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ABSTRACT

While Graph Contrastive Learning (GCL) has attracted considerable attention
in the field of graph self-supervised learning, its performance heavily relies on
data augmentations that are expected to generate semantically consistent positive
pairs. Existing strategies typically resort to random perturbations or local struc-
ture preservation, yet lack explicit control over global structural consistency be-
tween augmented views. To address this limitation, we propose Fractal Graph
Contrastive Learning (FractalGCL), a theory-driven framework introducing two
key innovations: a renormalisation-based augmentation that generates structurally
aligned positive views via box coverings; and a fractal-dimension-aware con-
trastive loss that aligns graph embeddings according to their fractal dimensions,
equipping the method with a fallback mechanism guaranteeing a performance
lower bound even on non-fractal graphs. While combining the two innovations
markedly boosts graph-representation quality, it also adds non-trivial computa-
tional overhead. To mitigate the computational overhead of fractal dimension esti-
mation, we derive a one-shot estimator by proving that the dimension discrepancy
between original and renormalised graphs converges weakly to a centred Gaussian
distribution. This theoretical insight enables a reduction in dimension computation
cost by an order of magnitude, cutting overall training time by approximately 61%.
The experiments show that FractalGCL not only delivers state-of-the-art results on
standard benchmarks but also outperforms traditional and latest baselines on traf-
fic networks by an average margin of about remarkably 4%. Codes are available
at (https://anonymous.4open.science/r/FractalGCL-0511/).

1 INTRODUCTION

Graph contrastive learning (GCL) has emerged as a popular self-supervised paradigm for graph
representation learning (Hu et al., 2020; Xia et al., 2022a; You et al., 2021; Ju et al., 2024; Liu et al.,
2022a; Xu et al., 2018). By forcing models to discriminate positive pairs from negative pairs, it
alleviates the knowledge scarcity problems (Wu et al., 2021; Xie et al., 2022; Chen et al., 2025;
Shi et al., 2025), and it also serves as an effective pretext task for pre-training graph foundation
models (Liu et al., 2023; Huang et al., 2024). As graphs possess non-Euclidean topology, researchers
must tailor contrastive learning frameworks to graph-specific properties. Therefore, GCL has formed
unique lines of research, which cover stages including augmenting graph data (Liu et al., 2022b;
Rong et al., 2019; Sun et al., 2021), designing contrastive modes (Ju et al., 2023; Ren et al., 2021;
Park et al., 2020), and optimizing contrastive objectives (Hjelm et al., 2018; Xia et al., 2022b; Zhang
et al., 2022).

Among current studies, data augmentation remains a pivotal challenge in graph contrastive learn-
ing, as the quality of positive and negative sample pairs fundamentally determines the capacity of
a graph model to extract meaningful knowledge and the quality of learned representations. While
negative samples are typically generated by contrasting views from structurally distinct graphs or
subgraphs (You et al., 2020), which ensures divergent distributional characteristics, the generation
of semantically coherent positive samples remains a critical bottleneck. Specifically, existing ap-
proaches often rely on random perturbations (e.g., node/edge deletion, attribute masking) or fixed
topological constraints (e.g., hierarchy preservation), which provide only incomplete guarantees for
maintaining structural consistency. These methods lack an explicit mechanism to ensure global
similarity between the original graph and its augmented views, leading to potential mismatches in
semantic alignment. This gap naturally raises a fundamental question: Can we design a principled
graph-level criterion to enforce global structural consistency during positive sample generation?
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Ξ0 Ξ1 Ξ2 Ξ3

Figure 1: An example of evolving theoretical fractal graph (Neroli, 2024)

This critical question directs attention to a fundamental yet often overlooked global property of
graphs—their inherent self-similarity and hierarchical complexity, which is mathematically for-
malised through the concept of fractal. Fractal geometry (Edgar & Edgar, 2008; Mandelbrot, 1983;
1989) is a field of mathematics that explores irregular shapes whose intricate detail persists across
different scales, appearing in patterns such as snowflakes, coastlines, and branching trees. Fractal
graphs are networks that possess fractal properties, effectively transplanting fractal concepts from
Euclidean space onto graph structures (see Figure 1). Given the prevalence of fractal graphs in natu-
ral and society, their fractal properties likely play a significant yet under-explored role in improving
graph representations via GCL.

To effectively utilize fractal properties, we propose a novel FractalGCL framework in this paper,
improving the effectiveness of GCL. We start by introducing a novel augmentation strategy, renor-
malisation, to generate positive views which are structurally similar. Therefore, the generated views
have the same box dimension, implying strong structural similarity. To ensure that the graph rep-
resentations capture not only self-similar structures but also explicitly encode fractal-dimension in-
formation, we define a fractal-dimension–aware contrastive loss that steers the encoder to embed
graphs in a way that respects their intrinsic fractal geometry. Empirically, the two components
already outperform competing models, yet estimating the fractal dimension introduces additional
computational overhead. Consequently, we cut the cost of box-dimension estimation with a theoret-
ical result that approximates the dimension gap as a Gaussian perturbation, making FractalGCL
practical and performant. Experiments were conducted on both standard graph classification bench-
marks and real-world traffic networks, and the results confirm that FractalGCL surpasses prior meth-
ods on most individual benchmarks and attains the best average performance overall, underscoring
its effectiveness in both theory and practice.

To sum up, our main contributions include:

• Fractal Geometry Meets GCL. To the best of our knowledge, we are among the first to
inject a mathematically rigorous fractal viewpoint into graph representation learning and
graph contrastive learning, revealing that a global and scale-free structure, which is often
overlooked by prior GCL methods, demonstrates significant potential in learning high-
quality graph representations and enhancing performance on downstream tasks.

• Theory-Driven FractalGCL Architecture. Guided by fractal geometry, we improve the
existing GCL methods with a novel framework FractalGCL. It integrates renormalisation-
based graph augmentations and a fractal-dimension–aware contrastive loss. Renormalisa-
tion contributes to generating better positive and negative pairs, while the novel loss further
utilizes fractal property to optimize graph embeddings.

• From Theory to Implementation. To further optimize Fractal GCL for practical imple-
mentation, we conducted a series of theoretical analyses to prove that the gap between the
original and renormalised box dimensions converges weakly to a centred Gaussian mea-
sure, enabling a lightweight approach that markedly accelerates training. We design a
principled fallback mechanism, ensuring that even on graphs without fractality our perfor-
mance is no worse than classical GCL.

• Notable Performance Gains. We conducted thorough experiments on both standard graph
classification benchmarks and social datasets, such as urban-traffic graphs, and the results
prove the effectiveness of the proposed FractalGCL.
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2 PRELIMINARY EXPERIMENTS

The foregoing discussion can be condensed into two working hypotheses: (i) fractal structures are
widespread in real-world graphs, and (ii) such patterns reflect non-trivial global complexity that may
influence representation learning.

We now present two preliminary studies to investigate these questions. Preliminary experiment 1
measures how often strong fractality occurs in standard benchmarks, and Preliminary experiment 2
evaluates whether explicitly using fractal information can boost downstream performance. Please
refer to Appendix B for the detailed experimental setup and complete results.

Preliminary experiment 1. We assessed how well each graph in six graph classification bench-
marks follows fractal (power-law) scaling by fitting a log–log box-counting linear regression and
recording its coefficient of determination R2: the closer R2 is to 1, the more convincingly the
graph is fractal.

Using the strict cutoff R2 ≥ 0.90, 81% of the PROTEINS graphs, 92% of the REDDIT-MULTI-5K
graphs, and an impressive 99.8% of the D&D graphs meet the criterion and similarly high ratios
on the remaining datasets; see Figure 2. Hence, strongly fractal graphs are not rare outliers but a
pervasive phenomenon across all six collections.

Figure 2: Prevalence of fractal structures Figure 3: Accuracy gains from adding box di-
mension (significant when p < 0.05)

Preliminary experiment 2. We augmented a new feature box dimension, a type of fractal dimen-
sion introduced in Section 3.1, to the original features in each benchmark, and report the difference
in classification accuracy before and after augmentation. Remarkably, four out of six benchmarks
show statistically significant gains (p < 0.05), strongly indicating that fractal information captures
unique topological features that previous models fail to capture. Besides, the largest improvement
(p = 9.7× 10−4) appears on the most fractal and large-scale graphs, suggesting that box dimension
is especially informative when global self-similarity is pronounced.

