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ABSTRACT

Since the birth of the blockchain cryptocurrency trading platform represented
by Bitcoin, cryptocurrencies based on blockchain technology have gained
widespread attention and accumulated a large amount of transaction data. The
analysis of cryptocurrency transactions has become an important research direc-
tion with social and economic value, and an important area of blockchain scien-
tific research. Identifying the identity of different cryptocurrency addresses and
understanding their behavior is the core challenge to achieve cryptocurrency trans-
action analysis, otherwise it is difficult to understand blockchain datasets and an-
alyze them with meaningful results. To this end, this paper proposes a blockchain
address identity identification method called Feature Enhanced Graph Neural
Networks (FE-GNN). Specifically, a transaction graph is constructed based on
the collected transaction data, and graph learning techniques based on graph con-
volutional networks and graph attention networks are used to infer the blockchain
address identity. Experimental results show that the FE-GNN algorithm outper-
forms previous algorithms.

1 INTRODUCTION

Cryptocurrency is a digital currency built on blockchain technology that enables blockchain trans-
actions over the Internet without a trusted third party. However, the anonymity of cryptocurrencies
allows the real identity of transaction users to be concealed, leading to bitcoin being used by some
unscrupulous elements in various illegal activities, for example, using cryptocurrencies for money
laundering (Sun et al., 2022), fraud (Jung et al., 2019), theft of funds (Lazarenko & Avdoshin, 2018),
dark web market transactions (Kanemura et al., 2019), terrorist financing (Nguyen, 2016), which is
broad in scope and may involve any transaction involving the transfer of property. As well as vari-
ous traditional crimes such as relationship scams and pyramid schemes (Fan et al., 2021; Chen et al.,
2022a). Finally there are various counterfeit frauds against the blockchain system, such as imper-
sonating exchanges and wallets (Andryukhin, 2019), issuing fake ERC20 tokens on Ethereum (Gao
et al., 2020) and USDT (Chen et al., 2022b) for fraud.

Compared with traditional financial systems, the unique characteristics of cryptocurrencies, such as
address anonymization and transaction decentralization, make their transactions have strong anti-
traceability, which also leads to many challenges for the identification mechanism of cryptocurrency
transaction addresses.Existing cryptocurrency identification methods mainly obtain the representa-
tion of nodes through graph neural networks or graph representation learning methods and perform
node classification to achieve the identification of cryptocurrency transaction addresses. However,
there are still two legacy problems: (1)Lack of effective node representation. Existing methods
mostly dichotomize nodes for phishing, fraud, and other types of nodes, without considering other
types of nodes in cryptocurrencies, such as miners, exchanges, and ICO wallets. (2)Ignoring node
types and transaction types. The existing methods ignore the difference between external accounts
and contract accounts in cryptocurrencies, and also ignore transaction types, without considering
transaction types such as transferring, creating contracts, and invoking contracts in transactions.

To solve the above problem, this paper proposes Feature Enhanced Graph Neural Networks (FE-
GNN) to enhance cryptocurrency node classification detection by learning stronger node representa-
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Figure 1: The proposed Ethereum account identification method framework includes three compo-
nents, namely (a) Convolutional Layer, (b) Self-attention Layer and (c) Enhancing Framework.

tions. By analyzing a large number of labeled accounts in cryptocurrencies, transaction features are
extracted, accounts are abstracted as nodes, and transfers between accounts are abstracted as edges.
Then a new meta-path graph structure is generated based on the above transaction network, and a
more efficient graph convolution is performed on the new graph to learn a stronger node representa-
tion. Finally, node classification is performed to achieve recognition of cryptocurrency transaction
addresses.

The main contributions of this article are summarized as follows.

• This paper proposes a node feature collection strategy. By analyzing the transaction data
of each account in the cryptocurrency, it can comprehensively and accurately describe the
transaction behavior of nodes, making up for the shortcomings of only focusing on trans-
action records.

• This paper collects and labels 2286 labeled nodes (specifically: Exchange, ICO Wallets,
Investment, Miner, Phish, Ponzi, Token Contract). And retrieve the relevant transaction
and block data according to the labeled node, and collect an Ethereum transaction dataset
containing 1,124,130 nodes and 3,752,659 edges.

• This paper proposes a method for cryptocurrency identification. This method proposes two
feature enhancement components, convolutional layer and self-attention layer, to solve the
Ethereum account classification problem. With these two components, more efficient graph
learning is performed on the graph, resulting in stronger node representations.

