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Abstract

The technique of data augmentation (DA) is often used in machine learning for1

regularization purposes to better generalize under i.i.d. settings. In this work, we2

present a unifying framework with topics in causal inference to make a case for the3

use of DA beyond just the i.i.d. setting, but for generalization across interventions4

as well. Specifically, we argue that when the outcome generating mechanism is5

invariant to our choice of DA, then such augmentations can effectively be thought of6

as interventions on the treatment generating mechanism itself. This can potentially7

help to reduce the amount of bias in our estimation of causal effects arising from8

hidden confounders. In the presence of such unobserved confounding we typically9

make use of instrumental variables (IVs) – sources of treatment randomization that10

are conditionally independent of the outcome. However, IVs may not be as readily11

available as DA for many applications, which is the main motivation behind this12

work. By appropriately regularizing IV based estimators, we introduce the concept13

of IV-like (IVL) regression, which leverages sources of treatment randomization14

even when they are irrelevant to the outcome. We show that this approach can still15

improve predictive performance across interventions and reduce confounding bias.16

Finally, we cast parameterized DA as an IVL regression problem and show that17

when used in composition can simulate a worst-case application of such DA, further18

improving performance on causal estimation and generalization tasks beyond what19

simple DA may offer. This is shown both theoretically for the population case and20

via simulation experiments for the finite sample case using a simple linear example.21

We also present real data experiments to support our case.22

1 Introduction23

One of the classical problems in machine learning is that of regression – predicting target Y from a24

predictor X using appropriate models. Using i.i.d. samples from some fixed, unknown distribution25

PX,Y , we would like to infer the Y values for unlabelled X values. The use of regularization26

techniques is crucial for this task to achieve good generalization from training to test data [1]. One27

such method of regularization is that of data augmentation (DA) [2, 3] – randomly perturbing data28

samples multiple times to grow the size of the dataset. Nevertheless, we generally cannot interpret29

these regression models as being causal since the statistical relationship between X and Y may not30

necessarily be due to the influence or effect of X on Y . Rather, it could be due to X and Y sharing31

common causes, known as confounders. One way to remove such confounders is to independently32

assign values of X during the data generation process, also known as an intervention [4, 5].33

Unfortunately, we seldom have access to the data generation process to be able to intervene on34

variables. Alternatively, for cases where such common causes are observed, we can employ a number35

of different methods to estimate the causal effect [6]. However, when they are not observed, estimating36

the effect of X on Y becomes very difficult. But if we are allowed observation of any further variables37

in addition to X and Y , we can use so-called instrumental variables (IVs) to simulate interventions38

on X using certain conditional independences, allowing us to identify its causal effect on Y [7–9].39
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However, IVs are generally hard to come by in most popular applications, such as computer vision and40

natural language processing. Such applications may benefit from more accessible ways to potentially41

reduce bias due to unobserved confounding, which is the main motivation behind this work.42

As such, there has been an effort to study the application of common regularization techniques, such43

as ℓ1 and ℓ2 [10–12], in reducing the estimation bias due to hidden confounding even when the44

causal effect itself is not identifiable. Mitigation of these confounding effects also allows for better45

generalization of predictions under treatment interventions, which is in contrast to the canonical46

application of such regularizers for i.i.d. generalization. Other popular regularization methods,47

however, remain understudied in a similar context of un-identifiable causal effect estimation.48

Our contributions. To this end, we provide a first analysis of DA for estimating un-identifiable49

causal effects using only observational data for (X,Y ). Our contributions, summarized in Tab. 1,50

include: (i) DA as a soft intervention (Sec. 4.1): We show that DA can synthesize treatment inter-51

ventions when the labeling function is invariant to DA, lowering bias in causal effect estimates when52

the intervention acts along spurious features. (ii) Introducing IV-like regression (Sec. 3): Relaxing53

the properties of IVs, we introduce the concept of IV-like (IVL) variables. Such a generalization54

may render IV regression ineffective at identifying causal effects, but when regularized appropriately55

via our proposed IVL regression, may still reduce confounding bias and improve prediction gener-56

alization across treatment interventions. (iii) DA parameters as IVL (Sec. 4.2): We observe that57

parameterized DA can act as IVLs, and consequently its composition DA+IVL with IVL regression58

further reduces confounding bias beyond just simple DA by essentially simulating a worst-case or59

adversarial application of the DA.60

We validate our approach with theoretical results in a linear setting for the infinite-sample case, and61

simulation and real-data experiments in the finite-sample case.62

2 Preliminaries63

Consider treatment X and outcome Y taking values in X ⊆ Rm and Y ⊆ Rl respectively. Given the64

set of functionsH := {h : X → Y}, the canonical setting described in the literature [4, 13, 14] deals65

with estimating the function f ∈ H in the structural equation model (SEM) M of the form166

X = τ(Y, Z,C,NX), Y = f(X) + ϵ(C) +NY , (1)

where Z, C, NX , NY are exogenous (and therefore mutually independent) random variables and the67

residual ξ := Y − f(X) = ϵ(C) + NY is assumed to be zero mean, i.e. EM[ξ] = 0. Since M is68

potentially cyclic, a priori it may entail several or no distributions at all. However, here we make the69

assumption that for all (x0,y0) ∈ X × Y the unique limits70

x = lim
t→∞

xt = lim
t→∞

τ(yt−1, z, c,nX), y = lim
t→∞

yt = lim
t→∞

f(xt−1) + ϵ(c) + nY

exist for any (z, c,nX ,nY ) ∼ PM
Z,C,NX ,NY

, meaning that the unique distribution entailed by M is in71

this equilibrium state. Of course, if M is acyclic, these limits always exist.72

Given a proper convex loss ℓ : Rl × Rl → R+, empirical risk minimization (ERM) uses a dataset73

D := {(xi,yi)}ni=0 of n samples from M to minimize an empirical version of the statistical risk74

RM
ERM(h) := EM[ℓ(Y, h(X))], (2)

over h ∈ H. However, since the residual ξ in Eq. (1) is generally correlated with X , i.e., EM[ξ | X] ̸=75

0, the ERM minimizer ĥM
ERM typically yields a biased estimate of f [5, 4]. This bias arises due to76

the exclusion of the (unobserved) common parent C of X and Y, i.e. a confounder, in the ERM77

objective (hence fittingly called the omitted-variable bias [15]) and/or the model is cyclic (simultaneity78

bias [14, 16], or reverse causality [5] in the degenerate case). For simplicity we shall refer to either79

case by saying that X and Y are confounded and the resulting bias as the confounding bias [5].280

1Throughout this work we shall borrow and overload notation from [4]. See Appendix for a list of symbols.
2Pearl [5, p.78,184] similarly uses the term for any bias causing observational vs. interventional deviation;

this also aligns with econometrics [17, 14], where both are classified as sources of endogeneity (i.e., X ⊥̸⊥ ξ).
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Table 1: A picture summary of our contributions.
→ represents composition of operations or trans-
formations, and⇔ represents equivalence.

Type of Data
Augmentation

Topics in Causal
Inference

None;
observational data←

Data generating
structural model

↓ ↓
Outcome

invariant DA
(i)
⇐⇒ Treatment

(soft) intervention
↓ ↓

Worst-case or
adversarial DA

(iii)
⇐⇒ Regularized

IV regression (ii)L
ow

er
co

nf
ou

nd
in

g
bi

as
in

ca
us

al
ef

fe
ct

es
tim

at
e

C

Y

X

Z

f

(a) Graph of M.
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(b) Graph of M; do(X).

Figure 1: Graph of M depicting an instrument
Z that satisfies treatment relevance, exclusion
restriction, un-confoundedness and outcome rel-
evance properties. An intervention on X gives
us the graph in (b). IV regression simulates such
an intervention using only observational data.

2.1 Intervention for causal effect estimation81

We can make X and the residual ξ uncorrelated via an intervention3 do(X := X ′), where we82

explicitly set X to some independently sampled X ′ in Eq. (1) irrespective of its parents, resulting now83

in the new SEM M; do(X := X ′) or M; do(X) as a shorthand for when X ′ ∼ PM
X . The distribution84

induced by this modified SEM is called an interventional distribution (with respect to M) under85

which the ERM objective now defines the causal risk (CR) [11, 12, 18] as86

RM
CR(h) := R

M;do(X)
ERM (h) = R

M;do(X:=X′)
ERM (h), s.t. X ′ ∼ PM

X . (3)

Minimizing Eq. (3) is meaningful in two important cases where ERM fails: (i) Causal effect87

estimation: The Bayes optimal minimizer of Eq. (3) is the average treatment effect (ATE) [6]88

fM
ATE(x) := EM;do(X:=x)[Y | X = x]. It measures the causal influence of X on Y and is equal to89

f(x) for the SEMM in Eq. (1). Any minimizer of Eq. (3) therefore makes for an unbiased estimator90

of f . (ii) Robust prediction: ATE based predictions are robust to shifts in the treatment distribution.91

Specifically, for a perturbation set Psupp(X) over interventional distributions of X , the ATE is a92

minimizer for the worst case ERM objective over all possible distributions of X ′ [19],93

fM
ATE ∈ argmin

h∈H
max

PX′∈Psupp(X)

R
M;do(X:=X′)
ERM (h).

Hence, minimizers of Eq. (3) make for predictors that generalize well under treatment interventions.94

To better isolate the estimation error due to confounding, we define the causal excess risk (CER) [12]95

CERM(h) := RM
CR(h)−RM

CR(f).

This removes the irreducible noise from Eq. (3) (see Appendix A) and directly measures how far a96

hypothesis h deviates from the true causal function f under interventions, so that CERM(f) = 0.97

Since interventions are often inaccessible for computing the risk in Eq. (3), we usually rely on observa-98

tional data/ distribution and additional variables to approximate them, as outlined in the next section.99

2.2 Instrumental variable regression100

One way to get an unbiased estimate of f from the observational distribution of M is to use so-called101

instrumental variables Z with the properties [5] of: (i) Treatment Relevance: Z ⊥̸⊥ X . (ii) Exclusion102

Restriction: Z enters Y only through X , i.e. Z ⊥⊥ Y M;do(X).4 (iii) Unconfoundedness: Z ⊥⊥ ξ.103

(iv) Outcome Relevance: Z carries information about Y , i.e. Y ⊥̸⊥ Z.104

Conditioning Eq. (1) on Z and using E[ξ | Z] = E[ξ] = 0 from the unconfoundedness property gives105

EM[Y | Z] = EM[f(X) | Z]. (4)

3A soft intervention constitutes replacing the mechanism τ in Eq. (1) with some alternative τ ′ [4, p. 34].
4Counterfactual definition of the exclusion restriction property [5, p. 248].
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We can then solve Eq. (4) by minimizing the risk106

RM
IV (h) := EM

[
ℓ
(
Y,EM[h(X) | Z]

)]
. (5)

For linear h(.) := h ∈ Rm and squared loss ℓ(y,y′) := ∥y − y′∥2, this is equivalent to the two-107

stage-least-squares (2SLS) [20] solution where we regress X from Z in the first stage, and then in the108

second stage we regress Y from the predictions E[X | Z] of the first stage to get the estimate ĥM
IV .109

2.3 Data augmentation110

In this work we restrict ourselves to data augmentation with respect to which f is invariant [3, 21].111

The action of a group G is a mapping δ : X × G → X which is compatible with the group operation.112

For convenience we shall write gx := δ(x,g). We say that f is invariant under G (or G-invariant) if113

f(gx) = f(x), ∀ g ∈ G,x ∈ X .
Less formally, we say that the map gx, henceforth assumed to be continuous in x, is a valid outcome-114

invariant DA transformation parameterized by the vector g ∈ G. Let G have a (unique) normalized115

Haar measure and PG be the corresponding distribution defined over it. For some G ∼ PG, the116

canonical application of DA seeks to minimize the empirical version of the risk117

RM
DAG+ERM(h) := EM[ℓ(Y, h(GX))]. (6)

