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Abstract

In knowledge graph embedding, leverag-
ing relation-specific entity-transformation has
markedly enhanced performance. However,
this approach lacks assurance for consistent
changes in relation and entity embeddings due
to the disconnected entity-transformation rep-
resentation, missing valuable inductive bias
among semantically similar relations. Further-
more, a generalized plug-in approach as a
SFBR disrupts this consistency through exces-
sive concentration of entity embeddings un-
der entity-based regularization, generating in-
distinguishable score distributions among rela-
tions. To tackle these challenges, we introduce
Relation-Semantics Consistent Filter (RSCF),
characterized by three features: 1) shared affine
transformation of relation embeddings across
all relations, 2) rooted entity-transformation
that adds an entity embedding to its change
represented by the transformed vector, and 3)
normalization of the change to prevent scale re-
duction. In knowledge graph completion tasks
with distance-based and tensor decomposition
models, RSCF notably enhances performance
across all relations, regardless of their fre-
quency.

1 Introduction

Knowledge graphs (KGs) play crucial roles in a
wide area of machine learning and its applica-
tions (Liu et al., 2021; Zhang et al., 2022b; Zhou
etal., 2022; Fang et al., 2017; Gao et al., 2019; Cao
et al., 2019; Geng et al., 2022; Wang et al., 2019).
KGs, even on a large scale, still suffer from a lack
of data. For example, 71% of people in Freebase
have no birthplace information, and 75% have no
nationality information (Dong et al., 2014). This in-
completeness issue has been extensively studied as
a task to predict missing entity information, called
as knowledge graph completion (KGC). An effec-
tive approach for KGC is knowledge graph embed-
ding (KGE) that learns vectors to represent entities

and relations in a low dimensional space to mea-
sure the validity of triples. Two primary approaches
to determine the validity are distance-based model
(DBM) using the Minkowski distance and tensor
decomposition model (TDM) regarding KGC as a
tensor completion problem (Zhang et al., 2020b).
A recently tackled issue of the models is to learn
only single embedding for an entity, which is insuf-
ficient to express its various attributes in complex
relation patterns such as 1-N, N-1 and N-N (Wang
et al., 2014; Chao et al., 2021; Ge et al., 2023).
A proposed and effective approach for this issue
is entity-transformation based model (ETM) that
uses relation-specific transformations to generate
different entity embeddings for relations from their
original embedding, enabling more complex en-
tity and relation learning (Liang et al., 2021; Wang
et al., 2014; Chao et al., 2021; Ge et al., 2023).
ETMs, however, have a limit to learning useful
inductive bias that could be obtained in seman-
tically similar relations. For example, Semantic
Filter Based on Relations (SFBR), a recently pro-
posed method plugged in to various KGE mod-
els (Liang et al., 2021), assigns mutually discon-
nected relation-specific transformation to each rela-
tion. Furthermore, under a significantly useful reg-
ularizer such as DURA (Zhang et al., 2020b), espe-
cially on TDM, the method critically concentrates
entity embeddings, including unobserved entities
and generates indistinguishable score distributions
across relations. Both issues are interpreted as lim-
ited learning an important and implicit inductive
bias that semantically similar relation embeddings
have similar relation-specific entity-transformation,
called relation-semantics consistency in this paper.
To alleviate the issues, we present a simple
and effective method Relation-Semantically Con-
sistent Filter (RSCF), incorporating three features:
1) shared affine transformation for consistency
mapping of relations to entity-transformations,
2) rooted entity-transformation representation us-



ing the affine transformation to generate only the
change of an entity-embedding subsequently added
by this embedding and 3) normalization of the
change for preventing critical scale reduction break-
ing consistency. Our contributions are as follows.

* We raise and clarify two problems of entity-
transformation models in learning inductive
bias in terms of relation-semantics consis-
tency.

* We propose a novel and significantly outper-
forming relation-semantics consistent filter
(RSCF) to induce the consistency as a plug-in
method to KGE models.

* We provide experimental results on common
benchmarks of KGC, and in-depth analysis to
verify the causes and derived effects.

2 Loss of Useful Inductive Bias

Because semantically similar relations have similar
embedding (Yang et al., 2015), we define that map-
ping relation embeddings to entity-transformations
is relation-semantically consistent if and only if
any relation pairs (71, 2) and shorter pair (r1,73)
for a given 7; are mapped to entity-transformation
pair (T, T5) and shorter pair (71, T3), respectively.
This consistency serves as an inductive bias imply-
ing that semantically similar relations have similar
entity-transformations and, therefore, overall simi-
lar entity embeddings. Two phenomena of losing
this inductive bias and their causes are as follows.

