truth function f in
(GX,Y,G,C) and (X,Y,G,C) for graphs (a) and  Example 2. The DA applied here corre-
(b) respectively are the same. The former applies DA sponds to randomly translating the data sam-
on X, whereas the later applies a (soft) intervention  ples along their level-set by adding random
on X. Furthermore, for the graph in (), G is IVL. noise sampled from the null-space of f.

Example 1 (a linear Gaussian IVL example). For scalar o > 0, non-zero matrices I', T € R**™
and vectors 71, f, € € R™ such that f 7" # 1 so that the following SEM 91 is solvable in (X, Y)°

X=7"Y4+T'Z+T"C+0Ny, Y =f'X +€'C+ocNy,
where Z, C, Nx, Ny are conformable, centered Gaussian random vectors and Z is IVL w.r.t. (X,Y).”

Now, the task is to improve our estimation of f compared to standard ERM. We evaluate an estimate
h? using the CER, which for a squared loss and covariance 3%' in Example 1 simply comes out to be

. . 2
CERgy (hD) - HhD _ fH . 8)
=%
Prior works use this form to quantify the error in ATE estimation [12, | 1] or measure some notion of
strength of confounding [10, 23, 18]. Similarly, we use it to measure confounding bias of population

estimates h™" (Appendix A) and estimation error in finite sample experiments. The next results follow.
Theorem 1 (robust prediction with IVL regression). For SEM 9 in Example 1,
B2 € argmin max RovoT O=) gy o P {C ) T < (1 + 1) rTz:f’Z“r}.
a h  CEPa o)
Proof. See Appendix G.4 for the proof. O
Theorem 2 (causal estimation with IVL regression). In SEM 9t of Example 1, for a < o0,

CERyy (ﬁ%}a) < CERgy (ﬁ?}w), equality it E™[X | Z) LE™[X | €]  as.
Proof. See Appendix G.5 for the proof. O

Theorem 1 shows that IVL regression achieves optimal predictive performance across treatment
interventions within the perturbation set P, defined by a.. Theorem 2 further states that this strictly
reduces confounding bias in ATE estimates iff the perturbations align with spurious features of X, as
indicated by the equality condition (also necessary for identifiability in linear IV settings [24, 19]).

4 Causal Effect Estimation using Data Augmentation

We dedicate this section to the main topic and point of this work — discussing the potential of data
augmentation for improving predictive performance across interventions and reducing confounding
bias in ATE estimates. To that effect, for the rest of this work we shall consider the following SEM 2
X =7(Y,C, Nx), Y = f(X) +€(C) + Ny, ©
which is assumed to have a unique stationary distribution with exogenous C, Nx, Ny and the residual
& =Y — f(X) is zero-mean, i.e. E[¢] = 0. We also have access to DA transformations GX of X
parameterized by G ~ IE% such as described in Sec. 2.3. Figure 2a shows the graph of 2 post DA.

Given samples for only (X,Y’) and some valid DA parameterised by G, the task is to improve
predictive performance across interventions and reduce confounding bias in ATE estimates. We now
make two observations in the following subsections and state the respective results that follow thereof.

®See Appendix B and Lemma 3 for details on solving for and sampling of (X, Y") in such linear, cyclic SEMs.
7 All examples assume correlated X and residual £, i.e. E™ [X I3 T} # 0, as otherwise there is no confounding.
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4.1 Data augmentation as a soft intervention

Consider a (soft) intervention on 2l where we substitute the mechanism 7 of X with G7. With some
abuse of notation, we shall represent this SEM by 2; do(7 := G7) the graph of which is shown
in Fig. 2b. Note that this SEM also has a unique stationary distribution (proof in Appendix G.3).
Comparing the DA mechanism in 2( (Fig. 2a) and the intervention 2; do(7 := G1) (Fig. 2b), we see:

Observation 1 (soft intervention with DA). Distributions IF% x.yv.a.c and P?l(;(if_g:gGT) are identical.

We can hence treat samples generated from 2 via DA as if they were instead generated from
2A; do(7 := GT) by intervening on X. This allows us to re-write the DA+ERM risk from Eq. (6) as,
A;do(7:=Gt
R%[AG+ERM(h) = RERM( )(h),
to emphasize that DA is equivalent to a (soft) intervention and as such can be used to reduce
confounding bias when estimating f, as we will show with the following example.

Example 2 (a linear Gaussian DA example). For scalars x, o > 0, non-zero matrices I', T € R**™
and vectors 7, f, e € R™ such that f "7 = k! so that the following SEM 2l is solvable in (X, Y")
X=k-7T"Y4+T'C+0Nx, Y=fX+k-€ C+0Ny, GX:=X+~-TTG,
where GG, C, Nx, Ny are conformable, centered Gaussian random vectors, x determines how much
(X,Y) are confounded and range (I‘T) C null(f T) so that GX is a valid outcome invariant DA
transformation of X parameterized by G with strength v > 0. This transformation can be viewed

as translating X along its level-set as shown in Fig. 3 and represents our prior knowledge about the
invariance properties of f for the purposes of this example.

Theorem 3 (causal estimation with DA+ERM). For SEM 2l in Example 2, the following holds:
CERy (ﬁ,%‘AG+ERM) < CERy (ﬁg‘RM), equality iff EXGX |G] LEYX | €] as.
Proof. See Appendix G.6 for the proof. O

That is, DA strictly reduces confounding bias in ATE estimate iff the DA-induced intervention
perturbes X along its spurious features. Importantly, Theorem 3 suggests that lower confounding bias
is not a ‘free lunch’ with outcome invariance of DA and practitioners may need domain knowledge to
construct DA that targets spurious features. Fortunately however, Theorem 3 also suggests that under
outcome invariance, DA should not perform worse than ERM. Practitioners may therefore be advised
to generously use such DA, as it achieves regularization in the worst case, but may help mitigate
hidden confounding bias as a ‘bonus’ in the best case.

4.2 Worst-case data augmentation with IVL regression

We once again point our attention to the graph of 2; do(7 := G7) from Fig. 2b to observe that:
Observation 2 (IV-like DA parameters). In SEM 2(; do(7 := G7), the DA parameters G are IVL.
In light of this we can now re-write the IV and IVL risks for 2; do(7 := GT) to respectively read

2;do(T:=GT 2A;do(T:=GT
R%AGHV(h) = RIV ol )(h), R]Q)lAg—HVLa(h) = RIVLZ( )(h)-
Corollary 1 (worst-case DA with DA+IVL regression). For SEM 2l in Example 2, it holds that
1
I'gg'I'x ( + 1)1“2% }
Q@

Proof. The result follows from Observation 1, Observation 2 and Theorem 1. O
Corollary 2 (causal estimation with DA+IVL regression). For «,y < oo in SEM A from Example 2,
CERgy (B%AG WL@) < CERqy (B%AG +ERM), equality iff EY[GX | G] LEYX | €] as.
Proof. The result follows directly from Theorem 2 and Observation 2. O

£ ol . 2 _
hpsgqve, € arglrlmn Inax Rpag+erm(h), st Go = {g

Using DA parameters as IVL therefore simulates a worst-case, or adversarial application of DA
within a set of transforms G,,. Of course Corollary 1 can also be viewed as a predictor that generalizes
to treatment interventions encoded by G, . As is intuitive, such a worst-case intervention improves
our ATE estimation so long as the features of X intervened along include some that are spurious
(Corollary 2). DA and IVL regression may therefore be used in composition if the application can
benefit from regularization and/ or better prediction generalization across DA-induced interventions,
with a ‘bonus’ of lower confounding bias if the DA also augments any spurious features of X.
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Figure 4: Simulation experiment for a linear Gaussian SEM. « represents the amount of confounding,
7 is the strength of DA and « is the IVL regularization parameter. Each data-point represents the
average nCER over 25 trials with a 95% confidence interval (CI).

5 Related Work

Canonical regularization methods, that are typically used to reduce variance of estimations, being
used to reduce confounding bias is not a new idea [ 10—12]. To the best of our knowledge, we are the
first to study the same for DA whereas prior works studied this in the context of ¢; and ¢ regulariza-
tion. Appendix C.1 makes a detailed comparison, including with statistical bias-variance analyses.