• Extensive experiments are conducted on the collected dataset of Ethereum transactions, and
the results show that the algorithm proposed in this paper outperforms the state-of-the-art
methods in several metrics.

2 BACKGROUND

2.1 BLOCKCHAIN ACCOUNT CLASSIFICATION METHOD

In recent years, as cryptocurrencies continue to mature, the price of cryptocurrencies such as bitcoin
and Ethereum has climbed significantly, and the number of users continues to increase. Meanwhile,
as an emerging interdisciplinary research field, the research on the identification of blockchain cryp-
tocurrency transaction addresses has attracted the attention of a large number of scholars. Some
research has already yielded results, such as smart contract Ponzi scheme detection, money launder-
ing detection, coin mix detection, fraud detection and phishing detection.
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Chen et al. (2019) proposed a classification model for detecting smart Ponzi schemes by extracting
two kinds of features from the transaction records and the operation code of smart contracts. Barto-
letti et al. (2018) approach was similar to Chen et al., except that they used data mining techniques
to identify bitcoin-related scams. Henderson et al. (2012) proposed a method of using K-means and
Role Extraction (RolX) to be able to identify bitcoin users who are laundering money on the Bit-
coin network, providing a visual depiction of the interaction of money laundering accounts, showing
how bitcoins are repeatedly segmented and directed to new addresses. They use a variety of machine
learning algorithms to conduct experiments on the data sets they collect, and evaluate the results of
the experiments to verify the effectiveness of the method.

In recent years, Deep learning based graph representation learning methods are also widely used
for blockchain node classification. Weber et al. (2019) proposed a bitcoin antimoney laundering
method using graph convolutional networks. Wu et al. (2021) combined the transaction network
structure to construct feature data and used the semi-supervised machine learning algorithm PU
learning to build a hybrid coin recognition model. Wang et al. (2022) proposed a heterogeneous
network representation learning method to mine implicit information inside Ethereum transactions.
Liu et al. (2022b) proposed an identity inference approach by graph learning for Ethereum and other
similar DApp platform blockchains.

The data in the blockchain contains multiple information with high dimensionality, and graph em-
bedding can be an excellent solution to this problem. Yuan et al. (2020a) used node2vec for phish-
ing node classification. Wu et al. (2022) proposed a method to detect phishing scams by digging
through the transaction records of Ethereum. The method extracts address features by proposing a
new network embedding algorithm trans2vec, and then uses One-Class SVM to classify Ethereum
nodes into ordinary nodes and phishing nodes. Yuan et al. (2020b) used an improved Graph2Vec
based implementation for classification prediction of the constructed transaction subgraphs. Lin
et al. (2020) analyzed Ethereum transactions by a time-weighted multiple graph embedding method,
which models the Ethereum transaction network as Temporal Weighted Multidigraph. Blockchain
network analysis based on graph embedding emphasizes transaction information and ignores the
attributes of illegal nodes, which reduces the prediction accuracy.

3 METHOD INTRODUCTION

3.1 ETHEREUM ACCOUNT DATASET

3.1.1 DATA COLLECTION

In this work, node tagging information is acquired from the Etherscan1 tag word cloud module.
Subsequently, the Etherscan application programming interface (API) is employed to retrieve all
transaction data associated with the tagged nodes.

This API supports obtaining the latest 10,000 normal and internal transactions for contract accounts
(CA) and externally owned accounts (EOA). By configuring the API parameters with the address
where node label information is collected, transaction records for all accounts can be extracted, thus
providing the necessary transaction data for this research.

3.1.2 ACCOUNT FEATURES EXTRACTION

Due to the anonymity of the blockchain platform, the blockchain accounts themselves do not contain
any attribute information. In order to better describe the behavior of different accounts and achieve
excellent classification. Based on the transaction history of the accounts, this paper considers the
number, value and frequency of transactions and other easily calculable data. Thirty account features
are extracted, as shown in Table 1. These features can further reveal the correlation between trading
behavior and accounts to discover the variability of trading patterns among different accounts. Some
of these features are described as follows.

The number of transactions sent (NTS): the number of transactions sent from an account, NTSi
represents the number of transactions sent from account i.