3 FRACTALGCL: THEORY, METHODOLOGY AND IMPLEMENTATION

This section constructs FractalGCL — a novel framework grounded in fractal geometry that enables
graph representations to capture global fractal structure and box dimension information at the graph
level. Specifically, Section 3.1 revisits the essentials of fractal geometry; Sections 3.2–3.3 present
our renormalisation-based augmentations and the accompanying dimension-aware contrastive loss,
which form core components in FractalGCL framework; However, computing the fractal loss for
each renormalised graph is extremely costly. Sections 3.4–3.5 address the resulting computational
challenge by mathematical proof and statistical analysis and detail the practical implementation of
FractalGCL. See Figure 4 for intuitive ideas.

3.1 BACKGROUND OF FRACTAL GEOMETRY

In mathematics, defining a fractal graph is far from straightforward. However, to keep the discussion
focused, we state the most practical definition of fractal dimension in plain terms here, leaving the
full technical treatment to Appendix A.
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Figure 4: The Pipeline of FractalGCL

Definition 3.1. Let G be an infinite graph equipped with the graph distance dG. An L box covering
of G is a collection of subgraphs {Ui}i∈I , indexed by I, such that

⋃
i∈I Ui = G, and the diameter

diam(Ui) ≤ L for any i ∈ I. Denote by NL(G) the minimum number of subgraphs required for an
L box covering of G. The Minkowski dimension (or box dimension) of G is then defined as

dimB(G) := lim
L/ diam(G)→0

logNL(G)

− log
(
L/diam(G)

) ,
provided the limit exists. If 0 < dimB(G) < ∞, we say that G exhibits a fractal property and call

G a fractal (Minkowski) graph. In network science, it can also be stated as NL(G) ∼
(

diam(G)
L

)β

for L≪ diam(G).

To estimate the fractal dimension of a finite graph in practice, we design the algorithm estimating
the box dimension. It forms the basis on which FractalGCL is built. Find full details on the box
dimension algorithm in Appendix A.

3.2 NEW AUGMENTATION: GRAPH RENORMALISATION

In this section, we first formally introduce the renormalised graph R(G) and highlight its distinctive
value when used as a novel augmentation in contrastive learning. We then present theoretical re-
sults showing that the renormalisation procedure preserves the fractal dimension of a graph, thereby
providing a solid analytical foundation for our approach.

Renormalisation Graph.

Figure 5: Graph Renormalisation

In contrastive learning, constructing an “aug-
mented graph” that retains structural similarity
while preserving appropriate differences from
the original is crucial. Here, we introduce the
concept of the renormalisation graph, whose
core idea has appeared in various literature
(e.g., in multi-scale network analysis and ab-
stractions of complex networks (Song et al.,
2005)), but whose application to augmentations
for contrastive learning is relatively novel.
Definition 3.2. Let G be a given graph, and let
{Ui}i∈I be an L box-covering of G. We con-
struct the renormalised graph R(G) as follows: (i) Collapse each covering set Ui into a single
supervertex vi. (ii) If there exists at least one edge in G connecting a vertex in Ui to a vertex in
Uj (with i ̸= j), then place a superedge between vi and vj in R(G). The resulting graph R(G)
is called the renormalised graph of G at the given scale L. R(G) is equipped with the unweighted
shortest-path metric induced by its adjacency matrix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

From an intuitive standpoint, the construction of R(G) disregards certain fine-grained local struc-
tures while highlighting the global characteristics of the original graph in a more compact form.
Because renormalisation at different scales can accentuate multi-scale self-similarity, having both G
and R(G) simultaneously in contrastive learning allows the model to “perceive” macro-level struc-
tural resemblance, thereby facilitating a more effective capture of the essential features of a fractal
network. Full algorithmic details are deferred to Appendix A.
Theorem 3.3. For any Minkowski (box-dimensional) infinite graph G, mathematically,

dimB

(
R(G)

)
= dimB(G).

Proof. See Theorem A.2 in Appendix.

Note that for any graph G of infinite diameter, its renormalisation R(G) necessarily retains infinite
diameter; hence the Minkowski dimension remains well-defined. Theorem 3.3 formally states that
the box dimension is invariant under renormalisation, ensuring that R(G) and G share the same
intrinsic fractal complexity.

In experimental practice, we construct the augmentation view as the disjoint union G ⊔ R(G).
Because R(G) preserves both the fractal dimension and the self-similar structure of G, it serves as
a scaled-down fractal module drawn from the same generative process. Appending this module to
G enlarges the global pattern while introducing controlled local variation, producing an augmented
graph that is recognizably similar yet still distinguishable from the original. See Figure 4.

3.3 NOVEL LOSS: FRACTAL-DIMENSION BASED

While renormalisation already captures the fractal structure, in this section we introduce a con-
trastive loss with fractal dimension. Together, these components yield a graph representation learn-
ing framework that embeds each graph’s fractal characteristics.

Mapping from Graph G to Representation z. we apply R to obtain the augmented graph R(Gn),
where Gn is the n-th original graph in a mini-batch. We then use a GNN-based encoder fθ(·) and
a readout function Readout(·) to produce a graph-level embedding, and finally apply a projection
head gϕ(·) to map it into the contrastive space: zn := gϕ

(
Readout

(
fθ(R(Gn))

))
.

Contrastive Loss with Fractal Weight. We define the fractal dimension discrepancy weight be-
tween Gn and its augmented version R(Gn) as

φ
(
Gn,R(Gn)

)
:= exp

(
α
∣∣dimB

(
Gn

)
− dimB

(
R(Gn)

)∣∣),
where dimB(·) denotes the (estimated) Minkowski dimension of a graph, and α ≥ 0 is a scaling
factor.

Assume we have N original graphs {Gn}Nn=1 in a minibatch. Each Gn is augmented to produce
(Gn,R(Gn)), yielding representations zn and z

(R)
n , respectively. We treat (zn, z

(R)
n ) as a positive

pair in the spirit of contrastive learning, while representations from other graphs in the batch serve
as negative examples. An InfoNCE-like loss with the fractal dimension weight is given by:

ℓfractal(n) := − log
exp

(
sim

(
zn, z

(R)
n

)
/τ

)
· φ

(
Gn,R(Gn)

)
∑N

n′=1,n′ ̸=n exp
(
sim

(
zn, zn′

)
/τ

)
· φ

(
R(Gn),R′(Gn′)

) .
We average over all n to obtain the overall fractal contrastive loss: Lfractal :=

1
N

∑N
n=1 ℓfractal(n).

Lemma 3.4. Denote the similarity by s(G) := sim
(
zG, zR(G)

)
and ∆(G) := dimB(G) −

dimB R(G). Keeping all other batch terms fixed, the fractal-weighted InfoNCE loss ℓfractal sat-
isfies∣∣∣∂ℓfractal/∂s(G)

∣∣∣ = w
∣∣∣∂ℓInfoNCE/∂s(G)

∣∣∣, w = exp(α∆(G)) increases strictly with ∆(G).

Proof. Straightforward by partial differentiation.
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Intuitively, a larger fractal-dimension gap ∆(G) amplifies the positive-pair gradient, forcing the
model to pull the two views closer, while ∆(G) = 0 reduces to the ordinary InfoNCE case. The
lemma therefore formalises how the weight exp

(
α∆(G)

)
adaptively injects fractal similarity into

the optimisation dynamics.
Proposition 3.5 (Dimension–Dominated Ranking Consistency). If ∆(H1) < ∆(H2) and s(H1)−
s(H2) ≤ τα

(
∆(H2)−∆(H1)

)
, then the fractal-weighted InfoNCE losses satisfy

ℓfractal(G,H2) < ℓfractal(G,H1).

Proof. See Appendix A.3.

Proposition 3.5 shows that when two candidates have nearly identical embedding similarities, the
fractal-weighted InfoNCE loss favours the one whose fractal dimension is closer to that of the anchor
graph, ensuring that fractal characteristics dominate the loss’s discriminative behaviour.