Domain generalization (DG) methods aim to generalize well to unseen test domains via robust
optimizatoin (RO) [25] over a perturbation set P of possible test domains p € P as

RI?O(h) ‘= max RERM(h)v
pEP

Since generalizing to arbitrary test domains is impossible, the choice of perturbation set encodes one’s
assumptions about which test domains might be encountered. Instead of making such assumptions a
priori, it is often assumed to have access to data from multiple training domains which can inform
one’s choice of perturbation set. This setting is explored in group distributionally robust optimization
(DRO) [26]. Variations have been used to mitigate confounding bias and subsequently generalize
to treatment interventions when used with interventional data [27, 28], confounder information (i.e.
entire graph) [29-31] or some proxy thereof in the form of environments [32]. We however, do not
assume access to any of these and instead synthesize interventions via DA.

Counterfactual DA strategies have been the primary lens for causal analysis of DA [33-39]. These
approaches aim for prediction robustness under treatment interventions and often depend on strong
assumptions, such as access to the full SEM [34, 35], auxiliary variables [33, 35, 38, 39], or causal
graphs [36, 37]. By contrast, we show that outcome-invariance of DA suffices for treatment inter-
vention robustness without invoking counterfactuals. Furthermore, prior works have largely ignored
causal effect estimation, often assuming reverse-causal settings where the ATE becomes trivial
[33, 35, 34]. To our knowledge, ours is the first framework to study ATE estimation under DA with
minimal structural assumptions. For a more detailed comparison, please see Appendix C.2.

Invariant prediction based methods aim to make predictions based on statistical relationships that
remain stable across all domains in P. A common assumption, for instance, is that IP’Y‘ x 18 invariant
across P, with only the marginal Px allowed to vary. Invariance is also closely linked to causal
discovery — under the assumption that causal mechanisms remain stable under interventions on inputs
[13]. This connection has inspired approaches that enforce invariance conditions to uncover causal
structures [27, 40]. IV regression can also be viewed as one such method, where the goal is to
learn predictors whose residuals are invariant to the instruments [8]. More broadly, the principle of
invariance, whether motivated by causality or not, has proven useful for improving generalization
across heterogeneous settings [ 13, 32, 41].

6 Experiments

We began by presenting results in the infinite-sample setting to emphasize that mitigating confounding
bias is fundamentally not a sample size issue, i.e., not solvable through traditional regularization
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alone. In this section, we turn to the finite-sample regime and empirically evaluate the effectiveness
of DA in reducing hidden confounding bias. Importantly, we do not use DA for its conventional
purpose of augmenting data to improve i.i.d. generalization. Since our focus is on generalizing across
interventions, we fix the number of samples in the augmented dataset to match that of the original
dataset throughout all experiments.

Finding baselines for evaluating our results is however a challenge — reducing the bias due to hidden
confounding in regression estimates having only access to the treatment X and outcome Y is a
non-trivial problem. Nevertheless, for the sake of completeness we make an effort to re-purpose
existing methods from domain-generalization, invariance learning and causal inference literature to be
used as baselines. These methods often require access to additional variables (e.g. IVs, confounders,
domains/environments, etc.), and to maintain fairness we will replace these with DA parameters G.
Such a comparison is conceptually valid since by virtue of being DG methods, they are essentially
solving a robust loss of a similar form as in Corollary 1, giving us meaningful baselines for DA+IVL.

In addition to standard ERM, DA and IV regression, our baselines include DRO [26], invariant risk
minimization (IRM) [32], invariant causal prediction (ICP) [27], regularization with invariance on
causal essential set (RICE) [42], variance risk extrapolation (V-REx) and minimax risk extrapolation
(MM-REX) [29]. We also compare against causal regularization methods, including Kania and Wit
[11] and the ¢;, {5 approaches by Janzing [10]. We discretise G if the method accepts only discrete
variables. For IVL regression, we select the regularization parameter « in a variety of ways, including
vanilla cross validation (CV), level-based cross validation (LCV) and confounder correction (CC) as
described in Appendix E. Other implementation details are provided in Appendix F.

To make CER based evaluation more interpretable for our experiments, we propose the normalization

.7 CERgn (h)
= CERm(h) + CERg (o)

where h( represents the null treatment effect, i.e. when X has no causal influence on Y, then
EYsde(X) [y | X] = EMHde(X)[Y]. The normalized CER (nCER) can be considered a generalization
of the metrics used by [10, 18, 23] in linear settings and similarly has the interesting property that
it is O for the ground-truth causal solution h = f # hg but 1 if there is pure confounding for
h # f = hg. Janzing argues that using Euclidean norm instead of weighted norm in Eq. (8) is more
relevant for causal settings [18, 23], which also motivates our choice in evaluation of simulation and
optical-device experiments described below.®

nCERgy (h) € [0,1], ho(+) = ETHdoX) [y,

6.1 Simulation experiment

For the finite sample results of the linear SEM 2( from Example 2, by taking m = 32, k£ = 31
(dimension of G), ¢ = 0.1 and fixing 7" = 0, we sample a new f,e and T € R™*™ from a
standard normal distribution for each of the 32 experiments for every combination of x and . Each
time we construct a I' := 'V, with k rows as orthonormal basis of null(f), such that the SVD of f is

0 _ v’
£ = U g 1x(m—1) .
[v Yol O(m—1)x1  O(m-1)x(m-1)| | Va

Although this construction of T relies on direct knowledge of f (which is unavailable in practice), we
include it here purely for illustrative purposes. We treat access to I' as our prior structural knowledge
about the invariance properties of f, noting that this information alone is insufficient to recover f.

We then generate n = 2048 samples of (X, Y") for each experiment. For ERM we use a closed form
linear OLS solution, for DA+IV, we make use of linear 2SLS. Finally, DA+IVL_, was implemented
using a closed form linear OLS solution between empirical versions (see Proposition 2) of

X' =VaX + (Vita—-VaEX | 2], Y'=Va¥+ (Vita-a)E[Y|Z].

Our first experimental result in Fig. 4a compares the different estimation methods across varying levels
of confounding « € [0, 1]. As expected, ERM performance degrades with increasing confounding.
Applying DA alone already brings us closer to the causal solution, while DA+IVL achieves even better
performance. DA+IV regression is unstable and generally performs poorly as it is under-determined.

8Conceptually, this is equivalent to evaluation based on causal risk under the interventional distribution
X' ~N(0,1,,) in Eq. (3).
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Figure 5: Experiment results; common OOD generalisation benchmarks compared against the ERM,
DA+ERM and DA+IV baselines including DA+IVL.

In the second experiment (Fig. 4b), we fix the confounding and DA strengths at Kk = v = 1, and
sweep over the regularization parameter o € [107°,10°] for DA+IVL,,. The results show that
optimal performance is achieved for intermediate values of a, confirming that arbitrarily small values
of «, while beneficial in the population setting (as suggested by Theorem 2), are suboptimal in finite
samples.” We also find that both CV and CC strategies effectively select reasonable values of a.

Finally, we examine sensitivity to the DA strength v € [1072%,10], fixing x = 1. As expected,
stronger DA results in stronger interventions on X, which improves causal effect estimation. However,
we also observe diminishing returns; when the variation induced by DA is either too small or too
large, DA+IVL , does not yield significant improvements over the DA+ERM baseline.

For completeness, we also benchmark our approach against other baseline methods on 16 distinct
simulation SEMs with 2048 samples each. Aggregated results are presented in Fig. 5 (left most).

6.2 Real data experiments

Optical device dataset. The dataset from [18] consists of 3 x 3 pixel images X displayed on a
laptop screen that cause voltage readings Y across a photo-diode. A hidden confounder C' controls
two LEDs; one affects the webcam capturing X, the other affects the photo-diode measuring Y. The
ground-truth predictor f is computed by first regressing Y on (¢(X), C'), where ¢(X) are polynomial
features of X with degree d € {1,---,5} that best explains the data. The component corresponding
to C'is then removed to recover f. We add Gaussian noise G ~ N (0, X - /10) for DA and evaluate
methods from Sec. 6.1 on n = 1000 samples across 12 datasets. Figure 5 (middle) shows that
DA+ERM improves over ERM, and DA+IVL performs even better, outperforming other baselines.

