
ScriptWorld: A Scripts-based RL Environment

Abhinav Joshi Areeb Ahmad Umang Pandey Ashutosh Modi
Indian Institute of Technology Kanpur (IIT-K)

Kanpur, India
{ajoshi,ashutoshm}@cse.iitk.ac.in

{areeb,umangp}@iitk.ac.in

Abstract

Text-based games provide a framework for developing natural language under-
standing and commonsense knowledge about the world in reinforcement learning
algorithms. Existing text-based environments often rely on fictional situations and
characters to create a gaming framework and are far from real-world scenarios. In
this paper, we introduce ScriptWorld: A text-based environment for teaching
agents about real-world daily chores, imparting commonsense knowledge. To the
best of our knowledge, it is the first interactive text-based gaming framework that
considers data written by humans (scripts datasets) to create procedural games for
daily real-world human activities. We provide gaming environments for 10 daily
activities and perform a detailed analysis to capture the richness of the proposed
environment. We also test the developed environment using human gameplay
experiments and reinforcement learning algorithms as baselines. Our experiments
show that the flexibility of the proposed environment makes it a suitable testbed for
reinforcement learning algorithms to learn the underlying procedural knowledge in
daily human chores.

1 Introduction

Text-based games in reinforcement learning have attracted colossal research in recent years [8, 11].
These games help formulate the capabilities of natural language understanding and commonsense
reasoning in an RL algorithm. A typical text-based game consists of a textual description of states
of an environment where the agent/player observes and understands the game state context using
text and interacts with the environment using textual commands (actions). For successfully solving a
text-based game, in addition to language understanding, an agent needs complex decision-making
abilities, memory, planning, questioning, and commonsense knowledge [8].

Existing text-based gaming frameworks (e.g., Jericho [11], and Text-World [8]) provide a rich
fictional setup (e.g., treasure hunt in a fantasy world) and require an agent to take complex decisions.
This help capture the complex sequential decision-making that requires language understanding and
commonsense knowledge. However, the existing text-based frameworks are created using a fixed
prototype and are often distant from real-world scenarios. Though these frameworks aim to provide
a rich training bench for enhancing natural language understanding in RL algorithms, the fictional
concepts in these games are not well grounded in real-world scenarios, making the learned knowledge
nonapplicable to the real world. In contrast, for trained RL algorithms to be of practical utility in the
real world, they should be trained in real-world scenarios that involve daily human activities. Humans
carry out daily activities (e.g., making coffee, going for a bath) without much effort by making use
of implicit Script knowledge [39]. Script knowledge is defined as an underlying knowledge about
the sequence of events describing stereotypical human activities, such as planting a tree, boarding
a bus, etc. [39]. For example, when someone talks about “boarding a plane,” there lies an implicit
knowledge of fine-grained steps which would be present in the activity. By just saying, “I boarded

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1. Look for the nearest medical
store.

2. Go to the parking area.
3. Start your Car.
4. Drive to the medical store.
5. Walk to the store
6. Ask for the required medicine.
7. Pay for the medicine.
8. Take medicine.

1. Search for the medical store in your location.
2. Walk to the medical store.
3. Ask for the required medicine.
4. Pay for the medicine.
5. Take medicine.

Search for medical store,
Look for the nearest store,
Locate the medical store,

Drive to store,
Drive by car,

Travel to medical
storeWalk to store, Walk to

the medical store

Pay Bill, Pay at the
counter, Pay for the

medicine

Take medicine, Eat
medicine

DeScript:
ESDs for the same scenario

DeScript Annotations:
Align (Cluster) similar events

in multiple ESDs

Environment
Graph Formation

Start

End

1. Travel to the medical
store.

2. Inquire about medicine.
3. Pay the bill.
4. Take medicine.

1. Locate medical store on internet
2. Call them to find if they are open
3. Drive by car to the store
4. Check for the required medicine.
5. Pay at the counter.
6. Eat medicine.

Ask for the required
medicine, Inquire about

medicine, Check for
required medicine

Figure 1: The figure shows simplified version of the scenario, "get medicine," and the process of
creating an environment graph (left diag.) from the ESDs (right diag.) and aligned events (middle
diag.) for the scenario. The green directed edges in the environment graph represent the correct paths,
and the red edges denote the environment transition when a wrong option is selected.

a plane on Thursday,” a person conveys the implicit knowledge about the entire process, like 1)
reaching the airport, 2) checking in the luggage, 3) Showing a boarding pass at the counter, 4) getting
inside the plane 5) getting seated on the allotted seat. The abstract understanding of the task not
only helps learn about the task but also takes suitable actions depending on the environment and past
choices.

Moreover, for learning a new task, humans can quickly and effortlessly discover new skills for
performing the task either by their knowledge about the world or reading about it (reading a manual).
With the aim to promote similar learning behavior in artificial reinforcement learning algorithms,
in this paper, we propose ScriptWorld, a new text-based game environment based on real-world
scenarios involving script knowledge. The agent is required to understand and choose a sequence of
actions that help carry out daily human chores. Overall, we make the following contributions:

• We introduce a new interactive text-based gaming environment, ScriptWorld, that consists
of games based on script descriptions provided by human annotators for performing realistic
daily chores. We plan to release the environment for the research community. We perform
a detailed analysis of the proposed environment and compare it with existing text-based
gaming frameworks.