3.4 COMPUTATIONAL DILEMMA AND ITS SOLUTION

In practice, the renormalisation augmentation combined with the fractal-dimension loss already
yields strong downstream performance, but computing that loss for every renormalised graph is
computationally expensive. This section analyzes the bottleneck and presents an efficient remedy.

To conclude, in practice we encounter the following dilemma:

(I) Simply imposing equal dimensions before and after renormalisation by Theorem 3.3, as guaran-
teed asymptotically by the theorem, overlooks the discrepancies that arise in finite graphs.

(II) Conversely, computing the fractal dimension for every augmented graph is prohibitively com-
plex. The following Proposition 3.6 indicates that the per-augmentation estimation is unrealistic.
Proposition 3.6 (Fractal complexity on sparse graphs). For the greedy box-covering procedure in
Algorithm 1, the worst-case running time T (V ) obeys Ω

(
V 2

)
≤ T (V ) ≤ O

(
V 3

)
.

Proof. See Appendix A.4.

Hence, to make fractal-based graph embeddings more broadly applicable, we must pursue faster
or approximate methods to estimate box dimensions. In the following, we propose a statistical
approximation strategy that circumvents the high computational overhead of naive box-covering,
thereby enabling the fractal-weighted contrastive learning framework to scale to larger graphs and
more frequent augmentations.

A Theoretical Solution to the Dimension Dilemma. We avoid the heavy cost of recomput-
ing dimB

(
R(G)

)
at every augmentation step by modelling the finite-size deviation ∆(G) :=

dimB(G) − dimB

(
R(G)

)
as a random perturbation whose variance vanishes as the graph grows.

The argument proceeds in three succinct steps.

Step 1. Finite-diameter error magnitude. Denote the diameter of a graph G by diam(G). Write
m̂G for the OLS slope used to estimate dimB(G) and σ2 for the log–residual variance.

Lemma 3.7 (Standard error vs. diameter). SE(m̂G) ∼ 2
√
6σ

[√
diam(G) log diam(G)

]−1
.

Proof. See Appendix A.5 for details.

Lemma 3.7 quantifies how rapidly the slope uncertainty shrinks: the error decays as
1/

(√
diam(G) log diam(G)

)
.

Step 2. Asymptotic distribution of the slope.
Lemma 3.8. Under Assumptions (A1)–(A4),√

diam(G)(m̂G −mG)
D−→ N (0, σ2),

√
diam(G)(m̂R −mR) −→ N (0, σ2).

Proof. Immediate from the classical OLS central-limit theorem.
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Lemma 3.8 states that, once rescaled by
√
diam(G), the slope estimator for either graph becomes

asymptotically Gaussian with a diameter-independent variance σ2. Hence any finite-size fluctuation
of the estimated dimension is fully captured by a normal term whose magnitude is controlled only
by diam(D).

Step 3. Weak convergence of the dimension gap.
Theorem 3.9. Let µG be the probability measure induced by the random variable ∆(G) on a graph
G. Under Hypothesis A.6 and with the notation of Lemmas 3.7 and 3.8, we have

µG
w−→ N

(
0, κ2(diam(G))

)
, κ2(diam(G)) := 6σ2[diam(G)(log diam(G))2]−1,

as diam(G)→∞. In particular, κ2(diam(G))→ 0, so the limiting distribution degenerates to the
Dirac measure δ0; i.e. ∆(G)→ 0 in probability.

Proof. See Appendix A.7.

Corollary 3.10. When diam(G) → ∞ the variance κ2(diam(G)) vanishes and µG → δ0, so
dimB(G) = dimB

(
R(G)

)
with probability 1 in the infinite-diameter limit.

Summary. Accordingly, we estimate the renormalised graph’s dimension for every G by adding a
zero-mean Gaussian perturbation with this scale, rather than rerunning the full box-covering proce-
dure. This scale-adaptive stochastic perturbation preserves fractal information while replacing the
prohibitive deterministic computation with an analytically grounded, lightweight approximation.

3.5 PRACTICAL IMPLEMENTATION

In this section, we integrate the newly developed methods and theory to implement the FractalGCL.

Loss approximation. For a minibatch {G1, . . . , GN} we draw independent perturbations
µn ∼ N

(
0, κ2(Dn)

)
, νnk ∼ N

(
|dimB(Gn)− dimB(Gk)|, κ2(diam(Gn)) + κ2(diam(Gk))

)
,

where σ̂ ≈ 0.1 is the pilot-estimated residual scale. The fractal loss then reads ℓfractal
n =

− log
exp

(
sim(zn,z

(R)
n )/κ+αµn

)∑
k ̸=n

exp
(
sim(zn, z

(R)
k )/κ+ ανnk

) .
Implementation details. During training we first compute (or cache) each graph diameter
diam(Gi), then form the similarity matrix S = [sim(zi, z

(R)
j )] and augment it with a Gaussian

matrix whose entrywise statistics obey the diameter–controlled variance above:

S∗ = S+αG, Gij ∼

{
N
(
0, κ2(diam(Gi)i)

)
, i = j,

N
(
|dimB(Gi)− dimB(Gj)| , κ2(diam(Gi)) + κ2(diam(Gj))

)
, i ̸= j.

An annealing schedule on σ̂ (or directly on α) keeps the injected noise large in early epochs and
negligible later. Softmax over S∗ yields the final fractal-weighted contrastive loss, adding only at
almost the O(N2) cost of sampling G to each batch.

Safe fallback under weak fractality or small diameters. We employ a two-stage gate: if the graph
diameter diam(G) ≤ 9 (for which box-dimension estimation is not meaningful) or the fractality is
insufficient R2 < θ with default θ = 0.9, we disable the renormalised view and the fractal weighting
by setting α = 0, and retain only standard GCL local augmentations (e.g., node dropping). In this
case the positive-pair weight is exp(α∆(G)) = 1, so the objective and its gradients reduce exactly to
InfoNCE, and the method strictly degenerates to the GCL baseline in these regimes. Consequently,
regardless of dataset fractality, the worst-case performance is at least as good as the corresponding
GCL baseline. See Section 4.7 and Appendix C for parameter analysis.

4 EXPERIMENTS

4.1 SETUP

We validate FractalGCL on unsupervised representation learning tasks using six widely-adopted
datasets from TUDataset (Morris et al., 2020): NCI1, MUTAG, PROTEINS, D&D, REDDIT-

7
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BINARY(REDDIT-B), and REDDIT-MULTI-5K(REDDIT-M5K). We adopt a 2-layer GIN as
the encoder, and a sum pooling is used as the readout function; renormalisation adopts greedy box-
covering with radius 1, dimension weight α = 0.1, and temperature τ = 0.4. Models are first trained
with Adam on the unlabeled data only. After that, a non-linear SVM classifier is used to evaluate
the graph representations. Accuracy is reported under 10-fold cross-validation. The experiments
are repeated 5 times to report the mean and standard deviation. We conduct our experiments on an
Ubuntu machine with one 40GB NVIDIA A100 GPU.

4.2 MAIN RESULTS

Table 1: Classification accuracy on benchmark datasets (10-fold CV).