Colored MNIST. We evaluate on Colored MNIST [32], where labels are spuriously correlated
with image color during training, but this correlation is flipped at test time. We use the same neural
architecture and parameters as [32] across all baselines, training with the IV-based objective described
in the Appendix D. DA is implemented via small perturbations to hue, brightness, contrast, saturation,
and translation, each parameterized by G ~ (2, 2). Although these do not directly manipulate color,
the actual spurious feature, they still help reduce confounding. Results in Fig. 5 (rightmost) show that
ERM underperforms, DA+ERM provides substantial gains, and DA+IVL,, performs competitively
with the best DG baselines, with DA+IVL§CV achieving the best overall performance.

7 Conclusion

We conclude that our proposed causal framework for data augmentation (DA) enables re-purposing
the widely used i.i.d. generalization tool for OOD generalization across treatment interventions.
By interpreting outcome-invariant DA as interventions and IV-like variables, our approach reduces
confounding bias and consequently improves both causal effect estimation and robust prediction.

“We conjecture that this is due to outcome invariance not holding exactly in practice.
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List of Symbols

The notation is largely borrowed from [4], with some overloading where necessary.

RRX*

n x x Euclidean space; dimension * conformal with & inferred from context.
Scalar.

Vector. When x | is described as a vector, it means x is a flat 1 x * matrix.
Matrix.

Set.

Random vector.

SEM.

Random vector X with its SEM 971 specified when unclear from context.

Distribution of X entailed by 9. Superscript dropped if clear from context.
Expected value of X under distribution P%.

Variance of X under distribution P%'.

Variance—covariance matrix of X under distribution P%.
Cross—covariance matrix of X and Y under distribution }P’g?,y.
Intervention — X is set to x.

Shorthand for do(X = X') where X’ ~ P¥ isi.i.d. to X.

Intervention SEM.

SEM with mechanisms of 21, but exogenous noise distribution IP’DJ%I‘ Xex
Counterfatual SEM — intervention SEM of MMy —, .

Random vectors X, Y are statistically independent, i.e. IP%?T' x = ]P’%’,n.
X,y are perpendicular, i.e. xTy = 0. For random vectors, X ' Y = 0 a.s.
Population/ infinite-sample estimate based on distribution P™.

Finite-sample estimate based on samples in the dataset D.
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A Confounding Bias

Statistical vs. causal inference. The target estimand for the statistical risk in Eq. (2) is the Bayes
optimal predictor E™[Y | X = -]. Whereas the target estimand for the causal risk in Eq. (3) is the
average treatment effect fiiz = f. As such, statistical inference is concerned with predictions of
outcome Y, whereas causal inference is concerned with estimating f%E.

Statistical vs. confounding bias. Both types of inference are subject to bias. Statistical bias arises
due to miss-specification of the hypothesis class, whereas confounding bias arises due to how the
data are generated. The former is therefore a property of the estimator while the later is a property of

the data itself. For an estimator h” with the expected value h(-) = EX [iLD ()} , we can define these
biases as
Statistical bias := E™'[Y | X =] — h(-),
Confounding bias = fas(-) —E™[Y | X =],
=fO)-ETY | X =,

Bias-variance decomposition of the causal risk. Because the treatment X and residual £ are
not correlated under 91; do(X) in Eq. (1), for any loss function ¢ that admits a ‘clean’ or ‘additive’
bias-variance decomposition [43], the causal risk also admits a bias-variance decomposition. Using

squared loss as an example we have for some hypothesis hP

= R% (BD)

= EPdo(X) HY - ﬁD(X)HQ} ,

— EMtdo(X) :Hf(X) . BD(X)HQ] : (Structural eq. of Y.)
= EMhdo(X) H§||2] + EMHdo(X) [Hf(X) — fLD(X)HQ} , (Cross term is 0 as & 1L X Ptdo(X) )
— EDdo(X) HfHQ] +EM™ {Hf(X) _ BD(X)”2] . (PY and ng;do(x) identical by construction.)

irreducible noise A
estimation error, CER gn (hD ) =

We can show by following standard procedure that

2 {CER;m (;LD)} — ER {Hf(X) _ }}(X)HQ} +EX {IE%? [Hh(X) - BD(X)Hzﬂ :

(o2 )
bias variance

Since for any population estimate h™(X) = h(X), the CER equals the average (squared) bias in
estimation

CERgy (™) = B! [Hf(X) - EW(X)HQ} =EZ [[|7(X) - h(X)["].

For the Bayes optimal ERM estimate h2%,,(-) = EM[Y | X = -], this exactly equals the (average

squared) confounding bias as we define it above. For a general estimate h”, however, the CER
also contains statistical bias. Nevertheless, our claims of ‘better causal estimation via reducing
confounding bias’ rest on the fact that we are essentially manipulating the data via DA. And recall
that confounding bias is a property of the data.

16



543

544

545
546
547

548

550
551

552
553

554
555
556
557
558

559
560
561
562
563

564

565
566

568

569

570
571
572
573
574

576
577

578
579
580

B Simultaneity as Cyclic Structures in Equilibrium

Linear cyclic assignments

SEMs with cyclic structures have been well studied both in the linear case [44—46], as well as the
non-linear case [47, 48]. Here we briefly provide a causal interpretation to linear simultaneous
equations as SEMs with cyclic assignments.

Consider a square matrix M € R4*¢ and the SEM
W =MW + N , (10)

where random noise vector N is exogenous and M allows for a cyclic structure. We enforce (I — M)
to be invertible so that the above equation has a unique solution W for any given IN. Re-writing the
structural form in Eq. (10) into a reduced form, the distribution over W is defined by

W=I;—M)"'N. an

One way we can present a causal interpretation of the above solution is to view it as a stationary point
to the following sequence of random vectors W,

Wi=MW; 1+ N,

which converges if M has a spectral norm strictly smaller than one so that M! — 0 as ¢ — oo.
The structural form Eq. (10) essentially describes the iterative application of this operation. And in
the limit the distribution of lim;_,, W? will be the same as the reduced form Eq. (11). Although
equivalent, reduced form of a cyclic SEM (if one exists) obscures the causal relations in the data
generation process.

Furthermore, we restrict our models to not have any “self-cycles” (an edge from a vertex to itself). So,
e.g., the matrix M in Eq. (10) has all zero diagonal entries. This not only simplifies our analysis by
providing a simple and intuitive interpretation for our definition of DA in Sec. 2.3, but no self-cycles
also ensures that in the non-linear case the SEM entails a unique, well-defined distribution under mild
assumptions [48, 45].

Similarly we can write the example SEM 9t from Example 1 in this (block matrix) form as

X [0mxm 7T |[X r’ T' Nx
- oo (e 3]
~ ————

w M w N

For this simple case, (I, 1) — M) is always invertible so long as f "7 " # 1 from Lemma 3. Or
we can also restrict |f T’TT| < 1 to ensure that the spectral norm of M is strictly smaller than 1.
We sample from this SEM by first sampling all of the exogenous variables Z, C, Nx, Ny and then
solving the above system for each sample of X, Y via the reduced form in Lemma 3.

A motivating example

Cyclic SEMs were first discussed in the econometrics literature [49] to model various observational
phenomena, and often solved via 2SLS based IV regression [16] since it is computationally less
costly compared to solving the entire system [20]. A classic example from economics [50, 517 is
that of a supply and demand model Ot where the relation of price P of a good with quantity @) of
demand can be thought of as a cyclic feed-back loop where producers adjust their price in response to
demand of the good and consumers change their demand in response to price of a good. In contrast, a
change in consumer tastes or preferences would be an exogenous change on the demand curve and
can therefore be used as an IV Z.

consumer demand: Q=7-P+v-Z+Ng,
producer price: P=f-Q+ Np.
Where scalars f, 7 are such that | f - 7| < 1 so that the system converges to an equilibrium. We say

that the measurements made for P and @ are at the equilibrium state of the market'® with zero mean
measurement noise Np, Ng respectively.

'%In fact, such a feed-back model of supply and demand was initially developed to understand the irregular
fluctuations of prices/quantities that are observed in some markets when not at equilibrium [50].
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Estimation of causal effects — removing simultaneity bias. If we now want to estimate the effect

of demand on price f, standard regression will produce a biased estimate fé’ﬁM =f+ %

because of the simultaneity causing @ and Np to be correlated (to see this, substitute model of P into
the model of Q). We can now use IV regression to get an unbiased estimate of the effect of demand

on price in the market as f3 = f.

