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Abstract

In knowledge graph embedding, leverag-001
ing relation-specific entity-transformation has002
markedly enhanced performance. However,003
this approach lacks assurance for consistent004
changes in relation and entity embeddings due005
to the disconnected entity-transformation rep-006
resentation, missing valuable inductive bias007
among semantically similar relations. Further-008
more, a generalized plug-in approach as a009
SFBR disrupts this consistency through exces-010
sive concentration of entity embeddings un-011
der entity-based regularization, generating in-012
distinguishable score distributions among rela-013
tions. To tackle these challenges, we introduce014
Relation-Semantics Consistent Filter (RSCF),015
characterized by three features: 1) shared affine016
transformation of relation embeddings across017
all relations, 2) rooted entity-transformation018
that adds an entity embedding to its change019
represented by the transformed vector, and 3)020
normalization of the change to prevent scale re-021
duction. In knowledge graph completion tasks022
with distance-based and tensor decomposition023
models, RSCF notably enhances performance024
across all relations, regardless of their fre-025
quency.026

1 Introduction027

Knowledge graphs (KGs) play crucial roles in a028

wide area of machine learning and its applica-029

tions (Liu et al., 2021; Zhang et al., 2022b; Zhou030

et al., 2022; Fang et al., 2017; Gao et al., 2019; Cao031

et al., 2019; Geng et al., 2022; Wang et al., 2019).032

KGs, even on a large scale, still suffer from a lack033

of data. For example, 71% of people in Freebase034

have no birthplace information, and 75% have no035

nationality information (Dong et al., 2014). This in-036

completeness issue has been extensively studied as037

a task to predict missing entity information, called038

as knowledge graph completion (KGC). An effec-039

tive approach for KGC is knowledge graph embed-040

ding (KGE) that learns vectors to represent entities041

and relations in a low dimensional space to mea- 042

sure the validity of triples. Two primary approaches 043

to determine the validity are distance-based model 044

(DBM) using the Minkowski distance and tensor 045

decomposition model (TDM) regarding KGC as a 046

tensor completion problem (Zhang et al., 2020b). 047

A recently tackled issue of the models is to learn 048

only single embedding for an entity, which is insuf- 049

ficient to express its various attributes in complex 050

relation patterns such as 1-N, N-1 and N-N (Wang 051

et al., 2014; Chao et al., 2021; Ge et al., 2023). 052

A proposed and effective approach for this issue 053

is entity-transformation based model (ETM) that 054

uses relation-specific transformations to generate 055

different entity embeddings for relations from their 056

original embedding, enabling more complex en- 057

tity and relation learning (Liang et al., 2021; Wang 058

et al., 2014; Chao et al., 2021; Ge et al., 2023). 059

ETMs, however, have a limit to learning useful 060

inductive bias that could be obtained in seman- 061

tically similar relations. For example, Semantic 062

Filter Based on Relations (SFBR), a recently pro- 063

posed method plugged in to various KGE mod- 064

els (Liang et al., 2021), assigns mutually discon- 065

nected relation-specific transformation to each rela- 066

tion. Furthermore, under a significantly useful reg- 067

ularizer such as DURA (Zhang et al., 2020b), espe- 068

cially on TDM, the method critically concentrates 069

entity embeddings, including unobserved entities 070

and generates indistinguishable score distributions 071

across relations. Both issues are interpreted as lim- 072

ited learning an important and implicit inductive 073

bias that semantically similar relation embeddings 074

have similar relation-specific entity-transformation, 075

called relation-semantics consistency in this paper. 076

To alleviate the issues, we present a simple 077

and effective method Relation-Semantically Con- 078

sistent Filter (RSCF), incorporating three features: 079

1) shared affine transformation for consistency 080

mapping of relations to entity-transformations, 081

2) rooted entity-transformation representation us- 082
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ing the affine transformation to generate only the083

change of an entity-embedding subsequently added084

by this embedding and 3) normalization of the085

change for preventing critical scale reduction break-086

ing consistency. Our contributions are as follows.087

• We raise and clarify two problems of entity-088

transformation models in learning inductive089

bias in terms of relation-semantics consis-090

tency.091

• We propose a novel and significantly outper-092

forming relation-semantics consistent filter093

(RSCF) to induce the consistency as a plug-in094

method to KGE models.095

• We provide experimental results on common096

benchmarks of KGC, and in-depth analysis to097

verify the causes and derived effects.098

2 Loss of Useful Inductive Bias099

Because semantically similar relations have similar100

embedding (Yang et al., 2015), we define that map-101

ping relation embeddings to entity-transformations102

is relation-semantically consistent if and only if103

any relation pairs (r1, r2) and shorter pair (r1, r3)104

for a given r1 are mapped to entity-transformation105

pair (T1, T2) and shorter pair (T1, T3), respectively.106

This consistency serves as an inductive bias imply-107

ing that semantically similar relations have similar108

entity-transformations and, therefore, overall simi-109

lar entity embeddings. Two phenomena of losing110

this inductive bias and their causes are as follows.111

Disconnection of Entity-Transformations Dis-112

connected entity-transforamtions loosely use this113

bias, especially under lack of triplet data.114

In existing methods, relation-specific entity-115

transformations use separate parameters such as116

hr = Wrh and tr = Wrt (Liang et al., 2021),117

where h, t, are head and tail entity embedding, and118

Wr is a relation-specific transformation. Despite119

the disconnection, the methods can still learn simi-120

lar Wr for given two similar relation embeddings121

if their desirable entity ranks are similar. However,122

limited observation of entities due to sparse triplet123

data introduces a wide variety of possible entity-124

transformations and their corresponding embed-125

ding distributions, thereby diluting consistency. In126

this environment, the disconnected representation127

without any specific training and initialization pro-128

cess aiming to foster the consistency is exposed to129

the loss of useful inductive bias of similar relations.130

131
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Figure 1: Head entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF. Points in the same color are
relations in the same group. Clearly distinct groups are
selected from the original TransE (e)