1Etherscan, https://etherscan.io/labelcloud
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Table 1: Complete list of the 30 extracted features.
Extracted Feature Description Data Type

1 NTS The number of transactions sent Integer
2 max VTS The maximum value of transactions sent Double
3 min VTS The minimum value of transactions sent Double
4 TVS The total value of transactions sent Double
5 AVS The average value of transactions sent Double
6 avg TIS The average time interval between transactions sent Integer
7 NTR The number of transactions received Integer
8 max VTR The maximum value of transactions received Double
9 min VTR The minimum value of transactions received Double

10 TVR The total value of transactions received Double
11 AVR The average value of transactions received Double
12 avg TIR The average time interval between transactions received Integer
13 TETF The total ethereum transaction fee Double
14 AETF The average ethereum transaction fee Double
15 TDFL The time difference between the first and last transaction Integer
16 USA The unique send address Integer
17 URA The unique receive address Integer
18 TEB The total ethereum balance after the transaction Double
19 ERC20 NTS The number of ERC20 token transactions sent Integer
20 ERC20 max VTS The maximum value of ERC20 tokens transactions sent Double
21 ERC20 min VTS The minimum value of ERC20 tokens transactions sent Double
22 ERC20 TVS The total value of ERC20 token transactions sent Double
23 ERC20 AVS The average value of ERC20 token transactions sent Double
24 ERC20 NTR The number of ERC20 token transactions received Integer
25 ERC20 max VTR The maximum value of ERC20 tokens transactions received Double
26 ERC20 min VTR The minimum value of ERC20 tokens transactions received Double
27 ERC20 TVR The total value of ERC20 token transactions received Double
28 ERC20 AVR The average value of ERC20 token transactions received Double
29 ERC20 USA The unique ERC20 token send address Integer
30 ERC20 URA The unique ERC20 token receive address Integer

The total value of transactions sent (VTS): The sum of the transaction values sent by the account,
VTSi represents the sum of the transaction values sent from account i.

The average value of transactions sent (AVS): represents the average value of transactions sent by
an account, which can be calculated from the current account NTS and VTS, calculated as:

SAVi =
STVi

NTSi
(1)

where VTSi represents the average value of transactions sent from account i.

The maximum value of transactions sent (max VTS) and the minimum value of transactions sent
(min VTS), which represent the maximum and minimum time interval between two transactions for
a given account, respectively. Ti,k denotes the timestamp of the k-th transaction sent by account i.
The max VTS and min VTS are calculated as:

max V TSi = max
k

(|Ti,k+1 − Ti,k|) (2)

min V TSi = min
k

(|Ti,k+1 − Ti,k|) (3)

The average time interval between transactions sent (avg TIS): represents the average time interval
of sending transactions for an account, which can be calculated from the time interval of each trans-
action and NTS. avg TISi represents the average time interval of sending for account i, k is the total
number of transactions for account i and is calculated as:

avg TISi =

∑k
j=1 Ti,j+1 − Ti,j

NTSi
(4)
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The number of transactions received, maximum value of transactions received, minimum value of
transactions received, total value of transactions received, average value of transactions received,
average time interval between transactions received features are calculated in a manner similar to
the features of sending transaction accounts, and are calculated as in Eq.(1) to (4).

The total ethereum transaction fee (TETF): the sum of transaction fees for each account, which can
be calculated from the price of gas and gas used in the transaction. k is the number of transactions
for the i-th account. PGi,j and GUi,j represent the price of gas and gas used in the j-th transaction
for the i-th account, respectively. And uniformly convert Wei to Ether, calculated as:

k = NTSi +NTRi (5)

TETFi =

k∑
j=1

(GUi,j × PGi,j)× 10−18 (6)

The average ethereum transaction fee (AETF): The average of transaction fees for an account, which
can be obtained from the TETF and the number of transactions, calculated as:

AETFi =
TETFi

k
(7)

The feature numbers 19-30 are calculated as in Eq.(1) to (7).

3.1.3 IDENTITY CATEGORIZATION

For effective identification, some common Ethereum account identity types are selected in this paper.
Table 2 shows a breakdown of the Ethereum accounts used during the experiments. The appendix
A contains detailed descriptions of the account types.

Table 2: Typical Account Identities

Identity Type Number

Exchange EOA/CA 518
ICO Wallets EOA/CA 163
Investment CA 74
Miner EOA/CA 192
Phish EOA/CA 664
Ponzi CA 48
Token Contract CA 627

3.2 FRAMEWORK

The framework of FE-GNN is shown in Fig. 1. As shown in the Fig. 1, the method consists of
three parts, namely convolutional layer, self-attentive layer, and enhancing framework. (1) Convo-
lutional layer. In a transaction network, transaction types are complex. To explore the impact of
different transaction types on node representation. A new graph structure is generated and multiple
candidate adjacency matrices are used to find a new graph structure for a more efficient graph convo-
lution. (2) Self-Attention Layer. The adjacency matrix constructed based on convolutional layers
defines a transformed isomorphic network that utilizes a self-attention mechanism to compute the
hidden representation of each node by paying attention to its neighbors. (3) Enhanced Framework.
The Enhanced framework repeatedly stacks multiple convolutional layers and self-attention layers,
gradually enhancing node features in this way.

