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ABSTRACT

Current work on human-machine alignment aims at understanding machine-
learned latent spaces and their correspondence to human representations.
Gärdenfors’ conceptual spaces is a prominent framework for understanding hu-
man representations. Convexity of object regions in conceptual spaces is argued to
promote generalizability, few-shot learning, and interpersonal alignment. Based
on these insights, we investigate the notion of convexity of concept regions in
machine-learned latent spaces. We develop a set of tools for measuring con-
vexity in sampled data and evaluate emergent convexity in layered representa-
tions of state-of-the-art deep networks. We show that convexity is robust to basic
re-parametrization

:::::::
relevant

:::::
latent

:::::
space

:::::::::::::
transformations

:
and, hence, meaningful

as a quality of machine-learned latent spaces. We find that approximate convexity
is pervasive in neural representations in multiple application domains, including
models of images, audio, human activity, text, and medical images. Generally, we
observe that fine-tuning increases the convexity of label regions. We find evidence
that pretraining convexity of class label regions predicts subsequent fine-tuning
performance.

1 INTRODUCTION

Understanding the barriers to human-machine alignment is as important as ever (see, e.g., Ben-
der et al. (2021); Mahowald et al. (2023)). Representational alignment is a first step towards a
greater goal of understanding value alignment (Christian, 2020). For understanding of alignment,
it is fundamental to establish a common language for the regularities observed in human and ma-
chine representations. Here, we motivate and introduce the concept of convexity of object regions
in machine-learned latent spaces.

Representational spaces in the brain are described in several ways, for example, geometric psycho-
logical spaces informed by similarity judgements or, based in the neurosciences, representations
derived from the measurement of neural activity (Balkenius & Gärdenfors, 2016; Tang et al., 2023).
Conceptual spaces as proposed by Gärdenfors are a mature approach to the former, i.e., human-
learned geometrical representations of semantic similarity (Gärdenfors, 2014). The geometrical
approach is rooted in work Shepard (1987), which opens with the important observation: “Because
any object or situation experienced by an individual is unlikely to recur in exactly the same form
and context, psychology’s first general law should, I suggest, be a law of generalization”. This
leads Shepard to favor geometrical representations in which concepts are represented by extended
regions rather than single points, to allow for robust generalization. This is the view that has been
comprehensively expanded and quantified in Gärdenfors (2014). The cognitive science insights are
complemented by extant work investigating alignment between learned representations in machine
and human conceptual spaces (Chung & Abbott, 2021; Goldstein et al., 2022; Valeriani et al., 2023),
and numerous specific properties of the latent geometrical structure have been studied, such as the
emergence of semantic separability in machine latent representations (Mamou et al., 2020). New
insights in the representational geometry are found using the intrinsic dimension measure (Valeriani
et al., 2023). The relevant geometries are not necessarily flat Euclidean spaces but are often better
described as general manifolds (Hénaff & Simoncelli, 2016; Arvanitidis et al., 2018). In fact, Hénaff
et al. (2019) suggests that semantic separability emerges by flattening or straightening trajectories
in latent spaces, such as was earlier proposed for machine representations (Brahma et al., 2015).
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Similar reasoning was crucial for early methodological developments like ISOMAP (Tenenbaum
et al., 2000) and kernel methods (Mika et al., 1998).

1.1 CONVEXITY IN CONCEPTUAL SPACES

Based on Shephard’s idea of objects as extended regions, Gärdenfors formulated the hypothesis
that natural concepts form convex regions in human geometrical representations (Gärdenfors, 1990;
2014; Warglien & Gärdenfors, 2013; Douven et al., 2022). Strößner (2022) elaborated on the notion
of natural concepts as a social construct: “[Natural concepts] are often found in the core lexicon
of natural languages—meaning that many languages have words that (roughly) correspond to such
concepts—and are acquired without much instruction during language acquisition.” One way to
interpret the naturalness notion is to link it to independent physical mechanisms with macroscopic
effects, i.e., effects that will be visible to all, hence, likely to appear in joint vocabularies. Such in-
dependent mechanisms play a core role in causal modeling (Parascandolo et al., 2018). A more low-
level interplay between human and machine conceptual representations was discussed in Bechberger
& Kühnberger (2022) with a specific focus on grounding shape spaces. The work reports good corre-
spondences between human shape representations as obtained by pairwise similarity judgments and
machine representations of the shape obtained from supervised and unsupervised learning, however,
without touching the question of the convexity of object regions in machines.

Convexity is closely related to generalization in cognitive systems (Gärdenfors, 2001; Gärdenfors
et al., 2018). The defining property of convexity (see Definition 1) implies that categorization can
be extended by interpolation. We also note that simple generalization based on closeness to proto-
types leads to convex decision regions (Voronoi tesselation induces convex regions) (Gärdenfors &
Williams, 2001). Interestingly, convexity is also claimed to support few-shot learning (Gärdenfors,
2001). When basic concepts are learned as convex regions, new labels can be formed by geo-
metrically guided composition, leading to new convex regions (e.g., by conjunction) or by other
inductions leading to sets of convex regions. Finally, it is observed that convexity supports commu-
nication and interaction and thus the negotiation of meaning between subjects and the emergence of
socially universal concepts, i.e., natural concepts (Warglien & Gärdenfors, 2013).

The geometry-driven cognitive science insights motivate our investigation here: Are generalizable,
grounded decision regions implemented as convex regions in machine-learned representations?