Disconnection of Entity-Transformations Dis-
connected entity-transforamtions loosely use this
bias, especially under lack of triplet data.
In existing methods, relation-specific entity-
transformations use separate parameters such as
hy, = W,h and t, = W,t (Liang et al., 2021),
where h, t, are head and tail entity embedding, and
W, is a relation-specific transformation. Despite
the disconnection, the methods can still learn simi-
lar W, for given two similar relation embeddings
if their desirable entity ranks are similar. However,
limited observation of entities due to sparse triplet
data introduces a wide variety of possible entity-
transformations and their corresponding embed-
ding distributions, thereby diluting consistency. In
this environment, the disconnected representation
without any specific training and initialization pro-
cess aiming to foster the consistency is exposed to
the loss of useful inductive bias of similar relations.
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Figure 1: Head entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCEF, (c) and (d) indicate
EE of SFBR and RSCF. Points in the same color are
relations in the same group. Clearly distinct groups are
selected from the original TransE (e)

Metric ET-SFBR EE-SFBR ET-RSCF EE-RSCF
Concentration Score (1) 0.91 0.43 1.71 1.22
Inter Cluster Distance (1) 0.27 0.40 0.99 0.75

Table 1: Concentration score and inter cluster distance
of SFBR and RSCF. Concentration score shows numer-
ical results of their in-cluster concentration and inter
cluster distance presents numerical results of the dis-
tance between different clusters.

Empirical Evidence for Disconnection Figure 1
shows the impact of the disconnection via T-SNE
visualization of head entity-transformations (ET)
and corresponding entity embeddings (EE) of
TransE-SFBR (SFBR) and TransE-RSCF (RSCF).
We split them into relation groups, defined by
clearly clustered relation groups in original TransE
that are presented in Figure 1 (e)'. An entity for EE
is randomly selected on FB15k-237. The ET and
EE distribution of SFBR are mostly dispersed be-
tween semantically different relation groups, which
implies the limit in inducting relation-semantics
consistency, while RSCF methods show more in-
cluster concentration. Also, the higher concentra-
tion score and inter cluster distance of RSCF in
Table 1 supports this phenomenon. See more de-
tailed distributions in Appendix J, and concentra-
tion score and inter cluster distance are in Ap-
pendix E.

Entity Embedding Concentration In particular,
SFBR additionally loses consistency under entity-
based regularization, DURA (Zhang et al., 2020b).
In KGE based on TDM, DURA has shown signif-

'For details about the relation group, please refer to the
Appendix G.

(e) Relation Embedding of TransE
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Figure 2: Result of entity embedding concentration, and
performance and scale decrease in training. The results
are collected from ComplEX with DURA regularization.
DURA is applied in all epochs and SFBR is applied after
200 epochs (A: regularization weight).

icant improvement enough to be inevitable. How-
ever, ComplEX-SFBR with DURA reduces the
scale of ET, causing a strong concentration of entire
entity embeddings. Observed entities are relatively
safe because the score distribution is continuously
adjusted to predict correct triples, but unobserved
entities are critically vulnerable to the concentra-
tion causing indistinguishable score distributions
for semantically different relations, implying crit-
ically broken consistency. This cause of this phe-
nomenon is simply derived in the following equa-
tions of DURA in the original (above) (Zhang et al.,
2020b) and DURA in SFBR (below).
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where p = (h;,rj,t) € S for total training data
S, h; and ty are head and tail embeddings with
indices and E is a matrix representing relation ;.
In the equation 1, to minimize DURA loss, model
always decreases the scale of ET (simple proof
in Appendix D) and this causes indistinguishable
score distribution in all score distributions.

Empirical Evidence for Concentration Fig-
ure 2 presents T-SNE visualization of score dis-
tributions for selected queries. We select the re-

lation 7; showing significantly low performance
in SFBR on FB15k-237, and select all queries (h,
r1, 7) for the relation r; in the validation set. We
then generate score distribution for each query us-
ing ComplEX-RSCF, ComplEX-SFBR, ComplEX-
SFBR with normalization (SFBR (N)), and the
ComplEX-DURA. The results show that SFBR
concentrates embeddings into a small and clear
cluster, while the other methods are diversely dis-
persed.

Do We Need to Use DURA regularizer? Gener-
ating indistinguishable score distributions cannot
be merely resolved by handling the regularization
weight. Figure 2 (b) shows the valid MRR (left) of
SFBR and transformation scale (right) according
to the regularizer weight A. In training until 200
epochs, largely weighted DURA shows significant
performance, but applying SFBR starts to decrease
MRR and the transformation scale. The results im-
ply that integrating SFBR with DURA causes per-
formance degradation with scale decrease ending
up in the entity embedding concentration. Also, the
result of SFBR with a small weighted DURA in-
dicates that simply excluding DURA on the TDM
will critically decrease the performance.

3 Method

Overview In this section, we propose Relation-
Semantics Consistent Filter (RSCF) to address the
consistency issues. In Figure 3, the overall filtering
process of RSCE, distinguished features compared
to SFBR, and their intended effects are illustrated.
RSCEF represents the ET as an addition of original
embedding and its relation-specific change ((©)).
The change is generated by an affine transformation
from relation embedding (@), and then normalized
(®), described as

® ®
A
er=(Np,(rA)+1)®e (2)

©

where A € R™*"™ is shared affine transformation,
r and e € R" are relation and entity embedding.
N,(rA) = ﬁ, and ® is an elementwise
product. Detailed motivation and effects are as
follows.