Note that it is sufficient to have some prior information about the invariances of f in order to be able118

to construct such a DA. For example, when classifying images of cats and dogs we already know that119

whatever the true labeling function may be, it would certainly be invariant to rotations on the images.120

G would then represent the random rotation angle, whereas Gx would be the rotated image x.121

We wish to contrast the use of DA in this work with the canonical setting – to mitigate overfitting,122

DA is used to grow the sample size by generating multiple augmentations (Gx,y) for a single data123

sample (x,y) ∼ PM
X,Y [3, 21]. Such regularization, overfitting, or i.i.d. generalization is not the124

focus of this work and we intentionally provide Eq. (6) along with theoretical results that follow in125

the population case to emphasize that DA is not being used as a conventional regularizer.126

3 Faithfulness and Outcome Relevance in IVs127

The distribution PM
X,Y,Z,C is faithful to the graph of M if it only exhibits independences implied by128

the graph [4, 22].5 This standard assumption in IV settings renders outcome-relevance implicit and129

therefore rarely mentioned. In this section we discuss the case where only the first three IV properties130

are satisfied, i.e. outcome-relevance may not hold. Since such a Z may not be a valid IV, therefore131

identifiability of ATE is not possible in general as the problem in Eq. (4) can now be misspecified,132

having multiple, potentially infinitely many solutions when Y ⊥⊥ Z. Nevertheless, we shall refer to133

such a Z as IV-like (IVL) to emphasize that while Z may not be an IV, it may still be ‘instrumental’134

for reducing confounding bias when estimating the ATE compared to the standard ERM baseline.135

ERM regularized IV regression. Despite problem miss-specification for a IVL Z, the target136

function f remains a minimizer for the IV risk in Eq. (5). Albeit, potentially not unique – for example,137

a linear h with squared loss leads to an under-determined problem in Eq. (5). We therefore propose138

the following regularized version of the IV risk for such an IVL setting,139

RM
IVLα

(h) := RM
IV (h) + αRM

ERM(h), (7)

where α > 0 is the regularization parameter. The ERM risk as a penalty allows our estimations to140

have good predictive performance while the IV risk encourages solution search within the subspace141

where we know f to be present. We refer to minimising the risk in Eq. (7) as IVL regression.142

Note that the motivation behind IVL regression is not the identifiability of f , but rather potentially143

better estimations of f with lower confounding bias. The next section provides a concrete example.144

5Also known as stability in some texts [5, p. 48].
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(a) Graph of A post DA.
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(b) Graph of A; do(τ := Gτ)

Figure 2: The observational distribution of
(GX,Y,G,C) and (X,Y,G,C) for graphs (a) and
(b) respectively are the same. The former applies DA
on X , whereas the later applies a (soft) intervention
on X . Furthermore, for the graph in (b), G is IVL.
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x

Figure 3: The ground truth function f in
Example 2. The DA applied here corre-
sponds to randomly translating the data sam-
ples along their level-set by adding random
noise sampled from the null-space of f .

Example 1 (a linear Gaussian IVL example). For scalar σ > 0, non-zero matrices Γ,T ∈ R∗×m145

and vectors τ⊤, f , ϵ ∈ Rm such that f⊤τ⊤ ̸= 1 so that the following SEM M is solvable in (X,Y )6146

X = τ⊤Y + Γ⊤Z +T⊤C + σNX , Y = f⊤X + ϵ⊤C + σNY ,

where Z,C,NX , NY are conformable, centered Gaussian random vectors and Z is IVL w.r.t. (X,Y ).7147

Now, the task is to improve our estimation of f compared to standard ERM. We evaluate an estimate148

ĥD using the CER, which for a squared loss and covariance ΣM
X in Example 1 simply comes out to be149

CERM

(
ĥD

)
=

∥∥∥ĥD − f
∥∥∥2
ΣM

X

. (8)

Prior works use this form to quantify the error in ATE estimation [12, 11] or measure some notion of150

strength of confounding [10, 23, 18]. Similarly, we use it to measure confounding bias of population151

estimates ĥM (Appendix A) and estimation error in finite sample experiments. The next results follow.152

Theorem 1 (robust prediction with IVL regression). For SEM M in Example 1,153

ĥM
IVLα
∈ argmin

h
max
ζ∈Pα

R
M;do(Γ⊤(·):=ζ)
ERM (h), s.t. Pα :=

{
ζ

∣∣∣∣ ζζ⊤ ≼

(
1

α
+ 1

)
Γ⊤ΣM

Z Γ

}
.

Proof. See Appendix G.4 for the proof.154

Theorem 2 (causal estimation with IVL regression). In SEM M of Example 1, for α <∞,155

CERM

(
ĥM

IVLα

)
≤ CERM

(
ĥM

ERM

)
, equality iff EM[X | Z] ⊥ EM[X | ξ] a.s.

Proof. See Appendix G.5 for the proof.156

Theorem 1 shows that IVL regression achieves optimal predictive performance across treatment157

interventions within the perturbation set Pα defined by α. Theorem 2 further states that this strictly158

reduces confounding bias in ATE estimates iff the perturbations align with spurious features of X , as159

indicated by the equality condition (also necessary for identifiability in linear IV settings [24, 19]).160

4 Causal Effect Estimation using Data Augmentation161

We dedicate this section to the main topic and point of this work – discussing the potential of data162

augmentation for improving predictive performance across interventions and reducing confounding163

bias in ATE estimates. To that effect, for the rest of this work we shall consider the following SEM A164

X = τ(Y,C,NX), Y = f(X) + ϵ(C) +NY , (9)
which is assumed to have a unique stationary distribution with exogenous C,NX , NY and the residual165

ξ := Y − f(X) is zero-mean, i.e. E[ξ] = 0. We also have access to DA transformations GX of X166

parameterized by G ∼ PA
G such as described in Sec. 2.3. Figure 2a shows the graph of A post DA.167

Given samples for only (X,Y ) and some valid DA parameterised by G, the task is to improve168

predictive performance across interventions and reduce confounding bias in ATE estimates. We now169

make two observations in the following subsections and state the respective results that follow thereof.170

6See Appendix B and Lemma 3 for details on solving for and sampling of (X,Y ) in such linear, cyclic SEMs.
7All examples assume correlated X and residual ξ, i.e. EM

[
Xξ⊤

]
̸= 0, as otherwise there is no confounding.
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4.1 Data augmentation as a soft intervention171

Consider a (soft) intervention on A where we substitute the mechanism τ of X with Gτ . With some172

abuse of notation, we shall represent this SEM by A; do(τ := Gτ) the graph of which is shown173

in Fig. 2b. Note that this SEM also has a unique stationary distribution (proof in Appendix G.3).174

Comparing the DA mechanism in A (Fig. 2a) and the intervention A; do(τ := Gτ) (Fig. 2b), we see:175

Observation 1 (soft intervention with DA). Distributions PA
GX,Y,G,C and PA;do(τ :=Gτ)

X,Y,G,C are identical.176

177
We can hence treat samples generated from A via DA as if they were instead generated from178

A; do(τ := Gτ) by intervening on X . This allows us to re-write the DA+ERM risk from Eq. (6) as,179

RA
DAG+ERM(h) = R

A;do(τ :=Gτ)
ERM (h),

to emphasize that DA is equivalent to a (soft) intervention and as such can be used to reduce180

confounding bias when estimating f , as we will show with the following example.181

Example 2 (a linear Gaussian DA example). For scalars κ, σ > 0, non-zero matrices Γ,T ∈ R∗×m182

and vectors τ⊤, f , ϵ ∈ Rm such that f⊤τ⊤ ̸= κ−1 so that the following SEM A is solvable in (X,Y )183

X = κ · τ⊤Y +T⊤C + σNX , Y = f⊤X + κ · ϵ⊤C + σNY , GX := X + γ · Γ⊤G,

where G,C,NX , NY are conformable, centered Gaussian random vectors, κ determines how much184

(X,Y ) are confounded and range
(
Γ⊤) ⊆ null

(
f⊤

)
so that GX is a valid outcome invariant DA185

transformation of X parameterized by G with strength γ > 0. This transformation can be viewed186

as translating X along its level-set as shown in Fig. 3 and represents our prior knowledge about the187

invariance properties of f for the purposes of this example.188

Theorem 3 (causal estimation with DA+ERM). For SEM A in Example 2, the following holds:189

CERA

(
ĥA

DAG+ERM

)
≤ CERA

(
ĥA

ERM

)
, equality iff EA[GX | G] ⊥ EA[X | ξ] a.s.

Proof. See Appendix G.6 for the proof.190

That is, DA strictly reduces confounding bias in ATE estimate iff the DA-induced intervention191

perturbes X along its spurious features. Importantly, Theorem 3 suggests that lower confounding bias192

is not a ‘free lunch’ with outcome invariance of DA and practitioners may need domain knowledge to193

construct DA that targets spurious features. Fortunately however, Theorem 3 also suggests that under194

outcome invariance, DA should not perform worse than ERM. Practitioners may therefore be advised195

to generously use such DA, as it achieves regularization in the worst case, but may help mitigate196

hidden confounding bias as a ‘bonus’ in the best case.197

4.2 Worst-case data augmentation with IVL regression198

We once again point our attention to the graph of A; do(τ := Gτ) from Fig. 2b to observe that:199

Observation 2 (IV-like DA parameters). In SEM A; do(τ := Gτ), the DA parameters G are IVL.200

In light of this we can now re-write the IV and IVL risks for A; do(τ := Gτ) to respectively read201

RA
DAG+IV(h) = R

A;do(τ :=Gτ)
IV (h), RA

DAG+IVLα
(h) = R

A;do(τ :=Gτ)
IVLα

(h).

Corollary 1 (worst-case DA with DA+IVL regression). For SEM A in Example 2, it holds that202

ĥA
DAG+IVLα

∈ argmin
h

max
g∈Gα

RA
DAg+ERM(h), s.t. Gα :=

{
g

∣∣∣∣ Γ⊤gg⊤Γ ≼

(
1

α
+ 1

)
Γ⊤ΣA

GΓ

}
.

Proof. The result follows from Observation 1, Observation 2 and Theorem 1.203

Corollary 2 (causal estimation with DA+IVL regression). For α, γ <∞ in SEM A from Example 2,204

CERA

(
ĥA

DAG+IVLα

)
≤ CERA

(
ĥA

DAG+ERM

)
, equality iff EA[GX | G] ⊥ EA[X | ξ] a.s.

Proof. The result follows directly from Theorem 2 and Observation 2.205

Using DA parameters as IVL therefore simulates a worst-case, or adversarial application of DA206

within a set of transforms Gα. Of course Corollary 1 can also be viewed as a predictor that generalizes207

to treatment interventions encoded by Gα. As is intuitive, such a worst-case intervention improves208

our ATE estimation so long as the features of X intervened along include some that are spurious209

(Corollary 2). DA and IVL regression may therefore be used in composition if the application can210

benefit from regularization and/ or better prediction generalization across DA-induced interventions,211

with a ‘bonus’ of lower confounding bias if the DA also augments any spurious features of X .212

6



0.0 0.2 0.4 0.6 0.8 1.0

κ

0.0

0.1

0.2

0.3

0.4

0.5

n
C

E
R

(a) γ = 1, κ ∈ [0, 1]

10−5 10−3 10−1 101 103 105

α

0.0

0.1

0.2

0.3

0.4

0.5

n
C

E
R

average DA+IVLCV
α

average DA+IVLCC
α

DA+IVLα

(b) γ, κ = 1, α ∈ [10−5, 105]

10−2 10−1 100 101

γ

0.0

0.1

0.2

0.3

0.4

0.5

n
C

E
R

ERM

DA+ERM

DA+IVLCV
α

DA+IVLCC
α

DA+IV

032

(c) γ ∈ [10−2.5, 10], κ = 1

Figure 4: Simulation experiment for a linear Gaussian SEM. κ represents the amount of confounding,
γ is the strength of DA and α is the IVL regularization parameter. Each data-point represents the
average nCER over 25 trials with a 95% confidence interval (CI).