Metric ET-SFBR EE-SFBR ET-RSCF EE-RSCF
Concentration Score (↑) 0.91 0.43 1.71 1.22
Inter Cluster Distance (↑) 0.27 0.40 0.99 0.75

Table 1: Concentration score and inter cluster distance
of SFBR and RSCF. Concentration score shows numer-
ical results of their in-cluster concentration and inter
cluster distance presents numerical results of the dis-
tance between different clusters.

Empirical Evidence for Disconnection Figure 1 132

shows the impact of the disconnection via T-SNE 133

visualization of head entity-transformations (ET) 134

and corresponding entity embeddings (EE) of 135

TransE-SFBR (SFBR) and TransE-RSCF (RSCF). 136

We split them into relation groups, defined by 137

clearly clustered relation groups in original TransE 138

that are presented in Figure 1 (e)1. An entity for EE 139

is randomly selected on FB15k-237. The ET and 140

EE distribution of SFBR are mostly dispersed be- 141

tween semantically different relation groups, which 142

implies the limit in inducting relation-semantics 143

consistency, while RSCF methods show more in- 144

cluster concentration. Also, the higher concentra- 145

tion score and inter cluster distance of RSCF in 146

Table 1 supports this phenomenon. See more de- 147

tailed distributions in Appendix J, and concentra- 148

tion score and inter cluster distance are in Ap- 149

pendix E. 150

Entity Embedding Concentration In particular, 151

SFBR additionally loses consistency under entity- 152

based regularization, DURA (Zhang et al., 2020b). 153

In KGE based on TDM, DURA has shown signif- 154

1For details about the relation group, please refer to the
Appendix G.
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(b) MRR of validation set (left) and Transformation
Scale (right)

Figure 2: Result of entity embedding concentration, and
performance and scale decrease in training. The results
are collected from ComplEX with DURA regularization.
DURA is applied in all epochs and SFBR is applied after
200 epochs (λ: regularization weight).

icant improvement enough to be inevitable. How-155

ever, ComplEX-SFBR with DURA reduces the156

scale of ET, causing a strong concentration of entire157

entity embeddings. Observed entities are relatively158

safe because the score distribution is continuously159

adjusted to predict correct triples, but unobserved160

entities are critically vulnerable to the concentra-161

tion causing indistinguishable score distributions162

for semantically different relations, implying crit-163

ically broken consistency. This cause of this phe-164

nomenon is simply derived in the following equa-165

tions of DURA in the original (above) (Zhang et al.,166

2020b) and DURA in SFBR (below).167

∑
p ||hiRj||22+||hi||22+||tk||22+||tkRj

⊤||22∑
p ||Wrj

hiRj||22+||Wrj hi||
2
2+||tk||22+||tkRj

⊤||22
(1)168

where p = (hi, rj , tk) ∈ S for total training data169

S, hi and tk are head and tail embeddings with170

indices and Rj is a matrix representing relation rj .171

In the equation 1, to minimize DURA loss, model172

always decreases the scale of ET (simple proof173

in Appendix D) and this causes indistinguishable174

score distribution in all score distributions.175

Empirical Evidence for Concentration Fig-176

ure 2 presents T-SNE visualization of score dis-177

tributions for selected queries. We select the re-178

lation r1 showing significantly low performance 179

in SFBR on FB15k-237, and select all queries (h, 180

r1, ?) for the relation r1 in the validation set. We 181

then generate score distribution for each query us- 182

ing ComplEX-RSCF, ComplEX-SFBR, ComplEX- 183

SFBR with normalization (SFBR (N)), and the 184

ComplEX-DURA. The results show that SFBR 185

concentrates embeddings into a small and clear 186

cluster, while the other methods are diversely dis- 187

persed. 188

Do We Need to Use DURA regularizer? Gener- 189

ating indistinguishable score distributions cannot 190

be merely resolved by handling the regularization 191

weight. Figure 2 (b) shows the valid MRR (left) of 192

SFBR and transformation scale (right) according 193

to the regularizer weight λ. In training until 200 194

epochs, largely weighted DURA shows significant 195

performance, but applying SFBR starts to decrease 196

MRR and the transformation scale. The results im- 197

ply that integrating SFBR with DURA causes per- 198

formance degradation with scale decrease ending 199

up in the entity embedding concentration. Also, the 200

result of SFBR with a small weighted DURA in- 201

dicates that simply excluding DURA on the TDM 202

will critically decrease the performance. 203

3 Method 204

Overview In this section, we propose Relation- 205

Semantics Consistent Filter (RSCF) to address the 206

consistency issues. In Figure 3, the overall filtering 207

process of RSCF, distinguished features compared 208

to SFBR, and their intended effects are illustrated. 209

RSCF represents the ET as an addition of original 210

embedding and its relation-specific change ( c⃝). 211

The change is generated by an affine transformation 212

from relation embedding ( a⃝), and then normalized 213

( b⃝), described as 214

er = (

b⃝︷︸︸︷
Np (

a⃝︷︸︸︷
rA ) + 1)︸ ︷︷ ︸
c⃝

⊗e (2) 215

where A ∈ Rn×n is shared affine transformation, 216

r and e ∈ Rn are relation and entity embedding. 217

Np(rA) = rA
∥rA∥p , and ⊗ is an elementwise 218

product. Detailed motivation and effects are as 219

follows. 220

Shared Affine Transformation for Consistency 221

Affine transformation maintains the parallelism of 222

two parallel line segments after the transforma- 223

tion and preserves the ratio of their lengths. This 224
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Figure 3: Overview of Relation-Semantics Consistent Filter and Its Effect. Its process (left) is illustrated on SFBR
coloring changed modules. The two effects (right) are shown by comparing SFBR and RSCF on ET and entity
embeddings.