3.2.1 CONVOLUTIONAL LAYER

Previous work dealing with heterogeneous graphs required manually defining meta-paths, generat-
ing adjacency matrices from meta-paths, and executing graph neural networks. However, there is
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no meta-path related experiments on the Ethereum dataset for reference. Therefore, a method is
proposed to learn the meta-path graph of an Ethereum dataset and perform GCN operations on the
learned meta-path graph. The specific process is shown in the Fig. 1(a).

Based on the above idea a l-layer meta-path adjacency matrix calculation method is designed, specif-
ically, a convolution kernel is formed using softmax to convolve the adjacency matrix, and the con-
volution results in a similar weighted summation of the adjacency matrix, which is calculated as
follows

A(l) = conv1×1

(
A; softmax

(
ϕ(k)

))
(8)

=

|Te|∑
t=1

α
(k)
t At (9)

where α(k) = softmax
(
ϕ(k)

)
, ϕ(k) ∈ R1×1×|R| is the parameter of 1 × 1 convolution, |R| is the

number of edge type.

The output is then multiplied with the output matrix of the previous layer and the output matrix is
normalized, which is calculated as follows

Al =
(
D̂(l)

)−1

A(l−1)A(l) (10)

where D̂(l) is the degree matrix after multiplying the two matrices.

Next, the convolutional structure is used to learn different node representations. Specifically, the
constructed meta-path adjacency matrix A is applied to the GCN,and the node representations are
extracted end-to-end using the GCN. The proposed GCN architecture with sub-layers following the
propagation rules:

H(l+1) = σ
(
D− 1

2AlD− 1
2H(l)W (l)

)
(11)

where D is a diagonal matrix with Dii=
∑

j A
l
ij , and W (l) is a layer-specific trainable weight ma-

trix. σ(·) is an activation function such as ReLU or Sigmoid. H(0)=X is the input node features,
and H(l) ∈ RN×d the output node features of the lth layer.

Finally, the representations of multiple nodes are concatenated

Z = ∥Ci=1σ
(
D− 1

2AlD− 1
2H(l)W (l)

)
(12)

where ∥ is the concatenation operator, C denotes the number of layer.

3.2.2 SELF-ATTENTION LAYER

As shown in Fig. 1(b), use the method mentioned in the previous section to construct an adjacency
matrix, defined as A(l) ∈ RN×N in Fig. 1(b), where N stands for the total number of nodes,
then leverages self-attention to compute the representation of each node by paying attention to its
neighbors.

First, self-attention to the target node is achieved by designing an attention mechanism. The attention
mechanism is denoted as a : Rd′×d′ → R , where d′ is the output dimension of self-attention Layer,
a is a single feed-forward layer with non-linearity. a takes the linearly transformed representations
of two nodes as input and output an attention coefficient:

eij = a (Wvli,Wvlj) (13)

= σ
(
aT [Wvli∥Wvlj ]

)
(14)

where vli ∈ Rd denotes the input representation of node vli, vlj ∈ Rd denotes the input represen-
tation of node vlj . W ∈ Rd′×d is a weight matrix. a ∈ R2d′

is the linear transformation weight
matrix applied over each node. σ(·) denotes the nonlinear function, and ∥ stands for the concate-
nation operation. where W and a are shared among all node pairs. The attention coefficient elj
indicates the importance of vlj ’s representation to vli.

6
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Figure 2: Classification results (%) for different combination patterns.
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(a) Degree distribution of exchange.
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(b) Degree distribution of ico wallets.
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(c) Degree distribution of investment.
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(d) Degree distribution of minner.
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(e) Degree distribution of phish.
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(f) Degree distribution of ponzi.
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(g) Degree distribution of token contract.
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(h) Degree distribution of all_nodes.