Prediction under OOD treatment interventions — avoiding spurious correlations. Similarly,
if the producer wants to predict the effect on demand if price is changed (i.e. intervened on), naive
ERM will not be a good choice because it will also capture the spurious correlation from ¢ — P.

We therefore use three-stage-least-squares (3SLS) [52, 20] (or similar methods) to estimate the ATE
8 ¢ = EM6do(P=)[Q) | P = ] where we use the first two stages to estimate f3, followed by ERM

to regress from the residuals Np:=P— ffe‘ - @ to @ in the third stage.

Other applications. Cyclic SEMs are commonly used in many disciplines to model reciprocally
causal phenomena. Application domains include political science [53, 54], sociology [55], urban
planning and design [56], organizational behavior and psychology [57], etc.

Lastly, to establish clear relevance to the literature of spurious correlations, we present a novel cyclic
SEM interpretation of the popular colored-MNIST task in Appendix F.3, which we argue presents
a more intuitive perspective of colored-MNIST as a ATE E¥:4°(X:=)[y" | X = ] estimatoin task,
which is not immediately obvious in the more familiar DAG perspective.
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Table 2: Bias-variance analysis of Table 3: Comparison of our proposed ‘outcome invariant
canonical regularization methods com- DA as a (soft) intervention’ framework with prior works on
pared to outcome invariant transforma- causal analysis of DA. We argue that other frameworks are
tions. We provide a first analysis of con- less general, requiring access to auxiliary variables, the full
founding bias in ATE estimation for the  graph or treatment mechanisms, all of which are often far
later. |, 1, —represent a decrease, in- less accessible than prior knowledge about invariances of f.
crease and no-change in the correspond- Importantly, our analysis is the first to discuss the effects

ing metric of interest respectively. of such DA simulated interventions on ATE estimation.
Type of regularization Type of DA
Outcome Canonical Outcome
) X ) X Counterfactual
invariant  (¢1, {5, or invariant [33-39]
transform vanilla DA) (ours)
= . intervention  counterfactual
£p DA simulates
Statistical 5 7 s do(7 == GT) Ay =y;do(7 == GT)
variance [3, 217 [21, 58, 59] % Auxiliary data X back-door C'
8 besides (X,Y) [33, 35, 38, 39]
Statistli)gal : — - T | 'q;) Full graph X [36, 37]
s T 3 Structural invariances X mechanism
< mechanism  of f only P)Q(l\yc [34, 35]
Confounding T = :
bias (ours) [10=12] z do(X) robustness
=
&  ATE estimation X

C Related Work Supplement

For completeness purposes, in this section we shall reiterate a more detailed comparison between the
regularization properties of outcome invariant DA as we use it in this work for reducing confounding
bias against prior works on bias-variance and causal analysis of regularization strategies, including
DA. A summary of the comparison is given in Tabs. 2 and 3.

C.1 Comparison with bias-variance analyses of regularizers

Statistical vs. causal inference. We shall start by reiterating the difference between statistical
bias and confounding bias from Appendix A. The former is well understood from classic bias-
variance analyses in statistical inference [58, 59, 1, 22] and arises due to the miss-specification of the
hypothesis class. While the later is because of how the data are generated and only becomes relevant
in the presence of confounding variables, as in this work, and is the subject of a large part of the
causal inference literature [5, 4, 22].

Statistical bias and variance. Different regularization techniques are used to mitigate high statisti-
cal variance (or over-fitting) to better generalize under i.i.d. settings. Of these, ¢; and /5 are perhaps
the most notable, which reduce statistical variance at the expense of higher statistical bias [58, 59].
DA can also be thought of as ‘data-driven’ regularization [21, 3] whereby it reduces the statistical
variance of finite-sample estimates in the un-confounded case by increasing the number of samples
via multiple perturbations per same data sample. This can come at the expense of higher statistical
bias [21] or for “free’!! if the DA is outcome invariant [3, 21]. We list all of these in Tab. 2.

Confounding bias. Recent works have also studied conventional regularization strategies like ¢1, {5
from a causal inference perspective, showing their effect on confounding bias [10, 12, 11]. This work
can be seen as a first natural extension of the same to DA based regularization. Of note is the result
of Theorem 3, that outcome invariant DA strictly reduces confounding bias when spurious features of

"This is still not a “free lunch’ since constructing outcome invariant DA requires prior knowledge about the
invariance properties of f.
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treatment are perturbed. This is in contrast to /1, £, where their effect on confounding bias is not so
straightforward [10, 12, 1 1] as a non-monotonic function of the regularization parameter.

Outcome invariant DA as a form of regularization. Here we show that outcome invaraint DA
can have a regularizing effect even in the population case as implied by the following result.

Proposition 1 (DA induced regularization). For SEM 2 from Example 2, given decreasing DA
strengths v1 > o > 0, we have

B%AGJrERM ‘ = %Hzm < Hl:l%AngERM ‘ v = 72H2Q1, equality iff EQ{[GX |G] L EQ[[X | €].
X X
Proof. See Appendix G.1 for the proof. O

Note that this is fundamentally different from the regularization properties of outcome invariant DA in
the un-confounded, finite-sample case as described in [3, 2 1] in the sense that it reduces confounding

bias (Theorem 3) by shrinking the coefficients of fl%A «+Erym that correspond to confounded features
of X which are augmented by the DA.

C.2 Comparison with causal analyses of data augmentation

Counterfactual DA for treatment intervention robustness. Data augmentation has also been
subject to analysis from the perspective of causal inference. Of note is [33], where they essentially
proposed an outcome-conditioned counterfactual'> DA strategy by selecting DA that perturbes
treatment features which are not outcome-inherited so as to improve prediction generalization across
treatment interventions. This has led to the design of other similar counterfactual DA strategies [34—

]. Since counterfactuals in general require access to the SEM, constructing such counterfactual DA
requires strong assumptoins, such as access to auxiliary variables like a ‘back-door’ [33, 35, 38, 39],
the full graph [36, 37] or structural mechanisms [34, 35]. By contrast, we have shown in Sec. 4.1
that counterfactuals may not be necessary for treatment intervention robustness if the DA is outcome
invariant by design. Since such outcome invariant DA always simulate a valid intervention (Sec. 4.1),
a worst-case application is sufficient to achieve treatment intervention robustness (Sec. 4.2). We argue
that the condition of outcome invariance is far more accessible in may applications of DA as opposed
to many of the strong assumptions made by works on counterfactual DA. We list these in Tab. 3.

Outcome invariant DA for causal effect estimation. Besides discussions on treatment intervention
robustness, to the best of our knowledge, there has been no analysis on causal effect estimation in the
literature of counterfactual DA so far. In fact, many of these works assume a reverse-causal Y — X
SEM [33-35, 38] where the ATE is trivial f(-) = 0 by construction. To this effect (pun intended),
and taking inspiration from recent works on ATE estimation via conventional regularizers [10-12],
we offer a fist analysis for the same in the context of DA.

"ZRepresenting an SEM with exogenous noise distribution conditioned on some variable Y = y by 2y —y,
the counterfactual SEM 2y —y; do(X := x) is an intervention do(X := x) on this new SEM 2y —,,. The
counterfactual distribution then represents questions like ‘After observing Y = y, what would have been had
X = x been true.
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ess D IV Regression Supplement

654 Two-stage estimators. Minimizing risk of the form Eq. (5) is known as two-stage IV regression.

655 Another approach for two-stage IV regression is to minimize the risk [60, 13]
2
R, () =™ [[E™[Y | 2] - E™[n(x) | Z]|], (12)

656 which can be shown to lower-bound (hence the subscript LB) the surrogate risk in Eq. (5) [60] under
657 squared loss.

= Ry (h)
=E[|y —E[r(x) | Z)IP],

=E[|(Y ~E[Y | 2)) + (E[Y | Z] - E[h(X) | Z])||2} (Adding and subtracting E[Y" | Z].)