property guarantees consistent mapping of relation225

embeddings at least on a line to generated vec-226

tors (part a⃝ in Equation 2). After normalization227

of the generated vectors (part b⃝), the consistency228

still holds because the monotonic increase of dis-229

tance between pairs is guaranteed even if the rate230

of lengths is not equally maintained (simple proof231

in Appendix C). The addition of one vector to the232

normalized change (part c⃝) does not alter the in-233

equality of distances of lines, so the consistency is234

again maintained. Overall, by applying the affine235

transformation, we can maintain the consistency be-236

tween relation embedding and its ET. To implement237

the affine transformation shared across relations,238

we simply adopt a linear transformation for A.239

Rooted Entity Transformation Sharing an240

affine transformation overall relations inevitably241

reduces the expressiveness of ET compared to242

entirely separate relation-specific transformations243

such as SFBR that has shown to yield positive re-244

sults (Liang et al., 2021). To mitigate the negative245

effects from this reduction, we decrease required246

expressiveness by learning only the changes in en-247

tity embeddings, rather than learning their diverse248

positions. Moreover, this rooted ET representation249

enables safely bounding changes via normaliza- 250

tion without altering original entity embeddings. 251

To implement it, we add one to the normalized 252

change Np(rA) and multiply it to the original 253

entity-embedding (part c⃝). 254

Relation Prediction to Facilitate Relation Se- 255

mantic Reflection to Relation Embeddings Be- 256

cause relation prediction makes semantically sim- 257

ilar relations form a cluster and can improve dis- 258

crimination of dissimilar relations (Zhang et al., 259

2021; Chen et al., 2021), we add RP (Chen et al., 260

2021) to RSCF, to facilitate relation semantic re- 261

flection to relation embeddings. Therefore, training 262

objective of RSCF can be written as: 263

L =
∑
p

ϕ(hr|r, tr) + ϕ(tr|hr, r) + λϕ(r|h, t) (3) 264

where ϕ is a loss function with a score function 265

and λ is a hyper-parameter that controls the contri- 266

bution of RP. In Table 2, difference between RSCF 267

and SFBR is presented. RSCF uses shared affine 268

transformation to reflect relation semantics to ET, 269

and RP (Chen et al., 2021) is only applied to RSCF. 270

Normalization of Change for Reducing Entity 271

Embedding Concentration The change gener- 272

4



Model Entity Transformation Training Objective
SFBR er = Wre+ b

∑
p ϕ(hr|r, tr) + ϕ(tr|hr, r)

RSCF er = (Np(rA) + 1)⊗ e
∑

p ϕ(hr|r, tr) + ϕ(tr|hr, r) + λϕ(r|h, t) (Chen et al., 2021)

Table 2: Difference between RSCF and SFBR, where er is transformed entity embedding that contains both head
entity hr and tail entity tr. ϕ is a loss function with a score function that depends on the model.

ated from the affine transformation is normalized273

by its length, expressed as Np(rA) in the part b⃝.274

This normalization alleviates critical entity embed-275

ding concentration via reducing scale decrease of276

transformed entity embeddings er in DURA reg-277

ularization. In our relation-specific rooted ET, the278

change of er is simply written as279

∥α⊗ e∥p (4)280

where α = Np(rA). This value has a maximum281

when α has the same direction to e. Since α is a282

unit vector in p-norm, α = e/∥e∥p . Then, the283

maximum change is284

∥ e

∥e∥p
⊗ e∥p = ∥ e2

∥e∥p
∥p =

∥e2∥p
∥e∥p

(5)285

In practice, the elements of embedding vectors are286

much less than 1 in most cases. Therefore, the max-287

imum change ∥e2∥p/∥e∥p is significantly lower288

than the unrestricted scale change in SFBR.289

Extension of RSCF The shared affine transfor-290

mation can be easily extended to Linear − 2 that291

is introduced in SFBR by extending shared affine292

transformation We ∈ Rn×n to We ∈ Rn×2n.293

Therefore, RSCF (Linear-2) can be written as:294

Wr
Linear-2 =

[
diag(w1) diag(w2)
diag(w3) diag(w4)