The convexity of decision regions in machine-learned representations has not been addressed
before, and therefore, we first need to develop the required investigative tools. Our contributions
include:

• the introduction
:::::::::
Introduction

:
of convexity as a new dimension in human-machine align-

ment.
• recapitulation

:::::::::::
Recapitulation

:
of the salient properties of convex sets in flat and curved

spaces.
• proves

::::::
Proofs

:::
that convexity is stable to relevant latent space

re-parametrization
::::::::::::
transformations.

•
:::::::
Creating

:
an efficient workflow to measure Euclidean and graph convexity of decision re-

gions in latent spaces.
• we present empirical

::::::::
Empirical evidence of pervasive convexity of decision regions in self-

supervised models for images, audio, movement, text, and brain images.
• we present

:::::::
Empirical

:
evidence that convexity of a class decision region in a pretrained

model predicts labelling accuracy of that class following fine-tuning, see Figure 1.

1.2 PROPERTIES OF CONVEX SETS

Let us first formalize classical convexity in Euclidean spaces.

Definition 1 (Euclidean convexity). A subset S ⊂ RD is convex iff ∀x,y ∈ S ∀t ∈ [0, 1], z(t)= tx
+ (1− t)y is also in S (Boyd & Vandenberghe, 2004).

From the definition, it follows that the intersection of two convex sets is also a convex set. Hence,
conceptual conjunction (‘AND’ operation) preserves convexity. Disjunction (‘OR’ operation),
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Figure 1: We measure the Euclidean and graph convexity of each class in the pretrained model and
evaluate the recall of each class after fine-tuning. Hθ is the pretrained model, Hθ∗ is the fine-tuned
model, and σ’s are the classification heads trained to predict labels with fixed network representa-
tions (‘pretrained’) and during fine-tuning respectively. Fine-tuning involves all layers of the en-
coder. We present evidence (the inset and Figure 5) that higher convexity of downstream classes in
the pretrained model is indicative of higher recall in the fine-tuned model. Hence, the convexity of
a class decision region in the pretrained model is associated with subsequent learning of that class
after fine-tuning.

however, does not, since the union of convex sets is not necessarily convex (it is trivial to con-
struct counter-examples) (Boyd & Vandenberghe, 2004). Euclidean convexity is conserved un-
der affine transformations, hence convexity is robust to re-parametrization

::::::
relevant

:::::
latent

:::::
space

:::::::::::::
transformations in deep networks (see a more formal proof in Appendix A). Euclidean convexity
is closely related to conjunctions of linear classifiers. In fact, a convex set can alternatively be de-
fined as the intersection of linear half-spaces (possibly infinite), e.g., implemented by a set of linear
decision functions resulting in a polyhedron (Boyd & Vandenberghe, 2004).

The relevant geometric structure of deep networks is not necessarily Euclidean, hence, we will also
investigate convexity of decision regions in data manifolds. In a Riemannian manifold M with
metric tensor g, the length L of a continuously differentiable curve z : [0, 1] → M is defined by
L(z) =

∫ 1

0

√
gz(t)(ż(t), ż(t))dt, where ż(t) := ∂

∂tz(t). A geodesic is then a curve connecting
z(0) = x and z(1) = y, minimizing this length, i.e. geodesic(x,y) = argminz L(z). While
geodesics are unique for Euclidean spaces, they may not be unique in manifolds. We can now
generalize to geodesic convexity in manifolds:
Definition 2 (Geodesic convexity). A region S ∈ M is geodesic convex, iff ∀x,y ∈ S, there exists
at least one geodesic z(t) connecting x and y, that is entirely contained in S.

When modeling latent spaces with sampled data, we must further transform the above definitions to
data-driven estimators, such efforts are reported, e.g., in Hénaff & Simoncelli (2016); Arvanitidis
et al. (2018). In this work, we choose a simple approach inspired by ISOMAP, hence based on graph
convexity in data manifolds:
Definition 3 (Graph convexity, see e.g., (Marc & Šubelj, 2018)). Let (V,E) be a graph and A ⊆
V . We say that A is convex if for all pairs x, y ∈ A, there exists a shortest path P = (x =
v0, v1, v2, . . . , vn−1, y = vn) and ∀i ∈ {0, . . . , n} : vi ∈ A.

For reasonably sampled data, we can form a graph based on Euclidean nearest neighbors (as
manifolds per definition are locally Euclidean).

:
in

::::::::::
ISOMAP).

We note two important properties of this estimator, first, the graph-based approximate convexity
measure is invariant to isometric transformation and uniform scaling, and second, the sample-
based estimator of convexity is consistent. Both aspects are discussed further in Appendix A. The
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invariance to isometry and uniform scaling means that the approximate convexity property is robust
to certain network re-parametrization (Kim et al., 2018).

As we will measure convexity in labelled sub-graphs within larger graphs, Dijkstra’s algorithm is
preferred over Floyd–Warshall algorithm used in ISOMAP. Dijkstra’s algorithm finds the shortest
path from a given node to each of the other N nodes in the graph with E edges in O(N logN +E)
(Dijkstra, 1959; Fredman & Tarjan, 1987), while Floyd-Warshall efficiently finds the shortest dis-
tance between all vertices in the graph in O(N3)(Cormen et al., 2022; Floyd, 1962). As we have
a sparse graph with E ≪ N2, Dijkstra’s algorithm will be more efficient. With these approxima-
tions, we are in a position to create a graph-based workflow for quantifying convexity in Euclidean
and manifold-based structures. Note, for sampled data, we expect a certain level of noise, hence,
convexity will be graded.