5 Related Work213

Canonical regularization methods, that are typically used to reduce variance of estimations, being214

used to reduce confounding bias is not a new idea [10–12]. To the best of our knowledge, we are the215

first to study the same for DA whereas prior works studied this in the context of ℓ1 and ℓ2 regulariza-216

tion. Appendix C.1 makes a detailed comparison, including with statistical bias-variance analyses.217

Domain generalization (DG) methods aim to generalize well to unseen test domains via robust
optimizatoin (RO) [25] over a perturbation set P of possible test domains ρ ∈ P as

RP
RO(h) := max

ρ∈P
Rρ

ERM(h),

Since generalizing to arbitrary test domains is impossible, the choice of perturbation set encodes one’s218

assumptions about which test domains might be encountered. Instead of making such assumptions a219

priori, it is often assumed to have access to data from multiple training domains which can inform220

one’s choice of perturbation set. This setting is explored in group distributionally robust optimization221

(DRO) [26]. Variations have been used to mitigate confounding bias and subsequently generalize222

to treatment interventions when used with interventional data [27, 28], confounder information (i.e.223

entire graph) [29–31] or some proxy thereof in the form of environments [32]. We however, do not224

assume access to any of these and instead synthesize interventions via DA.225

Counterfactual DA strategies have been the primary lens for causal analysis of DA [33–39]. These226

approaches aim for prediction robustness under treatment interventions and often depend on strong227

assumptions, such as access to the full SEM [34, 35], auxiliary variables [33, 35, 38, 39], or causal228

graphs [36, 37]. By contrast, we show that outcome-invariance of DA suffices for treatment inter-229

vention robustness without invoking counterfactuals. Furthermore, prior works have largely ignored230

causal effect estimation, often assuming reverse-causal settings where the ATE becomes trivial231

[33, 35, 34]. To our knowledge, ours is the first framework to study ATE estimation under DA with232

minimal structural assumptions. For a more detailed comparison, please see Appendix C.2.233

Invariant prediction based methods aim to make predictions based on statistical relationships that234

remain stable across all domains in P . A common assumption, for instance, is that PY |X is invariant235

across P , with only the marginal PX allowed to vary. Invariance is also closely linked to causal236

discovery – under the assumption that causal mechanisms remain stable under interventions on inputs237

[13]. This connection has inspired approaches that enforce invariance conditions to uncover causal238

structures [27, 40]. IV regression can also be viewed as one such method, where the goal is to239

learn predictors whose residuals are invariant to the instruments [8]. More broadly, the principle of240

invariance, whether motivated by causality or not, has proven useful for improving generalization241

across heterogeneous settings [13, 32, 41].242

6 Experiments243

We began by presenting results in the infinite-sample setting to emphasize that mitigating confounding244

bias is fundamentally not a sample size issue, i.e., not solvable through traditional regularization245
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alone. In this section, we turn to the finite-sample regime and empirically evaluate the effectiveness246

of DA in reducing hidden confounding bias. Importantly, we do not use DA for its conventional247

purpose of augmenting data to improve i.i.d. generalization. Since our focus is on generalizing across248

interventions, we fix the number of samples in the augmented dataset to match that of the original249

dataset throughout all experiments.250

Finding baselines for evaluating our results is however a challenge – reducing the bias due to hidden251

confounding in regression estimates having only access to the treatment X and outcome Y is a252

non-trivial problem. Nevertheless, for the sake of completeness we make an effort to re-purpose253

existing methods from domain-generalization, invariance learning and causal inference literature to be254

used as baselines. These methods often require access to additional variables (e.g. IVs, confounders,255

domains/environments, etc.), and to maintain fairness we will replace these with DA parameters G.256

Such a comparison is conceptually valid since by virtue of being DG methods, they are essentially257

solving a robust loss of a similar form as in Corollary 1, giving us meaningful baselines for DA+IVL.258

In addition to standard ERM, DA and IV regression, our baselines include DRO [26], invariant risk259

minimization (IRM) [32], invariant causal prediction (ICP) [27], regularization with invariance on260

causal essential set (RICE) [42], variance risk extrapolation (V-REx) and minimax risk extrapolation261

(MM-REx) [29]. We also compare against causal regularization methods, including Kania and Wit262

[11] and the ℓ1, ℓ2 approaches by Janzing [10]. We discretise G if the method accepts only discrete263

variables. For IVL regression, we select the regularization parameter α in a variety of ways, including264

vanilla cross validation (CV), level-based cross validation (LCV) and confounder correction (CC) as265

described in Appendix E. Other implementation details are provided in Appendix F.266

To make CER based evaluation more interpretable for our experiments, we propose the normalization267

nCERM(h) :=
CERM(h)

CERM(h) + CERM(h0)
∈ [0, 1], h0(·) := EM;do(X)[Y ],

where h0 represents the null treatment effect, i.e. when X has no causal influence on Y , then268

EM;do(X)[Y | X] = EM;do(X)[Y ]. The normalized CER (nCER) can be considered a generalization269

of the metrics used by [10, 18, 23] in linear settings and similarly has the interesting property that270

it is 0 for the ground-truth causal solution h = f ̸= h0 but 1 if there is pure confounding for271

h ̸= f = h0. Janzing argues that using Euclidean norm instead of weighted norm in Eq. (8) is more272

relevant for causal settings [18, 23], which also motivates our choice in evaluation of simulation and273

optical-device experiments described below.8274

6.1 Simulation experiment275

For the finite sample results of the linear SEM A from Example 2, by taking m = 32, k = 31276

(dimension of G), σ = 0.1 and fixing τ⊤ = 0, we sample a new f , ϵ and T ∈ Rm×m from a277

standard normal distribution for each of the 32 experiments for every combination of κ and γ. Each278

time we construct a Γ := V0 with k rows as orthonormal basis of null(f), such that the SVD of f is279

f = [u U0]

[
σ 01×(m−1)

0(m−1)×1 0(m−1)×(m−1)

] [
v⊤

V⊤
0

]
.

Although this construction of Γ relies on direct knowledge of f (which is unavailable in practice), we280

include it here purely for illustrative purposes. We treat access to Γ as our prior structural knowledge281

about the invariance properties of f , noting that this information alone is insufficient to recover f .282

We then generate n = 2048 samples of (X,Y ) for each experiment. For ERM we use a closed form283

linear OLS solution, for DA+IV, we make use of linear 2SLS. Finally, DA+IVLα was implemented284

using a closed form linear OLS solution between empirical versions (see Proposition 2) of285

X ′ :=
√
αX +

(√
1 + α−√α

)
E[X | Z], Y ′ :=

√
αY +

(√
1 + α−√α

)
E[Y | Z].

Our first experimental result in Fig. 4a compares the different estimation methods across varying levels286

of confounding κ ∈ [0, 1]. As expected, ERM performance degrades with increasing confounding.287

Applying DA alone already brings us closer to the causal solution, while DA+IVL achieves even better288

performance. DA+IV regression is unstable and generally performs poorly as it is under-determined.289

8Conceptually, this is equivalent to evaluation based on causal risk under the interventional distribution
X ′ ∼ NN (0, Im) in Eq. (3).
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Figure 5: Experiment results; common OOD generalisation benchmarks compared against the ERM,
DA+ERM and DA+IV baselines including DA+IVL.

In the second experiment (Fig. 4b), we fix the confounding and DA strengths at κ = γ = 1, and290

sweep over the regularization parameter α ∈ [10−5, 105] for DA+IVLα. The results show that291

optimal performance is achieved for intermediate values of α, confirming that arbitrarily small values292

of α, while beneficial in the population setting (as suggested by Theorem 2), are suboptimal in finite293

samples.9 We also find that both CV and CC strategies effectively select reasonable values of α.294

Finally, we examine sensitivity to the DA strength γ ∈ [10−2.5, 10], fixing κ = 1. As expected,295

stronger DA results in stronger interventions on X , which improves causal effect estimation. However,296

we also observe diminishing returns; when the variation induced by DA is either too small or too297

large, DA+IVLα does not yield significant improvements over the DA+ERM baseline.298

For completeness, we also benchmark our approach against other baseline methods on 16 distinct299

simulation SEMs with 2048 samples each. Aggregated results are presented in Fig. 5 (left most).300

6.2 Real data experiments301

Optical device dataset. The dataset from [18] consists of 3 × 3 pixel images X displayed on a302

laptop screen that cause voltage readings Y across a photo-diode. A hidden confounder C controls303

two LEDs; one affects the webcam capturing X , the other affects the photo-diode measuring Y . The304

ground-truth predictor f is computed by first regressing Y on (ϕ(X), C), where ϕ(X) are polynomial305

features of X with degree d ∈ {1, · · · , 5} that best explains the data. The component corresponding306

to C is then removed to recover f . We add Gaussian noise G ∼ NN (0,ΣX/10) for DA and evaluate307

methods from Sec. 6.1 on n = 1000 samples across 12 datasets. Figure 5 (middle) shows that308

DA+ERM improves over ERM, and DA+IVL performs even better, outperforming other baselines.309

Colored MNIST. We evaluate on Colored MNIST [32], where labels are spuriously correlated310

with image color during training, but this correlation is flipped at test time. We use the same neural311

architecture and parameters as [32] across all baselines, training with the IV-based objective described312

in the Appendix D. DA is implemented via small perturbations to hue, brightness, contrast, saturation,313

and translation, each parameterized by G ∼ ββ(2, 2). Although these do not directly manipulate color,314

the actual spurious feature, they still help reduce confounding. Results in Fig. 5 (rightmost) show that315

ERM underperforms, DA+ERM provides substantial gains, and DA+IVLα performs competitively316

with the best DG baselines, with DA+IVLCV
α achieving the best overall performance.317

7 Conclusion318

We conclude that our proposed causal framework for data augmentation (DA) enables re-purposing319

the widely used i.i.d. generalization tool for OOD generalization across treatment interventions.320

By interpreting outcome-invariant DA as interventions and IV-like variables, our approach reduces321

confounding bias and consequently improves both causal effect estimation and robust prediction.322

9We conjecture that this is due to outcome invariance not holding exactly in practice.
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List of Symbols496

The notation is largely borrowed from [4], with some overloading where necessary.497

498

Rn×∗ n×∗ Euclidean space; dimension ∗ conformal with & inferred from context.499

x Scalar.500

x Vector. When x⊤ is described as a vector, it means x is a flat 1× ∗ matrix.501

X Matrix.502

X Set.503

X Random vector.504

M SEM.505

XM Random vector X with its SEM M specified when unclear from context.506

PM
X Distribution of X entailed by M. Superscript dropped if clear from context.507

EM[X] Expected value of X under distribution PM
X .508

VM[X] Variance of X under distribution PM
X .509

ΣM
X Variance–covariance matrix of X under distribution PM

X .510

ΣM
X,Y Cross–covariance matrix of X and Y under distribution PM

X,Y .511

do(X := x) Intervention — X is set to x.512

do(X) Shorthand for do(X := X ′) where X ′ ∼ PM
X is i.i.d. to X .513

M; do(X := x) Intervention SEM.514

MX=x SEM with mechanisms of M, but exogenous noise distribution PM
N |X=x.515

MY=y; do(X := x) Counterfatual SEM – intervention SEM of MY=y.516

X ⊥⊥ Y Random vectors X,Y are statistically independent, i.e. PM
Y |X = PM

Y .517

x ⊥ y x,y are perpendicular, i.e. x⊤y = 0. For random vectors, X⊤Y = 0 a.s.518

ĥM Population/ infinite-sample estimate based on distribution PM.519

ĥD Finite-sample estimate based on samples in the dataset D.520
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A Confounding Bias521

Statistical vs. causal inference. The target estimand for the statistical risk in Eq. (2) is the Bayes522

optimal predictor EM[Y | X = ·]. Whereas the target estimand for the causal risk in Eq. (3) is the523

average treatment effect fM
ATE = f . As such, statistical inference is concerned with predictions of524

outcome Y , whereas causal inference is concerned with estimating fM
ATE.525

Statistical vs. confounding bias. Both types of inference are subject to bias. Statistical bias arises526

due to miss-specification of the hypothesis class, whereas confounding bias arises due to how the527

data are generated. The former is therefore a property of the estimator while the later is a property of528

the data itself. For an estimator ĥD with the expected value h̄(·) = EM
D

[
ĥD(·)

]
, we can define these529

biases as530

Statistical bias := EM[Y | X = ·]− h̄(·),
Confounding bias := fM

ATE(·)− EM[Y | X = ·],
= f(·)− EM[Y | X = ·],

Bias-variance decomposition of the causal risk. Because the treatment X and residual ξ are531

not correlated under M; do(X) in Eq. (1), for any loss function ℓ that admits a ‘clean’ or ‘additive’532

bias-variance decomposition [43], the causal risk also admits a bias-variance decomposition. Using533

squared loss as an example we have for some hypothesis ĥD534

⇒ RM
CR

(
ĥD

)
= EM;do(X)

[∥∥∥Y − ĥD(X)
∥∥∥2],

= EM;do(X)

[∥∥∥f(X) + ξ − ĥD(X)
∥∥∥2], (Structural eq. of Y .)