- ]E{HY _E[Y | Z]ﬂ +E[|\]E[Y | 7] - \ﬂ (Expand squared norm.)
+2E((v ~EY | 2))" (E[Y | Z] - E[(X) | Z])],

—E||lY —EY | Z]|*| +E||E[Y | 2] - E[n(X) | Z]I1], (13)

:]E[H]E[Y|Z]—E[h(X)|Z]H2]+]E[E[(Y E[Y | 2)) ‘ZH (Tower rule and scalar Y.)

—E[|E[Y | 2] - E[h(X) | Z]|’] + EV[Y | Z]] = R, () + EIV[Y | 2], (14)

ess where Eq. (14) follows from the definition of conditional variance and we get Eq. (13) by setting the
659 Cross term to zero since

:ERY—EW|mfwwwm—EWXHZM

[ [ E[y | Z))T(E[Y | Z] - E[h(X) | Z]) ’Z” (Tower rule.)
[[ E[Y | Z]) ‘Z} | Z] - } (15)
—E|E]Y | 2] -E[v | 2))"( me—[<>|mﬁ

=E[0"(E[Y | Z] - E[r(X) | Z])] =0,
es0 where Eq. (15) follows from the “taking out what is known” rule, i.e.,
Elg(B)A | B] = g(B)E[A | B]. (16)
661 Generalized method of moments. Another popular approach to solve the IV estimation problem

es2 1S the generalized methods of moments (GMM) [61-63] or equivalently the conditional moment
663 restriction (CMR) [60] framework which tries to directly solve for the fact that in Eq. (1) with scalar Y

M| Z)=E™[Y — f(X)| Z] =0, (17)

664 which holds as a direct consequence of the unconfoundedness property of IV Z, however it is a much
665 weaker assumption on it’s own'?. Equation Eq. (17) implies that for any ¢ : Z — R, it holds that

EM[(Y - f(X) -a(2)] =0.

666 The GMM-IV estimate of f therefore tries to enforce this condition [61-63] by minimizing the risk
- 2 2
R (0) =Y E™[(Y = h(X)) - 0:(2)]" = [ET[(Y = h(X)) - a(Z)]||",
i=1

BTherefore an invalid instrument that does not satisfy the unconfoundedness property, but still satisfies
FEq. (17) can also be used here.
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where q(-) € R* represents a vector form of the set of  arbitrary real-valued functions ¢;. A more
general form of the above GMM based IV risk is to weight the norm by some SPD W [64, 61, 62]

2
R (1) = [[EV[(Y = h(X)) - a(2)] |3y

which gives the most statistically efficient estimator, minimizing the asymptotic variance, for W =
E?*l [64, 61, 62]. We use the same for our non-linear experiments, together with the identity

function q(Z) = Z. This gives us the final loss of the form

¢ — ||E™ 7 . — 2
RY s () = [E™(Z (V= BOO) 50
And the empirical version of which can be written as follows
. T, .
R (h):= (y—h(x)) zzf(y—h(x)), (18)
GMMfzz
where for dataset samples (x;,;,2;) € D, we construct the vector ¥ := [yg,--- ,¥y,] , matri-
ces X == [xJ,---,x/]7,Z = [20 --- 2] with pseudo-inverse Z and define h(X) =

[h(x0), -+, h(xn)] T
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E IVL Regression Supplement

Closed form solution in the linear case. The following result gives us a way to compute a closed-
form solution to the IVL,, regression problem in the linear Gaussian case. An empirical version of
this is used for our linear experiments.

Proposition 2 (IVL,, closed form solution). For SEM 9 in Example 1, ﬁ?\’}L is the closed form
linear OLS solution between

X'=aX +VE[X | Z], Y':=aY +bE[Y | Z],
where
a =+, b=+v1+a—a.
Proof. See Appendix G.2 for the proof. O

For the empirical version of Proposition 2 we fit a closed-form OLS regressor between
X' =aX + (V1+a-+a)ZZiX, Y = aY + (VI+a—a)ZZY.

Choice of regularization parameter. Selecting the IVL regularization parameter « in the finite
sample setting is not very straightforward. We explore a the approaches that are described below
which seem to work well in practice, however some of these may not seem as well motivated since
the task at hand is OOD generalization and « is being set via cross-validation with-in the same
distribution.

Cross validation (CV), or any variation thereof. We specifically use the following two in our
experiments; (i) vanilla CV with 20% samples held-out for validation (ii) level cross validation (LCV)
for when Z is discrete, where hold-out data corresponding to 20% of the levels of Z for validation.

Confounder correction (CC), where in a linear setting we follow an approach similar to [10] by
estimating the length of the true solution f from the observational data D. We then chose « such that

the length of 7, LqvL_ s closest to the estimated length of the ground truth solution.
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F Experiment Supplement

For the methods that use stochastic gradient descent (SGD), we use a learning rate of 0.01, batch
size of 256 for 16 epochs. For baselines that require a discrete domains/environments, we uniformly
discretise each dimension of G into 2 bins. Higher discretisation bins renders most baselines
ineffective since each domain/environment rarely has more than 1 sample. To keep the comparison
fair, however, we also discretize G for IVL,, regression when using LCV. For the colored MNIST
experiment, all CV implementations including baselines use 5-folds for a random search over an
exponentially distributed regularization parameter with rate parameter of 1. Same is the case for
simulation and optical device experiments, except that DA+IVL methods use a log-uniform distributed
regularization parameter over [10~%, 1]. Since RICE [42] grows the dataset size by augmenting each
sample 7" times, we provide it a 1/7T" sub-sample of the original data for fair comparison.

F.1 Simulation experiment

For the parameter sweep experiments of Fig. 4, we generate a treatment of dimension m = 32, but
for the OOD baseline comparison experiment in Fig. 5 we use m = 16. Furthermore, for the OOD
baseline comparison experiment in Fig. 5, we randomly pick each basis of null(f) with a probability
1/3 to construct T (i.e., we know only some, but not all symmetries of f).

F.2 Optical device experiment

In the simulation and optical device experiments, we fit a linear function h(.) :== h € R™ for a
squared loss in all of our risk metrics. For IVL,, regression, we use the closed-form OLS solution
from Appendix E. We also use a closed-form solution for ERM, DA+ERM and DA+IV (2SLS)
baselines. The rest of the baselines (other than ICP) use SGD.

Most of the datasets in the optical device dataset were best explained by polynomial features of
degree 2. We use the same ground-truth degree to fit each of the methods listed in Fig. 5. This
is important so as to avoid statistical bias from model miss-specification as our analysis squarely
focuses on confounding bias.

F.3 Colored-MNIST experiment

In the colored MNIST experiment, we use the same 3-layer neural network (NN) architecture for h
across all methods comprising of a fully-connected input layer of input dimension m, hidden layer
of input/output dimension 256 and output classification layer with a Sigmoid function. Each layer
is separated by an intermediary rectified linear unit activation function. For the IV risk, we use the
empirical version of the GMM based risk from Eq. (18).

Colored-MNIST as a cyclic SEM — From invariant prediction to estimating causal effects

colored image @ f @

MNIST image

true label

color ( C )= @ noisy label

Figure 6: The data generation DAG for colored-MNIST as discussed by the original authors [32].
They aim to learn a predictor h : X — Y such that it is invariant to changes in P x|y We argue that
this DAG view of colored-MNIST does not make it obvious how the true labeling function f(x) is

related to the ATE E™Hdo(X=x)[y" | X = x], which we believe is because it is virtually equivalent to
the reduced form of our structural form presented in Fig. 7.

In this section we give a cyclic SEM perspective of the colored-MNIST experiment from [32]. The
task is binary classification of colored images X from the MNIST dataset into low digits (y = 0 for
digits from O to 4) and high digits (y = 1 for digits from 5 to 9). The difficulty of the task arises from
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colored image colored image

true label MNIST true label
f image
() fip ¥? )

color  noisy label color  noisy label ~ flip Y?
(a) Graph for generating colored-MNIST data. (b) Augmented graph — exogenous variables explicitly shown.