Shared Affine Transformation for Consistency
Affine transformation maintains the parallelism of
two parallel line segments after the transforma-
tion and preserves the ratio of their lengths. This
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Figure 3: Overview of Relation-Semantics Consistent Filter and Its Effect. Its process (left) is illustrated on SFBR
coloring changed modules. The two effects (right) are shown by comparing SFBR and RSCF on ET and entity

embeddings.

property guarantees consistent mapping of relation
embeddings at least on a line to generated vec-
tors (part @ in Equation 2). After normalization
of the generated vectors (part (b)), the consistency
still holds because the monotonic increase of dis-
tance between pairs is guaranteed even if the rate
of lengths is not equally maintained (simple proof
in Appendix C). The addition of one vector to the
normalized change (part (©)) does not alter the in-
equality of distances of lines, so the consistency is
again maintained. Overall, by applying the affine
transformation, we can maintain the consistency be-
tween relation embedding and its ET. To implement
the affine transformation shared across relations,
we simply adopt a linear transformation for A.

Rooted Entity Transformation Sharing an
affine transformation overall relations inevitably
reduces the expressiveness of ET compared to
entirely separate relation-specific transformations
such as SFBR that has shown to yield positive re-
sults (Liang et al., 2021). To mitigate the negative
effects from this reduction, we decrease required
expressiveness by learning only the changes in en-
tity embeddings, rather than learning their diverse
positions. Moreover, this rooted ET representation

enables safely bounding changes via normaliza-
tion without altering original entity embeddings.
To implement it, we add one to the normalized
change N,,(rA) and multiply it to the original
entity-embedding (part (©)).

Relation Prediction to Facilitate Relation Se-
mantic Reflection to Relation Embeddings Be-
cause relation prediction makes semantically sim-
ilar relations form a cluster and can improve dis-
crimination of dissimilar relations (Zhang et al.,
2021; Chen et al., 2021), we add RP (Chen et al.,
2021) to RSCEF, to facilitate relation semantic re-
flection to relation embeddings. Therefore, training
objective of RSCF can be written as:

£= 3" 6(helr,t) + 6(telhe, ) + Ao(rlh6) ()
p

where ¢ is a loss function with a score function
and A is a hyper-parameter that controls the contri-
bution of RP. In Table 2, difference between RSCF
and SFBR is presented. RSCF uses shared affine
transformation to reflect relation semantics to ET,
and RP (Chen et al., 2021) is only applied to RSCFE.

Normalization of Change for Reducing Entity
Embedding Concentration The change gener-



Model Entity Transformation Training Objective
SFBR e = W;e+b Ep o(hy|r, ty) + @(tr|he, 1)
RSCF e, =(Np(rA)+1)®e Zp ¢(he|r, ty) + ¢(tr|he,r) + Ap(r|h, t) (Chen et al., 2021)

Table 2: Difference between RSCF and SFBR, where e, is transformed entity embedding that contains both head
entity h, and tail entity t,. ¢ is a loss function with a score function that depends on the model.

ated from the affine transformation is normalized
by its length, expressed as N, (rA) in the part (©).
This normalization alleviates critical entity embed-
ding concentration via reducing scale decrease of
transformed entity embeddings e, in DURA reg-
ularization. In our relation-specific rooted ET, the
change of e, is simply written as

lov @ ellp )

where a = N, (rA). This value has a maximum
when « has the same direction to e. Since « is a
unit vector in p-norm, @ = e/||e||, . Then, the
maximum change is

e e _ €l

o @els = lli——ls =
lel, = Tllell, ™ llellp

In practice, the elements of embedding vectors are
much less than 1 in most cases. Therefore, the max-
imum change ||€?|,/|lel|, is significantly lower
than the unrestricted scale change in SFBR.

| (5)

Extension of RSCF The shared affine transfor-
mation can be easily extended to Linear — 2 that
is introduced in SFBR by extending shared affine
transformation Wy € R™ " to W, € R %",
Therefore, RSCF (Linear-2) can be written as:

WrLinCaI—Z — dZCLg(Wl ) dZCLg(WQ) (6)

diag(ws)  diag(wa)

where W, L2 ¢ Rnx7 g ET built from the
relation-specific change vector N,(rA) + 1 of
RSCF that is notated as concatenation of diago-
nal values of wq, wo, W3, Wy € R"/2,

4 Related Works

Disconnection of Relation-Specific Transforma-
tionin ETM ETM is a model that uses relation-
specific ET to model various attributes of an en-
tity. Models such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and TransD (Ji et al.,
2015) are variants of TransE (Bordes et al., 2013),
designed to handle complex relations by employ-
ing hyperplanes, projection matrices, and dynamic
mapping matrices for their transformation func-
tions, respectively. To address the heterogeneity

and imbalance presented in TransE and its vari-
ants, TransSparse (Ji et al., 2016) utilizes adaptive
sparse matrices to model different types of relations.
PairRE (Chao et al., 2021) performs a scaling op-
eration through the Hadamard product to the head
and tail entities. SFBR (Liang et al., 2021) and
AT (Yang et al., 2021) present a universal entity
transformation applicable to both DBM and TDM.
To handle complex relations in TDM, STaR (Li
and Yang, 2022) integrates scaling, translation, and
rotation operation for semantic matching scoring
functions. ReflectE (Zhang et al., 2022a) models
the transformation function using relation-specific
dynamic reflection hyperplanes. CompoundE (Ge
et al., 2023) applied compound operation to both
head and tail entities. However, these models have
no chance for inductive bias sharing due to the
separate parameter of ET.