1.2.1 CONSISTENCY OF GRAPH ESTIMATES OF GEODESICS

The consistency of sample/graph-based geodesic estimates has been discussed in connection with
the introduction of ISOMAP (Bernstein et al., 2000) and more generally in Davis & Sethuraman
(2019). Graph connectivity-based estimates of geodesics from sample data are implemented using
two procedures: The neighborhood graph can be determined by a distance cutoff ϵ, so that any
points within Euclidean distance ϵ are considered neighbors, or by K-nearest neighbors (KNN)
based on Euclidean distance. Consistency of these estimates, i.e., that the sample-based shortest
paths converge to geodesics, is most straightforward to prove for the former approach (Bernstein
et al., 2000; Davis & Sethuraman, 2019). The consistency proof for the ϵ-based procedure is based
on the smoothness of the metric, a uniformly bounded data distribution (1/c < p(x) < c) and
scaling of the distance cutoff or K so the connectivity (number of edges per node) increases for
large samples (cutoff decays slowly ϵ → 0 as sample size N → ∞) (Davis & Sethuraman, 2019).

In finite samples, a (too) large connectivity will bias the geodesics, while a (too) small connectivity
can lead to disconnected graphs and noisy estimates. In pilot experiments, we tested the ϵ and
KNN approaches for a range of ϵ and K and found that the KNN approach produces more stable
results. Moreover, the differences for various values of K are negligible, so we are using KNN-based
approach with K = 10 in the complete set of experiments. See Appendix C.6 for more details.

1.3 NEURAL NETWORKS AND CONVEXITY

Should we expect convexity of decision regions of neural network representations? Indeed,
there are several mechanisms that could contribute to promoting convexity. First, the ubiqui-
tous softmax is essentially a convexity-inducing device, hence, typical classification heads will
induce convexity in their pre-synaptic activation layer. This is most easily seen by noting that
softmax decision regions (maximum posterior decisions) are identical to the decision regions
of a linear model, and linear models implement convex decision regions (see Appendix A).
Secondly, several of our models are based on transformer architectures with attention heads. These
heads contain softmax functions and are thus inducing convexity in their weighing of attention.
Thirdly, typical individual artificial neurons, e.g., ReLUs, are latent half-space detectors and
half-spaces are convex as noted above. Note that deep multi-layer perceptrons can approximate any
non-convex decision region, including disconnected decision regions (Bishop et al., 1995).

::::
These

::::::
findings

:::::::
suggest

:::
that

::::::::
convexity

::
is
:::::::
possible

::
in

::::::
neural

::::::::
networks,

::::
even

::::::
though

::
it

:
is
:::
not

::::::
forced

::
by

::::::
design.

An extensive body of work concerns the geometry of input space representations in ReLU net-
works and has led to a detailed understanding of the role of so-called ‘linear regions’: In networks
based on ReLU non-linearity, the network’s output is a piece-wise linear function over convex input
space polyhedra, formed by the intersection of neuron half-spaces (Montufar et al., 2014; Hanin
& Rolnick, 2019; Goujon et al., 2022; Fan et al., 2023). Interestingly, in typical networks (e.g.,
at initialization or after training), the linear regions are much less in number and simpler in struc-
ture compared to theoretical upper bounds (Hanin & Rolnick, 2019; Goujon et al., 2022; Fan et al.,
2023). During training, the collection of convex linear regions is transformed and combined into
decision regions through the later network layers. The resulting decision regions are, therefore,
unions of convex sets and may in general be non-convex or non-connected, as noted in Bishop et al.
(1995). Our two measures of convexity, Euclidean and graph-based, probe different mechanisms of
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generalization, the former is associated with generalization by linear interpolation, while the latter is
associated with generalization by interpolation along the data manifolds. As both mechanisms may
be relevant for explaining generalization in cognitive systems, we are interested in the abundance
and potential role of both measures of convexity. Note that a region may be convex in terms of the
Euclidean measure but not the graph-based (e.g. a decision region formed by disconnected but lin-
early separated subsets) and a region may be graph convex, but not Euclidean convex (e.g. a general
shaped connected region in the data manifold). For visual examples see Figure 2.

2 METHODS

2.1 CONVEXITY MEASUREMENT WORKFLOWS

2.1.1 GRAPH CONVEXITY

We are interested in measuring the approximate convexity of a decision region, here, a subset of
nodes in a graph. A decision region for a specific class is a set of points that the model classifies as
belonging to this class.

We first create a graph that contains all the data points of interest. The points are nodes in the graph
and the Euclidean distances between the nodes are the weights of the edges. To handle manifold-
based representation, for each node, we create an undirected edge only to the nearest neighbors
(K = 10). This procedure creates a sparse undirected weighted graph with positive weights only.

We now sample Ns pairs of points within the given predicted class label and compute the shortest
path in the graph between the pairs using Dijkstra’s algorithm (Dijkstra, 1959). For each path, we
compute a score between 0 and 1. The path score is defined as the proportion of the number of nodes
on the shortest path, without the endpoints, inside the decision region. If an edge directly connects
the pair of nodes, the score is 1. If the points are not connected, the score is 0. We average the
scores for all paths and all classes and get one number per layer. Error bars in the results show the
standard error of the mean, where we set n to the number of points in the given class. This is likely
a conservative estimate since the mean is based on many more pairs than there are points.