]
(6)295

where Wr
Linear-2 ∈ Rn×n is ET built from the296

relation-specific change vector Np(rA) + 1 of297

RSCF that is notated as concatenation of diago-298

nal values of w1,w2,w3,w4 ∈ Rn/2.299

4 Related Works300

Disconnection of Relation-Specific Transforma-301

tion in ETM ETM is a model that uses relation-302

specific ET to model various attributes of an en-303

tity. Models such as TransH (Wang et al., 2014),304

TransR (Lin et al., 2015), and TransD (Ji et al.,305

2015) are variants of TransE (Bordes et al., 2013),306

designed to handle complex relations by employ-307

ing hyperplanes, projection matrices, and dynamic308

mapping matrices for their transformation func-309

tions, respectively. To address the heterogeneity310

and imbalance presented in TransE and its vari- 311

ants, TransSparse (Ji et al., 2016) utilizes adaptive 312

sparse matrices to model different types of relations. 313

PairRE (Chao et al., 2021) performs a scaling op- 314

eration through the Hadamard product to the head 315

and tail entities. SFBR (Liang et al., 2021) and 316

AT (Yang et al., 2021) present a universal entity 317

transformation applicable to both DBM and TDM. 318

To handle complex relations in TDM, STaR (Li 319

and Yang, 2022) integrates scaling, translation, and 320

rotation operation for semantic matching scoring 321

functions. ReflectE (Zhang et al., 2022a) models 322

the transformation function using relation-specific 323

dynamic reflection hyperplanes. CompoundE (Ge 324

et al., 2023) applied compound operation to both 325

head and tail entities. However, these models have 326

no chance for inductive bias sharing due to the 327

separate parameter of ET. 328

Entity Embedding Concentration in ETM 329

SFBR (Liang et al., 2021) applies ET to both DBM 330

and TDM. However, it also suffers from inductive 331

bias loss due to the separate parameter of ET and 332

indistinguishable score distribution because of the 333

entity embedding concentration. 334

Dataset Entities Relations Triples
Train Valid Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 3: Statistics of KGC Benchmark Datasets

5 Experiments 335

5.1 Settings 336

Dataset To evaluate our proposed RSCF 337

models, we consider three KGs datasets: 338

WN18RR (Toutanova and Chen, 2015), FB15k- 339

237 (Dettmers et al., 2018), and YAGO3- 340

10 (Mahdisoltani et al., 2013). The statistics for the 341

three benchmark datasets are shown in Table 3. 342

Evaluation Protocol We evaluated the perfor- 343

mance of KGC following the filtered setting (Bor- 344

des et al., 2013). The filtered setting removes all 345

valid triples from the candidate set when evaluat- 346

ing the test set, except for the predicted test triple. 347
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Distance-Based Model
with Entity Transformation

WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

TransH (Wang et al., 2014) † .220 .042 .495 .299 .201 .488
TransR (Lin et al., 2015) † .219 .050 .498 .309 .220 .489
TransD (Ji et al., 2015) † .211 .087 .505 .306 .218 .486
TransE-AT (Yang et al., 2021) .479 .434 .571 .351 .257 .538
RotatE-AT (Yang et al., 2021) .488 .438 .583 .348 .253 .537
PairRE (Chao et al., 2021) - - - .351 .256 .544
ReflectE (Zhang et al., 2022a) .488 .450 .559 .358 .263 .546
CompoundE (Ge et al., 2023) .491 .450 .576 .357 .264 .545
TransE-SFBR (Diag) (Liang et al., 2021) .242 .028 .548 .338 .240 .538
TransE-SFBR (Linear-2) (Liang et al., 2021) .263 .110 .495 .354 .258 .545
RotatE-SFBR (Diag) (Liang et al., 2021) .489 .437 .593 .351 .254 .549
RotatE-SFBR (Linear-2) (Liang et al., 2021) .490 .447 .576 .355 .258 .553
TransE-RSCF .256 .050 .551 .356 .258 .552
TransE-RSCF (Linear-2) .436 .378 .531 .359 .264 .549
RotatE-RSCF .492 .447 .582 .360 .264 .555
RotatE-RSCF (Linear-2) .496 .455 .581 .362 .267 .554

Table 4: Test performance of DBM-based KGC on FB15k-237 and WN18RR. Bold indicates the best result, and
underlined signifies the second best result. (†: reproduced result from Zhang et al. (2020a)).

Tensor Decomposition Model
with Eentity Transformation

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

ComplEX-N3 + AT (Yang et al., 2021) .500 .455 .592 .369 .273 .559 .582 .507 .712
STaR-DURA (Li and Yang, 2022) .497 .452 .583 .368 .273 .557 .585 .513 .713
CP-DURA + SFBR † .479 .441 .555 .368 .275 .557 .581 .510 .707
RESCAL-DURA + SFBR † .497 .454 .576 .369 .277 .550 .578 .503 .712
ComplEX-DURA + SFBR † .491 .450 .571 .373 .277 .563 .587 .517 .715
CP-DURA + RSCF .482 .445 .556 .379 .287 .564 .585 .515 .711
RESCAL-DURA + RSCF .501 .460 .581 .381 .290 .563 .582 .509 .714
ComplEX-DURA + RSCF .497 .454 .581 .389 .296 .575 .589 .518 .717

Table 5: Test performance of TDM-based KGC on FB15k-237, WN18RR, and YAGO3-10. Bold indicates the best
result, and underlined signifies the second best result. (†: reproduced results whose reference results in Appendix I).