Entity Embedding Concentration in ETM
SFBR (Liang et al., 2021) applies ET to both DBM
and TDM. However, it also suffers from inductive
bias loss due to the separate parameter of ET and
indistinguishable score distribution because of the
entity embedding concentration.

Triples

Dataset Entities Relati

Train Valid Test
WNISRR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 3: Statistics of KGC Benchmark Datasets

S Experiments

5.1 Settings

Dataset To evaluate our proposed RSCF
models, we consider three KGs datasets:
WNI18RR (Toutanova and Chen, 2015), FB15k-
237 (Dettmers et al., 2018), and YAGO3-
10 (Mahdisoltani et al., 2013). The statistics for the
three benchmark datasets are shown in Table 3.
Evaluation Protocol We evaluated the perfor-
mance of KGC following the filtered setting (Bor-
des et al., 2013). The filtered setting removes all
valid triples from the candidate set when evaluat-
ing the test set, except for the predicted test triple.



Distance-Based Model WNI18RR FB15k-237
with Entity Transformation MRR H@l H@l0 MRR H@l H@I10
TransH (Wang et al., 2014) T 220 .042 495 299 201 488
TransR (Lin et al., 2015) 219 .050  .498 .309 220 489
TransD (Ji et al., 2015) { 211 .087 .505 .306 218 486
TransE-AT (Yang et al., 2021) 479 434 571 351 257 .538
RotatE-AT (Yang et al., 2021) 488 438 .583 .348 253 537
PairRE (Chao et al., 2021) - - - 351 256 544
ReflectE (Zhang et al., 2022a) 488 450 559 358 263 546
CompoundE (Ge et al., 2023) 491 450 576 .357 264 545
TransE-SFBR (Diag) (Liang et al., 2021) 242 .028 548 338 240 538
TransE-SFBR (Linear-2) (Liang et al., 2021)  .263 110 495 354 258 .545
RotatE-SFBR (Diag) (Liang et al., 2021) 489 437 .593 351 254 549
RotatE-SFBR (Linear-2) (Liang et al., 2021)  .490 447 576 355 258 .553
TransE-RSCF 256 .050  .551 .356 258 552
TransE-RSCF (Linear-2) 436 378 531 .359 .264 .549
RotatE-RSCF 492 447 .582 360 264 555
RotatE-RSCF (Linear-2) .496 455 581 362 267 554

Table 4: Test performance of DBM-based KGC on FB15k-237 and WN18RR. Bold indicates the best result, and
underlined signifies the second best result. (f: reproduced result from Zhang et al. (2020a)).

Tensor Decomposition Model WNI18RR FB15k-237 YAGO3-10

with Eentity Transformation MRR H@l H@l0 MRR H@l H@10 MRR H@l H@I0
ComplEX-N3 + AT (Yang et al., 2021) .500 455  .592 .369 273 .559 582 S07 712
STaR-DURA (Li and Yang, 2022) 497 452 583 368 273 557 .585 513 713
CP-DURA + SFBR 479 441 555 .368 275 557 581 510 707
RESCAL-DURA + SFBR t 497 454 576 .369 277 .550 578 .503 712
ComplEX-DURA + SFBR } 491 450 571 373 277 563 587 517 15
CP-DURA + RSCF 482 445 .556 .379 287 .564 .585 515 711
RESCAL-DURA + RSCF 501 460 581 381 290 563 582 509 714
ComplEX-DURA + RSCF 497 454 581 389 296 575 .589 S18 717

Table 5: Test performance of TDM-based KGC on FB15k-237, WN18RR, and YAGO3-10. Bold indicates the best
result, and underlined signifies the second best result. (}: reproduced results whose reference results in Appendix I).

We adopt the MRR and Hits@N to compare the
performance of different KGE models. MRR is the
average of the inverse mean rank of the entities and
Hits@N is the proportion of correct entities ranked
within top k.

Baselines and Training Protocol We compare
the performance of RSCF with the two categories
of KGE models: 1) DBM with entity transfor-
mation including TransH (Wang et al., 2014),
TransR (Lin et al., 2015), TransD (Ji et al., 2015),
PairRE (Chao et al., 2021), AT (Yang et al., 2021),
SFBR (Liang et al., 2021), ReflectE (Zhang et al.,
2022a) and CompoundE (Ge et al., 2023), 2) TDM
with entity transformation including STaR (Li
and Yang, 2022), AT (Yang et al., 2021) and
SFBR (Liang et al., 2021) Because RSCF is a mod-
ule that is plugged in based on existing models, we
used DBM, including TransE, RotatE, and TDM,
including CP, RESCAL, and ComplEX as base
models. Examples of applying RSCF to based mod-
els are given in Appendix A

*Implementation details are given in Appendix F

5.2 Performance

Performance on Distance-Based Model Table 4
shows the performance comparison of the RSCF
and DBMs with ET on WN18RR and FB15k-237.
Overall, RSCF shows similar or higher perfor-
mance than SFBR in most settings. Even in com-
parison with the other DBMs, RotatE-RSCF signif-
icantly outperforms CompoundE, the state-of-the-
art DBM method.