Figure 7: A cyclic SEM perspective of the colored-MNIST data — an MNIST image Ny is assigned
color C to produce a colored-MNIST image X . This is then passed through the ground-truth labeling
function f to produce the true label Y. We flip this with probability 0.25 to produce the observed
label Y, which in turn is flipped with probability e (at train time e € {0.1,0.2} and e = 0.9 at
test time) to produce the color C'. These assignments are iteratively applied for any joint sample
of the exogenous variables Nx, Ny, N¢ starting at arbitrary values of endogenous variables until
convergence to the unique stationary point X, Y, C (and Y).

there being a higher spurious correlation between the color C' of the images (¢ = 0 for blue and ¢ = 1
for green) and (noisy) labels Y as compared to the correlation between the digits in the image and the
label.

Consider the following cyclic SEM in Fig. 7.

nx ~ Py, ,ny ~B(0.25),n. ~ B(e) sample all exogenous variables

X = colour(C,ny) apply color C' to the image

Y=f (X) generate ground-truth label with true labeling function
Y = xor (Yf, ny) flip the label with probability 0.25

C = xor(Y,ng) generate color by flipping Y with probability e,

where we first randomly sample an un-colored MNIST image n x, and some Bernoulli distributed
label noise ny ~ B(0.25) and color noise nc ~ B(e) which is different for each environment
e € {0.1,0.2}. Then for some initial arbitrary values x¢, Jo, yo and c¢q respectively for the observed
colored image X, the ground-truth label Y, the observed noisy label Y and the image color C, we
iteratively apply the following assignments from the SEM

x; = colour(c;—1,nyx) apply color C to the image

e = f(xe—1) generate ground-truth label with true labeling function
Yyt = xor(Ji—1,ny) flip the label with probability 0.25
¢t = xor(Yi—1,n¢) generate color by flipping Y with probability e,

until they converge while keeping all sampled exogenous variables nx, ny, no fixed. It is straightfor-
ward to show that this SEM will converge after a maximum of ¢ = 5 iterations'* due to the invariance
of f to the color of the image C. Furthermore, this stationary-point will be uniquely determined
by our exogenous samples ny,ny,nc. And this is how we generate one sample (x,y) for our
colored-MNIST experiment. We repeat this process to generate a sample (x, y) for each of n samples
nX7 nY? nC'

Note that the ground-truth labeling function f can only correctly predict the labels 75% of the time.

At test time we flip the correlation between the label Y and the image color C' by setting e = 0.9.
Also, the above cyclic SEM for colored-MNIST produces the same distribution for (X,Y") as [32].

The above cyclic SEM perspective of colored-MNIST is interesting because it makes it clear that
colored-MNIST is essentially a causal effect estimation task. Specifically, we can estimate the true

“Following the mechanisms co — X1 — §2 — Y3 — c14 — X5, we see that (X4,y4,c1) = (X5, ¥s, C5)
(same for g1 = ¥s).
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751 labeling function f by estimating the ATE E™do(X=x)[y" | X = x] since

Eim;do(X::x) [Y | X = X] _ EEDT;do(X::x) [XOI‘(f(X), Ny) ‘ X = X],

= E™ [xor(f(x), Ny)], (Ny 1L XPhdo(X:=9),)
= Em[ f(x) + Ny — 2f(x)Ny], (Definition of xor.)
f(x) + B [Ny] = 2f(x)E¥' [Ny],

= (1 — 2E™ [Ny]) f(x) + E™*[Ny],
=0.5f(x)+0.25 . (Ny ~ B(0.25).)

752 Because this is a binary classification task, we have

round(IEim;dO(X:x) YIX= x]) = f(x).

753 This is in contrast to the original DAG perspective of colored-MNIST shown in Fig. 6, where the
754 connection to the estimation of the causal mechanism f is not immediately obvious. We argue that
755  this is because the DAG in Fig. 6 is virtually equivalent to the reduced form of our structural form
756 presented in Fig. 7.
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G Proofs

G.1 Proof of Proposition 1 — DA induced regularization

Proposition 1 (DA induced regularization). For SEM 2l from Example 2, given decreasing DA

strengths v1 > 2 > 0, we have

Proof.
= ADAG-s-ERM‘;,é
- E—(GX)(GX)T_A]E[(GX)YT] 2 :
L E =%
. E'(GX)(GX)T"_11E[(GX)(fTX+£)T] C
_ . -
—e[(ex)ex)T] E[(GX)(fTGX+§)T] 2 :
_ _ -
= [E[(ex)6x)T] 1(1]3{ X)'f+E[(GX)ET]) 2
2
_ f—HE[ T} E[( 235
= [+ E[ex)@ex)T] ]EKX+7G)£T} o
— |e+E[(Gx T} E[X o
— Fly + HE[(GX)(GX)T} BT
=

A
= X

oA TSAE [(GX)(GX)T} B

o S |Bsemn |7 =, cquativig EYGX |G LEVX |¢)
X

(Structural eq. of Y.)
(Using G—invariance of f.)

, (Linearity of expectation.)

(Represent G=T"TG)

(G exogenous = Gl &)

E[X¢T], (19)

where the first term does not depend on . The last term also does not depend on  because

So7s3E](x +96) (x +26) | LX)

—fTSIE[3% 4752 'E[x¢T],
-1

=f"STSE [STS + fyzSTDS] E [ng , (From Lemma 2.)
=fTSTSS™'E[L,, ++°D] 'S TE[X¢], (S,ST invertible.)
—fTSTE[L, ++?D] 'S"TE[x¢T],

=f'STSTTE[X¢T]. (Genull(fT) = f'STD =0,

Finally, for the middle term in Eq. (19) we can follow a similar approach as Theorem 3 to show that

it is strictly decreasing in 72, with equality iff

E*GX | G] LE¥X | €]
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765 G.2 Proof of Proposition 2 — IVL regression closed form solution in the linear case

766 Proposition 2 (IVL,, closed form solution). For SEM N in Example 1, ﬁ?%}L is the closed form
767 linear OLS solution between

X' =aX +bE[X | Z], Y'=aY +VE[Y | Z],
768 where
a:=+a, b:=vV1+a—+a.

769 Proof. The OLS solution for (X', Y”) minimizes the following ERM risk
= E[|[y’ - n"X|’]

=By +bE[Y | Z] - hT (X +bE[X | Z])[*],  (Substitute in definitions of X',Y".)

—E [Ha(Y ~h"X) +b(E[Y | Z] -hTE[X | Z)) HQ} : (Distribute the subtraction.)
=d’E [HY — hTXHQ} +V’E {HE[Y | Z] -h"E[X | Z]Hz} (Expand squared norm.)
+2abE[(Y—hTX)T(E[Y | Z] - h"E[X | Z])}. (20)

770 First we note that from the definitions of a, b we have
a* = /a, P+2b=(Vita-va) +2va(Vita-va)=1 Q@I
771 Now we evaluate the cross term in Eq. (20)
= E [(Y ~h"X) (E[Y | 2] - h"E[X | Z])}

~E[E [(Y ~h"X) (E[Y | Z)-h"E[X | 2)) ‘ ZH : (Law of iterated expectation.)

~E[E [(Y —h'x)" ’ Z] (E[Y | Z] - h E[X | Z])} (Taking out what is known; Eq. (16).)

—E[(E[Y |2 -h"E[X|Z2]) (E[Y|Z]-h"E[X | Z])]

_ IE:HE[Y | Z] ~hTE[X | Z]Hz].
772 Substituting this back in Eq. (20) we get
= E[[[y’ - n"X'|]

= E[|y - n"X|] + (7 + 200)E[|EY | 2] - wTEX | Z)|].

= oE[||ly - n"X|*| +E||E[ | 2] - nTE[X | Z]|], (From Eq. (21).)
= aRFyv(h) + RY(h) —E[V[Y | Z]], (From Eq. (14).)
= Ry, (h) —E[V[Y | Z]].

773 O]
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G.3 Proof of Proposition 3 — Existence of an interventional distribution given a DA

Proposition 3 (unique stationary interventional distribution). In SEM 2 from Eq. (9), given any
(g,c,nx,ny) ~ Pg’C,NX,Ny, if for all (xo,y0) € X X Y the unique limits

A . 13 A _ 1z A
X = thjgoxt —thjgoT(Yt71aCanX),
A . 13 A _ 1: A
y* = lim i = lim f(x,) +e€(c) +ny

exist, then in 2; do(T := g7) the unique limits
— lim XQl;do(T::g‘r)
t—o0 t

A;do(T:=g7 Ql;do(‘r::gr)
xAido(T=gT) (yt_l

= lim g7 ,C, nX) = gxm,

le;do(T::g'r) — lim yQ‘ ido(m:=87) _ i f( Ql(iO(T —g"')> +e(c) +ny = y2

t—o0 t—o0

also exist.