Figure 3: Degree distribution of all nodes

To make the attention coefficients between different nodes easy to compare, the attention coefficients
of all for nodes are normalized using the softmax function:

αij = softmax (eij) (15)

=
exp

(
σ
(
aT [Wvli∥Wvlj ]

))∑
n∈Ni

exp (σ (aT [Wvli∥Wvln]))
(16)

where Ni is a set of vli ’s first-order semantic structure-based neighbors according to A′. αij

is asymmetric. The output representation of vli can then be computed by paying attention to its
neighbors using the normalized attention coefficients:

v′
li = σ

 ∑
vlj∈Ni

αijWvlj

 (17)

Next, In order to stabilize the learning process of self-attention, this paper uses a multi-headed
attention mechanism. Specifically, H-independent attention mechanisms are trained and connect
their outputs as the final representation.

v′
li = ∥Hh=1σ

 ∑
vlj∈Ni

αh
ijW

hvlj

 (18)

where αh
ij stands for the head-wise normalized attention coefficients, and W h stands for the head-

wise linear transformation matrix. In this paper, the output dimension of each head is set to d′ =
d/H , such that the output dimension of self-attention layer is equal to its input dimension.

7
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Table 3: Three training-validation-test set (%) division methods.

Dataset Train set Validation set Test set

D1 30% 30% 40%

D2 60% 20% 20%

D3 80% 10% 10%

3.2.3 ENHANCED FRAMEWORK

As shown in Fig. 1(c), the augmentation framework stacks multiple Convolutional Layers and Self-
Attention Layers on top of each other. It constructs a method to enhance the node features of the
input by Convolutional Layer and Self-Attention Layer.

4 EXPERIMENT

In this section, an experimental evaluation is conducted to investigate the effectiveness of the FE-
GNN proposed in this paper for the account classification task in the collected Ethereum transaction
dataset.

4.1 DATASET AND EVALUATION CRITERIA

4.1.1 DATA COLLECTION

Ethereum is currently the largest blockchain smart contract blockchain encryption platform, and
there is a rich tag library. Therefore, it is possible to classify Ethereum accounts and identify the
different accounts. The Ethereum dataset is constructed using the method proposed in Section III-A
and the performance of the FE-GNN proposed in this paper is evaluated using this dataset. The
details of the marked nodes are shown in Table 2. The dataset includes a total of 8 common account
labels such as exchange, ICO wallets, investment, miners, Phish, ponzi and token contract.

The final constructed Ethereum dataset includes 1,124,130 nodes and 3,752,659 edges. To effec-
tively evaluate FE-GNN, the initial data set is divided according to the scale shown in Table 3, as
referenced in Liu et al. (2022a). The training sets in D1, D2, and D3 contain 30%, 60%, and 80% of
randomly selected labeled nodes, respectively. During model training, validation and testing, only
the classification performance of 2286 labeled nodes is considered.

4.1.2 COMPARISON METHODS

The baseline methods were compared by analyzing similar work. The FE-GNN method is compared
with several methods, including (1) feature-based methods that consider only node attributes (i.e.,
Logistic Regression (Wright, 1995), Random Forest (Ho, 1995)); (2) Random walk-based network
embedding methods (i.e., DeepWalk (Perozzi et al., 2014), Node2Vec (Grover & Leskovec, 2016));
(3) Some popular deep learning network-based despicable methods (i.e., GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017), BI-FedGNN (Gao et al., 2024)); (4) Some popular Ethereum
phishing node detection methods (i.e., T 2A2vec (Wang et al., 2023), HNRL (Wang et al., 2022)).

The parameters of the above methods all adopt the optimal parameter settings in the paper. In each
experiment, the dataset was randomly divided according to the proportion in Table 3, each method
was run 10 times, and the results were averaged.

4.2 ETHEREUM ACCOUNT CLASSIFICATION RESULTS

This paper evaluates the performance of different methods on the Ethereum identity recognition
task, and the results are shown in Table 4. From this, the following conclusions can be drawn:

8
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Table 4: The classification results (%) over the methods

Method
Dataset D1 D2 D3

Metric Pre.1 Recall Mi-F1 Ma-F1 Pre.1 Recall Mi-F1 Ma-F1 Pre.1 Recall Mi-F1 Ma-F1

Feature-based
LR2 37.28 33.76 57.06 31.98 39.38 32.84 56.61 32.09 38.69 34.66 56.12 33.85

RF3 62.12 59.60 73.58 59.83 62.47 58.94 73.51 59.51 69.61 64.79 75.72 66.26

Random walk
DeepWalk 43.17 40.76 55.99 41.45 45.83 42.98 66.15 43.36 40.97 42.43 60.49 41.30

Node2Vec 45.45 45.92 52.77 45.54 44.9 46.58 55.41 45.53 49.64 50.46 56.95 49.95

Deep learning

GCN 51.81 41.56 58.32 43.17 56.21 40.91 59.38 42.82 57.78 42.77 60.52 45.34

GAT 76.91 73.62 79.30 74.48 81.82 79.56 83.31 79.52 78.69 76.37 80.13 76.32

BI-FedGNN 72.45 71.26 76.83 72.22 74.98 73.75 77.03 72.46 77.36 75.36 78.93 75.26