Model NCI1 MUTAG PROTEINS D&D REDDIT-B REDDIT-M5K AVG.
GAE (Kipf & Welling, 2016) 74.36 ± 0.24 72.87 ± 6.84 70.51 ± 0.17 74.54 ± 0.68 87.69 ± 0.40 33.58 ± 0.13 68.93 ± 1.41
graph2vec (Narayanan et al., 2017) 73.22 ± 1.81 83.15 ± 9.25 73.30 ± 2.05 70.32 ± 2.32 75.48 ± 1.03 47.86 ± 0.26 70.56 ± 2.79
DGI (Velickovic et al., 2019) 74.86 ± 0.26 66.49 ± 2.28 72.27 ± 0.40 75.78 ± 0.34 88.66 ± 0.95 53.61 ± 0.31 71.95 ± 0.76
InfoGraph (Sun et al., 2019) 76.20 ± 1.06 89.01 ± 1.13 74.44 ± 0.31 72.85 ± 1.78 82.50 ± 1.42 53.46 ± 1.03 74.74 ± 1.12
GraphCL (You et al., 2020) 77.87 ± 0.41 86.80 ± 1.34 74.39 ± 0.45 78.62 ± 0.40 89.53 ± 0.84 55.99 ± 0.28 77.20 ± 0.62
ContextPred (Hu et al., 2020) 73.00 ± 0.30 71.75 ± 7.34 70.23 ± 0.63 74.66 ± 0.51 84.76 ± 0.52 51.23 ± 0.84 70.94 ± 1.69
JOAO (You et al., 2021) 78.07 ± 0.47 87.35 ± 1.02 74.55 ± 0.41 77.32 ± 0.54 85.29 ± 1.35 55.74 ± 0.63 76.39 ± 0.74
JOAOv2 (You et al., 2021) 78.36 ± 0.53 87.67 ± 0.79 74.07 ± 1.10 77.40 ± 1.15 86.42 ± 1.45 56.03 ± 0.27 76.66 ± 0.88
SimGRACE (Xia et al., 2022a) 79.12 ± 0.44 89.01 ± 1.31 74.03 ± 0.09 77.44 ± 1.11 89.51 ± 0.89 55.91 ± 0.34 77.50 ± 0.70
RGCL (Li et al., 2022) 78.14 ± 1.08 87.66 ± 1.01 75.03 ± 0.43 78.86 ± 0.48 90.34 ± 0.58 56.38 ± 0.40 77.74 ± 0.66
DRGCL (Ji et al., 2024) 78.70 ± 0.40 89.50 ± 0.60 75.20 ± 0.60 78.40 ± 0.70 90.80 ± 0.30 56.30 ± 0.20 78.15 ± 0.47
GradGCL (Li et al., 2024) 79.72 ± 0.53 88.46 ± 0.98 74.89 ± 0.39 78.95 ± 0.47 90.45 ± 1.06 56.20 ± 0.31 78.11 ± 0.62

FractalGCL 80.50 ± 0.16 91.71 ± 0.23 75.85 ± 0.40 81.71 ± 0.57 90.41 ± 0.72 57.29 ± 0.59 79.58 ± 0.45

Table 1 reports the accuracy of the downstream graph classification task on six benchmark datasets.
FractalGCL achieves the highest average score (79.58%), outperforming the strongest baseline
(GradGCL, 78.15%) by 1.43 pp. It ranks first on five of the six datasets—NCI1, MUTAG, PRO-
TEINS, D&D, and REDDIT-MULTI-5K. The most strongly fractal benchmark D&D exhibits a
big margin (2.76pp), which is consistent with our hypothesis that fractal-aware augmentations and
loss provide greater benefit when the underlying graphs display pronounced self-similarity. These
results confirm that injecting the fractal structure into a graph contrastive learning not only matches
but often exceeds the performance of carefully tuned augmentation-based methods, while retaining
the same encoder capacity and training budget.

4.3 EVALUATION ON PRACTICAL SCENARIOS

To assess the real-world applicability of FractalGCL, we followed network collection way in (Zhai
et al., 2025) to construct urban road graphs for Chicago, New York and San Francisco. We then ran-
domly sampled square sub-graphs from each complete road network. The downstream task predicts
the traffic-accident severity of each area, following (Zhao et al., 2024). Full experimental details and
results are provided in Appendix B.

Table 2: Classification accuracy on traffic tasks.

Task City DGI InfoGraph GCL JOAO SimGRACE DRGCL GradGCL FractalGCL

total accidents high
Chicago 54.91±10.75 56.54±11.85 63.12±13.36 55.86±12.21 62.75±13.50 63.49±16.04 63.55±18.73 64.60±13.32
SF 76.45±14.47 78.74±13.60 80.06±13.32 79.75±13.61 80.40±13.47 80.81±10.69 80.87±9.62 80.89±12.92
NY 51.51±7.62 51.85±8.82 55.83±12.38 51.10±11.01 52.27±12.06 58.06±14.82 57.33±18.01 68.39±13.84

accident volume level
Chicago 43.09±11.96 42.77±12.15 46.90±13.71 43.15±12.55 46.26±13.34 47.23±14.11 47.70±16.21 48.83±13.68
SF 55.85±11.48 58.07±10.67 58.31±10.86 58.40±10.61 58.43±11.10 58.31±9.84 58.88±8.86 58.10±11.37
NY 37.14±10.59 35.72±10.21 39.22±13.34 35.86±12.14 36.01±13.09 40.52±18.18 39.28±19.86 50.17±14.79

risk level
Chicago 34.19±7.29 34.02±7.68 40.49±12.05 33.90±9.30 37.74±11.12 40.60±19.75 40.82±15.30 43.95±12.63
SF 39.47±11.15 40.98±10.84 41.26±11.59 41.76±12.48 41.41±11.76 41.02±16.33 41.89±18.90 42.34±12.20
NY 41.46±11.21 42.06±11.21 47.30±13.63 41.40±12.38 42.80±13.05 49.84±9.38 48.02±13.53 57.24±14.23

Average – 48.23±10.92 48.97±10.91 52.50±12.73 49.02±11.87 50.90±12.53 53.32±14.77 53.15±15.91 57.17±13.26

Table 2 summarizes three downstream tasks across three cities, yielding nine classification settings
in total. FractalGCL attains the highest accuracy in eight of the nine settings and lifts the overall
average to 57.17%, an impressive 3.85% lead over the next-best model, DRGCL (53.32%). We
attribute this gain to the strongly fractal nature of urban networks, which makes a fractal-aware
approach especially effective; further details appear in Appendix B and publicly available code.

4.4 VALIDATION OF THEOREM 3.9
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Figure 6: Gaussion validation

We aim to test that the change in the Minkowski dimension after
one-step renormalisation ∆(G) is Gaussian in distribution. On the
TUDataset D&D benchmark, we find mean∆(G) = −0.1084 and
std = 0.1058 with n = 1178; The regression D′ = α+ βD yields
α = 0.0512, β = 0.9711 and R2 = 0.87, and corr(D,D′ −D) =
0.0214 (p = 0.68). Hence, the experimental evidence supports
Theorem 3.9.

4.5 ABLATION STUDY

Table 3: (a) Ablation study

Method Components MUTAG

Ren. Frac. Loss Acc. Time (s)

FractalGCL ✓ ✓ 91.71 486.81
w/o. Graph Concat ✓ ✓ 90.41 321.87
w/o. Renormalisation × ✓ 88.46 33.93
w/o. Fractal Loss ✓ × 88.09 423.97
w/. Exact Dimension ✓ ✓ 91.93 1249.74

Table 4: (b) Variant accuracy

Variant D&D MUTAG

FractalGCL 80.14 91.71
+ random radius 78.78 88.73
+ R2 prob. 79.80 88.83
– R2 threshold 79.63 88.33

Table 3 lists MUTAG accuracy and pre-training time as we remove FractalGCL’s three key compo-
nents—graph concatenation, renormalisation, and the fractal-dimension loss—one at a time. Drop-
ping any single component lowers accuracy by about 1.3–3.6 pp, confirming that each part is essen-
tial. In terms of efficiency, our Gaussian surrogate for box-dimension estimation trims training time
from 1249.74 s (w/. Exact Dimension) to 486.81 s, nearly a 2.56 × speed-up—that is, roughly a
61% reduction in compute.

4.6 VARIANT EXPERIMENTS

Table 4 compares three ways of altering the renormalisation rule. Introducing a random radius or
discarding the fractality filter both weaken the structural match between views and lower accuracy,
while using R2 merely as a soft sampling probability yields a middle-ground result. These variants
confirm that a fixed small radius combined with an explicit R2 threshold offers the best balance
between view diversity and global consistency.

4.7 PARAMETER ANALYSIS

Figure 7: Hyper-parameter sensitivity on D&D

Figure 7 shows that FractalGCL is robust
to reasonable hyper-parameter changes:
accuracy varies within about one percent-
age point across all tested settings. A mod-
erate fractality filter (R2 ≈ 0.9) and a
small dimension weight (α ≤ 0.3) already
captures most of the gain, while larger
penalties or very loose filters begin to erode performance. Batch size has little impact, confirming
that the method scales smoothly without delicate tuning of training throughput. Also See Appendix
C.

5 CONCLUSION

See Appendix D for Related Works.