We adopt the MRR and Hits@N to compare the348

performance of different KGE models. MRR is the349

average of the inverse mean rank of the entities and350

Hits@N is the proportion of correct entities ranked351

within top k.352

Baselines and Training Protocol We compare353

the performance of RSCF with the two categories354

of KGE models: 1) DBM with entity transfor-355

mation including TransH (Wang et al., 2014),356

TransR (Lin et al., 2015), TransD (Ji et al., 2015),357

PairRE (Chao et al., 2021), AT (Yang et al., 2021),358

SFBR (Liang et al., 2021), ReflectE (Zhang et al.,359

2022a) and CompoundE (Ge et al., 2023), 2) TDM360

with entity transformation including STaR (Li361

and Yang, 2022), AT (Yang et al., 2021) and362

SFBR (Liang et al., 2021) Because RSCF is a mod-363

ule that is plugged in based on existing models, we364

used DBM, including TransE, RotatE, and TDM,365

including CP, RESCAL, and ComplEX as base366

models. Examples of applying RSCF to based mod-367

els are given in Appendix A2.368

2Implementation details are given in Appendix F

5.2 Performance 369

Performance on Distance-Based Model Table 4 370

shows the performance comparison of the RSCF 371

and DBMs with ET on WN18RR and FB15k-237. 372

Overall, RSCF shows similar or higher perfor- 373

mance than SFBR in most settings. Even in com- 374

parison with the other DBMs, RotatE-RSCF signif- 375

icantly outperforms CompoundE, the state-of-the- 376

art DBM method. 377

Performance on Tensor Decomposition Model 378

Table 5 shows the performance comparison in 379

TDMs. Compared to SFBR, RSCF shows con- 380

sistent performance improvements in all datasets 381

and settings. Furthermore, in performance com- 382

parison with the other models, ComplEX-DURA- 383

RSCF outperforms STaR and ComplEX-N3+AT in 384

FB15k-237 and YAGO3-10. 385

Ablation Study To verify the effectiveness of 386

each component of RSCF, we conduct ablation 387

studies on the RSCF in Table 6. In this table, RSCF 388

shows the best performance compared with other 389

four ablated models in both TransE and ComplEX, 390
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237.

Model TransE-RSCF ComplEX-RSCF
MRR H@10 MRR H@10

w/o Affine Transformation .354 .548 .386 .573
w/o Normalize .353 .541 .377 .567
w/o RP (Chen et al., 2021) .349 .549 .375 .565
w/o Affine & Normalize .338 .531 .385 .571
RSCF .356 .552 .389 .575

Table 6: Results of an Ablation study of RSCF on
FB15k-237 datasets, TransE and ComplEX are used
as base models. MRR and H@10 are used for perfor-
mance comparison.

which suggests that each component of RSCF con-391

tributes to the effectiveness of RSCF. Especially,392

Figure 4 shows that w/o normalization can signifi-393

cantly reduce model performance and w/ normal-394

ization maintain model performance in both RSCF395

and SFBR in ComplEX, indicating that normaliza-396

tion is necessary to maintain the performance of397

models that use DURA regularizer3.398

Relation-Wise Performance on Relation Fre-399

quency To demonstrate the generality of apply-400

ing the RSCF regardless of relation frequency, we401

sorted relations by their frequency in the train-402

ing set and divided them into ten sets. Each set403

has the same number of relations. Figure 5 above404

shows the MRR of the validation set for each set in405

TransE, RSCF and SFBR. The results showed that406

RSCF outperformed SFBR and TransE in all sets,407

demonstrating the robustness of RSCF to relation408

frequency and showing that RSCF can be applied409

without trade-off between high and low frequency410

of relations.411

Performance on Semantically Distinguished Re-412

lation Groups Figure 5 below presents the vali-413

dation MRR for each relation group, defined in Fig-414

ure 1 (e). RSCF outperformed SFBR and TransE415

in all groups. These results show that RSCF can416

be utilized without specific bias to the semantics417

3Detailed description of SFBR (N) is given in Appendix B

Figure 5: KGC performance of relation set that is sorted
by their frequency (above) and groups of semantically
similar relations observed in Figure 1 (e) (below) on
FB15k-237

of relations and indicate that reflecting the rela- 418

tion semantics into the transformation function can 419

improve model performance. 420

Qualitative Example Analysis For qualitative 421

analysis, Table 7 presents sampled queries, their 422

correct answers, related triples with the sample 423

queries, and the ranks obtained by RSCF and SFBR. 424

Relations in sample queries and related triples be- 425

long to the same relation group (people place). 426

In Table 7, RSCF shows enhanced performance 427

compared to SFBR, indicating that RSCF can use 428

trained bias between semantically similar relations. 429

5.3 In-Depth Analysis 430

Relation-Semantics Consistency of ET and EE 431

Figure 1 shows ET and their corresponding EE 432

of SFBR and RSCF via T-SNE. RSCF represents 433

a more concentrated cluster compared to SFBR, 434

which indicates that similar relations have similar 435

ET and EE in RSCF; in other words, RSCF satisfies 436

relation-semantic consistency. 437

Embedding Scale and Score Distribution Recov- 438

ery Figure 6 presents transformation scale and 439

final entity embedding scale over epochs on FB15k- 440

237. ComplEX is used as base model. Following 441

the approach of SFBR (Liang et al., 2021), we 442

applied the DURA regularizer in all epochs, and 443

RSCF, SFBR, and SFBR (N) are plugged in after 444

200 epochs. In the results, SFBR shows a decrease 445
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Query (h, r, ?) | Correct Answer Related Triples in Training Set Rank(R/S)

(Guillermo del Toro, /people/person/place_of_birth, ?) | Guadalajara
(Guillermo del Toro, /people/person/places_lived./people/place_lived/location, Jalisco) 14 / 35
(Guillermo del Toro, /people/person/nationality, Mexico)

(Shawn Pyfrom, /people/person/places_lived./people/place_lived/location, ?) | Florida
(Shawn Pyfrom, /people/person/place_of_birth, Tampa) 4 / 32
(Shawn Pyfrom, /people/person/nationality, United States of America)

(Walt Whitman, /people/person/places_lived./people/place_lived/location, ?) | New York
(Walt Whitman, /people/deceased_person/place_of_death, Camden) 9 / 21
(Walt Whitman, /people/person/nationality, United States of America)