The runtime complexity of this procedure is O
(
N2(D + 1) +NcNsN (logN +K)

)
, where N

denotes the number of data points, D is the dimensionality of the representations, and Nc is the
number of classes. See Appendix A.4 for details.

2.1.2 EUCLIDEAN CONVEXITY

Euclidean convexity is also measured for each layer and class separately. To measure the convexity
of class C in layer l, we first extract hidden representations at l of all points predicted to belong to
class C. We sample Ns pairs of points. For each pair, we compute Np = 10 equidistant points on the
segment connecting the representations of the two endpoints. We feed the interpolated points to the
rest of the network (after layer l). The score for each pair is then the proportion of the interpolated
points that are also predicted to belong to class C. Finally, to get the score of Euclidean convexity
for the whole class, we average the scores over all the pairs of points.

The runtime complexity of this procedure is O (NcNsNpD), where Nc denotes the number of
classes, and D is the dimensionality of the representations. See Appendix A.4 for details.

2.1.3 PROPERTIES OF THE CONVEXITY SCORES

To gain more intuition about the two types of convexity and their differences, present examples of
various properties of the graph and Euclidean convexity score on synthetic data. Figure 2 shows how
different values of the sampled data and nearest neighbors influence the created graph and, therefore,
also the graph convexity score.

Note that we could consider two types of class labels: data labels (true classes) and model labels
determined by the predictions of a model (decision regions). Figure 24 in Appendix C.6 illustrates
the difference between these two in the last layer of a model. From Theorem 1 in Appendix A, we
have that the last layer is always Euclidean convex for model labels. In previous work (Anonymous,
2023), we considered data labels. In the present work, we focus on decision regions defined by
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Graph convex Euclidean convex High N , low K Low N , high K
but not Eucl. convex but not graph convex N = 200, K = 3 N = 30, K = 10

Graph conv. = 1 Graph conv. = 0.86 Graph conv. = 0.3 Graph conv. = 0.78

Figure 2: Properties of the graph convexity score: (left) Graph convexity can be more general than
Euclidean convexity for a sufficiently large number of data points, n, and an appropriate number of
nearest neighbors, K; A Euclidean convex set can have a graph convexity score lower than 1 in the
case of isolated subgraphs of one class, connected only through the other class; (right) Low n leads
to edges to distant points that are then used in the shortest paths; Low K can create a disconnected
graph with low graph convexity score due to missing paths between the nodes from the same class.

model labels as they directly probe model representations and decision processes. Model labels are
more ‘expensive’ to compute as propagation of many patterns through deep networks is required for
Euclidean convexity.

For the pretrained models, we obtain the predicted labels by training a linear layer on top of the
last hidden layer (with the rest of the model frozen). This procedure is similar to linear-classifier-
based probes that are widely used in natural language processing to understand the presence of
concepts in latent spaces (Belinkov et al., 2017; Hewitt & Liang, 2019). A prominent example of
probe-based explanation in image classification is the TCAV scheme proposed by Kim et al. (Kim
et al., 2018), in which auxiliary labelled data sets are used to identify concept directions with linear
classifiers (concept class versus random images). In our approach, we use a multi-label ”probe” of
the last layer to identify the model labels but we use these labels to compute and compare convexity
throughout the network.

The score depends on the number of classes, and also on the number of predicted data points per
class. It follows that the exact numbers are not directly comparable across modalities. A scale for
convexity can be set using a null hypothesis that there is no relation. Under this null, we can estimate
convexity with randomized class assignments and get a baseline score (see Appendix C.7 for more
details).

Measurements based on neighbors in high-dimensional data can be sensitive to the so-called hubness
problem (Radovanović et al., 2010). We evaluate the hubness of the latent representations in terms
of k-skewness and the Robinhood score. Results are deferred to Appendices C.1-C.5 since only
mild hubness issues were detected for most domains. We decided to analyse convexity without
adjustment for hubness, to avoid possible biases introduced by normalization schemes (Radovanović
et al., 2010).

2.2 DOMAINS AND DATA

Image domain. We used ImageNet-1k images and class labels (Russakovsky et al., 2015; Deng
et al., 2009) in our experiments. The validation set contains 1000 classes with 50 images per class.
The network model is data2vec-base (Baevski et al., 2022). For details on architecture and training,
see Appendix B.1. We extracted the input embedding together with 12 layers of dimension 768 for
geometric analysis.

Human activity domain. In the human activity domain, we applied our methods to the Capture24
dataset (Willetts et al., 2018). The dataset consists of tri-axial accelerometer data from 152 partici-
pants, recorded using a wrist-worn accelerometer in a free-living setting. In Walmsley et al. (2022),
the dataset was annotated for four classes, namely; sleeping, sedentary behavior, light physical activ-
ity behaviors, and moderate-to-vigorous physical activity behaviors, which we use for fine-tuning.
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We formed the graph by sampling 5000 points (or the maximum number available) from each of the
decision regions. We sampled 5000 paths from each label class during convexity analysis.

We used a pretrained human activity model from Yuan et al. (2022) to extract the latent represen-
tations. The model is pretrained in a self-supervised manner on a large unlabelled dataset from the
UK Biobank. The model follows the architecture of ResNet-V2 with 1D convolutions and a total of
21 convolutional layers. The resulting feature vector after the final pretrained layer is of dimension
1024. For additional information on the network and the data see Appendix B.2.