Performance on Tensor Decomposition Model
Table 5 shows the performance comparison in
TDMs. Compared to SFBR, RSCF shows con-
sistent performance improvements in all datasets
and settings. Furthermore, in performance com-
parison with the other models, ComplEX-DURA-
RSCF outperforms STaR and ComplEX-N3+AT in
FB15k-237 and YAGO3-10.

Ablation Study To verify the effectiveness of
each component of RSCF, we conduct ablation
studies on the RSCF in Table 6. In this table, RSCF
shows the best performance compared with other
four ablated models in both TransE and ComplEX,
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TransE-RSCF ComplEX-RSCF

Model MRR _H@I0 MRR _H@I0
w/o Affine Transformation 354 548 .386 573
w/o Normalize 353 541 377 567
w/o RP (Chen et al., 2021) 349 .549 375 565
w/o Affine & Normalize 338 531 385 571
RSCF 356 552 .389 575

Table 6: Results of an Ablation study of RSCF on
FB15k-237 datasets, TransE and ComplEX are used
as base models. MRR and H@10 are used for perfor-
mance comparison.

which suggests that each component of RSCF con-
tributes to the effectiveness of RSCF. Especially,
Figure 4 shows that w/o normalization can signifi-
cantly reduce model performance and w/ normal-
ization maintain model performance in both RSCF
and SFBR in ComplEX, indicating that normaliza-
tion is necessary to maintain the performance of
models that use DURA regularizer.

Relation-Wise Performance on Relation Fre-
quency To demonstrate the generality of apply-
ing the RSCF regardless of relation frequency, we
sorted relations by their frequency in the train-
ing set and divided them into ten sets. Each set
has the same number of relations. Figure 5 above
shows the MRR of the validation set for each set in
TransE, RSCF and SFBR. The results showed that
RSCEF outperformed SFBR and TransE in all sets,
demonstrating the robustness of RSCF to relation
frequency and showing that RSCF can be applied
without trade-off between high and low frequency
of relations.

Performance on Semantically Distinguished Re-
lation Groups Figure 5 below presents the vali-
dation MRR for each relation group, defined in Fig-
ure 1 (e). RSCF outperformed SFBR and TransE
in all groups. These results show that RSCF can
be utilized without specific bias to the semantics

3Detailed description of SFBR (N) is given in Appendix B
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Figure 5: KGC performance of relation set that is sorted
by their frequency (above) and groups of semantically
similar relations observed in Figure 1 (e) (below) on
FB15k-237

of relations and indicate that reflecting the rela-
tion semantics into the transformation function can
improve model performance.

Qualitative Example Analysis For qualitative
analysis, Table 7 presents sampled queries, their
correct answers, related triples with the sample
queries, and the ranks obtained by RSCF and SFBR.
Relations in sample queries and related triples be-
long to the same relation group (people place).
In Table 7, RSCF shows enhanced performance
compared to SFBR, indicating that RSCF can use
trained bias between semantically similar relations.

5.3 In-Depth Analysis

Relation-Semantics Consistency of ET and EE
Figure 1 shows ET and their corresponding EE
of SFBR and RSCF via T-SNE. RSCF represents
a more concentrated cluster compared to SFBR,
which indicates that similar relations have similar
ET and EE in RSCF; in other words, RSCF satisfies
relation-semantic consistency.

Embedding Scale and Score Distribution Recov-
ery Figure 6 presents transformation scale and
final entity embedding scale over epochs on FB15k-
237. ComplEX is used as base model. Following
the approach of SFBR (Liang et al., 2021), we
applied the DURA regularizer in all epochs, and
RSCEF, SFBR, and SFBR (N) are plugged in after
200 epochs. In the results, SFBR shows a decrease



Query (h, 1, ?) | Correct Answer Related Triples in Training Set Rank(R/S)

(Guillermo del Toro, /people/person/place_of_birth, ?) | Guadalajara
(Shawn Pyfrom, /people/person/places_lived./people/place_lived/location, ?) | Florida

(Walt Whitman, /people/person/places_lived./people/place_lived/location, ?) | New York

(Guillermo del Toro, /people/person/places_lived./people/place_lived/location, Jalisco)
(Guillermo del Toro, /people/person/nationality, Mexico)

(Shawn Pyfrom, /people/person/place_of_birth, Tampa)

(Shawn Pyfrom, /people/person/nationality, United States of America)

(Walt Whitman, /people/deceased_person/place_of_death, Camden)

(Walt Whitman, /people/person/nationality, United States of America)

14/35

4/32

9/21

Table 7: Example KGC results of RSCF compared to SFBR (R: rank of RSCEF, S: rank of SFBR). Related triples
show that similar relations to the queries have similar entities to the correct answers in the training set.
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Figure 6: Entity transformation scale (left) and final
entity embedding scale (right) of RSCF, SFBR (N),
SFBR, and ComplEX-DURA over epochs on FB15k-
237 DURA is applied in all epochs and SFBR and RSCF
is applied after 200 epochs.

in both transformation scale and final entity embed-
ding scale. In contrast, RSCF and SFBR (N) show
almost no decrease in the transformation scale, and
the final entity embedding scale is maintained, indi-
cating that both RSCF and SFBR (N) can maintain
the embedding scale due to normalization. Further-
more, in Figure 4, MRR decreases in SFBR and
RSCF w/o normalize, while it increases in both
RSCF and SFBR (N). This result implies that en-
tity embedding concentration negatively affects to
model performance.