Proof. First we try to show that

2A;d =
ypoder=eT) — (22)
For the base case, we have by construction
A;do(T:= . .
e gy~

Asdo(T:=gT)

For the step case, assuming that y, = y?, we have'?,

2A;do(T:=gT A;do(T:=g7
Yt+'2( g):f( t+1( g))+6(c)+ny7

( ( phde(r gT)7C7nX))+E(C)+nY7

f(r ( 2;do(T:=gT) ,C, nX>) +¢(c) + ny, (Invariance of f to g.)
= f(r(y?,c, nX)) +€(c) + ny, (Assumption y 40T =ET) — 2
(Xt+1) ) +ny,

= Yt+2

Hence, we have shown that Eq. (22) holds for all even ¢. For odd ¢, we simply replace ¢ = 0 with
t = 1 in the base case

y?[;do(‘r::gr) _ f<xgl;do(‘r::gr)) + G(C) 4 ny,
= f(x%‘) + €(c) + ny, (Definitions xg[;do(T::gT) = Xo = Xg.)
=yi
We have now finally shown that Eq. (22) holds for all ¢ > 0.

Next, it is now relatively straightforward to show that for any ¢ > 0, we have

X?Udo("'::gT) gr (y?l_do(r::g‘r)’ c, nX) ’
=gr(yi ;. ¢ nx), (Follows from Eq. (22).)
= gx;. (23)

Finally, by applying limit as ¢ — oo to both sides of Eq. (22) and Eq. (23), we get

Asdo(T:=gT) __ A;do(T:i=gT) _ 1. A _ A
y = My =Ly =y
x2do(m=g7) _ 1im Xm do(ri=gr) _ tlim gxtQL = gtlim X?L = gx™, (24)
—00 —0

t—o0
where the limit can be moved past g in Eq. (24) because g is assumed continuous in its domain.

O

5Note that here the step size for proof by induction would be At = 2 since y: precedes y;1 2. Similar is the
case for x; as well.
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789 G.4 Proof of Theorem 1 — Robust prediction with IVL regression

790 Theorem 1 (robust prediction with IVL regression). For SEM 90 in Example 1,
o(TT 1
h,VL € argmlncmf%x RZ;A(; (FTO)= )(h), s.t. Po = {C ' ¢l < < + 1> I‘TZSZRI‘}.
€Pa !

791 Proof. Write X in terms of the exogenous variables C, Z, Nx, Ny using the reduced form from
792 Lemma 3 as

X=2Z+C+N, (25)
793 where for readability we represent
5. T v 7. Nx
Z =MpxmI' Z, C’._MLT}G N'_O—.M|:Ny:|7

794  with

M = Mm><m Manl — Im *TT -
Mixm Mixi —fT 1 '

795 Now, we start by writing the ERM objective under the intervention do(I‘—r ()=¢ ) as

= R 7w

_ EPdo(IT (=) '||y —hTX|| ]

— EPudo(TT():=(¢) ( ) H } (Y structural form & Eq. (25).)
— EMido(T T (-):=¢) | T (M wmC +C + N) H ] (Z & intervention definition.)
_ Edo(TT(:=¢) [ T( + ) +(f-h)'M mmeHQ_ ;

_ pdo(rT(=¢) [ ~n) (C+N) 41| ] , (Define '™ == (f —h) M)
ervtolftat (e ]

‘(Follows from exogeneity of ¢ under intervention, = cross term zeros-out.)

_ Em;do(l"-r(‘):om) {HY _ hTXHQ} I Em;do(I‘T(‘)::C) |:‘ h/TCH2:| 7 (26)

= Ee(TTO=0) [y - w7 x|] + |

= BP0 [[ly x| 4 (¢ ¢),

2
|

_ Em;dO(FT(')Z=0m> |:HY _ thHQ:| + tr(h/TCCTh/) ] (27)
796 Now, note that the maximum of the trace term over { € P, gives

= max tr(h'T¢¢Th'),

( > tr h’—r I‘TIESDt [Z Z T] )h ) , (Linearity of trace and definition of P,,.)
( + 1) E™[tr(h''TTZZ'Th)], (Linearity of expectation.)
( + 1) EM[tr(Z'Th'h' T Z)], (Cyclic property of trace.)
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1 r
— ( + 1) B [bTTT Z]"],

o' I

1 m [ T T 2 . . .. T
=|=-4+1)E H(f—h) M, «mI ZH , (Substitute in definition of h’ " .)

«

1 o [ T 5|12 . .
=|—-+4+1)E H(f —h) ZH . (Definition of Z.)

o

797 We can now substitute this in while maximizing both sides of Eq. (27) over interventions ¢ € P, as

= max Ry 7w
= EM O O=0n) Iy —TX ] + max ir(T¢¢TR), (First term does not have ¢.)
— g7 0=00) ||y — 7] < ) E™ M(f - h)sz,

=B [y —nTx|*] + ; E‘”‘[H (f-m)"Z| ‘2] (Inverse step of Eq. (26).)
—E”[|ly - n7x[*] + é E™ || [ ELX | Z]| ] . (From conditional exp. of Eq. (25).)
=E™[|[y -n"x|*] + é E™ [HE [f7X | 2] ~hTELX | Z])|°|, (Linearity of expectation.)
=E™[|[y -n" x| +$EW[HEY |Z]-wTE[X | Z]["],  (nverse step of Eq. (26))
= Rh(h) + ~ (RE () ~ B[V[Y | 2])), (From Eq. (14))

798 O
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802

803

804

805

G.5 Proof of Theorem 2 — Causal estimation with IVL regression

Theorem 2 (causal estimation with IVL regression). In SEM 9t of Example 1, for a < o0,

CERgy (ﬁ}’?’V‘LQ) < CERgy (hERM) equality iff ~ E™[X | Z) LEM[X | €]  as.

Proof. For flIDQ,TL , we have from Proposition 2

Note that we have
éEkTW

2 1 2
<[l T
X

m
EX

—E[X'(aY +E]Y | Z])T}
—E[X'(a¥ +E[fTX +¢]2]) "],
—E|

af TX + af + b E[X | Z)) ]

—E[x'x' Tt + aX’gT} ,

—E[X'X"T|f+ aB[X¢T],

x'(
—E[X'(a¥ + b TE[X | Z)) } (Dy definition Z 1L £.)
X'(

—E[X'(fTX" + af) } : (Substituting in X’ == aX + bE[X | Z].)

=FE -X’X’T}f +a’E [XfT], (Z LU &, therefore E [X’f—'—] =alE [X{r].)

—E|[X'X"T|f+aE[X¢T],
‘We also see that
~ K [X’X’T]

—E|(aX +VE[X | Z])(aX +VELX | 2))"],

(28)

=E [(aX + bZ) (aX + bZ) T} ) (Set Z := E[X | Z] for brevity.)

= ®E[XXT] + b’E {ZZT} + abE [XZT} + abE [ZXT],

= a’E [XXT] + (b2 + 2ab)22, (Because £ [XZT} = ZZ.)

=oE[XX']+X,,
where we substituted in Eq. (21) in Eq. (29).

Finally, we now have
. 2

= |a2 - f’
’ VL, g
711 T 2

- IE[X’X’ E[X’Y’ }—f

9

m
2 X

— |E[x'x""] - (E[x'x"]+aE[x€T]) -

=y
2

= ||+ aE[x'x""] TE[xeT] -

=

32

(29)

, (Substituting in Eq. (28).)



)

-1 2
= |eE[x'x"T] E[x¢]]

m
2:X

—|[a(eB[xXT] +2,) E[XxET (Substituting in Eq. (29).)

2
]Hzg?’

T Lar - T i .
=[S S—l—aS DS E[Xf ] , (Using Lemma 2.)