Ethereum

methods

T 2A2vec 52.64 41.95 58.20 43.80 56.60 45.88 47.19 62.47 56.16 47.00 63.36 48.33

HNRL 60.39 56.34 71.25 55.22 71.15 68.06 78.36 67.57 75.72 73.74 81.31 75.53

FE-GNN 77.94 76.98 80.31 72.23 82.62 78.97 84.54 77.02 83.26 80.31 87.63 79.17
1 Precision.
2 Logistic Regression.
3 Random Forest.

(1) FE-GNN achieves significant advantages under different evaluation metrics, with 83.26% preci-
sion and 85.92% recall for FE-GNN, 81.62% for Mi-F1, and 80.53% for Ma-F1. The second best
method is GAT, whose method ranks second in most cases. The next best method is the deep learn-
ing based method, but there is a large gap between different deep learning methods, for example,
GCN has a performance gap of nearly 25% for D1 dataset. The difference in performance between
the two random walk based methods is not much on average around 5%. There are also two ex-
tremes in the feature-based methods, and the worst performance is the logistic regression method,
which has an accuracy of only about 38.69%. The Mi-F1 of the random forest algorithm is 75.72%.

(2) The performance of all algorithms keeps improving as the proportion of training set keeps in-
creasing, with the random forest algorithm showing the largest performance improvement. The
improvement rate of the method proposed in this paper follows closely. The deep learning-based
method and the random walk based method are next.

(3) Compared with the feature-based methods, the four evaluation metrics of FE-GNN outperform
them by 10%-40%. Among all the compared methods, only logistic regression has the worst per-
formance. The reason for this situation may be the small number of node features collected in
this paper, which limits the effect of logistic regression. But the randomized deep forest algorithm
achieved good results, which verifies the effectiveness of the node features collected in this paper.

(4) For methods based on random wandering achieved generally poor results, Node2vec method
performed the best. This is mainly because this method ignores the transaction features between
nodes and cannot learn a more effective node representation.

(5) For deep learning-based methods, there is a large gap between different methods. Some methods
perform poorly. For example, there is a general gap of 10%-25% between GCN and GAT and
BI-FedGNN.

(6) Some of the Ethereum node classification methods reproduced in this paper have a strong com-
petitive advantage. Among them, T 2A2vec is an improvement of node2vec. T 2A2vec improves the
metrics by 5%-10% compared with node2vec by considering two transaction characteristics, namely
transaction time and transaction amount. HNRL is an Ethereum phishing node detection method us-
ing heterogeneous graph representation learning method, which is only 6% different from FE-GNN
Mi-F1 in the D2 case. Although the overall performance of these methods is poor, they achieve
good results for phishing node identification, with metrics exceeding 80% for both algorithms.
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Figure 4: Classification results (%) for different combination patterns.

4.3 PARAMETER SENSITIVITY ANALYSIS

This paper evaluates the effect of the number of convolutional and self-attentive layers on the clas-
sification performance. Experiments were conducted on four architectures, namely FE-GNN2l

CL,
FE-GNN2l

SCL, FE-GNN2l
GNN , and FE-GNN4l

GNN . Where FE-GNN2l
CL means that it contains

only two convolutional layers. The FE-GNN2l
SCL representation contains only two self-attention

layers. The FE-GNN2l
GNN representation consists of one convolutional layer and one self-attention

layer. The FE-GNN4l
GNN representation consists of two convolutional layers and two self-attention

layers.

As shown in Fig. 4, this paper evaluates their classification performance. It can be seen from
the table that better classification results are achieved when convolutional layers and self-attention
layers are included than when only one of them is included. Experimental results show that both
convolutional and self-attentive layers can improve the classification performance, and when both
are combined, better classification results are achieved. It can be found that the performance of the
model becomes more stable as the number of layers increases.

5 CONCLUSION AND FUTURE WORK

In this paper, a Feature Enhanced Graph Neural Networks (FE-GNN) is proposed to handle the
task of account classification in Ethereum. Through the analysis of Ethereum transaction data, this
paper designs a node feature collection strategy, which can fully and accurately describe the trans-
action behavior of nodes. FE-GNN proposes two feature enhancement components, convolutional
layer and self-attention layer, to solve the Ethereum account classification problem. With these two
components, more efficient graph learning is performed on the graph, resulting in stronger node
representations. With node representations obtained from node features and graph learning, the per-
formance of Ethereum account classification detection is improved.Extensive experiments show that
FE-GNN outperforms and outperforms the state-of-the-art algorithms in terms of performance and
utility.