Audio domain. In the audio domain, we used the wav2vec2.0 model (Baevski et al., 2020), pre-
trained on the Librispeech corpus consisting of 960h of unlabeled data (Panayotov et al., 2015).
The model consists of a CNN-based feature encoder, a transformer-based context network, and a
quantization module. We were especially interested in the latent space representation in the initial
embedding layer and the 12 transformer layers. After each layer, we extracted the feature vector of
dimension 768.

We fine-tuned the model to perform digit classification based on the AudioMNIST dataset (Becker
et al., 2018), which consists of 30000 audio recordings of spoken digits (0-9) in English of 60
different speakers (with 50 repetitions per digit). For additional information, see Appendix B.3.

Text domain. Our NLP case study is on the base version of RoBERTa (Liu et al., 2019) which is pre-
trained to perform Masked Language Modelling (Devlin et al., 2018) in order to reconstruct masked
pieces of text. The model consists of an embedding layer followed by 12 transformer encoder layers.

Fine-tuning was done on the 20 newsgroups dataset (Lang, 1995) which consists of around 18,000
newsgroups posts, covering 20 different topics, which was split into train, validation and test sets.
For further details see Appendix B.4.

Medical imaging domain. For the medical imaging domain, we used digital images of normal
peripheral blood cells (Acevedo et al., 2020). The dataset contains 17,092 images of eight normal
blood cell types: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulo-
cytes (ig), erythroblasts and platelets. We fully pretrain a base-version of I-JEPA (Assran et al.,
2023), a self-supervised transformer-based architecture with 12 transformer blocks, a patch size of
16, and a feature dimension of 768. We used 80% of the available data for a total of 150 epochs
for pretraining. We evaluated the pretrained model by freezing its weights, averaging over the patch
dimension of the last layer of the encoder, and applying a linear classification probe. Equivalently,
during fine-tuning, we attached a linear classifier and retrained the whole model. We validated our
model on 1709 hold-out samples. We achieved a pretrained accuracy of 85.3% and a fine-tuning
accuracy of 93.5%. Embeddings were extracted from the first layer and every second transformer
block, and averaged along the patch dimension.

3 RESULTS

To gain intuition on the effect of fine-tuning, we first inspect t-SNE plots for a subset of classes
(Figure 3) of the image domain. From Theorem 1 in Appendix A, we learn that the last layer of both
the pretrained and fine-tuned models is Euclidean convex. The t-SNE plot illustrate this quite clearly
for the fine-tuned model while the picture is not quite as evident for the pretrained model. We also
see that points with the same predictions get clustered within earlier layers. The situation is similar
for other modalities (see Appendices C.1-C.5). The observed structure in these low-dimensional
representations adds motivation to our investigation of the convexity of class labels using Euclidean
and graph methods in the high-dimensional latent spaces.

We measure convexity for classes within the pretrained networks and after fine-tuning with class
labels as targets. Figure 4 shows the results for all modalities. The convexity is pervasive both before
and after fine-tuning. An important reason why the magnitudes of the convexity scores differ among
modalities is the different amounts of data and number of classes. However, the trend is the same
for all modalities. Random labelling yields the graph convexity scores approximately 1

C , where C
is the number of classes (more details on baseline scores in Appendix C.7). All the convexity scores
are significantly higher than these baselines. Generally, class convexity is increased by fine-tuning.

Note that the graph convexity in the last layer is (in some cases considerably) lower than 1 ∼ 100%,
even though this layer is always Euclidean convex.
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Figure 3: Images: t-SNE plots for a subset of predicted classes, both before and after fine-tuning.

Figure 4: Euclidean and graph convexity scores for all modalities for decision regions of pretrained
and fine-tuned networks. Decision regions are determined by model-predicted labels. Prediction in
pretrained models is found using a softmax probe, training only the softmax linear layer. In fine-
tuning, we train the whole network and softmax output. We find pervasive convexity in all networks
and convexity further increases following fine-tuning. The number of layers differs across models
but the most-left layer is the first layer that we observe and the right-most layer is the last layer in
each model. Error bars are omitted in this plot for clarity (uncertainty estimates are given in figures
of individual modalities in Appendices C.1-C.5). Note that the results are not directly comparable
across modalities (see Section 2.1). In particular, we find less convexity in the image data containing
a high number of classes (C=1000).

For detailed results of the analysis of individual data modalities, see Appendices C.1-C.5.

To test the cognitive science-motivated hypothesis that convexity facilitates few-shot learning, we
plot the post-finetuning accuracy (recall) per class versus pretraining convexity scores as shown
in Figure 5 for graph-based convexity (top) and Euclidean convexity (bottom). There is a strong
association between both types of convexity measured in the pretrained model and the accuracy of
the given class in the fine-tuned model. Indeed, there is a significant correlation in both cases. The
Pearson correlation between the two types of convexity scores is 0.57 ± 0.04 for both pretrained
models and the fine-tuned ones. These results are quantifying the hypothesis that the two convexity
scores are related but different. Detailed results can be found in Appendices C.1-C.5.
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Figure 5: Graph convexity (top) and Euclidean convexity (bottom) of a subset of classes in the
pretrained models vs. recall

:::
rate

:
of these

::::::::
individual

:
classes in the fine-tuned models for all data

domains. The
::::::
number

::
of

::::::
points

:::
for

::::
each

:::::::
domain

::
is

:::::
equal

::
to

:::
the

:::::::
number

::
of

::::::
classes

::
in
::::
this

::::::
domain

::::::
(except

:::
for

::::::
images,

::::::
where

:::
we

::::
take

::::
only

:
a
::::::
subset

::
of

::::::
classes

:::
for

:::::
clarity

::
–
::
all

::::::
image

::::::
classes

:::
are

:::::
shown

::
in

:::
and

:
Figure 9

:::
and

:
Figure 10

::
in

::::::::
Appendix

:::
C).