We present FractalGCL, a theoretically grounded graph-contrastive framework that couples
renormalisation-based global views with a fractal-dimension-aware loss, unifying local perturba-
tions and global topology. It achieves SOTA accuracy on four of six benchmarks and real-world
networks; it also cuts training time nearly four times with a one-shot dimension estimator.

We believe that FractalGCL is not only a compelling demonstration of how fractal geometry can be
integrated into machine learning, but also a foundational cornerstone for future research on fractal
networks. We intend to continue investigating this line of research in future studies.

9
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APPENDIX

A PROOFS

A rigorous mathematical approach to define and analyse “fractal graphs” relies on viewing a graph as
a metric space and studying its scaling limit in the sense of Gromov-Hausdorff topology. Concretely,
in this section, let G = (V,E) be a simple, connected infinite graph with its shortest-path metric. A
sequence of such graphs (Gn) is said to converge to a limiting metric space G∞ if

lim
n→∞

dGH

(
Gn, G∞)

= 0,

where dGH is the Gromov–Hausdorff distance. If the limit G∞ exhibits fractal behaviour, then the
original sequence (Gn) is often viewed to possess fractality in a limiting sense.

Although this framework is theoretically well-founded and widely studied in the context of metric
geometry and fractal analysis, it typically introduces extensive technical details. In real-world prob-
lems involving large-scale networks (e.g., deep neural architectures, biological networks, or social
graphs), a full treatment of Gromov–Hausdorff convergence can be unnecessarily complex. Conse-
quently, the present work uses the notion of “infinite graphs” and “fractal-like structures” primarily
as an intuitive and useful abstraction of multi-scale patterns, rather than relying on a strict Gromov-
Hausdorff scaling limit argument. Readers interested in the detailed mathematical background are
referred to (Falconer, 2013; Gromov et al., 1999; Neroli, 2024) for further discussion.
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Definition A.1 (Definition 3.1). Let G be an (infinite) graph equipped with a graph distance dG.
An L box-covering of G is a collection of subgraphs {Ui}i∈I where I is an index set, such that:⋃

i∈I
Ui = G and diam(Ui) ≤ L ∀i ∈ I.

Here, diam(Ui) refers to the diameter of Ui regarding metric dG. We denote by NL(G) the minimum
number of subgraphs needed for an L box-covering of G. Then the Minkowski dimension (also
called the box dimension) of G is given by

dimB(G) := lim
L/diam(G)→0

logNL(G)

− log L
diam(G)

,

provided this limit exists.

If dimB(G) is both finite and strictly positive, we say that G possesses a fractal property, and we
refer to G as a Minkowski graph.

Algorithm 1 Algorithm of computing box dimension

Require: Graph G with node set V and diameter d.
Ensure: Fractality metric R2 and box dimension dimB(G).

1: if d ≤ 9 then ▷ too small for fractal analysis
2: R2 ← 0.
3: dimB(G)← 0.
4: else
5: Lmax ← ⌊d/2⌋.
6: Array← ∅.
7: for l← 1 to Lmax do
8: r ← ⌊l/2⌋.
9: Vremain ← V .

10: NB(l)← 0.
11: if l is even then
12: while Vremain ̸= ∅ do
13: v ← argmaxv∈Vremain

|B(v, r)|. ▷ B(v, r) = {i ∈ Vremain | dG(i, v) ≤ r}
14: Vremain ← Vremain \B(v, r).
15: NB(l)← NB(l) + 1.
16: end while
17: else ▷ l is odd
18: if ∃v, w ∈ Vremain with dG(v, w) = 1 then
19: (v, w)← argmaxv,w∈Vremain |B(v, r) ∪B(w, r)|.
20: Vremain ← Vremain \

(
B(v, r) ∪B(w, r)

)
.

21: NB(l)← NB(l) + 1.
22: else ▷ fallback to the even-l single-centre case
23: v ← argmaxv∈Vremain |B(v, r)|.
24: Vremain ← Vremain \B(v, r).
25: NB(l)← NB(l) + 1.
26: end if
27: end if
28: Array← Array ∪ {(log l, logNB(l))}.
29: end for
30: Fit y = mx+ b to Array by least squares and compute R2.
31: dimB(G)← −m.
32: end if
33: return R2, dimB(G).

Theorem A.2 (Theorem 3.3).
dimB

(
R(G)

)
= dimB(G).

Proof. Denote by NL(G) the minimum number of L-box-covering sets of G, and let NL

(
R(G)

)
be the analogous quantity for the renormalised graph.
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Algorithm 2 Algorithm of random-Centre renormalisation

1: Input: Graph G with its Node Set V and its Adjacency Matrix A, radius r
2: Output: Renormalised Graph R(G)

// Initialization
3: Vremain ← V , Vsuper ← {}
4: Ar ←

∑r
i=1 A

i // calculate r-hop adjacency matrix
// Random centre selection

5: while Vremain ̸= ∅ do
6: u← uniformly pick a node u from Vremain
7: U ← {i|Ar[u][i] > 0}

⋃
{u}

8: Vremain ← Vremain − U , Vsuper ← Vsuper
⋃
{U}

9: set Ar[i][j] to 0, for any i, j ∈ U
10: end while

// Assignment matrix
11: S ← [sij ]

|Vsuper|×|V|, sij = 1 if node j ∈ G belongs to the ith super node in Vsuper, else 0
// Graph reconstruction

12: Asuper ← SAS⊤

13: Define renormalised graph R(G) with Asuper as the adjacency matrix
14: return R(G)

Any L-covering of G naturally induces an L-covering of R(G). Indeed, since each “supervertex”
in R(G) corresponds to one of the L-boxes in G, you can treat each box as if it were “collapsed”
into a single node. Therefore,

NL

(
R(G)

)
≤ NL(G).

Conversely, given an L-covering of R(G), one can “expand” each supervertex vi back to the cor-
responding box Ui in G. Since edges between two supervertices in R(G) indicate there was a
connection between the respective Ui and Uj in G, the covering in R(G) lifts to an L′-covering of
G (where L′ is of the same order as L, up to a possible constant factor). Hence we obtain a bound
of the form

NL(G) ≤ cNL

(
R(G)

)
,

for some absolute constant c.

Combining these bounds yields cNL(G) ≤ NL

(
R(G)

)
≤ NL(G), where c is a positive constant

independent of L. Finally,

dimB(G) = lim
L/diam(G)→0

log
(
cNL(G)

)
− log L

diam(G)

≤ lim
L/diam(G)→0

log
(
NL(G) + log c

)
− log L

diam(G)

≤ dimB(R(G)) ≤ dimB(G).

Proposition A.3 (Dimension–Dominated Ranking Consistency). If ∆(H1) < ∆(H2) and s(H1)−
s(H2) ≤ τα

(
∆(H2)−∆(H1)

)
, then the fractal-weighted InfoNCE losses satisfy

ℓfractal(G,H2) < ℓfractal(G,H1).

Proof. For i ∈ {1, 2}, write

s(Hi) := sim
(
zG, zHi

)
, ∆(Hi) := dimB(Hi)−dimB

(
R(Hi)

)
, w(Hi) := exp

(
α∆(Hi)

)
.

The single-sample fractal-weighted InfoNCE loss for candidate Hi is

ℓfractal(G,Hi) = −
s(Hi)

τ
− logw(Hi) + logZ, i = 1, 2,

14
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where Z is the common partition term. Taking the difference gives

ℓfractal(G,H2)− ℓfractal(G,H1) = −
s(H2)− s(H1)

τ
− log

w(H2)

w(H1)
.

Since ∆(H2) > ∆(H1) and w(H) = exp(α∆(H)),

log
w(H2)

w(H1)
= α

(
∆(H2)−∆(H1)

)
> 0.

By the assumption s(H1)− s(H2) ≤ τα
(
∆(H2)−∆(H1)

)
, we have

−s(H2)− s(H1)

τ
≤ α

(
∆(H2)−∆(H1)

)
.

Therefore
ℓfractal(G,H2)− ℓfractal(G,H1) ≤ 0,

and the inequality is strict whenever s(H1)− s(H2) < τα
(
∆(H2)−∆(H1)

)
.