= EM;do(X)
[
∥ξ∥2

]
+ EM;do(X)

[∥∥∥f(X)− ĥD(X)
∥∥∥2], (Cross term is 0 as ξ ⊥⊥ XM;do(X).)

= EM;do(X)
[
∥ξ∥2

]
︸ ︷︷ ︸

irreducible noise

+EM

[∥∥∥f(X)− ĥD(X)
∥∥∥2]︸ ︷︷ ︸

estimation error, CERM(ĥD)=

. (PM
X and PM;do(X)

X identical by construction.)

We can show by following standard procedure that535

EM
D

[
CERM

(
ĥD

)]
= EM

X

[∥∥f(X)− h̄(X)
∥∥2]︸ ︷︷ ︸

bias2

+EM
D

[
EM
X

[∥∥∥h̄(X)− ĥD(X)
∥∥∥2]]︸ ︷︷ ︸

variance

.

Since for any population estimate ĥM(X) = h̄(X), the CER equals the average (squared) bias in536

estimation537

CERM

(
ĥM

)
= EM

X

[∥∥∥f(X)− ĥM(X)
∥∥∥2] = EM

X

[∥∥f(X)− h̄(X)
∥∥2].

For the Bayes optimal ERM estimate ĥM
ERM(·) = EM[Y | X = ·], this exactly equals the (average538

squared) confounding bias as we define it above. For a general estimate ĥD, however, the CER539

also contains statistical bias. Nevertheless, our claims of ‘better causal estimation via reducing540

confounding bias’ rest on the fact that we are essentially manipulating the data via DA. And recall541

that confounding bias is a property of the data.542
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B Simultaneity as Cyclic Structures in Equilibrium543

Linear cyclic assignments544

SEMs with cyclic structures have been well studied both in the linear case [44–46], as well as the545

non-linear case [47, 48]. Here we briefly provide a causal interpretation to linear simultaneous546

equations as SEMs with cyclic assignments.547

Consider a square matrix M ∈ Rd×d and the SEM548

W = MW +N , (10)

where random noise vector N is exogenous and M allows for a cyclic structure. We enforce (Id −M)549

to be invertible so that the above equation has a unique solution W for any given N . Re-writing the550

structural form in Eq. (10) into a reduced form, the distribution over W is defined by551

W = (Id −M)
−1

N . (11)

One way we can present a causal interpretation of the above solution is to view it as a stationary point552

to the following sequence of random vectors Wt553

Wt = MWt−1 +N ,

which converges if M has a spectral norm strictly smaller than one so that Mt → 0 as t → ∞.554

The structural form Eq. (10) essentially describes the iterative application of this operation. And in555

the limit the distribution of limt→∞ W t will be the same as the reduced form Eq. (11). Although556

equivalent, reduced form of a cyclic SEM (if one exists) obscures the causal relations in the data557

generation process.558

Furthermore, we restrict our models to not have any “self-cycles” (an edge from a vertex to itself). So,559

e.g., the matrix M in Eq. (10) has all zero diagonal entries. This not only simplifies our analysis by560

providing a simple and intuitive interpretation for our definition of DA in Sec. 2.3, but no self-cycles561

also ensures that in the non-linear case the SEM entails a unique, well-defined distribution under mild562

assumptions [48, 45].563

Similarly we can write the example SEM M from Example 1 in this (block matrix) form as564 [
X
Y

]
︸︷︷︸
W

=

[
0m×m τ⊤

f⊤ 01×1

]
︸ ︷︷ ︸

M

[
X
Y

]
︸︷︷︸
W

+

[
Γ⊤

01×k

]
Z +

[
T⊤

ϵ⊤

]
C + σ ·

[
NX

NY

]
︸ ︷︷ ︸

N

,

For this simple case,
(
I(m+1) −M

)
is always invertible so long as f⊤τ⊤ ̸= 1 from Lemma 3. Or565

we can also restrict
∣∣f⊤τ⊤

∣∣ < 1 to ensure that the spectral norm of M is strictly smaller than 1.566

We sample from this SEM by first sampling all of the exogenous variables Z,C,NX , NY and then567

solving the above system for each sample of X,Y via the reduced form in Lemma 3.568

A motivating example569

Cyclic SEMs were first discussed in the econometrics literature [49] to model various observational570

phenomena, and often solved via 2SLS based IV regression [16] since it is computationally less571

costly compared to solving the entire system [20]. A classic example from economics [50, 51] is572

that of a supply and demand model M where the relation of price P of a good with quantity Q of573

demand can be thought of as a cyclic feed-back loop where producers adjust their price in response to574

demand of the good and consumers change their demand in response to price of a good. In contrast, a575

change in consumer tastes or preferences would be an exogenous change on the demand curve and576

can therefore be used as an IV Z.577

consumer demand: Q = τ · P + γ · Z +NQ ,

producer price: P = f ·Q+NP .

Where scalars f, τ are such that |f · τ | < 1 so that the system converges to an equilibrium. We say578

that the measurements made for P and Q are at the equilibrium state of the market10 with zero mean579

measurement noise NP , NQ respectively.580

10In fact, such a feed-back model of supply and demand was initially developed to understand the irregular
fluctuations of prices/quantities that are observed in some markets when not at equilibrium [50].

17



Estimation of causal effects – removing simultaneity bias. If we now want to estimate the effect581

of demand on price f , standard regression will produce a biased estimate f̂M
ERM = f + Cov(Q,NP )

Var(Q)582

because of the simultaneity causing Q and NP to be correlated (to see this, substitute model of P into583

the model of Q). We can now use IV regression to get an unbiased estimate of the effect of demand584

on price in the market as f̂M
IV = f .585

Prediction under OOD treatment interventions – avoiding spurious correlations. Similarly,586

if the producer wants to predict the effect on demand if price is changed (i.e. intervened on), naive587

ERM will not be a good choice because it will also capture the spurious correlation from Q→ P .588

We therefore use three-stage-least-squares (3SLS) [52, 20] (or similar methods) to estimate the ATE589

τ̂M3SLS = EM;do(P :=.)[Q | P = .] where we use the first two stages to estimate f̂M
IV , followed by ERM590

to regress from the residuals N̂P := P − f̂M
IV ·Q to Q in the third stage.591

Other applications. Cyclic SEMs are commonly used in many disciplines to model reciprocally592

causal phenomena. Application domains include political science [53, 54], sociology [55], urban593

planning and design [56], organizational behavior and psychology [57], etc.594

Lastly, to establish clear relevance to the literature of spurious correlations, we present a novel cyclic595

SEM interpretation of the popular colored-MNIST task in Appendix F.3, which we argue presents596

a more intuitive perspective of colored-MNIST as a ATE EM;do(X:=.)[Y | X = .] estimatoin task,597

which is not immediately obvious in the more familiar DAG perspective.598
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Table 2: Bias-variance analysis of
canonical regularization methods com-
pared to outcome invariant transforma-
tions. We provide a first analysis of con-
founding bias in ATE estimation for the
later. ↓ , ↑ , — represent a decrease, in-
crease and no-change in the correspond-
ing metric of interest respectively.

Type of regularization

Outcome
invariant
transform

Canonical
(ℓ1, ℓ2, or

vanilla DA)

Statistical
variance

↓
[3, 21]

↓
[21, 58, 59]

Statistical
bias

—
[3, 21]

↑
[21, 58, 59]

Confounding
bias

↓
(ours)

↑↓
[10–12]

Table 3: Comparison of our proposed ‘outcome invariant
DA as a (soft) intervention’ framework with prior works on
causal analysis of DA. We argue that other frameworks are
less general, requiring access to auxiliary variables, the full
graph or treatment mechanisms, all of which are often far
less accessible than prior knowledge about invariances of f .
Importantly, our analysis is the first to discuss the effects
of such DA simulated interventions on ATE estimation.

Type of DA

Outcome
invariant
(ours)

Counterfactual
[33–39]

Ta
rg

et
SE

M DA simulates intervention
A; do(τ := Gτ)

counterfactual
AY =y; do(τ := Gτ)

A
ss

um
ed

ac
ce

ss Auxiliary data
besides (X,Y )

X back-door C
[33, 35, 38, 39]

Full graph X ✓ [36, 37]

Structural
mechanism

invariances
of f only

X mechanism
PA
X|Y,C [34, 35]

A
na

ly
si

s

do(X) robustness ✓ ✓

ATE estimation ✓ X

C Related Work Supplement599

For completeness purposes, in this section we shall reiterate a more detailed comparison between the600

regularization properties of outcome invariant DA as we use it in this work for reducing confounding601

bias against prior works on bias-variance and causal analysis of regularization strategies, including602

DA. A summary of the comparison is given in Tabs. 2 and 3.603

C.1 Comparison with bias-variance analyses of regularizers604

Statistical vs. causal inference. We shall start by reiterating the difference between statistical605

bias and confounding bias from Appendix A. The former is well understood from classic bias-606

variance analyses in statistical inference [58, 59, 1, 22] and arises due to the miss-specification of the607

hypothesis class. While the later is because of how the data are generated and only becomes relevant608

in the presence of confounding variables, as in this work, and is the subject of a large part of the609

causal inference literature [5, 4, 22].610

Statistical bias and variance. Different regularization techniques are used to mitigate high statisti-611

cal variance (or over-fitting) to better generalize under i.i.d. settings. Of these, ℓ1 and ℓ2 are perhaps612

the most notable, which reduce statistical variance at the expense of higher statistical bias [58, 59].613

DA can also be thought of as ‘data-driven’ regularization [21, 3] whereby it reduces the statistical614

variance of finite-sample estimates in the un-confounded case by increasing the number of samples615

via multiple perturbations per same data sample. This can come at the expense of higher statistical616

bias [21] or for ‘free’11 if the DA is outcome invariant [3, 21]. We list all of these in Tab. 2.617

Confounding bias. Recent works have also studied conventional regularization strategies like ℓ1, ℓ2618

from a causal inference perspective, showing their effect on confounding bias [10, 12, 11]. This work619

can be seen as a first natural extension of the same to DA based regularization. Of note is the result620

of Theorem 3, that outcome invariant DA strictly reduces confounding bias when spurious features of621

11This is still not a ‘free lunch’ since constructing outcome invariant DA requires prior knowledge about the
invariance properties of f .
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treatment are perturbed. This is in contrast to ℓ1, ℓ2, where their effect on confounding bias is not so622

straightforward [10, 12, 11] as a non-monotonic function of the regularization parameter.623

Outcome invariant DA as a form of regularization. Here we show that outcome invaraint DA624

can have a regularizing effect even in the population case as implied by the following result.625

Proposition 1 (DA induced regularization). For SEM A from Example 2, given decreasing DA626

strengths γ1 > γ2 > 0, we have627 ∥∥∥ĥA
DAG+ERM

∣∣∣ γ = γ1

∥∥∥
ΣA

X

≤
∥∥∥ĥA

DAG+ERM

∣∣∣ γ = γ2

∥∥∥
ΣA

X

, equality iff EA[GX | G] ⊥ EA[X | ξ].