Table 7: Example KGC results of RSCF compared to SFBR (R: rank of RSCF, S: rank of SFBR). Related triples
show that similar relations to the queries have similar entities to the correct answers in the training set.
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Figure 6: Entity transformation scale (left) and final
entity embedding scale (right) of RSCF, SFBR (N),
SFBR, and ComplEX-DURA over epochs on FB15k-
237 DURA is applied in all epochs and SFBR and RSCF
is applied after 200 epochs.

in both transformation scale and final entity embed-446

ding scale. In contrast, RSCF and SFBR (N) show447

almost no decrease in the transformation scale, and448

the final entity embedding scale is maintained, indi-449

cating that both RSCF and SFBR (N) can maintain450

the embedding scale due to normalization. Further-451

more, in Figure 4, MRR decreases in SFBR and452

RSCF w/o normalize, while it increases in both453

RSCF and SFBR (N). This result implies that en-454

tity embedding concentration negatively affects to455

model performance.456

To investigate the detailed change of score dis-457

tribution that directly affects performance, we ran-458

domly sample four queries and present the score459

distribution of selected queries in Figure 7. In the460

results, SFBR shows near zero scores for most en-461

tities, and distributions for the queries are signif-462

icantly similar. Applying normalization or RSCF,463

the diversity of scores is recovered as the original464

base model.465

Impact on Over-Smoothed Queries To assess466

the impact of indistinguishable score distribution,467

we conducted a performance evaluation for a se-468

lected relation that shows critical entity embed-469

ding concentration in Figure 2. Table 8 presents470

the validation performance for all queries associ-471

ated with the selected relation. SFBR shows signif-472

icantly lower performance than RSCF, SFBR (N),473

and the ComplEX-DURA. This result implies that474

indistinguishable score distribution strongly affects475

Figure 7: Score distribution of all entities for randomly
selected queries from Figure 2 (a)

to the accurate prediction of SFBR, simply apply- 476

ing normalization and RSCF gradually recovers 477

it. 478

Model MRR H@10 Concentration
ComplEX-RSCF .375 .609 ✗
ComplEX-SFBR (N) .366 .587 ✗
ComplEX-SFBR .267 .522 ✓
ComplEX-DURA .347 .609 ✗

Table 8: KGC performance of all queries associated
with the relation that shows strong concentration of en-
tity embedding in SFBR. Concentration presents entity
embedding concentration.

6 Conclusion 479

In this paper, we address the limit in inducing 480

relation-semantics consistency, implying that se- 481

mantically similar relations have similar entity 482

transformation, on entity transformation models 483

for KGC, especially SFBR. We clarify two causes, 484

disconnected entity transformation representation 485

and entity embedding concentration, and provide 486

a novel relation-semantics consistent filter (RSCF) 487

method using shared affine transform to generate 488

the change of entity embedding, normalize it and 489

add it to the embedding. This method significantly 490

improves the performance of KGC compared to 491

state-of-the-art KGE methods for overall relations. 492
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7 Limitations493

RSCF uses the simplest form of affine transforma-494

tion, but it has a limit of expressing all changes495

across all embeddings, which requires more ad-496

vanced approach. Future work should extend the497

method to additional KGE models to enhance gen-498

erality.499
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A Special Cases with RSCF 693

Let hr, tr are transformed head and tail embed- 694

ding by RSCF, then the score function dr(h, r) of 695

TransE-RSCF can be expressed as: 696

dr(h, r) = ∥hr + r− tr∥ (7) 697

The score function dr(h, r) of RotatE-RSCF can 698

be expressed as: 699

dr(h, r) = ∥hr ◦ r− tr∥ (8) 700

The score function dr(h, r) of RESCAL-RSCF can 701

be expressed as: 702

dr(h, r) = ∥hrrt∥ (9) 703

In TDM, tail embeddings are not transformed ac- 704

cording to the settings of SFBR in order to reduce 705

computational costs. 706
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B SFBR with Normalization707