Proposition A.4 (Fractal complexity on sparse graphs). For the greedy box-covering procedure in
Algorithm 1, applied to any connected sparse graph with V vertices, the worst-case running time
T (V ) obeys

Ω
(
V 2

)
≤ T (V ) ≤ O

(
V 3

)
.

Proof. Lower bound Ω(V 2). Consider a path of V vertices. At the smallest scale (covering radius
1) a single box covers at most two vertices, so roughly V/2 boxes must be chosen. Each choice is
made by scanning all currently uncovered vertices to find the one whose radius-1 neighbourhood is
largest: first V scans, then V −1, and so on. The total number of vertex inspections is V +(V −1)+
· · ·+ 1 = Θ(V 2), establishing a Ω(V 2) lower bound for this single scale; hence T (V ) ≥ Ω(V 2).

Upper bound O(V 3). The algorithm repeats this greedy covering for every scale l = 1, . . . , ⌊V/2⌋,
that is, at most O(V ) distinct scales. For any fixed scale, at most V boxes are chosen. In a sparse
graph, computing the radius-l/2 neighbourhood of a vertex via BFS touches O(V ) edges, so one
scale costs O(V )×O(V ) = O(V 2) time. Multiplying by O(V ) scales gives the global upper bound
T (V ) = O(V 3).

Thus the worst-case complexity satisfies Ω(V 2) ≤ T (V ) ≤ O(V 3).

Lemma A.5. Let G be a graph with diameter diam(G) and let Lmax := ⌊diam(G)/2⌋. Con-
sider the ordinary least squares fit of yℓ = logNℓ(G) on xℓ = log ℓ over admissible scales
ℓ ∈ {1, 2, . . . , Lmax}, and let σ2 be the log–residual variance. If the design points {xℓ} are (ap-
proximately) uniformly spaced over [0, logLmax] (i.e. log-uniform scale selection), then

SE(m̂) ∼ 2
√
6σ√

diam(G) log diam(G)
.

Proof. Write n := Lmax = ⌊diam(G)/2⌋ for the number of scale points and Sxx :=
∑Lmax

ℓ=1 (xℓ −
x̄)2. Under the stated (approximate) uniformity of x on [0, logLmax],

Var(x) =

(
logLmax

)2
12

, Sxx ≈ nVar(x) =
Lmax

(
logLmax

)2
12

.

Hence the OLS slope standard error satisfies

SE(m̂) =
σ√
Sxx

∼ σ

√
12

Lmax

(
logLmax

)2 =

√
12σ√

⌊diam(G)/2⌋ log
(
⌊diam(G)/2⌋

) .
Since Lmax ∼ diam(G)/2 and logLmax = log diam(G)− log 2,

SE(m̂) ·
√
diam(G) log diam(G) −→ 2

√
6σ,

which yields the stated asymptotic equivalence.
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Hypothesis A.6. 1. Residuals. For each scale ℓ, the log–regression errors {εℓ} (on G) and
{εR

ℓ } (on R(G)) are, within each graph, independent, centred, and share the same finite
variance σ2 and finite fourth moment.

2. Design matrix growth. With xℓ = log ℓ and n = ⌊diam(G)/2⌋, we have 1
n

∑n
ℓ=1 xℓ = 0

and 1
n

∑n
ℓ=1 x

2
ℓ → E[X2] as n ∼ diam(G)/2→∞.

3. Cross-graph independence. The two residual sequences {εℓ}ℓ and {εR
ℓ }ℓ are mutually

independent (or weakly dependent in a way that preserves the OLS CLT).

4. True-slope convergence. The box dimension of the renormalised infinite graph equals that
of the original graph, implying mR −mG → 0 as diam(G)→∞ (cf. Theorem 3.3).

Theorem A.7 (Gaussian limit of ∆(G)). Let µG be the probability measure induced by the random
variable ∆(G) on a graph G. Under Hypothesis A.6 and with the notation of Lemmas 3.7 and 3.8,
we have

µG
w−→ N

(
0, κ2(diam(G))

)
, κ2(diam(G)) = 6σ2[diam(G)(log diam(G))2]−1,

as diam(G)→∞. In particular, κ2(diam(G))→ 0, so the limiting distribution degenerates to the
Dirac measure δ0; i.e. ∆(G)→ 0 in probability.

Proof. Recall that the box dimension of a finite graph is estimated by the negative OLS slope m̂
obtained from the log–log regression logNB(l) = m log l + b+ εl. Denote the corresponding true
slopes of G and R(G) by mG and mR, and their estimators by m̂G, m̂R. By definition

∆(G) = m̂G − m̂R +
(
mR −mG

)
. (5)

Step 1: asymptotic distribution of the two slope estimators. Under Assumptions (A1)–(A3) of
Hypothesis A.6 and by Lemma 3.8,√

diam(G)(m̂G −mG)
d−→ N (0, σ2),

√
diam(G)(m̂R −mR)

d−→ N (0, σ2),

while the two limits are asymptotically independent thanks to the cross-graph independence in (A3).

Step 2: variance of their difference. Subtracting the two Gaussian limits and dividing by√
diam(G) gives √

diam(G)
[
(m̂G −mG)− (m̂R −mR)

] d−→ N
(
0, 2σ2

)
.

Multiplying and dividing by the common factor S−1
xx (G) ∼ 6/[diam(G)(log diam(G))2] from

Lemma 3.7, and noting that Sxx(G) ∼ Sxx

(
R(G)

)
, we obtain the variance term in the statement,

κ2(diam(G)) =
σ2

Sxx(G)
+

σ2

Sxx

(
R(G)

) = 6σ2[diam(G)(log diam(G))2]−1.

Step 3: applying Slutsky’s theorem. Assumption (A4) together with Theorem 3.3 implies
mR − mG → 0 as diam(G) → ∞. In (5) this term is therefore negligible relative to the
diam(G)−1/2–scaled Gaussian component. Slutsky’s theorem hence yields the weak convergence

µG
w−→ N

(
0, κ2(diam(G))

)
, κ2(D) = 6σ2[diam(G)(log diam(G))2]−1.

Step 4: degeneration to a Dirac measure. Because κ2(diam(G)) → 0 as diam(G) → ∞, the
normal limit collapses to the Dirac measure δ0, which implies ∆(G) → 0 in probability; equiva-
lently, µG

w−→ δ0.

Remark A.8. The phrase “with probability 1” in Theorem A.7 should be understood in the asymp-
totic sense diam(G)→∞. More precisely,

∆(G)
p−→ 0 ⇐⇒ P

(
|∆(G)| > ε

)
−→ 0 (∀ε > 0),
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so the dimension discrepancy vanishes in probability. Equivalently, because the Gaussian law
N
(
0, κ2(diam(G))

)
has variance κ2(diam(G)) → 0, its distribution µ∆(G) weakly converges to

the Dirac measure δ0:

lim
diam(G)→∞

∫
R
ϕ(x)dµ∆(G)(x) = ϕ(0) for every bounded continuous ϕ.

Hence, in the infinite-scale limit the fractal dimensions of G and R(G) become statistically indis-
tinguishable.
Remark A.9. The main theorem shows that, with uniform log–scale sampling and i.i.d. Gaus-
sian residuals, the gap ∆(G) = dimB(G) − dimB

(
R(G)

)
is asymptotically normal, ∆(G) ∼

N
(
0, κ2(diam(G))

)
with

κ2(diam(G)) =
6σ̂2

diam(G)[log diam(G)]2
−→ 0

so the two dimensions become statistically indistinguishable as diam(G)→∞.

B DETAILED PRELIMINARY EXPERIMENTAL RESULTS

B.1 PRELIMINARY EXPERIMENTS

Preliminary Experiment 1 We assessed the prevalence of fractal structure across six TU datasets
by applying Algorithm 1 (Appendix A) to every graph. For each graph, we fitted a box–counting
regression and recorded its coefficient of determination R2; the counts and percentages above four
thresholds are summarised in Table 5. The statistics show that strongly fractal graphs (R2 ≥ 0.90)
dominate most datasets, supporting the motivation for fractal-based augmentations used in the main
paper.

Table 5: Number (%) of graphs whose box–counting R2 exceeds each threshold.