::::
The

:
Pearson correlation coefficient is 0.22 ± 0.06

for graph convexity and 0.24± 0.06 for Euclidean convexity (the confidence intervals are computed
using Fisher transformation).

4 CONCLUSION
:::::
AND

:::::::::::::::
PERSPECTIVES

Understanding machine and human representational spaces is important for alignment and trust.
Such investigations can be furthered by aligning the vocabularies of investigations into human and
machine representations. Inspired by the conceptual space research of Gärdenfors and coworkers,
we introduce the idea of convexity as a relevant dimension for machine-learned representations.
Convexity is closely related to generalization in cognitive systems, the mechanisms mentioned are
:::::
based

::
on

::::::::::
mechanisms

:::::
such

::
as generalization by interpolation , or by proximity to prototype.

Machine representations are often found to be better described as curved spaces, hence, we reca-
pitulated salient properties of convex sets in flat and curved spaces. In particular, we considered
both conventional Euclidean and graph-based convexity. We found that convexity is stable to rele-
vant latent space re-parameterizations

::::::::::::
transformations

:
for deep networks. We developed workflows

for the estimation of approximate convexity based on Euclidean and graph methods , which can be
used to measure convexity with and without following manifold structure

::
for

:::::::::
measuring

::::::::
convexity

in latent spaces. We carried out extensive experiments in multiple domains including visual object
recognition, human activity data, audio, text, and medical imaging. Our experiments included net-
works trained by self-supervised learning and next fine-tuned on domain-specific labels. We found
evidence that both types of convexity are pervasive in both pretrained and fine-tuned models. On
fine-tuning, we found that class

::::::
decision

:
region convexity generally increases. Importantly, we find

evidence that the higher convexity of a class decision region after pretraining is associated with the

9
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higher level of recognition of the given class after fine-tuning
:
.
::::
This

::
is
:

in line with the observa-
tions made in cognitive systems, that convexity supports few-shot learning.

::
In

::::
new

::::::::::
experiments,

::
we

:::::::
expand

:::
the

:::::::
analysis

:::
for

:::
the

::::::
human

:::::::
activity

::::
and

:::
text

::::::::
domains

::
to

:::::::
include

:::::::
multiple

:::::::
models

:::
(see

::::::::
Appendix

:::
E).

:::
For

::::::
human

:::::::
activity

::::::::::
recognition,

:::
we

::::
have

::::
been

::::
able

::
to
::::
run

:::
two

:::::::::
additional

::::::
models

:::
and

::::
both

::::::::
convexity

::::::::
measures.

::::
The

::::::
results

:::::::
confirm

::
the

::::::::::
hypothesis

:::
that

:::::::::
increasing

::::::::
pretrained

:::::::::
convexity

:
is

::::::::
associated

::::
with

::::::
higher

:::::::::::
performance.

::::
For

::
the

::::
text

:::::::
domain,

:::
we

::::
have

::::
been

::::
able

::
to

::::
run

::
the

:::::
faster

:::::
graph

::::::::
convexity

:::
for

:::
two

::::::::
additional

::::::::::
transformer

::::::
models

::::
and

::::
while

:::
we

::::
find

::::::::
consistent

::::::
results,

:::
the

:::::::::
differences

:::::
among

:::
the

:::::::
models

:::
are

::::
quite

:::::::
minute.

:::::
There

:::
are

:::::
many

:::::
future

::::::::
directions

::
to
:::::::
explore.

::::::
Given

:::
the

::::::
positive

:::::
impact

:::
of

:::::::::
convexity

::
on

:::::::::::::
generalization,

::
it
::
is
:::::::

natural
::
to

::::
ask

::
if

:::
we

:::
can

::::::::
promote

::::::::
convexity

::::::
during

::::::
training

::::
and

::::
gain

:::::::::::
performance?

::
In
::

a
:::::::::
explorative

::::::
initial

:::::::::
experiment,

:::
we

:::
do

::::::
indeed

:::
find

::::::::
evidence

:::
that

::::::::
promoting

:::::::::
convexity

:::
via

::::
data

:::::::::::
augmentation

::::::::
improves

:::::::::::
performance

::::
(see

:::::::::
Appendix

:::
D).

::::
This

:::::
opens

::::::
exciting

::::::::::
possibilities

:::
for

::::
new

::::::::::
engineering

:::::::
methods

::
to
:::::::
improve

:::::::::::::
self-supervised

::::::::
learning.
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Sören Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. Interpreting and explaining deep neural networks for classification of audio signals. arXiv
preprint arXiv:1807.03418, 2018.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do neural
machine translation models learn about morphology? In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 861–872, 2017.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

Mira Bernstein, Vin De Silva, John C Langford, and Joshua B Tenenbaum. Graph approximations
to geodesics on embedded manifolds. Technical report, Citeseer, 2000.