Proof. See Appendix G.1 for the proof.628

Note that this is fundamentally different from the regularization properties of outcome invariant DA in629

the un-confounded, finite-sample case as described in [3, 21] in the sense that it reduces confounding630

bias (Theorem 3) by shrinking the coefficients of ĥA
DAG+ERM that correspond to confounded features631

of X which are augmented by the DA.632

C.2 Comparison with causal analyses of data augmentation633

Counterfactual DA for treatment intervention robustness. Data augmentation has also been634

subject to analysis from the perspective of causal inference. Of note is [33], where they essentially635

proposed an outcome-conditioned counterfactual12 DA strategy by selecting DA that perturbes636

treatment features which are not outcome-inherited so as to improve prediction generalization across637

treatment interventions. This has led to the design of other similar counterfactual DA strategies [34–638

39]. Since counterfactuals in general require access to the SEM, constructing such counterfactual DA639

requires strong assumptoins, such as access to auxiliary variables like a ‘back-door’ [33, 35, 38, 39],640

the full graph [36, 37] or structural mechanisms [34, 35]. By contrast, we have shown in Sec. 4.1641

that counterfactuals may not be necessary for treatment intervention robustness if the DA is outcome642

invariant by design. Since such outcome invariant DA always simulate a valid intervention (Sec. 4.1),643

a worst-case application is sufficient to achieve treatment intervention robustness (Sec. 4.2). We argue644

that the condition of outcome invariance is far more accessible in may applications of DA as opposed645

to many of the strong assumptions made by works on counterfactual DA. We list these in Tab. 3.646

Outcome invariant DA for causal effect estimation. Besides discussions on treatment intervention647

robustness, to the best of our knowledge, there has been no analysis on causal effect estimation in the648

literature of counterfactual DA so far. In fact, many of these works assume a reverse-causal Y → X649

SEM [33–35, 38] where the ATE is trivial f(·) = 0 by construction. To this effect (pun intended),650

and taking inspiration from recent works on ATE estimation via conventional regularizers [10–12],651

we offer a fist analysis for the same in the context of DA.652

12Representing an SEM with exogenous noise distribution conditioned on some variable Y = y by AY =y,
the counterfactual SEM AY =y; do(X := x) is an intervention do(X := x) on this new SEM AY =y. The
counterfactual distribution then represents questions like ‘After observing Y = y, what would have been had
X = x been true.’
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D IV Regression Supplement653

Two-stage estimators. Minimizing risk of the form Eq. (5) is known as two-stage IV regression.654

Another approach for two-stage IV regression is to minimize the risk [60, 13]655

RM
IVLB

(h) := EM
[∥∥EM[Y | Z]− EM[h(X) | Z]

∥∥2], (12)

which can be shown to lower-bound (hence the subscript LB) the surrogate risk in Eq. (5) [60] under656

squared loss.657

⇒ RM
IV (h)

= E
[
∥Y − E[h(X) | Z]∥2

]
,

= E
[
∥(Y − E[Y | Z]) + (E[Y | Z]− E[h(X) | Z])∥2

]
, (Adding and subtracting E[Y | Z].)

= E
[
∥Y − E[Y | Z]∥2

]
+ E

[
∥E[Y | Z]− E[h(X) | Z]∥2

]
(Expand squared norm.)

+ 2E
[
(Y − E[Y | Z])

⊤
(E[Y | Z]− E[h(X) | Z])

]
,

= E
[
∥Y − E[Y | Z]∥2

]
+ E

[
∥E[Y | Z]− E[h(X) | Z]∥2

]
, (13)

= E
[
∥E[Y | Z]− E[h(X) | Z]∥2

]
+ E

[
E
[
(Y − E[Y | Z])

2
∣∣∣ Z]]

, (Tower rule and scalar Y .)

= E
[
∥E[Y | Z]− E[h(X) | Z]∥2

]
+ E[V[Y | Z]] = RM

IVLB
(h) + E[V[Y | Z]], (14)

where Eq. (14) follows from the definition of conditional variance and we get Eq. (13) by setting the658

cross term to zero since659

⇒ E
[
(Y − E[Y | Z])

⊤
(E[Y | Z]− E[h(X) | Z])

]
= E

[
E
[
(Y − E[Y | Z])

⊤
(E[Y | Z]− E[h(X) | Z])

∣∣∣ Z]]
, (Tower rule.)

= E
[
E
[
(Y − E[Y | Z])

⊤
∣∣∣ Z]

(E[Y | Z]− E[h(X) | Z])
]
, (15)

= E
[
(E[Y | Z]− E[Y | Z])

⊤
(E[Y | Z]− E[h(X) | Z])

]
,

= E
[
0⊤(E[Y | Z]− E[h(X) | Z])

]
= 0,

where Eq. (15) follows from the “taking out what is known” rule, i.e.,660

E[g(B)A | B] = g(B)E[A | B]. (16)

Generalized method of moments. Another popular approach to solve the IV estimation problem661

is the generalized methods of moments (GMM) [61–63] or equivalently the conditional moment662

restriction (CMR) [60] framework which tries to directly solve for the fact that in Eq. (1) with scalar Y663

EM[ξ | Z] = EM[Y − f(X) | Z] = 0, (17)

which holds as a direct consequence of the unconfoundedness property of IV Z, however it is a much664

weaker assumption on it’s own13. Equation Eq. (17) implies that for any q : Z → R, it holds that665

EM
[(
Y − f(X)

)
· q(Z)

]
= 0 .

The GMM-IV estimate of f therefore tries to enforce this condition [61–63] by minimizing the risk666

RM
IVGMM

(h) :=

µ∑
i=1

EM
[(
Y − h(X)

)
· qi(Z)

]2
=

∥∥EM[(Y − h(X)) · q(Z)]
∥∥2,

13Therefore an invalid instrument that does not satisfy the unconfoundedness property, but still satisfies
Eq. (17) can also be used here.
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where q(·) ∈ Rµ represents a vector form of the set of µ arbitrary real-valued functions qi. A more667

general form of the above GMM based IV risk is to weight the norm by some SPD W [64, 61, 62]668

RM
IVGMM–W

(h) :=
∥∥EM[(Y − h(X)) · q(Z)]

∥∥2
W
,

which gives the most statistically efficient estimator, minimizing the asymptotic variance, for W =669

ΣM−1
Z [64, 61, 62]. We use the same for our non-linear experiments, together with the identity670

function q(Z) = Z. This gives us the final loss of the form671

RM
IV

GMM–Σ−1
Z

(h) =
∥∥EM[Z · (Y − h(X))]

∥∥2
Σ−1

Z

.

And the empirical version of which can be written as follows672

RD
IV

GMM–Σ−1
Z

(h) :=
(
ŷ − h

(
X̂
))⊤

ẐẐ†
(
ŷ − h

(
X̂
))

, (18)

where for dataset samples (xi, yi, zi) ∈ D, we construct the vector ŷ := [y0, · · · , yn]⊤, matri-673

ces X̂ := [x⊤
0 , · · · ,x⊤

n ]
⊤, Ẑ := [z0 · · · zn]

⊤ with pseudo-inverse Ẑ† and define h
(
X̂
)

:=674

[h(x0), · · · , h(xn)]
⊤.675
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E IVL Regression Supplement676

Closed form solution in the linear case. The following result gives us a way to compute a closed-677

form solution to the IVLα regression problem in the linear Gaussian case. An empirical version of678

this is used for our linear experiments.679

Proposition 2 (IVLα closed form solution). For SEM M in Example 1, ĥM
IVLα

is the closed form680

linear OLS solution between681

X ′ := aX + bE[X | Z], Y ′ := aY + bE[Y | Z],

where682

a :=
√
α, b :=

√
1 + α−√α.

Proof. See Appendix G.2 for the proof.683

For the empirical version of Proposition 2 we fit a closed-form OLS regressor between684

X ′ :=
√
αX +

(√
1 + α−√α

)
ẐẐ†X, Y ′ :=

√
αY +

(√
1 + α−√α

)
ẐẐ†Y.

Choice of regularization parameter. Selecting the IVL regularization parameter α in the finite685

sample setting is not very straightforward. We explore a the approaches that are described below686

which seem to work well in practice, however some of these may not seem as well motivated since687

the task at hand is OOD generalization and α is being set via cross-validation with-in the same688

distribution.689

Cross validation (CV), or any variation thereof. We specifically use the following two in our690

experiments; (i) vanilla CV with 20% samples held-out for validation (ii) level cross validation (LCV)691

for when Z is discrete, where hold-out data corresponding to 20% of the levels of Z for validation.692

Confounder correction (CC), where in a linear setting we follow an approach similar to [10] by693

estimating the length of the true solution f from the observational data D. We then chose α such that694

the length of ĥD
DA+IVLα

is closest to the estimated length of the ground truth solution.695
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F Experiment Supplement696

For the methods that use stochastic gradient descent (SGD), we use a learning rate of 0.01, batch697

size of 256 for 16 epochs. For baselines that require a discrete domains/environments, we uniformly698

discretise each dimension of G into 2 bins. Higher discretisation bins renders most baselines699

ineffective since each domain/environment rarely has more than 1 sample. To keep the comparison700

fair, however, we also discretize G for IVLα regression when using LCV. For the colored MNIST701

experiment, all CV implementations including baselines use 5-folds for a random search over an702

exponentially distributed regularization parameter with rate parameter of 1. Same is the case for703

simulation and optical device experiments, except that DA+IVL methods use a log-uniform distributed704

regularization parameter over [10−4, 1]. Since RICE [42] grows the dataset size by augmenting each705

sample T times, we provide it a 1/T sub-sample of the original data for fair comparison.706

F.1 Simulation experiment707

For the parameter sweep experiments of Fig. 4, we generate a treatment of dimension m = 32, but708

for the OOD baseline comparison experiment in Fig. 5 we use m = 16. Furthermore, for the OOD709

baseline comparison experiment in Fig. 5, we randomly pick each basis of null(f) with a probability710

1/3 to construct Γ (i.e., we know only some, but not all symmetries of f ).711

F.2 Optical device experiment712

In the simulation and optical device experiments, we fit a linear function h(.) := h ∈ Rm for a713

squared loss in all of our risk metrics. For IVLα regression, we use the closed-form OLS solution714

from Appendix E. We also use a closed-form solution for ERM, DA+ERM and DA+IV (2SLS)715

baselines. The rest of the baselines (other than ICP) use SGD.716

Most of the datasets in the optical device dataset were best explained by polynomial features of717

degree 2. We use the same ground-truth degree to fit each of the methods listed in Fig. 5. This718

is important so as to avoid statistical bias from model miss-specification as our analysis squarely719

focuses on confounding bias.720

F.3 Colored-MNIST experiment721

In the colored MNIST experiment, we use the same 3-layer neural network (NN) architecture for h722

across all methods comprising of a fully-connected input layer of input dimension m, hidden layer723

of input/output dimension 256 and output classification layer with a Sigmoid function. Each layer724

is separated by an intermediary rectified linear unit activation function. For the IV risk, we use the725

empirical version of the GMM based risk from Eq. (18).726

Colored-MNIST as a cyclic SEM – From invariant prediction to estimating causal effects727

Xcolored image NX Ỹ true label

Y noisy labelCcolor

MNIST image

f

Figure 6: The data generation DAG for colored-MNIST as discussed by the original authors [32].
They aim to learn a predictor h : X → Y such that it is invariant to changes in PX|Y . We argue that
this DAG view of colored-MNIST does not make it obvious how the true labeling function f(x) is
related to the ATE EM;do(X:=x)[Y | X = x], which we believe is because it is virtually equivalent to
the reduced form of our structural form presented in Fig. 7.