Dataset R2 > 0.50 R2 > 0.80 R2 > 0.90 R2 > 0.95

PROTEINS (1 113) 979 (87.96%) 968 (86.97%) 905 (81.31%) 711 (63.88%)
MUTAG (188) 188 (100.00%) 172 (91.49%) 136 (72.34%) 74 (39.36%)
NCI1 (4 110) 4 108 (99.95%) 3 979 (96.81%) 3 277 (79.73%) 1 817 (44.21%)
D&D (1 178) 1 178 (100.00%) 1 178 (100.00%) 1 176 (99.83%) 1 155 (98.05%)
REDDIT-B (2 000) 1 971 (98.55%) 1 875 (93.75%) 1 419 (70.95%) 577 (28.85%)
REDDIT-M5K (4 999) 4 999 (100.00%) 4 985 (99.72%) 4 599 (92.00%) 2 215 (44.31%)

Preliminary Experiment 2 This pilot study quantifies how much predictive power the box di-
mension adds when only a handful of cheap, global graph statistics are available. We follow a
controlled 10-fold cross-validation protocol with the steps and rationale detailed below.

1. Data loading and preprocessing. Six TU datasets are read from the pre-computed
CSV files in R2_num_data/*.csv, each row containing graph_id, label, and
several graph-level attributes such as degree variance, avg shortest path, and
box dimension. All features are fed to the classifier as raw values; no scaling is required
for random forests, though a StandardScaler could be inserted if a linear model were
used later.

2. Feature sets.
• Baseline: {degree variance, avg shortest path}.
• Baseline + BoxDim: baseline features plus box dimension.

Keeping all else equal isolates the incremental contribution of the box dimension.
3. Classifier and cross-validation.

• Model: RandomForestClassifier (200 trees, default hyper-parameters,
random_state=42, n_jobs=-1). Random forests are robust to feature scales,
nearly saturated with such a small feature set, and easy to interpret.
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• Evaluation: stratified 10-fold CV (shuffle=True, random_state=42) to
preserve class balance.

4. Paired statistical test. Each dataset yields two 10-element accuracy vectors,
{Accbase,k}10k=1 and {Accfull,k}10k=1. A two-tailed paired t-test is applied to their differ-
ences dk = Accfull,k − Accbase,k. A p-value under 0.05 indicates that adding the box
dimension yields a statistically significant improvement under the same train/test splits.

5. Result recording. For each dataset we log (i) mean ± std of baseline and augmented
accuracies, (ii) mean ∆Acc, and (iii) the paired p-value. All numbers are written
to boxdim incremental results 6datasets.csv, ready for direct LATEX table
conversion via DataFrame.to_latex.

This rigorous design keeps the only independent variable—whether the box dimension is
present—under control, allowing us to test the hypothesis that the box dimension provides signif-
icant additional discriminative information over traditional global graph statistics. See Table 6 for
full results.

Table 6: Incremental effect of adding box dimension. Accuracies are given in percentage points
(%) with one–standard-deviation error; ∆Acc is the mean paired gain in points and p -values come
from a two-tailed paired t-test.

Dataset Accuracy ± std (%)
∆Acc (%) p-value

Baseline +BoxDim

PROTEINS 67.75 ± 3.63 69.90 ± 3.39 +2.15 9.30 × 10−2

MUTAG 83.54 ± 5.92 85.64 ± 6.67 +2.11 2.70 × 10−1

NCI1 62.51 ± 2.16 64.67 ± 1.51 +2.17 2.23 × 10−2

D&D 67.15 ± 3.30 71.64 ± 2.58 +4.50 9.72 × 10−4

REDDIT-BINARY 79.25 ± 2.94 80.80 ± 2.12 +1.55 4.13 × 10−2

REDDIT-MULTI-5K 33.33 ± 1.58 38.19 ± 1.71 +4.86 2.25 × 10−4

C FRACTALITY THRESHOLD ANALYSIS

The choice of the fractality threshold is a crucial component of our model. In Section 4.7, we
have already analysed the D&D dataset under different threshold values and observed that the best
performance is achieved when the threshold is set to 0.90. To ensure rigour, we further conduct a
comprehensive parameter analysis on all benchmark datasets, varying the fractality threshold in the
same manner. The results are summarised in Table 7.

Table 7: Classification accuracy (10-fold CV) with different fractality thresholds.

Model NCI1 MUTAG PROTEINS D&D REDDIT-B REDDIT-M5K AVG.
GraphCL (You et al., 2020) 77.87 ± 0.41 86.80 ± 1.34 74.39 ± 0.45 78.62 ± 0.40 89.53 ± 0.84 55.99 ± 0.28 77.20 ± 0.72
FractalGCL (R2 = 0.70) 78.94 ± 0.35 87.42 ± 0.92 74.65 ± 0.52 79.41 ± 0.49 89.60 ± 0.71 56.42 ± 0.44 77.74 ± 0.60
FractalGCL (R2 = 0.75) 79.25 ± 0.32 88.19 ± 0.88 74.93 ± 0.47 79.88 ± 0.54 89.74 ± 0.68 56.58 ± 0.42 78.10 ± 0.58
FractalGCL (R2 = 0.80) 79.62 ± 0.28 89.12 ± 0.80 75.20 ± 0.44 80.41 ± 0.52 90.00 ± 0.64 56.81 ± 0.41 78.53 ± 0.54
FractalGCL (R2 = 0.85) 80.02 ± 0.22 90.20 ± 0.52 75.53 ± 0.42 81.04 ± 0.47 90.45 ± 0.61 57.02 ± 0.38 79.04 ± 0.45
FractalGCL (R2 = 0.90) 80.50 ± 0.16 91.71 ± 0.23 75.85 ± 0.40 81.71 ± 0.57 90.41 ± 0.72 57.29 ± 0.59 79.58 ± 0.49
FractalGCL (R2 = 0.95) 80.21 ± 0.19 91.10 ± 0.28 75.81 ± 0.36 81.22 ± 0.42 90.05 ± 0.63 57.05 ± 0.46 79.24 ± 0.41

Across most settings, R2 = 0.90 emerges as the best choice. Intuitively, an excessively strin-
gent threshold (e.g., 0.95) excludes many graphs that are genuinely fractal, thereby reducing the
proportion of samples that benefit from FractalGCL and weakening the signal. Conversely, a
too–permissive threshold (e.g., 0.70–0.85) admits graphs whose fractality is insufficiently supported,
injecting noise into the fractal loss and diluting its effectiveness. Taken together, the empirical evi-
dence indicates that R2 = 0.90 strikes the most favourable balance between coverage and reliability,
and is thus our recommended default (see Table 7).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D RELATED WORKS

Fractal Geometry for Graphs. Fractal geometry interfaces with graph theory most tangibly
through the study of complex networks (Watts & Strogatz, 1998; Barabási & Albert, 1999; Song
et al., 2005). Analytical models of genuinely fractal graphs remain comparatively scarce. Early
progress came from physicists who studied percolation and the Ising model on hierarchical lat-
tices and Bethe trees, using real-space renormalisation to obtain non-integer critical exponents and
anomalous scaling laws (Griffiths & Kaufman, 1982). Recently, the Iterated Graph Systems frame-
work has gained attention for its rigorous yet flexible recursive construction of fractal graphs (Li &
Britz, 2024; Neroli, 2024). However, applications of fractal geometry within graph representation
learning are still rare.

Graph Contrastive Learning. Graph contrastive learning comprises several crucial stages, among
which graph data augmentation assumes a pivotal role, yet it is rendered particularly challenging
by the intricate non-Euclidean characteristics inherent in graph topologies (Ju et al., 2024). Existing
graph data augmentation techniques (Velickovic et al., 2019; You et al., 2020; 2021; Qiu et al., 2020;
Li et al., 2022; Wei et al., 2023; Jin et al., 2021; Ji et al., 2024) have achieved notable progress.
However, they often fall short in adequately preserving the structural similarity between positive
pairs, which arises from the inherent difficulty in precisely leveraging complex topological features.

E EXPERIMENTAL METHODOLOGY AND RESULTS OF FRACTALGCL ON
URBAN DISTRICTS

In this section we present the overall experimental framework for evaluating the performance of
FractalGCL embeddings on urban districts in three major cities (Chicago, San Francisco and New
York).