• We propose Reinforcement Learning (RL) algorithms based on pre-trained sentence embed-
dings as baselines. The experiments using the baseline architecture highlight the scope for
improvement and inclusion of external knowledge in agents.

• We conduct a study with humans to assess their performance in the ScriptWorld environ-
ment and compare them with RL agents.

2 Related Work

In recent years, text-based games have been an active area of research. Text-based games are divided
into three main categories based on how an agent/player might issue (take) commands (actions):
Parser-based, Choice Base, and Hyper Text Based [12]. The player issues a command in Parser-based
games by typing in the input and it is parsed by an inbuilt parser. In Hypertext-based games, the
player issues a command by selecting one of the Hyperlinks present in the prompt. In choice-based
games, the player chooses the command from a list of options presented in addition to the state
description. Parser based games suffer form the exponentially increasing action space which the
agent has to explore. Such a large action space makes the learning task much more difficult than
choice-based games in which we can exercise much more control over increase in the number of
choices. ScriptWorld uses choice-based approach. Moreover, in general, choice based games are
more popular among humans as opposed to parser based games [12]. (more details in App. A)

3 ScriptWorld Environment

ScriptWorld tries to bridge the gap between real-world scenarios (via Scripts) and text-based games
for RL by providing a suitable flexible testbed for learning and evaluating NLU and commonsense

2

knowledge acquisition capabilities of an RL algorithm. For serving the primary purpose, we consider
three design choices that we speculate are necessary. 1) Relation to Real-World scenarios: The
environment should consist of activities/tasks that are well generalized among humans and represent
an abstract understanding of the task. 2) Complexity: The game environment should be complex
enough to test an agent’s capacity to capture, understand and remember reasonable abstract steps
required for performing a daily chore. 3) Flexibility: The environment should be flexible in terms of
difficulty levels and handicaps to provide a good test bench for reinforcement learning agents.

Utilizing Script Knowledge: Given the nature of Script knowledge (App. A), we use a scripts corpus
referred to as DeScript [45] for creating ScriptWorld environment. DeScript is a corpus having
telegram style sequential description of a scenario in English (e.g., baking a cake, taking a bath,
etc.) written by human annotators. Each description of a scenario is referred to as Event Sequence
Description (ESD). Multiple ESDs are written for each scenario by human annotators. Additionally,
for a given scenario, the dataset also provides the alignment annotation of similar events of multiple
ESDs. For example, Fig. 1 depicts the scenario, "get medicine," where similar events from ESDs
written by different people are combined to form generalized event categories. Further, the combined
set of events and the relation between the ESDs are used to form a graph (as explained later) where
each node represents an abstract event.

Graph Formation: DeScript provides set of aligned ESDs (E i
1, E i

2, . . . , E i
N) for a scenario Si. Each

ESD E i
k consists of sequence of short event descriptions: e(E

i
k)

1 , e
(Ei

k)
2 , . . . e

(Ei
k)

n . We use the clustering
alignment annotations present in the dataset to create a graph having nodes as the event clusters and
directed edges representing the prototypical order of the events. In particular, a directed edge is drawn
from node p to q if there is at least one event in node p that directly precedes an event in node q. We
refer to the created event node graph as the compact graph (example in App. C). Further, we leverage
the inner annotations for a path between the events. For example, an event “go to the terrace” can
be performed in two sets of sequenced steps by different annotators. 1) call the elevator → step in
elevator → step out at the top floor and 2) find stairs → climb stairs → reach top floor. The sub-steps
in such events are split to create multiple graph nodes. We refer to this graph as the scenario graph.
This helps capture the variability in daily chores, making the environment more realistic and complex.
Note that the scenario graph is extensively more complex when compared to the compact graph.

To quantify the complexity of scenarios in ScriptWorld, we calculate the total number of correct
paths in the created graphs. We first compute paths in the compact graph using depth-first traversal
and add the number of parallel paths present for each entry and exit event node in the scenario

graph. TotalPaths =
T∑

pk=0

N∏
i=1

ni
(pk), where T is the total number of paths in the compact graph, N

represents the total number of nodes in a path pk and ni
(pk) denotes the number of splits for the ith

node. App. B Table 1 shows the total number of paths. As evident from the table, the number of
paths in each scenario is enormous and shows the highly complex nature of the environment.

Environment Creation: We create a choice-based game environment using the actions in the
scenario graphs. A wide variety of suitable actions grouped in a node help sample correct choices
for a node. To create incorrect choices, we exploit the temporal nature of the scenario graphs and
sample actions from nodes that are distant from the current node (either past or in the future). As a
node contains actions to perform a specific subtask, all actions in nodes far from the current node
become invalid for the current state. Sampling the invalid choices makes the environment more
complex as all the options are related to the same scenario. In the environment, when the agent/player
selects an incorrect choice, its location is displaced by hopping it backward in the temporal domain.
Overall, a correct choice in the game leads to the next node in the correct path, increasing the task
completion percentage. In contrast, a wrong choice decreases the completion percentage as the
player/agent’s location is displaced randomly towards the start node. Rewards: For all the scenarios
in our environment, every incorrect action choice results in a negative reward of -1, and every correct
choice returns a 0 reward. For task completion, the agents get a reward of 10. The game terminates
whenever a player chooses 10 successive wrong actions. Flexibility: To introduce flexibility in
ScriptWorld, we consider two settings in a game. 1) Number of choices: Varying the number of
choices presented to the agent/player results in setting the difficulty level . The increasing number of
options makes learning more challenging. 2) Number of backward hops for wrong actions: We
choose the number of backward hops as another game setting that decides how many hops to displace
whenever a wrong action is selected. Increasing the number of hops also increases the difficulty as