To prevent entity embedding concentration, We708

apply normalization to SFBR that is presented as709

SFBR (N). Let Wr is relation-specific ET using710

separate parameters, then SFBR with normalization711

can be written as:712

Np(Wr) + 1 (10)713

where Np(Wr) = Wr
∥Wr∥p . Additionally, trans-714

formed entity embedding can be described as:715

er = (Np(Wr) + 1)e (11)716

where e is a original entity embedding.717

C Proof of Consistency of Normalized718

Change719

For any relation embedding r1, r2, r3 on a line and720

their mapped ET T1, T2, T3 by an affine transform,721

then the consistency holds. Let T2 is on T1T3, and722

r1r2 is shorter r2r3. Then, T1T2 < T2T3 by the723

properties of afffine transformation. Because T2724

is an interpolated point of T1 and T3, ∠T1OT2 <725

∠T2OT3. After normalization, let ETs projected726

on T ′
1, T ′

2, and T ′
3. T ′

1T
′
2 =

√
2− 2 cos∠T ′

1OT ′
2,727

and T ′
2T

′
3 =

√
2− 2 cos∠T ′

2OT ′
3 by simple co-728

sine rule. Cosine function is monotonically decreas-729

ing for angles less than π. Therefore, T ′
1T

′
2 < T ′

2T
′
3730

D Proof of scale decrease of ET731

The gradient of wrj ,n (n-th element of wrj ) in732

DURA can be calculated as:733 ∑
p

dL

dwrj ,n
||wrj,nhi,nrj,n||

2
2 + ||wrjnhi,n||22

=
∑
p

dL

dwrj ,n
w2
rj,n

(hi,nrj,n)
2 + w2

rjnhi,n
2

=
∑
p

2wrj,n(hi,nrj,n)
2 + 2wrjnhi,n

2

(12)734

The gradient of ET shows that the gradient of wrj ,n735

has always same sign with wrj ,n parameters. There-736

fore, gradient descent always reduces the scale of737

the parameters regardless of their sign.738

E Measurement of Cluster Concentration739

To measure cluster concentration, we defined con-740

centration score as follows:741

n∑
k

m∑
i

||(ki − Ck)||
n||Ck||

(13)742

where k is clear and mutually decoupled clusters 743

and ki is i-th vector embedding of ET in group k 744

and Ck is centroid of cluster k that can be calcu- 745

lated as: 746

Ck =

∑m
i ki
m

(14) 747

In the equation 13, the vector norm of C (||C||) is 748

used because of the relative concentration score for 749

clusters. We use the reciprocal of equation 13 as 750

concentration score. Also to evaluate the distance 751

between different clusters we defined inter cluster 752

distance score as follows: 753

n∑
k

||(Ck − Ckc)||∑m
i ||ki||

(15) 754

where Ckc represent the centroid that is closest to 755

Ck, and it can be written as: 756

Ckc = min
k ̸=j

{||Ck − Cj ||} (16) 757

In Equation 15, the norm of the cluster, which is 758

calculated as the sum of the elements in the cluster, 759

is used for the relative inter cluster distance. 760

F Implementation Details 761

When training the RSCF, we followed the experi- 762

mental settings described in the SFBR (Liang et al., 763

2021). Following the setting of SFBR, RSCF and 764

RSCF (Linear-2) are applied to both head and tail 765

entities in DBM, and RSCF is applied to the only 766

head entity in TDM. The hyper-parameters in DBM 767

are consistent with the hyper-parameters in Sun 768

et al. (2018), and hyper-parameters of TDM are 769

consistent with the hyper-parameters in Zhang et al. 770

(2020b). The presented results of RSCF represent 771

the best performance among the three runs for each 772

model. Experiments for the DBM were conducted 773

on an NVIDIA 3090 GPU with 24GB of memory, 774

while experiments for the TDM were conducted on 775

an NVIDIA 2080TI with 11GB. 776

G Relation Groups for Entity 777

Transformation 778

Figure 1 (e) illustrates the relation embedding of 779

TransE. We select ten relation groups whose rela- 780

tion embeddings build clear and mutually decou- 781

pled clusters, which implies semantically distin- 782

guished relation groups. The other relations are 783

plotted as grey points. The relations correspond- 784

ing to each group are listed in Table 12. Note that 785

similar relations belong to the same group. 786
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Embedding based Model WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

TransE (Bordes et al., 2013) .226 - .501 .294 - .465
DistMult (Yang et al., 2015) .430 .390 .490 .241 .155 .419
ComplEX (Trouillon et al., 2016) .440 .410 .510 .247 .158 .428
RotatE (Sun et al., 2018) .476 .428 .571 .338 .241 .533
ROTH (Chami et al., 2020) .496 .449 .586 .348 .252 .540
ComplEX-DURA (Zhang et al., 2020b) .491 .449 .571 .371 .276 .560
FieldE (Nayyeri et al., 2021) .48 .44 .57 .36 .27 .55
KGTuner (Zhang et al., 2022c) .484 .440 .562 .352 .263 .530
RotatE-IAS (Yang et al., 2022) .483 .467 .570 .339 .242 .532
CAKE (Niu et al., 2022) - - - .321 .227 .515
STaR-DURA (Li and Yang, 2022) .497 .452 .583 .368 .273 .557
ExpressivE (Pavlović and Sallinger, 2022) .482 .407 .619 .350 .256 .535
SEPA (Gregucci et al., 2023) .500 .454 .591 .360 .264 .549
CompoundE (Ge et al., 2023) .491 .450 .576 .357 .264 .545
ComplEX-DURA + RSCF (Ours) .497 .454 .581 .389 .296 .575

Table 9: Test performance in broader approaches with different constraints based on embedding based KGC on
FB15k-237 and WN18RR. Bold indicates the best result, and underline indicates the second best result.

Tensor Decomposition Model WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

CP-DURA + SFBR(R) .479 .441 .555 .368 .275 .557 .581 .510 .707
CP-DURA + SFBR (Liang et al., 2021) .485 .447 .561 .370 .274 .563 .582 .510 .711
RESCAL-DURA + SFBR(R) .497 .454 .576 .369 .277 .550 .578 .503 .712
RESCAL-DURA + SFBR (Liang et al., 2021) .500 .458 .581 .369 .276 .555 .581 .509 .712
ComplEX-DURA + SFBR(R) .491 .450 .571 .373 .277 .563 .587 .517 .715
ComplEX-DURA + SFBR (Liang et al., 2021) .498 .454 .584 .374 .277 .567 .584 .512 .712

Table 10: Comparison of reproduced SFBR and SFBR reported in Liang et al. (2021)

(a) ET-SFBR (b) ET-RSCF

(c) EE-SFBR (d) EE-RSCF

position

currency

film production

film actor

people place

film place

music role

organization place

producer type

award category

Figure 8: Tail entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF.

H Performance Comparison of RSCF787

with Other Knowledge Graph788

Embedding Models789

Table 9 shows the comparison of the test perfor-790

mance of the RSCF and embedding based model791

on WN18RR and FB15k-237. ComplEX-DURA +792

RSCF outperforms all other models in FB15k-237793

and shows competitive results in WN18RR.794

Metric ET-SFBR EE-SFBR ET-RSCF EE-RSCF
Concentration Score (↑) 0.19 0.34 1.01 1.63
Inter Cluster Distance (↑) 0.46 0.46 0.69 0.52

Table 11: Concentration score and inter cluster distance
of tail entity transformation and entity embedding of
SFBR and RSCF.