To investigate the detailed change of score dis-
tribution that directly affects performance, we ran-
domly sample four queries and present the score
distribution of selected queries in Figure 7. In the
results, SFBR shows near zero scores for most en-
tities, and distributions for the queries are signif-
icantly similar. Applying normalization or RSCF,
the diversity of scores is recovered as the original
base model.

Impact on Over-Smoothed Queries To assess
the impact of indistinguishable score distribution,
we conducted a performance evaluation for a se-
lected relation that shows critical entity embed-
ding concentration in Figure 2. Table 8 presents
the validation performance for all queries associ-
ated with the selected relation. SFBR shows signif-
icantly lower performance than RSCF, SFBR (N),
and the ComplEX-DURA. This result implies that
indistinguishable score distribution strongly affects

.+ ours
- SFBR(N)

. SFBR

0051 . ComplEX-DURA

o 4000 6000 8000 1000 120 0 6000 6600 10000 200
Entity Index Entity Index

705 4000 6000 8600
Entity Inq tity In

Figure 7: Score distribution of all entities for randomly
selected queries from Figure 2 (a)

to the accurate prediction of SFBR, simply apply-
ing normalization and RSCF gradually recovers
it.

Model MRR H@10 Concentration
ComplEX-RSCF 375 .609 X
ComplEX-SFBR (N)  .366 587 X
ComplEX-SFBR 267 522 v
ComplEX-DURA 347 .609 X

Table 8: KGC performance of all queries associated
with the relation that shows strong concentration of en-
tity embedding in SFBR. Concentration presents entity
embedding concentration.

6 Conclusion

In this paper, we address the limit in inducing
relation-semantics consistency, implying that se-
mantically similar relations have similar entity
transformation, on entity transformation models
for KGC, especially SFBR. We clarify two causes,
disconnected entity transformation representation
and entity embedding concentration, and provide
a novel relation-semantics consistent filter (RSCF)
method using shared affine transform to generate
the change of entity embedding, normalize it and
add it to the embedding. This method significantly
improves the performance of KGC compared to
state-of-the-art KGE methods for overall relations.



7 Limitations

RSCEF uses the simplest form of affine transforma-
tion, but it has a limit of expressing all changes
across all embeddings, which requires more ad-
vanced approach. Future work should extend the
method to additional KGE models to enhance gen-
erality.
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A Special Cases with RSCF

Let h,, t, are transformed head and tail embed-
ding by RSCEF, then the score function d,.(h, r) of
TransE-RSCF can be expressed as:

(N

The score function d,.(h, r) of RotatE-RSCF can
be expressed as:

dr(h,r) = ||hy + 1 — t,||

dy(h,r) = ||hy or — t|| (8)

The score function d,.(h, r) of RESCAL-RSCF can

be expressed as:

dr(h,r) = [[hrt|| ©)

In TDM, tail embeddings are not transformed ac-
cording to the settings of SFBR in order to reduce
computational costs.



B SFBR with Normalization

To prevent entity embedding concentration, We
apply normalization to SFBR that is presented as
SFBR (N). Let W, is relation-specific ET using
separate parameters, then SFBR with normalization
can be written as:

N,(W;) +1 (10)

where N,(W;) = ||W I+ Additionally, trans-
formed entity embedding can be described as:

er = (N,(Wy) +1)e (11)

where e is a original entity embedding.

C Proof of Consistency of Normalized
Change

For any relation embedding 71, r2, 3 on a line and
their mapped ET 11, T5, T5 by an affine transform,
then the consistency holds. Let 75 is on 1173, and
7173 is shorter 7a73. Then, Th Ty < ToT3 by the
properties of afffine transformation. Because 75
is an interpolated point of T} and T3, /11015 <
/T50T3. After normalization, let ETs projected
on Ty, T4, and T}. T{Ty = /2 — 2 cos LT OT3,
and TyT} = /2 — 2cos ZT3OT} by simple co-
sine rule. Cosine function is monotonically decreas-
ing for angles less than 7. Therefore, T T4 < T5T5

D Proof of scale decrease of ET

The gradient of Wr; n (n-th element of Wr;) in
DURA can be calculated as:
rj,n

2

dL
B Z dwrj,n
= Z 2er7

The gradient of ET shows that the gradient of Wy n
has always same sign with w,, ,, parameters. There-
fore, gradient descent always reduces the scale of
the parameters regardless of their sign.

dL
HWrJ,n i,nfj, n||2 + ||Wrgn |n||2

dw

2

2
er,n(hi,nrj,n

) +wrhin® (12)

+ 2W?“jnhi n2

)

|nrJn

E Measurement of Cluster Concentration

To measure cluster concentration, we defined con-
centration score as follows:
n

XE;HW%H

k

(13)

11

where £k is clear and mutually decoupled clusters
and k; is i-th vector embedding of ET in group k&
and C}, is centroid of cluster & that can be calcu-
lated as:

> ki

m

Cp = (14)
In the equation 13, the vector norm of C (||CY]) is
used because of the relative concentration score for
clusters. We use the reciprocal of equation 13 as
concentration score. Also to evaluate the distance
between different clusters we defined inter cluster
distance score as follows:

ZHCk

where C}. represent the centroid that is closest to
C, and it can be written as:

Cie = mind[Ci = G 1

_Ck:c ’

15
THl ()

(16)

In Equation 15, the norm of the cluster, which is
calculated as the sum of the elements in the cluster,
1s used for the relative inter cluster distance.