3

1 2 3 4 5
7.5

8

8.5

9

9.5

10

going grocery shopping riding on a bus
going on a train borrowing a book from the library
getting a hair cut baking a cake
repairing a flat bicycle tire planting a tree
flying in an airplane taking a bath

Trials

Sc
or

es

0 500 1000 1500

−2

0

2

4

6

8

10

going grocery shopping riding on a bus
going on a train borrowing a book from the library
getting a hair cut baking a cake
repairing a flat bicycle tire planting a tree
flying in an airplane taking a bath

Episodes

R
ew

ar
d

0 500 1000 1500

−10

−5

0

5

10

SBERT+DuDQN SBERT+DDQN SBERT+DQN
SBERT+DRQN SBERT+DuDDQN GloVe+DQN

Episodes

R
ew

ar
d

0 500 1000 1500

−10

−5

0

5

SBERT+DuDQN SBERT+DDQN SBERT+DQN
SBERT+DRQN SBERT+DuDDQN GloVe+DQN

Episodes

R
ew

ar
d

Figure 2: (a) human performance for 5 trials on multiple scenarios, (b) SBERT-DQN agent on various
ScriptWorld scenarios, (c) all agents on scenario “repairing a flat bicycle tire”, (d)The figure shows
the performance of all agents on scenario “repairing a flat bicycle tire”. All experimetns are with
handicap except (d), (choices = 2) (Shaded region denotes the variance, Zoom in for a better view).

the randomness in the displaced state grows exponentially with the backward hops. Note that every
wrong action also has a penalty of repeatedly performing the same steps. These two parameters
introduce flexibility in our environment, giving the environment the freedom to create a suitable test
bench for the agents. Handicaps (Hints): Text-based games are often complex for reinforcement
learning agents, requiring prior knowledge. To mitigate the complexity issue in our environment, we
introduce a version of the game with hints for each state. The hints of a state show the abstract task
for the current state. The presence of hints in the environment makes the gameplay relatively easier.

4 Experiments, Results and Analysis

Human Performance: For effective validation of the created game, we assess
ScriptWorldenvironment with the help of human participants (10 undergrad students from
a reputed national level university in the age group 18-22). Each human player played each scenario
5 times to account for the variance in different gameplays. Human performance (Evaluation Metrics:
Scores/Rewards vs. Trials/Episode and % Completion vs. Episodes, more in App. F) in all the
scenarios and different settings helps judge the complexity of the created games. Though humans
come with prior knowledge of performing the daily chores present in the environment, it was
interesting to observe that humans also find the environment challenging to solve in a single go if
hints are not present. Moreover, observing the growing performance curve highlights the existence of
phenomena of reinforcement learning happening in humans.

RL Algorithms: (details in App. G) We test the RL algorithms in similar four settings (5 and 2
choices) described above for both with and without handicaps (Hyper-parameter details in App. H).
We find a similar performance trend with RL agents for the handicap settings, all the agents in the
handicap settings show a learning curve across training episodes. Figure 2 (b) shows the learning
curves for various scenarios by the DQN agent. As can be observed, DQN agent learns to complete
the game for all scenarios after sufficient number of episodes. Further, we compare all the Deep
Q-learning agents for the scenario “repairing a flat bicycle tire”, Fig. 2 (c) shows the comparison of
various agents (See App. I and Table 4 for agent comparison on other scenarios). All agents except
DRQN perform similarly. We speculate that the high amount of randomness in invalid options is one
reason for poor performance in DRQN as the LSTM layers try to capture the relation between the
sequential set of observed choices. We also experimented with DQN with GloVe embeddings [27]
instead of SBERT embeddings, as can be seen Fig. 2 (c) , DQN+GloVe fails to learn, showing the
importance of SBERT embeddings for learning the semantics of the scenario. Fig. 2 (d) shows the
performance of agents in no-handicap scenario, as evident agents struggle to learn without hint and
this points towards developing more sophisticated agents that make use external knowledge sources.

5 Conclusion and Future Work

This paper presents a text-based game environment (ScriptWorld) involving 10 daily scenarios
for training RL agents that resemble real-world tasks. The games require an agent to maintain
memory and make complex sequential decisions in a dynamic environment. We develop baseline RL
algorithms for playing the games and also record human performances on the same. Baseline RL
algorithms can perform well in the “with hint” version of the game. However, they fail to learn in the
absence of a hint. This points toward the complexity of the environment and motivates future works
to develop algorithms that use external sources like knowledge graphs to navigate in the game.

4

References
[1] Comet.ML home page. https://www.comet.ml/, 2021. Accessed: 2021-2-3.

[2] Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláš Zelinka, Marc-Antoine
Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, and William L. Hamilton.
Learning dynamic belief graphs to generalize on text-based games. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[3] Leonard Adolphs and Thomas Hofmann. Ledeepchef: Deep reinforcement learning agent for
families of text-based games. In AAAI, 2020.

[4] Prithviraj Ammanabrolu and Matthew Hausknecht. Graph constrained reinforcement learning
for natural language action spaces. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=B1x6w0EtwH.

[5] Prithviraj Ammanabrolu and Mark Riedl. Transfer in deep reinforcement learning using
knowledge graphs. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for
Natural Language Processing (TextGraphs-13), pages 1–10, Hong Kong, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-5301. URL https://
aclanthology.org/D19-5301.