In this section we give a cyclic SEM perspective of the colored-MNIST experiment from [32]. The728

task is binary classification of colored images X from the MNIST dataset into low digits (y = 0 for729

digits from 0 to 4) and high digits (y = 1 for digits from 5 to 9). The difficulty of the task arises from730
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X

colored image

Ỹ true label

Y

noisy label

C

color

f

(a) Graph for generating colored-MNIST data.

X Ỹ

Y NYCNC

NX
MNIST
image

flip Y ?

true label

noisy label

colored image

color flip Ỹ ?

f

(b) Augmented graph – exogenous variables explicitly shown.

Figure 7: A cyclic SEM perspective of the colored-MNIST data – an MNIST image NX is assigned
color C to produce a colored-MNIST image X . This is then passed through the ground-truth labeling
function f to produce the true label Ỹ . We flip this with probability 0.25 to produce the observed
label Y , which in turn is flipped with probability e (at train time e ∈ {0.1, 0.2} and e = 0.9 at
test time) to produce the color C. These assignments are iteratively applied for any joint sample
of the exogenous variables NX , NY , NC starting at arbitrary values of endogenous variables until
convergence to the unique stationary point X,Y,C (and Ỹ ).

there being a higher spurious correlation between the color C of the images (c = 0 for blue and c = 1731

for green) and (noisy) labels Y as compared to the correlation between the digits in the image and the732

label.733

Consider the following cyclic SEM in Fig. 7.734

nX ∼ PNX
, nY ∼ B(0.25), nc ∼ B(e) sample all exogenous variables

X = colour(C,nX) apply color C to the image

Ỹ = f(X) generate ground-truth label with true labeling function

Y = xor
(
Ỹ , nY

)
flip the label with probability 0.25

C = xor(Y, nC) generate color by flipping Y with probability e,

where we first randomly sample an un-colored MNIST image nX , and some Bernoulli distributed735

label noise nY ∼ B(0.25) and color noise nC ∼ B(e) which is different for each environment736

e ∈ {0.1, 0.2}. Then for some initial arbitrary values x0, ỹ0, y0 and c0 respectively for the observed737

colored image X , the ground-truth label Ỹ , the observed noisy label Y and the image color C, we738

iteratively apply the following assignments from the SEM739

xt = colour(ct−1,nX) apply color C to the image
ỹt = f(xt−1) generate ground-truth label with true labeling function
yt = xor(ỹt−1, nY ) flip the label with probability 0.25

ct = xor(yt−1, nC) generate color by flipping Y with probability e,

until they converge while keeping all sampled exogenous variables nX , nY , nC fixed. It is straightfor-740

ward to show that this SEM will converge after a maximum of t = 5 iterations14 due to the invariance741

of f to the color of the image C. Furthermore, this stationary-point will be uniquely determined742

by our exogenous samples nX , nY , nC . And this is how we generate one sample (x, y) for our743

colored-MNIST experiment. We repeat this process to generate a sample (x, y) for each of n samples744

nX , nY , nC .745

Note that the ground-truth labeling function f can only correctly predict the labels 75% of the time.746

At test time we flip the correlation between the label Y and the image color C by setting e = 0.9.747

Also, the above cyclic SEM for colored-MNIST produces the same distribution for (X,Y ) as [32].748

The above cyclic SEM perspective of colored-MNIST is interesting because it makes it clear that749

colored-MNIST is essentially a causal effect estimation task. Specifically, we can estimate the true750

14Following the mechanisms c0 → x1 → ỹ2 → y3 → c4 → x5, we see that (x4, y4, c4) = (x5, y5, c5)
(same for ỹ4 = ỹ5).

25



labeling function f by estimating the ATE EM;do(X:=x)[Y | X = x] since751

EM;do(X:=x)[Y | X = x] = EM;do(X:=x)[xor(f(X), NY ) | X = x],

= EM[xor(f(x), NY )], (NY ⊥⊥ XM;do(X:=x).)

= EM[f(x) +NY − 2f(x)NY ], (Definition of xor.)

= f(x) + EM[NY ]− 2f(x)EM[NY ],

=
(
1− 2EM[NY ]

)
f(x) + EM[NY ],

= 0.5f(x) + 0.25 . (NY ∼ B(0.25).)

Because this is a binary classification task, we have752

round
(
EM;do(X:=x)[Y | X = x]

)
= f(x).

This is in contrast to the original DAG perspective of colored-MNIST shown in Fig. 6, where the753

connection to the estimation of the causal mechanism f is not immediately obvious. We argue that754

this is because the DAG in Fig. 6 is virtually equivalent to the reduced form of our structural form755

presented in Fig. 7.756
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G Proofs757

G.1 Proof of Proposition 1 – DA induced regularization758

Proposition 1 (DA induced regularization). For SEM A from Example 2, given decreasing DA759

strengths γ1 > γ2 > 0, we have760 ∥∥∥ĥA
DAG+ERM

∣∣∣ γ = γ1

∥∥∥
ΣA

X

≤
∥∥∥ĥA

DAG+ERM

∣∣∣ γ = γ2

∥∥∥
ΣA

X

, equality iff EA[GX | G] ⊥ EA[X | ξ].

Proof.

⇒
∥∥∥ĥA

DAG+ERM

∥∥∥2
ΣA

X

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)Y ⊤]∥∥∥∥2

ΣA
X

,

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)

(
f⊤X + ξ

)⊤]∥∥∥∥2
ΣA

X

, (Structural eq. of Y .)

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)

(
f⊤GX + ξ

)⊤]∥∥∥∥2
ΣA

X

, (Using G–invariance of f .)

=

∥∥∥∥E[(GX)(GX)
⊤
]−1(

E
[
(GX)(GX)

⊤
]
f + E

[
(GX)ξ⊤

])∥∥∥∥2
ΣA

X

, (Linearity of expectation.)

=

∥∥∥∥f + E
[
(GX)(GX)

⊤
]−1

E
[
(GX)ξ⊤

]∥∥∥∥2
ΣA

X

,

=

∥∥∥∥f + E
[
(GX)(GX)

⊤
]−1

E
[(

X + γG̃
)
ξ⊤

]∥∥∥∥2
ΣA

X

, (Represent G̃ := Γ⊤G.)

=

∥∥∥∥f + E
[
(GX)(GX)

⊤
]−1

E
[
Xξ⊤

]∥∥∥∥2
ΣA

X

, (G exogenous⇒ G̃ ⊥⊥ ξ.)

= ∥f∥2ΣA
X
+

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
Xξ⊤

]∥∥∥∥2
ΣA

X

+ 2f⊤ΣA
XE

[
(GX)(GX)

⊤
]−1

E
[
Xξ⊤

]
, (19)

where the first term does not depend on γ. The last term also does not depend on γ because761

⇒f⊤ΣA
XE

[(
X + γG̃

)(
X + γG̃

)⊤
]−1

E
[
Xξ⊤

]
,

=f⊤ΣA
XE

[
ΣA

X + γ2ΣA
G̃

]−1E
[
Xξ⊤

]
,

=f⊤S⊤SE
[
S⊤S+ γ2S⊤DS

]−1E
[
Xξ⊤

]
, (From Lemma 2.)

=f⊤S⊤SS−1E
[
Im + γ2D

]−1
S−⊤E

[
Xξ⊤

]
, (S,S⊤ invertible.)

=f⊤S⊤E
[
Im + γ2D

]−1
S−⊤E

[
Xξ⊤

]
,

=f⊤S⊤S−⊤E
[
Xξ⊤

]
. (G̃ ∈ null

(
f⊤

)
⇒ f⊤S⊤D = 0.)

Finally, for the middle term in Eq. (19) we can follow a similar approach as Theorem 3 to show that762

it is strictly decreasing in γ2, with equality iff763

EA[GX | G] ⊥ EA[X | ξ]

764
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G.2 Proof of Proposition 2 – IVL regression closed form solution in the linear case765

Proposition 2 (IVLα closed form solution). For SEM M in Example 1, ĥM
IVLα

is the closed form766

linear OLS solution between767

X ′ := aX + bE[X | Z], Y ′ := aY + bE[Y | Z],

where768

a :=
√
α, b :=

√
1 + α−√α.

Proof. The OLS solution for (X ′, Y ′) minimizes the following ERM risk769

⇒ E
[∥∥Y ′ − h⊤X ′∥∥2]

= E
[∥∥aY + bE[Y | Z]− h⊤(aX + bE[X | Z])

∥∥2], (Substitute in definitions of X ′, Y ′.)

= E
[∥∥a(Y − h⊤X

)
+ b

(
E[Y | Z]− h⊤E[X | Z]

)∥∥2], (Distribute the subtraction.)

= a2E
[∥∥Y − h⊤X

∥∥2]+ b2E
[∥∥E[Y | Z]− h⊤E[X | Z]

∥∥2] (Expand squared norm.)

+ 2abE
[(
Y − h⊤X

)⊤(E[Y | Z]− h⊤E[X | Z]
)]
. (20)

First we note that from the definitions of a, b we have770

a2 =
√
α, b2 + 2ab =

(√
1 + α−√α

)2
+ 2
√
α
(√

1 + α−√α
)
= 1. (21)

Now we evaluate the cross term in Eq. (20)771

⇒ E
[(
Y − h⊤X

)⊤(E[Y | Z]− h⊤E[X | Z]
)]

= E
[
E
[(
Y − h⊤X

)⊤(E[Y | Z]− h⊤E[X | Z]
) ∣∣∣ Z]]

, (Law of iterated expectation.)

= E
[
E
[(
Y − h⊤X

)⊤ ∣∣∣ Z](
E[Y | Z]− h⊤E[X | Z]

)]
(Taking out what is known; Eq. (16).)

= E
[(
E[Y | Z]− h⊤E[X | Z]

)⊤(E[Y | Z]− h⊤E[X | Z]
)]

= E
[∥∥E[Y | Z]− h⊤E[X | Z]

∥∥2].
Substituting this back in Eq. (20) we get772

⇒ E
[∥∥Y ′ − h⊤X ′∥∥2]

= a2E
[∥∥Y − h⊤X

∥∥2]+ (
b2 + 2ab

)
E
[∥∥E[Y | Z]− h⊤E[X | Z]

∥∥2],
= αE

[∥∥Y − h⊤X
∥∥2]+ E

[∥∥E[Y | Z]− h⊤E[X | Z]
∥∥2], (From Eq. (21).)

= αRM
ERM(h) +RM

IV (h)− E[V[Y | Z]], (From Eq. (14).)

= RM
IVLα

(h)− E[V[Y | Z]].

773
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G.3 Proof of Proposition 3 – Existence of an interventional distribution given a DA774

Proposition 3 (unique stationary interventional distribution). In SEM A from Eq. (9), given any775

(g, c,nX ,nY ) ∼ PA
G,C,NX ,NY

, if for all (x0,y0) ∈ X × Y the unique limits776

xA := lim
t→∞

xA
t = lim

t→∞
τ
(
yA
t−1, c,nX

)
,

yA := lim
t→∞

yA
t = lim

t→∞
f
(
xA
t−1

)
+ ϵ(c) + nY

exist, then in A; do(τ := gτ) the unique limits777

xA;do(τ :=gτ) := lim
t→∞

x
A;do(τ :=gτ)
t = lim

t→∞
gτ

(
y
A;do(τ :=gτ)
t−1 , c,nX

)
= gxA,

yA;do(τ :=gτ) := lim
t→∞

y
A;do(τ :=gτ)
t = lim

t→∞
f
(
x
A;do(τ :=gτ)
t−1

)
+ ϵ(c) + nY = yA

also exist.778

Proof. First we try to show that779

y
A;do(τ :=gτ)
t = yA

t . (22)
For the base case, we have by construction780

y
A;do(τ :=gτ)
0 := y0 =: yA

0 .