F Implementation Details

When training the RSCF, we followed the experi-
mental settings described in the SFBR (Liang et al.,
2021). Following the setting of SFBR, RSCF and
RSCF (Linear-2) are applied to both head and tail
entities in DBM, and RSCEF is applied to the only
head entity in TDM. The hyper-parameters in DBM
are consistent with the hyper-parameters in Sun
et al. (2018), and hyper-parameters of TDM are
consistent with the hyper-parameters in Zhang et al.
(2020b). The presented results of RSCF represent
the best performance among the three runs for each
model. Experiments for the DBM were conducted
on an NVIDIA 3090 GPU with 24GB of memory,
while experiments for the TDM were conducted on
an NVIDIA 2080TI with 11GB.

G Relation Groups for Entity
Transformation

Figure 1 (e) illustrates the relation embedding of
TransE. We select ten relation groups whose rela-
tion embeddings build clear and mutually decou-
pled clusters, which implies semantically distin-
guished relation groups. The other relations are
plotted as grey points. The relations correspond-
ing to each group are listed in Table 12. Note that
similar relations belong to the same group.



. WNI18RR FB15k-237
Embedding based Model MRR H@I H@I0 MRR H@I H@I0
TransE (Bordes et al., 2013) 226 - 501 294 - 465
DistMult (Yang et al., 2015) 430 390 490 241 155 419
ComplEX (Trouillon et al., 2016) 440 410 510 247 158 428
RotatE (Sun et al., 2018) 476 428 571 338 241 533
ROTH (Chami et al., 2020) 496 449 .586 348 252 .540
ComplEX-DURA (Zhang et al., 2020b) 491 449 571 371 276 .560
FieldE (Nayyeri et al., 2021) 48 44 57 .36 27 .55
KGTuner (Zhang et al., 2022c) 484 440 562 352 263 530
RotatE-IAS (Yang et al., 2022) 483 467 .570 .339 242 532
CAKE (Niu et al., 2022) - - - 321 227 515
STaR-DURA (Li and Yang, 2022) 497 452 .583 368 273 557
ExpressivE (Pavlovi¢ and Sallinger, 2022)  .482 407 619 .350 256 535
SEPA (Gregucci et al., 2023) 500 454 591 .360 264 .549
CompoundE (Ge et al., 2023) 491 450 .576 357 264 .545
ComplEX-DURA + RSCF (Ours) 497 454 581 389  .296 575

Table 9: Test performance in broader approaches with different constraints based on embedding based KGC on
FB15k-237 and WN18RR. Bold indicates the best result, and underline indicates the second best result.

Tensor Decomposition Model WNISRR FB15k-237 YAGO3-10
MRR H@l H@I10 MRR H@l H@I10 MRR H@l H@I10
CP-DURA + SFBR(R) 479 441 555 .368 275 557 581 510 707
CP-DURA + SFBR (Liang et al., 2021) 485 447 561 370 274 563 582 510 711
RESCAL-DURA + SFBR(R) 497 454 576 369 277 550 578 503 712
RESCAL-DURA + SFBR (Liang et al., 2021) 500 458 581 369 276 555 581 509 712
ComplEX-DURA + SFBR(R) 491 450 571 373 277 563 587 517 715
ComplEX-DURA + SFBR (Liang et al., 2021) 498 454 584 374 277 567 584 512 712

Table 10: Comparison of reproduced SFBR and SFBR reported in Liang et al. (2021)

position
currency

film production
film actor

(a) ET-SFBR (b) ETRSCF people place

film place
music role
organization place
producer type
award category
N v 2
(c) EE-SFBR (d) EE-RSCF

Figure 8: Tail entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCEF, (c) and (d) indicate
EE of SFBR and RSCF.

H Performance Comparison of RSCF
with Other Knowledge Graph
Embedding Models

Table 9 shows the comparison of the test perfor-
mance of the RSCF and embedding based model
on WN18RR and FB15k-237. ComplEX-DURA +
RSCEF outperforms all other models in FB15k-237
and shows competitive results in WN18RR.
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Metric
Concentration Score (1)
Inter Cluster Distance (1)

ET-SFBR
0.19
0.46

EE-SFBR
0.34
0.46

ET-RSCF
1.01
0.69

EE-RSCF
1.63
0.52

Table 11: Concentration score and inter cluster distance
of tail entity transformation and entity embedding of
SFBR and RSCF.

I Reproduce of SFBR in TDM

We attempted to reproduce SFBR. During the repro-
duction process, we designed and executed the ex-
periments based on the information provided in the
SFBR and the publicly available datasets. Further-
more, in an attempt to clarify unclear aspects, we
tried to communicate with the authors through mul-
tiple emails. However, the performance reported in
the paper was not achieved. Table 10 shows repro-
duced SFBR and SFBR that is reported in Liang
et al. (2021).