STS
2

~1
— |ls—? <Im + lD) S*T]E[XgT] , (S is invertible.)
a

STS
1.\! ’
= <Im + aD> S™'E [XET] , (Switch to 5 norm.)
<|[sTE[x¢T)|, (30)
—||]ss~'s TE[x¢T]|7, (Substituting T = SS~1.)
= ||S*IS*T]E [X{T] H;Ts’ (Back to weighted norm.)
_ 2
—|[E[xxT]"E[x¢T] Hw, (Substituting B = EM [XX 7] =STS))

2

— le+E[xXT] E[X¢T] - f‘ (Adding and subtracting f.)

)
e
= X

= |[ExxT) T E®[xXTE+E[XET]) - fH;M (Substituting T = E[XXT] '"E[XXT])

_ 2
= |E[XXT] 'E {X (FTX + §)T} — sz:‘m’ (Linearity of expectation.)
X
2
= |e[xx™) "E[XYT —fH Substituting Y = £TX + €.
[ ] [ } - (Substituting + &)
. 2
= hg}m —f sz, (Closed form ERM solution.)
X

sos where inequality Eq. (30) holds because D is non-negative diagonal. Furthermore, inequality Eq. (30)
go7 only holds with equality iff S~ T IE [X 13 T} is in the kernel of D. Or equivalently, iff E [X 13 T] is in the

sos kermnel of STDS = % P which from Lemma 1 is true iff

EMX |2z L E™X|¢  as.
809 L]
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si0  G.6 Proof of Theorem 3 — Causal estimation with DA+ERM

811 Theorem 3 (causal estimation with DA+ERM). For SEM 2 in Example 2, the following holds:

CERgy (B%AG+ERM) < CERq (H%RM)ﬂ

g12  Proof. We have

£l
= ’hDAG+ERM - f‘ o
z:)(
11

— |IE[(cx)@x)T

—|lE —(GX)(GX)

= ||E

— <f+E )| OE[(

= |[Eliex }

E[(GX)¢']

= | (E[xxT] +E[GGTD E[X¢T)

1

= |(sTs+sTDs) "E[x¢T||

= |87 @+ D) ' TE[x¢T]|

sTs’

)

SS~'(I,, + D) 'STTE[X¢"]

~ | @+ D) TE[xeT] |
<|[sTTE[XET],
= [ss™'sTTE[XET],
[ST'STTE[X¢T]
= |E[xxT]™

)

lsrs:
E[x¢T]|

—lf+E[xxT]

3
m
EX

E[X¢T]

= |E[xxT]™
= [E[xxT)E[X (67X +¢) }fH

~ |[Exx EXYT] - o],

g
-l

E[(GX)Y '] —f

E[(@X) (X + ) e

[
:(GX)(GX) E[GX )(ET(GX) +€) ]
0

X)) -1

=%

— IE[ X+G X+G)T]_1E{(X+é)§q

(E[XXT|f+E[X¢T))

equality iff E*[GX |G] LE*[X | ¢ as.

3

A
2:X

, (Structural eq. of Y.)
=%

, (Using G-invariance of f.)
=3

)

A
2:X

, (Where G =E[GX |G]=~-T'G.)
=3

, (Using G 1L X, €.)

2A
2:X

(Lemma 2.)
(S,ST invertible.)

(Switch to #5 norm.)

(€29
=8S-1)
(Back to weighted norm.)

(Substitute in I,

(Substitute in B :=EM[XX | =8TS)
(Add and subtract f.)

(Use T, =E[XXT] 'E[XXT])
(Linearity of expectation.)

(Structural eq. of Y.)

(ERM closed form solution.)

813 where inequality Eq. (31) holds because D is non-negative diagonal. Furthermore, inequality Eq. (31)
s14 only holds with equality iff S~ " E [X 13 T} is in the kernel of D. Or equivalently, iff E [X I3 T] is in the

815 kernel of STDS = X 5> which from Lemma 1 is true iff EMGX | G] L EM[X | € as. O
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G.7 Miscellaneous supporting lemmas

Lemma 1 (Gaussian conditional orthogonality lemma). Let X,Y,Z € R"™ be zero-mean jointly
Gaussian random vectors with covariance matrices X = E[XX "], £, = E[ZZ "], and cross-

covariance Xy, , = E[Y Z ). Define the conditional expectation
_ T
E[Y | Z] = (E 227 'E [ZYT]) 7 =%y ,%,'2
Then the following are equivalent:

XJ_E[Y|Z]:0 a.s. < EXzY’ZZO.

Proof. Since X,Y, Z are jointly Gaussian, E[Y | Z] = MZ with M = EKZZ;. The scalar
random variable
S:=X'"E[Y|Z]=X"MZ
is Gaussian with mean zero. Hence,
S=0 as. = Var(S) = 0.
Compute the variance:
Var(S) =E[S?| =E[(X '"MZ)?] =E[ZTM' XX MZ].
Using independence and zero-mean assumptions,
Var(S) = tr(M' = MX,).
Since covariance matrices are positive semidefinite, Var(S) = 0 iff
/MY =0 = =M%, =0.
Substituting M = 3 , 1" gives
Y3y, =0,
completing the proof. O

Lemma 2 (SPD and PSD simultaneous denationalization via congruence). For any n X n matrices
A > 0, B = 0, there exists an invertible S € R™*"™ and non-negative diagonal D € R™*"™ such that

A=S8Ts, B =S'DS.
Proof. This is similar to Theorem 7.6.4 in [65, p. 465] for two SPD matrices. We proceed similarly;
Since A is SPD, it admits a unique SPD square root A /2. Define
C.— A‘l/QBA_l/Q,

which is SPD. By the spectral theorem, there exists an orthogonal matrix U such that

C=U"DU,
where D is diagonal with non-negative entries (the eigenvalues of C). Set

S :=UA'Y2
Then

STS _ Al/QUTUAl/Q — A1/21A1/2 — A,
and
S'TDS = AY/2U'DUAY? = A/2CA'/? = B.

Since A'/? and U are invertible, S is invertible, completing the proof. O
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Lemma 3 (solvability of simultaneous SEM). The SEM 9 in Example 1 is solvable iff f T 77 # 1,
in which case the following solution defines the reduced form of the SEM.

x] 1, —-=T17'/[rT T Ny
{5 ] (e o ()
Similarly, SEM 24 in Example 2 solves for f 777 # kL
Proof. We re-state the SEM 901 in the following block form
X [Omxm 7T ][X r’ T Nx
- o Bl e (e i)
L, -7' X| [T T' Nx
[t T8 e [Fle [
solving for (X, Y") involves inverting the block matrix on the LHS. The result immediately follows

from Proposition 2.8.7 in [66, p. 108], via the Schur complement formula for block matrix inversion.
O

Lemma 4 (DA and invariance). In SEM 2 of example from Example 2 iff v — oo, then

ol .
hps .+ erm € arg}inln Rpag+v(h),

Proof. We have
. - -1
thGJrERM =E _(GX)(GX)T} E [(GX)YTL

=E _(X + 7@) (X + 7@) T} 71]E KX + WC?)YT}, (Represent G :=T'TG.)

- -1
_E (X + vé) (X n 7(;) T} E[XYT], (G LL Y by definition of DA.)

—E[XXT +1XGT +7GXT + vzééT] E XV,
=E [XX—r + 'yZC;‘éT} _1IE [(XY'], (G independently sampled, = G 1L X.)
= (Sx +°2,) E[XYT],
= (STS + STDS) ! (IE [XYT] ), (From Lemma 2.)
=8 (I, ++’D) 'S T (E[xYT]) (32)
Now,
VhRBs av(h) = VaE[[hTE[GX | 6] - Y],
_ E[vhHhTE[GX 1G] - Yyﬂ,
_ ]E[E[GX | GI(h"E[GX | G] — Y)T],
~ ~ T ~
=E [(767') <7hTG - Y) } ,  (First stage regression E[GX | G] =~G.)
= 'yQEéh. (GLlLY by definition of DA.)
Setting Vi R, 1v(h) = ¥°E ;h = 0,,, we see that I3, _, 1 projects onto the kernel of 3 ;.

From Eq. (32), we can see that since D is a non-negative diagonal, therefore B%Ac LErm Only lies in
the kernel of 3 6= STDS when v — co. Hence proved that only when v — oo,

-2l -
hpa 1 Erm € arg}r}mn Rppgiv(h).
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