[6] Gordon H Bower, John B Black, and Terrence J Turner. Scripts in memory for text. Cognitive
psychology, 11(2):177–220, 1979.

[7] Subhajit Chaudhury, Daiki Kimura, Kartik Talamadupula, Michiaki Tatsubori, Asim Munawar,
and Ryuki Tachibana. Bootstrapped q-learning with context relevant observation pruning to
generalize in text-based games. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

[8] Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,
James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A
learning environment for text-based games. In Workshop on Computer Games, pages 41–75.
Springer, 2018.

[9] Lea Frermann, Ivan Titov, and Manfred Pinkal. A hierarchical bayesian model for unsupervised
induction of script knowledge. In Proceedings of the 14th Conference of the European Chapter
of the Association for Computational Linguistics, pages 49–57, 2014.

[10] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
In 2015 aaai fall symposium series, 2015.

[11] Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Inter-
active fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7903–7910, 2020.

[12] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf.
Deep reinforcement learning with a natural language action space. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1621–1630, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1153. URL https://aclanthology.org/P16-1153.

[13] Bram Jans, Steven Bethard, Ivan Vulić, and Marie Francine Moens. Skip n-grams and ranking
functions for predicting script events. In Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, pages 336–344, Avignon, France,
April 2012. Association for Computational Linguistics. URL https://aclanthology.org/
E12-1034.

[14] Leslie P Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Technical report, USA, 1996.

5

https://www.comet.ml/
https://openreview.net/forum?id=B1x6w0EtwH
https://aclanthology.org/D19-5301
https://aclanthology.org/D19-5301
https://aclanthology.org/P16-1153
https://aclanthology.org/E12-1034
https://aclanthology.org/E12-1034

[15] Heinrich Kuttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment. ArXiv,
abs/2006.13760, 2020.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[17] Ashutosh Modi. Event embeddings for semantic script modeling. In Proceedings of The
20th SIGNLL Conference on Computational Natural Language Learning, pages 75–83, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1008.
URL https://aclanthology.org/K16-1008.

[18] Ashutosh Modi and Ivan Titov. Inducing neural models of script knowledge. In Proceedings
of the Eighteenth Conference on Computational Natural Language Learning, pages 49–57,
Ann Arbor, Michigan, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/
W14-1606. URL https://aclanthology.org/W14-1606.

[19] Ashutosh Modi, Tatjana Anikina, Simon Ostermann, and Manfred Pinkal. InScript: Narrative
texts annotated with script information. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), pages 3485–3493, Portorož, Slovenia, May
2016. European Language Resources Association (ELRA). URL https://aclanthology.
org/L16-1555.

[20] Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Sayeed, and Manfred Pinkal. Modeling
semantic expectation: Using script knowledge for referent prediction. Transactions of the
Association for Computational Linguistics, 5:31–44, 2017. doi: 10.1162/tacl_a_00044. URL
https://aclanthology.org/Q17-1003.

[21] Raymond J Mooney. Learning plan schemata from observation: Explanation-based learning for
plan recognition. Cognitive Science, 14(4):483–509, 1990.

[22] Keerthiram Murugesan, Mattia Atzeni, Pavan Kapanipathi, Pushkar Shukla, Sadhana Kumaravel,
Gerald Tesauro, Kartik Talamadupula, Mrinmaya Sachan, and Murray Campbell. Text-based rl
agents with commonsense knowledge: New challenges, environments and baselines. In AAAI,
2021.

[23] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. arXiv preprint arXiv:1506.08941, 2015.

[24] Simon Ostermann, Ashutosh Modi, Michael Roth, Stefan Thater, and Manfred Pinkal. MCScript:
A novel dataset for assessing machine comprehension using script knowledge. In Proceedings
of the Eleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan, May 2018. European Language Resources Association (ELRA). URL
https://aclanthology.org/L18-1564.

[25] Simon Ostermann, Michael Roth, Ashutosh Modi, Stefan Thater, and Manfred Pinkal. SemEval-
2018 task 11: Machine comprehension using commonsense knowledge. In Proceedings of The
12th International Workshop on Semantic Evaluation, pages 747–757, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-1119. URL
https://aclanthology.org/S18-1119.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

6

https://aclanthology.org/K16-1008
https://aclanthology.org/W14-1606
https://aclanthology.org/L16-1555
https://aclanthology.org/L16-1555
https://aclanthology.org/Q17-1003
https://aclanthology.org/L18-1564
https://aclanthology.org/S18-1119
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[27] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[28] Karl Pichotta and Raymond Mooney. Statistical script learning with multi-argument events.
In Proceedings of the 14th Conference of the European Chapter of the Association for Com-
putational Linguistics, pages 220–229, Gothenburg, Sweden, April 2014. Association for
Computational Linguistics. doi: 10.3115/v1/E14-1024. URL https://aclanthology.org/
E14-1024.

[29] Karl Pichotta and Raymond Mooney. Statistical script learning with recurrent neural networks.
In Proceedings of the Workshop on Uphill Battles in Language Processing: Scaling Early
Achievements to Robust Methods, pages 11–16, Austin, TX, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/W16-6003. URL https://aclanthology.
org/W16-6003.

[30] Karl Pichotta and Raymond J. Mooney. Using sentence-level LSTM language models for
script inference. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 279–289, Berlin, Germany, Au-
gust 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1027. URL
https://aclanthology.org/P16-1027.