10

https://openreview.net/forum?id=SJzRZ-WCZ


Under review as a conference paper at ICLR 2024

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning.
Springer, 2006.

Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university press, 1995.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004. ISBN 978-0-521-83378-3. doi: 10.1017/CBO9780511804441. URL https://web.
stanford.edu/%7Eboyd/cvxbook/.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Univ. Press, 2010.
ISBN 051180444x, 0521833787, 110738592x, 1316179516, 9780511804441, 9780521833783,
9781107385924, 9781316179512, 051180444X, 110738592X, 1680833464, 9781680833461.

Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A manifold
disentanglement perspective. IEEE transactions on neural networks and learning systems, 27
(10):1997–2008, 2015.

Brian Christian. The alignment problem: Machine learning and human values. WW Norton &
Company, 2020.

SueYeon Chung and LF Abbott. Neural population geometry: An approach for understanding bio-
logical and artificial neural networks. Current opinion in neurobiology, 70:137–144, 2021.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms, 4th edition. MIT press, 2022. ISBN 9780262046305.

Erik Davis and Sunder Sethuraman. Approximating geodesics via random points. The Annals of
Applied Probability, 29(3):1446–1486, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959. doi: 10.1007/BF01386390. URL https://doi.org/10.1007/
BF01386390.

Igor Douven, Shira Elqayam, Peter Gärdenfors, and Patricia Mirabile. Conceptual spaces and the
strength of similarity-based arguments. Cognition, 218:104951, 2022.

Dale W. Esliger, Ann V. Rowlands, Tina L. Hurst, Michael Catt, Peter Murray, and Roger G. Eston.
Validation of the genea accelerometer. Medicine and Science in Sports and Exercise, 43(6):1085–
1093, 2011. ISSN 15300315, 01959131. doi: 10.1249/MSS.0b013e31820513be.

Feng-Lei Fan, Wei Huang, Xiangru Zhong, Lecheng Ruan, Tieyong Zeng, Huan Xiong, and Fei
Wang. Deep relu networks have surprisingly simple polytopes. (arXiv:2305.09145), May
2023. doi: 10.48550/arXiv.2305.09145. URL http://arxiv.org/abs/2305.09145.
arXiv:2305.09145 [cs].

Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962. doi: 10.1145/
367766.368168. URL https://doi.org/10.1145/367766.368168.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. J. ACM, 34(3):596–615, 1987. doi: 10.1145/28869.28874. URL
https://doi.org/10.1145/28869.28874.

Peter Gärdenfors. Induction, conceptual spaces and ai. Philosophy of Science, 57(1):78–95, 1990.

Peter Gärdenfors. Concept learning: a geometrical model. In Proceedings of the Aristotelian Society
(Hardback), volume 101, pp. 163–183. Wiley Online Library, 2001.

Peter Gärdenfors. The geometry of meaning: Semantics based on conceptual spaces. MIT press,
2014.

11

https://web.stanford.edu/%7Eboyd/cvxbook/
https://web.stanford.edu/%7Eboyd/cvxbook/
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
http://arxiv.org/abs/2305.09145
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/28869.28874


Under review as a conference paper at ICLR 2024

Peter Gärdenfors and Mary-Anne Williams. Reasoning about categories in conceptual spaces. In
IJCAI, pp. 385–392, 2001.

Peter Gärdenfors, Jürgen Jost, and Massimo Warglien. From actions to effects: Three constraints on
event mappings. Frontiers in psychology, 9:1391, 2018.

Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A
Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for
language processing in humans and deep language models. Nature neuroscience, 25(3):369–380,
2022.

Alexis Goujon, Arian Etemadi, and Michael Unser. The role of depth, width, and activation
complexity in the number of linear regions of neural networks. (arXiv:2206.08615), Jun
2022. doi: 10.48550/arXiv.2206.08615. URL http://arxiv.org/abs/2206.08615.
arXiv:2206.08615 [cs, math, stat].

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Proceedings
of the 36th International Conference on Machine Learning, pp. 2596–2604. PMLR, May 2019.
URL https://proceedings.mlr.press/v97/hanin19a.html.
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APPENDICES

A THEORY

In this appendix, we present some mathematical background and intuition for the approximate con-
vexity workflow.

A.1 SOFTMAX INDUCES CONVEXITY

Theorem 1. The preimage of each decision region under the last dense layer and softmax function
is a convex set. More precisely: Let us denote the output of the last dense layer by

ak(z) =

J∑
j=1

wk,jzj (1)

for z ∈ Rn and the probabilities

pk(z) =
exp ak(z)∑K

k′=1 exp ak′(z)
. (2)

Denote

Ck ⊆ Rn = {x ∈ Rn : pk(x) > pj(x) ∀j ∈ {1, . . . ,K}, j ̸= k}. (3)

Then Ck is a convex set for any k ∈ {1, . . . ,K} (Bishop & Nasrabadi, 2006).

Proof. Let us define regions

x ∈ Rk ⇐⇒ (ak(x) > aj(x) ∀j ̸= k) . (4)

Because
∑K

k′=1 exp ak′ > 0 and by the monotonicity of the exponential function, it holds that

kopt(x) := argmax
k

pk(x) = argmax
k

exp ak(x)∑K
k′=1 exp ak′(x)

= argmax
k

ak(x), (5)

Therefore,
Rk = Ck ∀k ∈ {1, . . .K} (6)

and we can from now on work with Rk.