For the step case, assuming that yA;do(τ :=gτ)
t = yA

t , we have15,781

y
A;do(τ :=gτ)
t+2 = f

(
x
A;do(τ :=gτ)
t+1

)
+ ϵ(c) + nY ,

= f
(
gτ

(
y
A;do(τ :=gτ)
t , c,nX

))
+ ϵ(c) + nY ,

= f(τ
(
y
A;do(τ :=gτ)
t , c,nX

)
) + ϵ(c) + nY , (Invariance of f to g.)

= f
(
τ
(
yA
t , c,nX

))
+ ϵ(c) + nY , (Assumption y

A;do(τ :=gτ)
t = yA

t .)

= f
(
xA
t+1

)
+ ϵ(c) + nY ,

= yA
t+2.

Hence, we have shown that Eq. (22) holds for all even t. For odd t, we simply replace t = 0 with782

t = 1 in the base case783

y
A;do(τ :=gτ)
1 = f

(
x
A;do(τ :=gτ)
0

)
+ ϵ(c) + nY ,

= f
(
xA
0

)
+ ϵ(c) + nY , (Definitions xA;do(τ :=gτ)

0 := x0 =: xA
0 .)

= yA
1 ,

We have now finally shown that Eq. (22) holds for all t ≥ 0.784

Next, it is now relatively straightforward to show that for any t > 0, we have785

x
A;do(τ :=gτ)
t = gτ

(
y
A;do(τ :=gτ)
t−1 , c,nX

)
,

= gτ
(
yA
t−1, c,nX

)
, (Follows from Eq. (22).)

= gxA
t . (23)

Finally, by applying limit as t→∞ to both sides of Eq. (22) and Eq. (23), we get786

yA;do(τ :=gτ) = lim
t→∞

y
A;do(τ :=gτ)
t = lim

t→∞
yA
t = yA,

xA;do(τ :=gτ) = lim
t→∞

x
A;do(τ :=gτ)
t = lim

t→∞
gxA

t = g lim
t→∞

xA
t = gxA, (24)

where the limit can be moved past g in Eq. (24) because g is assumed continuous in its domain.787

788

15Note that here the step size for proof by induction would be ∆t = 2 since yt precedes yt+2. Similar is the
case for xt as well.
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G.4 Proof of Theorem 1 – Robust prediction with IVL regression789

Theorem 1 (robust prediction with IVL regression). For SEM M in Example 1,790

ĥM
IVLα
∈ argmin

h
max
ζ∈Pα

R
M;do(Γ⊤(·):=ζ)
ERM (h), s.t. Pα :=

{
ζ

∣∣∣∣ ζζ⊤ ≼

(
1

α
+ 1

)
Γ⊤ΣM

Z Γ

}
.

Proof. Write X in terms of the exogenous variables C,Z,NX , NY using the reduced form from791

Lemma 3 as792

X = Z̃ + C̃ + Ñ , (25)

where for readability we represent793

Z̃ := Mm×mΓ⊤Z, C̃ := M

[
T⊤

ϵ⊤

]
C, Ñ := σ ·M

[
NX

NY

]
,

with794

M :=

[
Mm×m Mm×1

M1×m M1×1

]
=

[
Im −τ⊤

−f⊤ 1

]−1

.

Now, we start by writing the ERM objective under the intervention do
(
Γ⊤(·) := ζ

)
as795

⇒ R
M;do(Γ⊤(·):=ζ)
ERM (h)

= EM;do(Γ⊤(·):=ζ)
[∥∥Y − h⊤X

∥∥2],
= EM;do(Γ⊤(·):=ζ)

[∥∥∥ξ + (f − h)
⊤
(
Z̃ + C̃ + Ñ

)∥∥∥2], (Y structural form & Eq. (25).)

= EM;do(Γ⊤(·):=ζ)
[∥∥∥ξ + (f − h)

⊤
(
Mm×mζ + C̃ + Ñ

)∥∥∥2], (Z̃ & intervention definition.)

= EM;do(Γ⊤(·):=ζ)
[∥∥∥ξ + (f − h)

⊤
(
C̃ + Ñ

)
+ (f − h)

⊤
Mm×mζ

∥∥∥2],
= EM;do(Γ⊤(·):=ζ)

[∥∥∥ξ + (f − h)
⊤
(
C̃ + Ñ

)
+ h′⊤ζ

∥∥∥2], (Define h′⊤ := (f − h)
⊤
Mm×m.)

= EM;do(Γ⊤(·):=ζ)
[∥∥∥ξ + (f − h)

⊤
(
C̃ + Ñ

)∥∥∥2]+ EM;do(Γ⊤(·):=ζ)
[∥∥∥h′⊤ζ

∥∥∥2],
(Follows from exogeneity of ζ under intervention,⇒ cross term zeros-out.)

= EM;do(Γ⊤(·):=0m)
[∥∥Y − h⊤X

∥∥2]+ EM;do(Γ⊤(·):=ζ)
[∥∥∥h′⊤ζ

∥∥∥2], (26)

= EM;do(Γ⊤(·):=0m)
[∥∥Y − h⊤X

∥∥2]+ ∥∥∥h′⊤ζ
∥∥∥2,

= EM;do(Γ⊤(·):=0m)
[∥∥Y − h⊤X

∥∥2]+ tr
(
ζ⊤h′h′⊤ζ

)
,

= EM;do(Γ⊤(·):=0m)
[∥∥Y − h⊤X

∥∥2]+ tr
(
h′⊤ζζ⊤h′). (27)

Now, note that the maximum of the trace term over ζ ∈ Pα gives796

⇒ max
ζ∈Pα

tr
(
h′⊤ζζ⊤h′),

=

(
1

α
+ 1

)
tr
(
h′⊤

(
Γ⊤EM

[
ZZ⊤]Γ)h′

)
, (Linearity of trace and definition of Pα.)

=

(
1

α
+ 1

)
EM

[
tr
(
h′⊤Γ⊤ZZ⊤Γh′)], (Linearity of expectation.)

=

(
1

α
+ 1

)
EM

[
tr
(
Z⊤Γh′h′⊤Γ⊤Z

)]
, (Cyclic property of trace.)
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=

(
1

α
+ 1

)
EM

[∥∥h′⊤Γ⊤Z
∥∥2],

=

(
1

α
+ 1

)
EM

[∥∥∥(f − h)
⊤
Mm×mΓ⊤Z

∥∥∥2], (Substitute in definition of h′⊤.)

=

(
1

α
+ 1

)
EM

[∥∥∥(f − h)
⊤
Z̃
∥∥∥2]. (Definition of Z̃.)

We can now substitute this in while maximizing both sides of Eq. (27) over interventions ζ ∈ Pα as797

⇒ max
ζ∈Pα

R
M;do(Γ⊤(·):=0m)
ERM (h)

= EM;do(Γ⊤(·):=0m)
[∥∥Y − h⊤X

∥∥2]+ max
ζ∈Pα

tr
(
h′⊤ζζ⊤h′), (First term does not have ζ.)

= EM;do(Γ⊤(·):=0m)
[∥∥Y − h⊤X

∥∥2]+ (
1

α
+ 1

)
EM

[∥∥∥(f − h)
⊤
Z̃
∥∥∥2],

= EM
[∥∥Y − h⊤X

∥∥2]+ 1

α
EM

[∥∥∥(f − h)
⊤
Z̃
∥∥∥2], (Inverse step of Eq. (26).)

= EM
[∥∥Y − h⊤X

∥∥2]+ 1

α
EM

[∥∥∥(f − h)
⊤E[X | Z]

∥∥∥2], (From conditional exp. of Eq. (25).)

= EM
[∥∥Y − h⊤X

∥∥2]+ 1

α
EM

[∥∥E[f⊤X ∣∣ Z]
− h⊤E[X | Z]

∥∥2], (Linearity of expectation.)

= EM
[∥∥Y − h⊤X

∥∥2]+ 1

α
EM

[∥∥E[Y | Z]− h⊤E[X | Z]
∥∥2], (Inverse step of Eq. (26).)

= RM
ERM(h) +

1

α

(
RM

IV (h)− E[V[Y | Z]]
)
, (From Eq. (14).)

=
1

α

(
RM

IVLα
(h)− E[V[Y | Z]]

)
.

798
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G.5 Proof of Theorem 2 – Causal estimation with IVL regression799

Theorem 2 (causal estimation with IVL regression). In SEM M of Example 1, for α <∞,800

CERM

(
ĥM

IVLα

)
≤ CERM

(
ĥM

ERM

)
, equality iff EM[X | Z] ⊥ EM[X | ξ] a.s.

Proof. For ĥM
IVLα

, we have from Proposition 2801 ∥∥∥ĥM
IVLα
− f

∥∥∥2
ΣM

X

=

∥∥∥∥E[X ′X ′⊤
]−1

E
[
X ′Y ′⊤

]
− f

∥∥∥∥2
ΣM

X

.

Note that we have802

⇒ E
[
X ′Y ′⊤

]
= E

[
X ′(aY + bE[Y | Z])

⊤
]
,

= E
[
X ′(aY + bE

[
f⊤X + ξ

∣∣ Z])⊤]
,

= E
[
X ′(aY + bf⊤E[X | Z]

)⊤]
, (Dy definition Z ⊥⊥ ξ.)

= E
[
X ′(af⊤X + aξ + bf⊤E[X | Z]

)⊤]
,

= E
[
X ′(f⊤X ′ + aξ

)⊤]
, (Substituting in X ′ := aX + bE[X | Z].)

= E
[
X ′X ′⊤f + aX ′ξ⊤

]
,

= E
[
X ′X ′⊤

]
f + aE

[
X ′ξ⊤

]
,

= E
[
X ′X ′⊤

]
f + a2E

[
Xξ⊤

]
, (Z ⊥⊥ ξ, therefore E

[
X ′ξ⊤

]
= aE

[
Xξ⊤

]
.)

= E
[
X ′X ′⊤

]
f + αE

[
Xξ⊤

]
, (28)

We also see that803

⇒ E
[
X ′X ′⊤

]
= E

[
(aX + bE[X | Z])(aX + bE[X | Z])

⊤
]
,

= E
[(

aX + bZ̃
)(

aX + bZ̃
)⊤

]
, (Set Z̃ := E[X | Z] for brevity.)

= a2E
[
XX⊤]+ b2E

[
Z̃Z̃⊤

]
+ abE

[
XZ̃⊤

]
+ abE

[
Z̃X⊤

]
,

= a2E
[
XX⊤]+ (

b2 + 2ab
)
Σ

Z̃
, (Because E

[
XZ̃⊤

]
= Σ

Z̃
.)

= αE
[
XX⊤]+Σ

Z̃
, (29)

where we substituted in Eq. (21) in Eq. (29).804

Finally, we now have805

⇒
∥∥∥ĥM

IVLα
− f

∥∥∥2
ΣM

X

=

∥∥∥∥E[X ′X ′⊤
]−1

E
[
X ′Y ′⊤

]
− f

∥∥∥∥2
ΣM

X

,

=

∥∥∥∥E[X ′X ′⊤
]−1(

E
[
X ′X ′⊤

]
f + αE

[
Xξ⊤

])
− f

∥∥∥∥2
ΣM

X

, (Substituting in Eq. (28).)

=

∥∥∥∥f + αE
[
X ′X ′⊤

]−1

E
[
Xξ⊤

]
− f

∥∥∥∥2
ΣM

X

,
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=

∥∥∥∥αE[X ′X ′⊤
]−1

E
[
Xξ⊤

]∥∥∥∥2
ΣM

X

,

=
∥∥∥α(αE[XX⊤]+Σ

Z̃

)−1E
[
Xξ⊤

]∥∥∥2
ΣM

X

, (Substituting in Eq. (29).)

=

∥∥∥∥∥
(
S⊤S+

1

α
S⊤DS

)−1

E
[
Xξ⊤

]∥∥∥∥∥
2

S⊤S

, (Using Lemma 2.)

=

∥∥∥∥∥S−1

(
Im +

1

α
D

)−1

S−⊤E
[
Xξ⊤

]∥∥∥∥∥
2

S⊤S

, (S is invertible.)