[31] Michaela Regneri, Alexander Koller, and Manfred Pinkal. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 979–988, 2010.

[32] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084.

[33] Rachel Rudinger, Vera Demberg, Ashutosh Modi, Benjamin Van Durme, and Manfred Pinkal.
Learning to predict script events from domain-specific text. In Proceedings of the Fourth
Joint Conference on Lexical and Computational Semantics, pages 205–210, Denver, Colorado,
June 2015. Association for Computational Linguistics. doi: 10.18653/v1/S15-1024. URL
https://aclanthology.org/S15-1024.

[34] Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro, and Benjamin Van Durme. Script
induction as language modeling. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1681–1686, Lisbon, Portugal, Septem-
ber 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1195. URL
https://aclanthology.org/D15-1195.

[35] Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, and
Yejin Choi. proScript: Partially ordered scripts generation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages 2138–2149, Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-emnlp.184. URL https://aclanthology.org/2021.findings-emnlp.184.

[36] Abhilasha Sancheti and Rachel Rudinger. What do large language models learn about scripts?,
2021. URL https://arxiv.org/abs/2112.13834.

[37] Abhilasha Sancheti and Rachel Rudinger. What do large language models learn about scripts?
CoRR, abs/2112.13834, 2021. URL https://arxiv.org/abs/2112.13834.

[38] Roger C Schank. Dynamic memory: A theory of learning in people and computers, 1982.

[39] Roger C Schank and Robert P Abelson. Scripts, plans, and knowledge. In IJCAI, volume 75,
pages 151–157, 1975.

[40] Ishika Singh, Gargi Singh, and Ashutosh Modi. Pre-trained language models as prior knowledge
for playing text-based games. In AAMAS, 2022.

7

https://aclanthology.org/E14-1024
https://aclanthology.org/E14-1024
https://aclanthology.org/W16-6003
https://aclanthology.org/W16-6003
https://aclanthology.org/P16-1027
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/S15-1024
https://aclanthology.org/D15-1195
https://aclanthology.org/2021.findings-emnlp.184
https://arxiv.org/abs/2112.13834
https://arxiv.org/abs/2112.13834

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[42] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[43] Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld:
Is your agent smarter than a 5th grader?, 2022. URL https://arxiv.org/abs/2203.07540.

[44] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[45] Lilian D. A. Wanzare, Alessandra Zarcone, Stefan Thater, and Manfred Pinkal. A crowdsourced
database of event sequence descriptions for the acquisition of high-quality script knowledge.
In Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), pages 3494–3501, Portorož, Slovenia, May 2016. European Language Resources
Association (ELRA). URL https://aclanthology.org/L16-1556.

[46] Shunyu Yao, Rohan Rao, Matthew J. Hausknecht, and Karthik Narasimhan. Keep calm and
explore: Language models for action generation in text-based games. ArXiv, abs/2010.02903,
2020.

[47] Xusen Yin and Jonathan May. Learn how to cook a new recipe in a new house: Using
map familiarization, curriculum learning, and bandit feedback to learn families of text-based
adventure games. 2019.

[48] Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Christopher Joseph Pal, Yoshua
Bengio, and Adam Trischler. Interactive language learning by question answering. In EMNLP,
2019.

[49] Mikulá Zelinka. Using reinforcement learning to learn how to play text-based games. ArXiv,
abs/1801.01999, 2018.

8

https://arxiv.org/abs/2203.07540
https://aclanthology.org/L16-1556

Appendix

A Other Existing Works

Due to space limitations in a short paper, we could not cover a wide variety of existing works on
text-based games. In this section, we briefly describe other popular works that aim to build an effective
text-based environment for training/validating RL algorithms. We also provide brief insights into
the works done over Script Knowledge and touch upon some existing RL approaches for text-based
games.

Text-based Environments: A widely popular work Côté et al. [8] has introduced the TextWorld
sandbox environment, a Python-based framework in which the user can build game worlds of varying
difficulty along with in-game objects and goal states while monitoring states and assigning rewards.
Language diversity and complexity of action space are limited in TextWorld. As TextWorld is a parser-
based game, it also suffers from the problem of exponential action space. In contrast, ScriptWorld
(created using human written texts) overcomes these issues by generating significant alternative
pathways to complete a task. This complexity and variability in ScriptWorld help to develop better
language understanding capabilities in RL algorithms. Other Text-based game frameworks such as
TWC (TextWorld Commonsense) Murugesan et al. [22] and Question Answering with Interactive
Text (QAit) [48] build on TextWorld. In TWC, the agent must develop a commonsense understanding
of the objects, their attributes, and affordances concerning their environment. TWC comes close
to our environment, however, in ScriptWorld we focus on commonsense knowledge about daily
procedural activities involving various objects, and hence in that sense, our environment is a super-set
of TWC. In QAit, the agent must learn to answer questions about the objects’ existence, location,
and attributes by interacting with the environment. Hausknecht et al. [11] have introduced a new
framework called Jericho, which facilitates using man-made Interactive Fiction Games as learning
environments for RL algorithms to train and learn. Several other text-based game libraries also exist,
like Zelinka [49], Kuttler et al. [15], Wang et al. [43]. All the above environments provide fictional
environments and lack a proper grounding in the real world, making the RL algorithms trained using
them challenging for practical, real-world use.