In future work, the method is considered for use in blockchain identity browsers, and the identifica-
tion tags are stored in a library of address tags, which can alert and suggest to asset associates that
the transfer may be risky and should be guarded against once it is associated with a tagged illegal
address. And consider extending FE-GNN to dynamic blockchain transaction networks that include
temporal information.
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A PRELIMINARIES

A.1 ETHEREUM TRANSACTION GRAPH

Constructing an Ethereum transaction graph as a heterogeneous graph G = (V,E,R), where V =
{v1, · · · , vn} is the set of nodes, E is the set of edges and R is the set of edge types. The total
number of accounts is N = |V |. Each node v ∈ V represents contract accounts or externally owned
accounts. The edge types R include transfer, invoke contract, and create contract, respectively. Each
node vi is associated with a feature vector −→x i ∈ Rdf where df is the dimension of the feature vector.
The input feature vectors of each node are concatenated into feature matrix X ∈ Rn×df , where the
i-th row is −→x i. Each edge e ∈ E is associated with an edge type ϕ(e) ∈ R. The heterogeneous
graph can be represented by a set of adjacency matrices {Ak}Kk=1 where K = |R|, and Ak ∈ RN×N

is an adjacency matrix where Ak[i, j] is non-zero when there is a k-th type edge from j to i . More
compactly, it can be written as a tensor A ∈ RN×N×K .

A.2 GRAPH REPRESENTATION LEARNING

Graphs are ubiquitous in the real world, covering applications ranging from social net-
works(Hamilton et al., 2017), recommender systems(Lu et al., 2020), knowledge graphs(Wang et al.,
2014), transportation networks(Zhao et al., 2019), and drug discovery(Sun et al., 2020). Graph
representation learning has been shown to be effective in many downstream tasks such as node
classification(Tang et al., 2016; Zhou et al., 2007), link prediction(Singh & Gordon, 2008), graph
classification(Lee et al., 2018; Wu et al., 2017) and clustering(Wang et al., 2019). Graph representa-
tion learning is attracting the attention of researchers and practitioners, becoming a research hotspot
of data mining, and a large number of research results are emerging. Graph representation learning
(i.e. graph embedding or network embedding) methods can be grouped into three categories: based
on Factorization, Random Walk and Deep Learning.

Factorization-based graph representation learning methods (Wang et al., 2017; Yang et al., 2015;
Zhang et al., 2016b; Tu et al., 2016; Zhang et al., 2016a) are early research approaches. There are
two main decompositions of factorization-based graph representation learning methods, which are
graph Laplacian feature graph decomposition and vertex proximity matrix decomposition.

Random walk-based graph representation learning methods (Perozzi et al., 2014; Grover &
Leskovec, 2016; Ribeiro et al., 2017; Shi et al., 2018) use a flexible and random vertex similar-
ity metric, resulting in excellent performance in many scenarios. Random walk-based methods are
broadly classified into two categories, random walk methods for homogeneous graphs and embed-
ding methods for heterogeneous graphs.

Deep learning-based graph representation learning methods (Wang et al., 2016; Li et al., 2021;
Cao et al., 2016; Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017) apply deep
learning to the entire graph (or adjacency matrix), and its popular deep learning models include two,
autoencoders and deep neural networks.

A.3 IDENTITY CATEGORIZATION

Exchanges. Similar to stock exchanges where stocks are bought and sold, a blockchain exchange
is a website platform where digital currencies are bought and sold for trading. It allows traders
to buy and sell cryptocurrencies using fiat currency or other cryptocurrencies. Exchanges account
for a large portion of blockchain digital currency trading, and some of the more popular exchanges
include Huobi, Binance, Bitfinex, Kraken, Bithumb, and others. These trading platforms generally
only provide functions such as top-up, transfer and withdrawal, which means that they will only tell
you the address of your wallet receipt, and the wallet key, Keystore and helper words are generally
not provided. Authentication is done through login username, password, verification email, cell
phone, etc.

Miner. Mining is the process of using computer hardware to calculate, record and verify information
in a digital record known as a blockchain. Miners solve mathematical puzzles by mining to gain the
right to create new blocks and the reward for the blocks that come out, so called because it works
much like mineral mining. Currently, the most common way is through the proof-of-work (PoW)
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consensus mechanism, where the first computer to solve a complex mathematical problem is given
a new block to record information on the blockchain, along with a new cryptocurrency. The main
job of miners is transaction confirmation and data packaging.