=

∥∥∥∥∥
(
Im +

1

α
D

)−1

S−⊤E
[
Xξ⊤

]∥∥∥∥∥
2

, (Switch to ℓ2 norm.)

≤
∥∥S−⊤E

[
Xξ⊤

]∥∥2, (30)

=
∥∥SS−1S−⊤E

[
Xξ⊤

]∥∥2, (Substituting I = SS−1.)

=
∥∥S−1S−⊤E

[
Xξ⊤

]∥∥2
S⊤S

, (Back to weighted norm.)

=
∥∥∥E[XX⊤]−1E

[
Xξ⊤

]∥∥∥2
ΣM

X

, (Substituting ΣM
X := EM

[
XX⊤] = S⊤S.)

=
∥∥∥f + E

[
XX⊤]−1E

[
Xξ⊤

]
− f

∥∥∥2
ΣM

X

, (Adding and subtracting f .)

=
∥∥∥E[XX⊤]−1(E[XX⊤]f + E

[
Xξ⊤

])
− f

∥∥∥2
ΣM

X

, (Substituting I = E
[
XX⊤]−1E

[
XX⊤].)

=
∥∥∥E[XX⊤]−1E

[
X
(
f⊤X + ξ

)⊤]− f
∥∥∥2
ΣM

X

, (Linearity of expectation.)

=
∥∥∥E[XX⊤]−1E

[
XY ⊤]− f

∥∥∥2
ΣM

X

, (Substituting Y = f⊤X + ξ.)

=
∥∥∥ĥM

ERM − f
∥∥∥2
ΣM

X

, (Closed form ERM solution.)

where inequality Eq. (30) holds because D is non-negative diagonal. Furthermore, inequality Eq. (30)806

only holds with equality iff S−⊤E
[
Xξ⊤

]
is in the kernel of D. Or equivalently, iff E

[
Xξ⊤

]
is in the807

kernel of S⊤DS = Σ
Z̃

, which from Lemma 1 is true iff808

EM[X | Z] ⊥ EM[X | ξ] a.s.

809

33



G.6 Proof of Theorem 3 – Causal estimation with DA+ERM810

Theorem 3 (causal estimation with DA+ERM). For SEM A in Example 2, the following holds:811

CERA

(
ĥA

DAG+ERM

)
≤ CERA

(
ĥA

ERM

)
, equality iff EA[GX | G] ⊥ EA[X | ξ] a.s.

Proof. We have812

⇒
∥∥∥ĥA

DAG+ERM − f
∥∥∥
ΣA

X

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)Y ⊤]− f

∥∥∥∥
ΣA

X

,

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)

(
f⊤X + ξ

)⊤]− f

∥∥∥∥
ΣA

X

, (Structural eq. of Y .)

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)

(
f⊤(GX) + ξ

)⊤]− f

∥∥∥∥
ΣA

X

, (Using G-invariance of f .)

=

∥∥∥∥(f + E
[
(GX)(GX)

⊤
]−1

E
[
(GX)ξ⊤

])
− f

∥∥∥∥
ΣA

X

,

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)ξ⊤

]∥∥∥∥
ΣA

X

,

=

∥∥∥∥∥E
[(

X + G̃
)(

X + G̃
)⊤

]−1

E
[(

X + G̃
)
ξ⊤

]∥∥∥∥∥
ΣA

X

, (Where G̃ := E[GX | G] = γ · Γ⊤G.)

=

∥∥∥∥(E[XX⊤]+ E
[
G̃G̃⊤

])−1

E
[
Xξ⊤

]∥∥∥∥
ΣA

X

, (Using G̃ ⊥⊥ X, ξ.)

=
∥∥∥(S⊤S+ S⊤DS

)−1E
[
Xξ⊤

]∥∥∥
S⊤S

, (Lemma 2.)

=
∥∥∥S−1(Im +D)

−1
S−⊤E

[
Xξ⊤

]∥∥∥
S⊤S

, (S,S⊤ invertible.)

=
∥∥∥SS−1(Im +D)

−1
S−⊤E

[
Xξ⊤

]∥∥∥, (Switch to ℓ2 norm.)

=
∥∥∥(Im +D)

−1
S−⊤E

[
Xξ⊤

]∥∥∥,
≤

∥∥S−⊤E
[
Xξ⊤

]∥∥, (31)

=
∥∥SS−1S−⊤E

[
Xξ⊤

]∥∥, (Substitute in Im = SS−1.)

=
∥∥S−1S−⊤E

[
Xξ⊤

]∥∥
S⊤S

, (Back to weighted norm.)

=
∥∥∥E[XX⊤]−1E

[
Xξ⊤

]∥∥∥
ΣM

X

, (Substitute in ΣM
X := EM

[
XX⊤] = S⊤S.)

=
∥∥∥f + E

[
XX⊤]−1E

[
Xξ⊤

]
− f

∥∥∥
ΣM

X

, (Add and subtract f .)

=
∥∥∥E[XX⊤]−1(E[XX⊤]f + E

[
Xξ⊤

])
− f

∥∥∥
ΣM

X

, (Use Im = E
[
XX⊤]−1E

[
XX⊤].)

=
∥∥∥E[XX⊤]−1E

[
X
(
f⊤X + ξ

)⊤]− f
∥∥∥
ΣM

X

, (Linearity of expectation.)

=
∥∥∥E[XX⊤]−1E

[
XY ⊤]− f

∥∥∥
ΣM

X

, (Structural eq. of Y .)

=
∥∥∥ĥA

ERM − f
∥∥∥
ΣM

X

, (ERM closed form solution.)

where inequality Eq. (31) holds because D is non-negative diagonal. Furthermore, inequality Eq. (31)813

only holds with equality iff S−⊤E
[
Xξ⊤

]
is in the kernel of D. Or equivalently, iff E

[
Xξ⊤

]
is in the814

kernel of S⊤DS = Σ
G̃

, which from Lemma 1 is true iff EM[GX | G] ⊥ EM[X | ξ] a.s.815
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G.7 Miscellaneous supporting lemmas816

Lemma 1 (Gaussian conditional orthogonality lemma). Let X,Y, Z ∈ Rn be zero-mean jointly817

Gaussian random vectors with covariance matrices ΣX = E[XX⊤], ΣZ = E[ZZ⊤], and cross-818

covariance ΣY,Z = E[Y Z⊤]. Define the conditional expectation819

E[Y | Z] :=
(
E
[
ZZ⊤]−1E

[
ZY ⊤])⊤

Z = ΣY,ZΣ
−1
Z Z.

Then the following are equivalent:820

X ⊥ E[Y | Z] = 0 a.s. ⇐⇒ ΣXΣY,Z = 0.

Proof. Since X,Y, Z are jointly Gaussian, E[Y | Z] = MZ with M := ΣY,ZΣ
−1
Z . The scalar821

random variable822

S := X⊤E[Y | Z] = X⊤MZ

is Gaussian with mean zero. Hence,823

S = 0 a.s. ⇐⇒ Var(S) = 0.

Compute the variance:824

Var(S) = E
[
S2

]
= E

[
(X⊤MZ)2

]
= E

[
Z⊤M⊤XX⊤MZ

]
.

Using independence and zero-mean assumptions,825

Var(S) = tr
(
M⊤ΣXMΣZ

)
.

Since covariance matrices are positive semidefinite, Var(S) = 0 iff826

Σ
1/2
X MΣ

1/2
Z = 0 =⇒ ΣXMΣZ = 0.

Substituting M = ΣY,ZΣ
−1
Z gives827

ΣXΣY,Z = 0,

completing the proof.828

Lemma 2 (SPD and PSD simultaneous denationalization via congruence). For any n× n matrices829

A ≻ 0, B ≽ 0, there exists an invertible S ∈ Rn×n and non-negative diagonal D ∈ Rn×n such that830

A = S⊤S, B = S⊤DS.

Proof. This is similar to Theorem 7.6.4 in [65, p. 465] for two SPD matrices. We proceed similarly;831

Since A is SPD, it admits a unique SPD square root A1/2. Define832

C := A−1/2BA−1/2,

which is SPD. By the spectral theorem, there exists an orthogonal matrix U such that833

C = U⊤DU,

where D is diagonal with non-negative entries (the eigenvalues of C). Set834

S := UA1/2.

Then835

S⊤S = A1/2U⊤UA1/2 = A1/2IA1/2 = A,

and836

S⊤DS = A1/2U⊤DUA1/2 = A1/2CA1/2 = B.

Since A1/2 and U are invertible, S is invertible, completing the proof.837
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Lemma 3 (solvability of simultaneous SEM). The SEM M in Example 1 is solvable iff f⊤τ⊤ ̸= 1,838

in which case the following solution defines the reduced form of the SEM.839 [
X
Y

]
=

[
Im −τ⊤

−f⊤ 1

]−1 ([
Γ⊤

01×k

]
Z +

[
T⊤

ϵ⊤

]
C + σ ·

[
NX

NY

])
,

Similarly, SEM A in Example 2 solves for f⊤τ⊤ ̸= κ−1.840

Proof. We re-state the SEM M in the following block form841 [
X
Y

]
=

[
0m×m τ⊤

f⊤ 01×1

] [
X
Y

]
+

[
Γ⊤

01×k

]
Z +

[
T⊤

ϵ⊤

]
C + σ ·

[
NX

NY

]
,

⇒
[
Im −τ⊤

−f⊤ 1

]
·
[
X
Y

]
=

[
Γ⊤

01×k

]
Z +

[
T⊤

ϵ⊤

]
C + σ ·

[
NX

NY

]
solving for (X,Y ) involves inverting the block matrix on the LHS. The result immediately follows842

from Proposition 2.8.7 in [66, p. 108], via the Schur complement formula for block matrix inversion.843

844

Lemma 4 (DA and invariance). In SEM A of example from Example 2 iff γ →∞, then845

ĥA
DAG+ERM ∈ argmin

h
RA

DAG+IV(h),

Proof. We have846

ĥA
DAG+ERM = E

[
(GX)(GX)

⊤
]−1

E
[
(GX)Y ⊤],

= E
[(

X + γG̃
)(

X + γG̃
)⊤

]−1

E
[(

X + γG̃
)
Y ⊤

]
, (Represent G̃ := Γ⊤G.)

= E
[(

X + γG̃
)(

X + γG̃
)⊤

]−1

E
[
XY ⊤], (G̃ ⊥⊥ Y by definition of DA.)

= E
[
XX⊤ + γXG̃⊤ + γG̃X⊤ + γ2G̃G̃⊤

]−1

E
[
XY ⊤],

= E
[
XX⊤ + γ2G̃G̃⊤

]−1

E
[
XY ⊤], (G independently sampled,⇒ G̃ ⊥⊥ X .)

=
(
ΣX + γ2Σ

G̃

)−1E
[
XY ⊤],

=
(
S⊤S+ S⊤DS

)−1(E[XY ⊤]), (From Lemma 2.)

= S−1
(
Im + γ2D

)−1
S−⊤(E[XY ⊤]) (32)

Now,847

∇hR
A
DAG+IV(h) = ∇hE

[∥∥h⊤E[GX | G]− Y
∥∥2],

= E
[
∇h

∥∥h⊤E[GX | G]− Y
∥∥2],

= E
[
E[GX | G]

(
h⊤E[GX | G]− Y

)⊤]
,

= E
[(

γG̃
)(

γh⊤G̃− Y
)⊤

]
, (First stage regression E[GX | G] = γG̃.)

= γ2Σ
G̃
h. (G̃ ⊥⊥ Y by definition of DA.)

Setting∇hR
A
DAG+IV(h) = γ2Σ

G̃
h = 0m, we see that ΠA

DAG+IV projects onto the kernel of Σ
G̃

.848

From Eq. (32), we can see that since D is a non-negative diagonal, therefore ĥA
DAG+ERM only lies in849

the kernel of Σ
G̃
= S⊤DS when γ →∞. Hence proved that only when γ →∞,850

ĥA
DAG+ERM ∈ argmin

h
RA

DAG+IV(h).

851
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