Scripts: Formally, Scripts are defined as sequences of actions describing stereotypical human
activities, for example, cooking pasta, making coffee, etc. [39]. Scripts have been an active area of
research for the last four decades. As evident from the definition, scripts encapsulate commonsense
and procedural knowledge about the world and are an ideal source for training RL algorithms to learn
about the world. Two aspects of script knowledge are of prime importance, the prototypical ordering
of events and event paraphrasing. A number of works have developed computational models for both
the tasks, inter alia, Regneri et al. [31], Frermann et al. [9], Modi [17], Modi and Titov [18], Rudinger
et al. [33], Jans et al. [13], Pichotta and Mooney [30, 29, 28]. A number of corpora have also been
created, e.g., InScript [19], DeScript [45], McScript [24, 25], and ProScript [35]. Researchers have
also examined script knowledge from the perspective of language modeling [34, 37]. There have
been numerous studies that have examined Script knowledge from a cognitive perspective, inter alia,
Modi et al. [20], Bower et al. [6], Schank [38], Mooney [21].

RL Algorithms: Narasimhan et al. [23] have introduced an RL-based architecture called LSTM-
DQN that learns the action policies and state representations of parser-based games. He et al. [12]
have introduced DRRN (Deep Reinforcement Relevance Network) architecture which embeds the
state spaces and action spaces separately before combining them to estimate the Q-function. A
number of other RL algorithms have been proposed for text-based environments, e.g., KG-DQN
architecture [5], Ammanabrolu and Hausknecht [4], Adhikari et al. [2], Chaudhury et al. [7], Adolphs
and Hofmann [3], Yin and May [47], Yao et al. [46]. Singh et al. [40] introduce a pretrained language
model fine-tuned on the dynamics of the game to equip the agent with language learning capabilities
as well as acquire real-world knowledge. The baseline RL algorithms developed for ScriptWorld
comes close to the approach of Singh et al. [40].

B Environment Insights

The Table 1 compares graphs of different scenarios present in ScriptWorld. Overall, the scenario
“flying in an airplane” turns out to be the most complex one in terms of the number of correct possible
paths, this is possibly due to more variability in carrying out this activity.

9

Comparison with other text-based environments: ScriptWorld environment is different with
the existing text-world based environments (e.g., Text World, Jericho, TWC, QAit) as ScriptWorld
covers much richer set of realistic scenarios that requires procedural knowledge to solve the game.
ScriptWorld is created using the corpus created by humans and hence encompasses world knowl-
edge. The complexity (Table 1) of the ScriptWorld is much more than the existing environments,
requiring the agent to remember past events and actions.

Scenario # Nodes Degree (Avg.) # Paths

taking a bath 525 3.7 2.2× 1027

baking a cake 543 3.6 8.4× 1026

flying in an airplane 558 3.6 7.6× 1030

going grocery shopping 512 3.7 8.3× 1024

going on a train 394 3.7 1.9× 1019

planting a tree 369 3.6 1.4× 1016

riding on a bus 375 3.7 4.0× 1016

repairing a flat bicycle tire 425 3.4 9.5× 1017

borrowing a book from the library 386 3.6 1.4× 1018

getting a hair cut 477 3.7 2.4× 1027

Table 1: The table compares graphs of different scenarios present in ScriptWorld. (Deg. represents
the average degree for the nodes in the scenario graph.)

C Examples of Compact Graphs for Scenarios

An example of compact graphs for two different scenarios are shown in Figure 14, and 15.

D ScriptWorld Game-play examples

In Figure 3 we show a sample game-play for the “planting a tree" scenario.

E Human performance

Figure 4 and Figure 5 show human performance for different number of action choices (2 and 5)
without any handicaps provided. Figure 6 and Figure 7 shows the human performance with handicaps
provided for 2 and 5 action choices respectively.

F Evaluation Metrics

We use standard reward vs. episodes and task completion percentages vs. episodes as evaluation
metrics for comparing the RL algorithms.

G RL Baselines

In the ScriptWorld environment, for every state, the environment returns a sample of a possible
set of choices. Since these choices provide feedback related to only the current state, the agent
must keep track of all the observations received after a particular choice. This property typically
resembles the Partially Observable Markov decision processes (POMDP) [14], where the agent
can never observe the complete state of the environment. Formally, ScriptWorld is defined by
(S,A,Ω, R, γ), where S is the set of environment states (nodes in the scenario graph), and A is the
set of all actions (choices), Ω is the set of observations, i.e description of various actions, R is the
reward obtained and γ is the discount parameter. The goal of an agent is to learn a policy π(a | s),
i.e., a mapping from set of observations to actions that tells RL algorithms what action to take in a
particular state. Typically, instead of learning the policy the agent learns q-values, which can reveal

10

the policy. Formally, q-value (q-function) Q(s, a) is the expected cumulative return if an agent starts
from state s and takes an action a and there after follows a policy π. The aim of an agent is to
maximize the q-value which in turns leads to an optimal policy. The q-function can be approximated
via a parameterized model that takes state (features) and actions (features) as input and produces
the q-value as the output (for more details refer to Sutton and Barto [41]). In Deep Reinforcement
Learning, q-function approximated using neural networks establishes a general learning algorithm,
Deep Q-Learning (DQN) [16]. In our setup we represent states and actions via pre-trained language
model and combine it with a DQN framework to obtain a policy over the available set of actions. A
Deep Q-Network approximates a state-value function in a Q-Learning framework via the following
update rule [16]: Q(st, at : θ) = R + γ ∗maxaQ(st+1, a; θ), which can be used with experience
replay for off-policy learning by storing the episode steps. Here, θ are the parameters of the neural
network.