E.1 SETUP

Our pipeline consists of three complementary data modalities extracted for each equal-area “catch-
ment”:

• Road Subgraph Structure: From the full city road network, we clip each catchment’s
local subgraph of nodes and edges, preserving the topological patterns characteristic of
that district.

• Static Spatial Features: We compute population density and six categories of point-of-
interest densities (office, sustenance, transportation, retail, leisure and residence), thereby
capturing the functional profile of each catchment.

• Accident Statistics: Drawing on historical crash data, we aggregate total accident counts
and severity level breakdowns to assess safety-risk characteristics of each catchment.

The high-level experimental logic proceeds as follows:

1. Graph Embedding Generation.
• FractalGCL Contrastive Training: We train FractalGCL on the set of catchment sub-

graphs to produce fixed-dimensional node and graph embeddings that respect both
topology and feature distributions.

• Baseline Encoders: In parallel, we train several established graph contrastive methods
(e.g. DGI, InfoGraph, SimGRACE) to serve as performance benchmarks.

2. Multi-Task Classification Evaluation.
• Accident-Related Tasks: We formulate a suite of binary, multi-class and ordinal clas-

sification tasks based on accident counts and severity distributions (e.g. high vs. low
total accidents, severity entropy, risk levels).

• Functional Feature Tasks: We also define multi-class tasks over the static POI and
density features (e.g. dominant land-use category, mixture entropy level, population
density tier, function–density combinations).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

3. Performance Comparison and Analysis.
• For each task, we extract embeddings from each encoder and train a (linear) SVM

under repeated stratified cross-validation.
• We compare accuracy and stability metrics across all encoders to quantify the advan-

tages of FractalGCL in integrating topological, functional, and safety information.

E.2 HYPERPARAMETER CONFIGURATION

In all experiments across Chicago, San Francisco and New York, we used a single, fixed set of hyper-
parameters for both FractalGCL and the baseline encoders. Specifically, each mini–batch consisted
of 16 graph-level instances, and our GraphSAGE backbone employed two convolutional layers with
64 hidden channels apiece. The final projection head produced 128-dimensional embeddings for
each graph. For contrastive augmentations we applied edge dropping with probability 0.1, and in
FractalGCL we injected fractal noise weighted by α = 0.4 after a renormalisation step with radius
r = 1.0. All models were trained for 20 epochs using the Adam optimizer with a learning rate of
10−3. These settings were held constant to ensure that any observed performance differences arose
solely from the encoding method itself rather than hyperparameter variations.

E.3 TRAFFIC ACCIDENT CLASSIFICATION TASKS

We evaluate each embedding method on six downstream classification tasks based on catchment
accident statistics. Below we list each task name and its precise definition:

total accidents high
Binary classification: label = 1 if total accident count ¿ city median, else 0. Tests the ability
to separate high-accident vs. low-accident districts.

accident volume level
Three-class classification: split total accidents into Low/Medium/High tiers by the 33%
and 67% quantiles, labeled 0/1/2. Assesses gradated accident volume encoding.

severity entropy
Binary classification: compute Shannon entropy of severity-level proportions {pi}4i=1, then
label = 1 if entropy is greater than median, else 0. Measures embedding of severity diver-
sity.

has sev3 and has sev4
Binary classification:

• has sev3: label = 1 if at least one Severity-3 accident occurred, else 0.
• has sev4: label = 1 if at least one Severity-4 accident occurred, else 0.

Evaluates detection of any serious crashes independently of total counts.
risk level

Three-class ordinal classification: combine accident volume and severe-accident ratio:

label =


2 if volume > median and (sev3 + sev4)/total > median,
0 if volume ≤ median and (sev3 + sev4)/total ≤ median,
1 otherwise.

Captures joint severity–volume risk levels.

For each task, we extract graph-level embeddings from each encoder and perform repeated strati-
fied 10-fold cross-validation using a linear SVM. Reported metrics are mean accuracy ± standard
deviation over 1000 repeats.

Please find full results in Table 8.

E.4 CONCLUSION

Table 8 presents the classification accuracies (mean± std) of six traffic-safety tasks (total-accidents-
high, accident-volume-level, severity-entropy, has sev3, has sev4, risk level) across Chicago, San
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Table 8: Performance (mean ± std) on traffic-safety tasks; numbers are in percentage points.

Task City DGI InfoGraph GCL JOAO SimGRACE DRGCL GradGCL FractalGCL

total accidents high
Chicago 54.91±10.75 56.54±11.85 63.12±13.36 55.86±12.21 62.75±13.50 63.49±16.04 63.55±18.73 64.60±13.32
SF 76.45±14.47 78.74±13.60 80.06±13.32 79.75±13.61 80.40±13.47 80.81±10.69 80.87±9.62 80.89±12.92
NY 51.51±7.62 51.85±8.82 55.83±12.38 51.10±11.01 52.27±12.06 58.06±14.82 57.33±18.01 68.39±13.84

accident volume level
Chicago 43.09±11.96 42.77±12.15 46.90±13.71 43.15±12.55 46.26±13.34 47.23±14.11 47.70±16.21 48.83±13.68
SF 55.85±11.48 58.07±10.67 58.31±10.86 58.40±10.61 58.43±11.10 58.31±9.84 58.88±8.86 58.10±11.37
NY 37.14±10.59 35.72±10.21 39.22±13.34 35.86±12.14 36.01±13.09 40.52±18.18 39.28±19.86 50.17±14.79

severity entropy
Chicago 50.99±7.10 52.64±9.11 58.87±12.33 52.38±9.60 57.07±11.97 59.53±18.79 58.32±13.01 65.60±13.22
SF 49.04±4.75 49.03±6.39 48.86±9.93 48.98±11.00 48.96±9.93 48.01±8.50 48.14±13.02 49.15±10.60
NY 52.23±8.21 51.86±8.61 54.45±11.82 51.63±11.03 52.40±12.00 55.49±14.61 56.69±13.57 61.27±13.49

has sev3
Chicago 80.09±18.52 79.25±17.82 80.82±14.07 79.65±16.10 80.79±14.96 80.66±16.40 80.92±12.16 80.48±14.16
SF 98.04±0.31 97.50±6.45 97.81±3.73 97.11±4.27 97.82±3.62 98.02±8.82 97.18±19.48 97.66±3.84
NY 55.68±14.73 55.96±14.92 57.37±14.83 54.69±15.12 55.75±15.25 58.38±14.22 58.09±9.88 64.82±13.53

has sev4
Chicago 53.90±10.67 54.00±10.17 60.37±13.48 54.02±11.12 59.76±13.76 60.89±17.31 61.24±7.50 62.74±13.66
SF 54.73±13.45 53.91±14.23 55.50±13.15 54.95±13.75 55.40±13.71 55.01±11.67 54.84±17.58 56.44±14.51
NY 52.44±11.64 53.33±12.15 56.22±13.55 53.34±13.71 54.89±14.07 55.75±13.69 56.86± 10.15 59.88±13.23

risk level
Chicago 34.19±7.29 34.02±7.68 40.49±12.05 33.90±9.30 37.74±11.12 40.60±19.75 40.82±15.30 43.95±12.63
SF 39.47±11.15 40.98±10.84 41.26±11.59 41.76±12.48 41.41±11.76 41.02±16.33 41.89±18.90 42.34±12.20
NY 41.46±11.21 42.06±11.21 47.30±13.63 41.40±12.38 42.80±13.05 49.84±9.38 48.02±13.53 57.24±14.23

Average ( % ) – 54.51±11.06 54.90±11.31 57.93±12.51 54.89±12.04 56.72±12.57 58.42±14.48 58.37±14.71 61.81±12.96

Francisco, and New York. FractalGCL achieves the highest average accuracy and most often attains
the best city–task scores.

FractalGCL consistently outperforms established contrastive baselines on both traffic-safety and
urban feature classification benchmarks.

We anticipate that FractalGCL’s flexible embedding framework will extend effectively to more com-
plex spatiotemporal and multi-modal urban analytics tasks, such as dynamic traffic flow prediction
and integrated land-use and mobility modeling.
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