J Distribution of Tail
Entity-Transformations and
Corresponding Entity Embedding

Figure 8 presents the T-SNE visualization of tail
ET and corresponding EE. Even in the tail, RSCF
shows more in-cluster concentration. Also, in Ta-
ble 11, RSCF exhibits higher concentration scores
and inter class distance compared to SFBR.



Relation Group Relations

/sports/sports_team/roster./basketball/basketball_roster_position/position
/soccer/football_team/current_roster./soccer/football_roster_position/position
/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position
o /sports/sports_team/roster./american_football/football_historical_roster_position/position_s
position /sports/sports_team/roster./baseball/baseball_roster_position/position
/sports/sports_team/roster./american_football/football_roster_position/position
/american_football/football_team/current_roster./sports/sports_team_roster/position

/soccer/football_team/current_roster./sports/sports_team_roster/position

/location/statistical_region/gdp_nominal_per_capita./measurement_unit/dated_money_value/currency
/film/film/estimated_budget./measurement_unit/dated_money_value/currency
/business/business_operation/operating_income./measurement_unit/dated_money_value/currency
/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency
/business/business_operation/revenue./measurement_unit/dated_money_value/currency
/business/business_operation/assets./measurement_unit/dated_money_value/currency
/location/statistical_region/rent50_2./measurement_unit/dated_money_value/currency

currency /education/university/local_tuition./measurement_unit/dated_money_value/currency
/location/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency
/education/university/domestic_tuition./measurement_unit/dated_money_value/currency
/education/university/international_tuition./measurement_unit/dated_money_value/currency
/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency
/location/statistical_region/gni_per_capita_in_ppp_dollars./measurement_unit/dated_money_value/currency

/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency

/film/film/costume_design_by
/film/film/executive_produced_by
/award/award_winning_work/awards_won./award/award_honor/award_winner
/tv/tv_program/program_creator
Milm/film/film_art_direction_by
/film/film/music
Milm/film/film_production_design_by
/film/film/other_crew./film/film_crew_gig/crewmember

film production /film/film/produced_by
/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor
/film/film/edited_by
/film/film/written_by
/film/film/personal_appearances./film/personal_film_appearance/person
/film/film/story_by
/film/film/cinematography
/film/film/dubbing_performances./film/dubbing_performance/actor
/film/film/production_companies

/award/award_nominee/award_nominations./award/award_nomination/nominated_for
/tv/tv_network/programs./tv/tv_network_duration/program
/film/special_film_performance_type/film_performance_type./film/performance/film
/film/director/film
/tv/tv_personality/tv_regular_appearances./tv/tv_regular_personal_appearance/program
/ilm/film_set_designer/film_sets_designed
film actor ; ] ) )
/tv/tv_writer/tv_programs./tv/tv_program_writer_relationship/tv_program
/film/actor/film./film/performance/film
/tv/tv_producer/programs_produced./tv/tv_producer_term/program
/media_common/netflix_genre/titles
/film/film_distributor/films_distributed./film/film_film_distributor_relationship/film
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/film/film_subject/films

/music/artist/origin

/people/person/places_lived./people/place_lived/location

/people/person/place_of_birth
/government/politician/government_positions_held./government/government_position_held/jurisdiction_of_office

people place
/people/deceased_person/place_of_death
/people/person/nationality
/people/deceased_person/place_of_burial
/people/person/spouse_s./people/marriage/location_of_ceremony
/film/film/distributors./film/film_film_distributor_relationship/region
/film/film/featured_film_locations
/film/film/release_date_s./film/film_regional_release_date/film_release_region
film place /film/film/release_date_s./film/film_regional_release_date/film_regional_debut_venue
/film/film/country
/ilm/film/runtime./film/film_cut/film_release_region
/tv/tv_program/country_of_origin
/ilm/film/film_festivals
/music/group_member/membership./music/group_membership/role
music role /music/artist/track_contributions./music/track_contribution/role

/music/artist/contribution./music/recording_contribution/performance_role

organization place

/organization/organization/headquarters./location/mailing_address/state_province_region
/organization/organization/place_founded

/user/ktrueman/default_domain/international _organization/member_states
/organization/organization/headquarters./location/mailing_address/country
/people/marriage_union_type/unions_of_this_type./people/marriage/location_of_ceremony
/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_location
/government/legislative_session/members./government/government_position_held/district_represented

/organization/organization/headquarters./location/mailing_address/citytown

producer type

/tv/tv_producer/programs_produced./tv/tv_producer_term/producer_type
/film/film/other_crew./film/film_crew_gig/film_crew_role

/tv/tv_program/tv_producer./tv/tv_producer_term/producer_type

award category

/award/award_category/winners./award/award_honor/award_winner
/award/award_category/winners./award/award_honor/ceremony
/award/award_category/category_of
/award/award_category/nominees./award/award_nomination/nominated_for

/award/award_category/disciplines_or_subjects

Table 12: Clearly distinct relation groups that are selected from original TransE
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