Recently, Language Models (LM) have shown promising results in almost all tasks in NLP. For
example, Sancheti and Rudinger [36] have explored the use of large language models for script
knowledge, they show that LMs can help to fill unstated information in a narrative. For reinforcement
learning baselines, we consider pre-trained SBERT embeddings [32] as a source of prior real-world
knowledge, which could be used directly by a Q learning algorithm to solve the ScriptWorld
environment. We consider a generalized scheme where a pre-trained SBERT model is used to extract
semantic information from the observations, i.e., the available set of choices. In our generalized
scheme, a pre-trained language model generates embeddings (hi) corresponding to each of the
provided n options c ∈ {c1, . . . , cn}: hi = LM(ci). The obtained embeddings are concatenated
and passed as input to the Q learning framework: O = h1 ⊕ h2 ⊕ . . . ⊕ hn. The obtained set of
concatenated vectors (O) goes as input observation to the Deep Q learning framework. Further, the Q
learning framework generates the Q values of the available set of actions: pi = ReLU (W1O + b1)
and finally, Q(st, at) = (W2pi + b2). With the help of this generalized architecture, we run a detailed
set of experiments with a language model and different algorithms for Q learning. In particular, we
use DQN [16] , DDQN [42] , DRQN [10], Dueling-DQN and Dueling-DDQN [44]. We describe
the algorithm for the learning framework in Algo. 1 and Table 2 provides the update equations for
the algorithms we experimented. In this paper, since this is a first version of the environment, we
experimented with simple baseline models and leave developing more sophisticated RL algorithms
for future work.

Algorithm 1 Q learning based base-lines

for episode=1 to episodes do
for Double architecture models update target network
initialize the environment and the total reward
while not done do

with ϵ probability select a random action at
else select at = argmaxaQ(st, at; θ)
Execute at in environment to get next state st+1 and reward rt
store (st, at, rt, st+1) in the replay buffer
if done then

if not replay then
assign the Q(st, at; θ) reward rt and update the network model

end if
break

end if
if replay then

use samples from replay memory and update networks using model.update()
else

Update network weights using the last step using model.update()
end if
add total to the episode scores
update ϵ ,st,

end while
end for
Return episode scores

11

Algorithm Update Rule
DQN Q(st, at : θ) = R+ γ ∗maxaQ(st+1, a; θ)

DDQN Q(st, at; θ) = R+ γ ∗Q(st+1, argmaxa′Q′(st+1, a
′; θ′))

DuDQN Q(st, at : θ, α, β) = V (st; θ, α) +A(st, at; θ, β)−
1

|A|
∑

a′ A(st, a
′; θ, β)

Q(st, at; θ, α, β) = R+ γ ∗Q(st+1, argmaxaQ(st+1, a
′; θ, α, β))

DuDDQN Q(st, at : θ, α, β) = V (st; θ, α) +A(st, at; θ, β)−
1

|A|
∑

a′ A(st, a
′; θ, β)

Q(st, at; θ, α, β) = R+ γ ∗Q(st+1, argmaxa′Q′(st+1, a
′; θ′, α′, β′))

DRQN Q(st, at; θ) = R+ γ ∗maxaQ(st+1, a; θ)

Table 2: The table shows update rule for various q-learning based algorithms.

H Model Parameters and Hyperparameter Settings

We use PyTorch [26] for training our DQN based algorithms. We use comet [1] for logging all our
experiments. Our architecture was trained on the NVIDIA Tesla A40 GPUs. Table 3 shows the
respective number of trainable parameters for all the tried RL alogrithms. For a fair comparison
across RL algorithms, we use same set of hyperparameters for all the algorithms, where learning rate
is set to 0.001 and discount factor γ = 0.9. The DQN network consists of 2 feed-forward layers for
generating Q values corresponding to the available choices.

2 options Setting 5 options Setting
with handicap without handicap with handicap without handicap

SBERT+DQN 2890754 3283970 4076549 4463618
SBERT+DDQN 5781508 6567940 8153098 8927236

SBERT+Duelling DQN 11299845 11299845 12504075 12872709
SBERT+DRQN 3490358 3883574 4670159 5063222

SBERT+Duelling DDQN 22599690 23386122 25008150 25745418
GloVe+DQN 2718722 3025922 3646469 3947522

Table 3: Number of trainable parameters for various Q-learning based RL algorithms.

I Additional Results

Table 4 shows Scores and % completion for different RL algorithms. Figure 8 shows results on all
RL algorithms for the “Repairing a flat bicycle tire” scenario without hint and 2 choices. Similarly,
Figure 9 shows results on all RL algorithms for the “Going on a Train” scenario without hint and
2 choices. Figure 10 and Figure 11 shows the comparison between Glove-DQN vs SBERT-DQN.
Figure 12 and Figure 13 show the average completion score and average completion percentage
across all scenarios.