Ponzi. A Ponzi scheme is a traditional investment scam that uses the money of new investors to pay
interest and short-term returns to old investors. It is used to create the illusion of making money
and then to get more investments. In Ethereum smart contracts, the Ponzi scheme has some new
features. Due to the complexity of blockchain-related technology, it is difficult for investors to
decipher the specific business logic of an Ethereum smart contract. Generally only a small amount
of descriptive information issued by the developer on the smart contract can be used to understand
the operation mechanism of the business. This makes Ponzi schemes in smart contracts even more
confusing. Many investors believe that the blockchain is tamper-proof, so contracts uploaded into
Ethereum will never expire. This has led many investors to believe that a smart contract project
that is continuously running and constantly gaining revenue does not have the risk of a Ponzi-like
scheme. And mistakenly invested in a Ponzi scheme and ended up losing a lot of money.

Phish. While blockchain continues to show vigorous vitality, its own security issues are gradually
revealed. Security threats against cryptocurrency applications and various crimes against blockchain
platforms are showing a high incidence. In addition to threats such as frequent theft of trading plat-
forms, highlighted vulnerabilities of smart contracts, and crimes committed by using anonymous
transactions, phishing frauds committed with the help of blockchain cryptocurrencies are particu-
larly rampant, raising public doubts about the security of blockchain and concerns about its devel-
opment prospects, and seriously affecting the value storage function of cryptocurrencies.

As for other types of accounts, among them, ICO wallet is a wallet where Token Sale proceeds
are/were being stored. Token contract is the address of a smart contract with tokens. Investments
are made by large holders of ETH, who usually get in early in the ICO.

B EXPERIMENTAL SETTING

B.1 EVALUATION METRICS

In the experiment, four evaluation metrics are chosen to assess the performance of different methods
in terms of Ethereum address identification: Macro-Precision, Macro-Recall, Macro-F1, and Micro-
F1.

TN (True Negative) represents the number of true negatives for each class.

TP (True Positive) represents the number of true positives for each class.

FN (False Negative) represents the number of false negatives for each class.

FP (False Positive) represents the number of false positives for each class.

Macro-Precision =
1

n

n∑
i=1

TPi

TPi + FPi

Macro-Recall =
1

n

n∑
i=1

TPi

TPi + FNi

Macro-F1 =
1

n

n∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

Micro-Precision =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi

Micro-Recall =
∑n

i=1 TPi∑n
i=1 TPi +

∑n
i=1 FNi
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Micro-F1 =
2 · Micro-Precision · Micro-Recall
Micro-Precision + Micro-Recall

B.2 DATASET ANALYSIS

This paper analyzed the statistical values of the node characteristics of different classes of Ethereum
accounts. Fig. 2 shows some of the feature mean data for the account features. Fig.3 shows the
data of the degree distribution features of the account. From this, the following conclusions can be
drawn:

(1) Exchanges are an important part of the Ethereum ecosystem. At present, a large number of
cryptocurrency transactions are completed through exchanges, maintaining financial connections
with a large number of users. As can see from the table that the vast majority of characteristics
of exchange accounts are in the top two. In particular, the characteristics of VTS, max VTR, TVR,
URA, ERC20 max VTS, ERC20 min VTR and other types of nodes are significantly different from
other types of nodes, and transactions occur frequently on exchanges.

(2) As you can see by avg TIS and avg RI, ICO wallet accounts are traded less frequently than
other accounts. The max VTS and max VTR features indicate that there are large-scale transaction
behaviors in ICO wallets account transactions. According to the characteristics of TEB, it can be
seen that there is a large amount of ether in the ICO wallets account.

(3) For miner accounts, the block reward needs to be transferred to the participant’s account as a
reward. It can be seen from the statistics that its NTS and USA features are relatively large, which
confirms the characteristics of miners’ accounts.

(4) Fraud accounts such as Phish and Ponzi have smaller amounts and transaction counts, suggesting
that victims of Ethereum phishing and scams have less to lose. Compared with Ponzi and Invest-
ment accounts, Token contract accounts generally have larger eigenvalues, which means that Token
contract accounts trade more frequently.

(5) From the Fig.3, it can be see that there are some differences in the degree distribution of different
types of nodes, especially the degree of Phish and pozi types of nodes is generally smaller than that
of other accounts.
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