I Reproduce of SFBR in TDM 795

We attempted to reproduce SFBR. During the repro- 796

duction process, we designed and executed the ex- 797

periments based on the information provided in the 798

SFBR and the publicly available datasets. Further- 799

more, in an attempt to clarify unclear aspects, we 800

tried to communicate with the authors through mul- 801

tiple emails. However, the performance reported in 802

the paper was not achieved. Table 10 shows repro- 803

duced SFBR and SFBR that is reported in Liang 804

et al. (2021). 805

J Distribution of Tail 806

Entity-Transformations and 807

Corresponding Entity Embedding 808

Figure 8 presents the T-SNE visualization of tail 809

ET and corresponding EE. Even in the tail, RSCF 810

shows more in-cluster concentration. Also, in Ta- 811

ble 11, RSCF exhibits higher concentration scores 812

and inter class distance compared to SFBR. 813
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Relation Group Relations

position

/sports/sports_team/roster./basketball/basketball_roster_position/position

/soccer/football_team/current_roster./soccer/football_roster_position/position

/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position

/sports/sports_team/roster./american_football/football_historical_roster_position/position_s

/sports/sports_team/roster./baseball/baseball_roster_position/position

/sports/sports_team/roster./american_football/football_roster_position/position

/american_football/football_team/current_roster./sports/sports_team_roster/position

/soccer/football_team/current_roster./sports/sports_team_roster/position

currency

/location/statistical_region/gdp_nominal_per_capita./measurement_unit/dated_money_value/currency

/film/film/estimated_budget./measurement_unit/dated_money_value/currency

/business/business_operation/operating_income./measurement_unit/dated_money_value/currency

/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency

/business/business_operation/revenue./measurement_unit/dated_money_value/currency

/business/business_operation/assets./measurement_unit/dated_money_value/currency

/location/statistical_region/rent50_2./measurement_unit/dated_money_value/currency

/education/university/local_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency

/education/university/domestic_tuition./measurement_unit/dated_money_value/currency

/education/university/international_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency

/location/statistical_region/gni_per_capita_in_ppp_dollars./measurement_unit/dated_money_value/currency

/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency

film production

/film/film/costume_design_by

/film/film/executive_produced_by

/award/award_winning_work/awards_won./award/award_honor/award_winner

/tv/tv_program/program_creator

/film/film/film_art_direction_by

/film/film/music

/film/film/film_production_design_by

/film/film/other_crew./film/film_crew_gig/crewmember

/film/film/produced_by

/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor

/film/film/edited_by

/film/film/written_by

/film/film/personal_appearances./film/personal_film_appearance/person

/film/film/story_by

/film/film/cinematography

/film/film/dubbing_performances./film/dubbing_performance/actor

/film/film/production_companies

film actor

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

/tv/tv_network/programs./tv/tv_network_duration/program

/film/special_film_performance_type/film_performance_type./film/performance/film

/film/director/film

/tv/tv_personality/tv_regular_appearances./tv/tv_regular_personal_appearance/program

/film/film_set_designer/film_sets_designed

/tv/tv_writer/tv_programs./tv/tv_program_writer_relationship/tv_program

/film/actor/film./film/performance/film

/tv/tv_producer/programs_produced./tv/tv_producer_term/program

/media_common/netflix_genre/titles

/film/film_distributor/films_distributed./film/film_film_distributor_relationship/film
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/film/film_subject/films

people place

/music/artist/origin

/people/person/places_lived./people/place_lived/location

/people/person/place_of_birth

/government/politician/government_positions_held./government/government_position_held/jurisdiction_of_office

/people/deceased_person/place_of_death

/people/person/nationality

/people/deceased_person/place_of_burial

/people/person/spouse_s./people/marriage/location_of_ceremony

film place

/film/film/distributors./film/film_film_distributor_relationship/region

/film/film/featured_film_locations

/film/film/release_date_s./film/film_regional_release_date/film_release_region

/film/film/release_date_s./film/film_regional_release_date/film_regional_debut_venue

/film/film/country

/film/film/runtime./film/film_cut/film_release_region

/tv/tv_program/country_of_origin

/film/film/film_festivals

music role

/music/group_member/membership./music/group_membership/role

/music/artist/track_contributions./music/track_contribution/role

/music/artist/contribution./music/recording_contribution/performance_role

organization place

/organization/organization/headquarters./location/mailing_address/state_province_region

/organization/organization/place_founded

/user/ktrueman/default_domain/international_organization/member_states

/organization/organization/headquarters./location/mailing_address/country

/people/marriage_union_type/unions_of_this_type./people/marriage/location_of_ceremony

/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_location

/government/legislative_session/members./government/government_position_held/district_represented

/organization/organization/headquarters./location/mailing_address/citytown

producer type

/tv/tv_producer/programs_produced./tv/tv_producer_term/producer_type

/film/film/other_crew./film/film_crew_gig/film_crew_role

/tv/tv_program/tv_producer./tv/tv_producer_term/producer_type

award category

/award/award_category/winners./award/award_honor/award_winner

/award/award_category/winners./award/award_honor/ceremony

/award/award_category/category_of

/award/award_category/nominees./award/award_nomination/nominated_for

/award/award_category/disciplines_or_subjects

Table 12: Clearly distinct relation groups that are selected from original TransE
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