Algorithm DQN DDQN Duelling DQN DRQN

Score Comp % Score Comp % Score Comp % Score Comp %

going grocery shopping 0.18 99.68 0.61 99.59 -0.78 99.31 -4.80 98.96
riding on a bus -0.35 99.79 0.25 99.75 1.36 99.65 -2.08 98.79
going on a train 0.43 99.48 0.63 99.76 1.24 99.73 -5.91 98.70

borrowing a book from the library -2.70 96.25 -1.67 96.62 -2.36 95.40 -7.82 98.96
getting a hair cut -2.40 99.47 -1.58 99.54 -0.26 99.27 -3.55 98.39

baking a cake -10.53 98.49 -8.42 99.04 -13.52 98.40 -12.32 97.99
repairing a flat bicycle tire 2.43 99.48 1.55 99.80 3.46 99.93 -6.06 98.25

planting a tree -0.40 99.47 0.13 99.86 0.39 99.73 -3.87 98.84
flying in an airplane -2.62 98.95 -0.44 99.40 -1.60 99.57 -11.24 98.16

taking a bath -1.91 99.41 0.70 99.51 -0.59 98.93 -4.02 98.54

Table 4: The table shows performance (scores and completion percentage) of various RL algorithms
for all the scenarios in ScriptWorld. (game setting: number of actions = 2, without handicap). Note
all the values averaged across multiple runs.

12

Figure 3: The figure shows a sample game-play for scenario "planting a tree". (the game-play
sequences are left to right and top to bottom.)

13

Figure 3: "planting a tree" game continued. (the game-play sequences are left to right and top to
bottom.)

14

1 2 3 4 5

6

7

8

9

10

going grocery shopping riding on a bus
going on a train borrowing a book from the library
getting a hair cut baking a cake
repairing a flat bicycle tire planting a tree
flying in an airplane taking a bath

Trials

Sc
or

es

Figure 4: The figure shows the human performance for 5 trials on multiple scenarios without hint
(no of action choice = 2)

1 2 3 4 5

−30

−20

−10

0

10

20

going grocery shopping riding on a bus
going on a train borrowing a book from the library
getting a hair cut baking a cake
repairing a flat bicycle tire planting a tree
flying in an airplane taking a bath

Trials

Sc
or

es

Figure 5: The figure shows the human performance for 5 trials on multiple scenarios without hint
(no of action choice = 5)

15

1 2 3 4 5
7.5

8

8.5

9

9.5

10

going grocery shopping riding on a bus
going on a train borrowing a book from the library
getting a hair cut baking a cake
repairing a flat bicycle tire planting a tree
flying in an airplane taking a bath

Trials

Sc
or

es

Figure 6: Human performance for 5 trials on multiple scenarios with hint (no of action choice = 2).

1 2 3 4 5
7

7.5

8

8.5

9

9.5

10

going grocery shopping riding on a bus
going on a train borrowing a book from the library
getting a hair cut baking a cake
repairing a flat bicycle tire planting a tree
flying in an airplane taking a bath

Trials

Sc
or

es

Figure 7: Human performance for 5 trials on multiple scenarios with hint (no of action choice = 5).

16

0 500 1000 1500

−10

−5

0

5

SBERT+DuDQN SBERT+DDQN SBERT+DQN
SBERT+DRQN SBERT+DuDDQN GloVe+DQN

Episodes

R
ew

ar
d

Figure 8: Agents performance for the Scenario “Repairing a flat bicycle tire” without hint (2 choices
per step).

0 500 1000 1500

−10

−8

−6

−4

−2

0

2

4

DuDQN DDQN DQN DRQN

No. of Episodes

R
ew

ar
ds

Figure 9: Agents performance for the Scenario “Going on a Train” without hint (2 choices per step).

17

0 500 1000 1500

−10

−5

0

5

10

GloVe+DQN SBERT+DQN

Episodes

R
ew

ar
d

Figure 10: SBERT+DQN vs GloVe+DQN for the scenario "repairing a flat bicycle tire" with hint (2
choices per action).

0 500 1000 1500

−10

−8

−6

−4

−2

0

2

4

GloVe+DQN SBERT+DQN

Episodes

R
ew

ar
d

Figure 11: SBERT+DQN vs GloVe+DQN for the scenario "repairing a flat bicycle tire" without hint
(2 choices per actions).

18

going grocery shopping

riding on a bus

going on a train

borrow
ing a book from

 the library

getting a hair cut

baking a cake

repairing a flat bicycle tire

planting a tree

flying in an airplane

taking a bath
−15
−10
−5

0
5

DuDQN DDQN DQN DRQN

Scenarios

Av
er

ag
e

R
ew

ar
d

Figure 12: Average rewards of agents across all scenarios without hint (2 choices per step).

going grocery shopping

riding on a bus

going on a train

borrowing a book from the library

getting a hair cut

baking a cake

repairing a flat bicycle tire

planting a tree

flying in an airplane

taking a bath

96

97

98

99

100

DuDQN DDQN DQN DRQN

Scenarios

Av
er

ag
e

C
om

pl
et

io
n

Pe
rc

en
ta

ge

Figure 13: Average completion percentage of agents across all scenarios without hint (2 choices per
step).

19

Figure 14: The figure shows the compact graph created for the scenario “flying in an airplane”

20

Figure 15: The figure shows the compact graph created for the scenario “planting a tree”

21

	Introduction
	Related Work
	ScriptWorld Environment
	Experiments, Results and Analysis
	Conclusion and Future Work
	Other Existing Works
	Environment Insights
	Examples of Compact Graphs for Scenarios
	ScriptWorld Game-play examples
	Human performance
	Evaluation Metrics
	RL Baselines
	Model Parameters and Hyperparameter Settings
	Additional Results