Following the definitions from Bishop & Nasrabadi (2006), pages 182-184:
Let xA,xB ∈ Rk and define any point x̂ that lies on the line connecting the two:

x̂ = λxA + (1− λ)xB , (7)

where 0 ≤ λ ≤ 1. Cf. equation 1, the discriminant functions, ak, are linear and it follows that:

ak(x̂) = λak(xA) + (1− λ)ak(xB) (8)

for all k. From the definition of Rk, we know that ak(xA) > aj(xA) and ak(xB) > aj(xB) for
all j ̸= k. Therefore, ak(x̂) > aj(x̂) for all j ̸= k and x̂ belongs to Rk. Hence, Rk = Ck is
convex.
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A.2 EUCLIDEAN CONVEXITY IS INVARIANT TO AFFINE TRANSFORMATIONS

Theorem 2. Let f : Rn → Rn be an affine transformation (i.e., f(x) = Ax + b, where b ∈ Rn

and A : Rn → Rn is an invertible linear transformation). Let X ⊂ Rn be a convex set. Then f(X)
is convex (Boyd & Vandenberghe, 2010).

Proof. Let x,y ∈ f(X) and λ ∈ [0, 1]. There exist x,y ∈ X such that f(x) = x and f(y) = y.
Since X is convex, we have λx+ (1− λ)y ∈ X . Therefore,

f (λx+ (1− λ)y) ∈ f(X). (9)

Moreover, because of the linearity of A,

f (λx+ (1− λ)y) = A (λx+ (1− λ)y) + b = λAx+ (1− λ)Ay + b. (10)

Finally, we have

λAx+ (1− λ)Ay + b = λ (Ax+ b) + (1− λ) (Ay + b) (11)
= λf(x) + (1− λ)f(y) (12)
= λx+ (1− λ)y. (13)

Hence,
f (λx+ (1− λ)y) = λx+ (1− λ)y (14)

and λx+ (1− λ)y ∈ f(X). Therefore, f(X) is convex.

A.3 GRAPH CONVEXITY IS INVARIANT TO ISOMETRY AND UNIFORM SCALING

Theorem 3. Graph convexity is invariant to isometry and uniform scaling.

Proof. Isometry (with respect to Euclidean distance) is a map I : Rn → Rn such that

∀x,y ∈ Rn : ∥x− y∥2 = ∥I(x)− I(y)∥2. (15)

Since isometry preserves distances, it induces the same distance graph. Therefore, graph convexity
is invariant to isometries.

Universal scaling is a map S : Rn → Rn such that

∃C ∈ R ∀x ∈ Rn : S(x) = Cx. (16)

It holds that
∥S(x)− S(y)∥2 = ∥Cx− Cy∥2 = |C| · ∥x− y∥2. (17)

All the distances are scaled by |C|. It follows that the chosen nearest neighbours are the same. We
show by contradiction that all the shortest paths are also the same. We denote G the graph with the
original edges and GS the graph with the scaled edges.

Given x,y ∈ Rn, suppose that there exists a shortest path:

P = (p0 = x,p1, . . . ,pj = y) (18)

from x to y, and a different path:

Q = (q0 = S(x), q1, . . . , qk = S(y)) (19)

from S(x) to S(y) such that
L(Q) < L(S(P )), (20)

where
S(P ) = (S(p0), S(p1), . . . , S(pj)) (21)

and L(·) is an operator measuring the length of a path. From equation 20, it follows that C ̸= 0.
Because all the edges are scaled by a factor |C|, it holds that L(S(P )) = |C|L(P ). Moreover, for
every pair of nodes v1, v2, there exists an edge in G from v1 to v2 if and only if there exists an
edge in GS from S(v1) to S(v2). Hence, there exists a path R from x to y such that Q = S(R). It
follows that

|C|L(R) = L(S(R)) < L(S(P )) = |C|L(P ). (22)
Therefore, L(R) < L(P ) and that contradicts the assumption that P is the shortest path from x to
y.
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A.4 RUNTIME COMPLEXITY

We have a dataset D with NC classes each with NC
C data points, N total data points, and each data

point has a representation in z ∈ RD.

Graph Convexity: Computing the graph convexity score requires three steps:

1. Compute the nearest neighbor matrix. This cost 1/2N2D.
2. Create the adjacency matrix. This cost 1/2N2. The adjacency matrix will at most have

E = NK edges, where K is the K chosen for K-nearest neighbors
3. Compute the convexity score for each pair of data points for each class or concept using

Dijkstra’s algorithm. This cost 1/2CNc(Nc − 1)(N logN + E).

The total computational cost is then

cost = 1/2N2D + 1/2N2 + 1/2CNc(N
C
C − 1) (N logN +NK)

This simplifies to

cost = O
(
N2(D + 1) + CNC

C (NC
C − 1)N (logN +K)

)
Since NCN

C
C = N , and in most cases (NC

C − 1)(logN +K ≫ (D + 1), the dominating term will
be the latter. This can be seen by rewriting:

cost = O
(
N2(D + 1) +N2(NC

C − 1) (logN +K)
)

Instead of computing the convexity score for a graph exact, we can estimate it using NS samples per
class/concept, we get

cost = O
(
N2(D + 1) +NCNSN (logN +K)

)
Euclidean Convexity: Computing the Euclidean convexity score for each class/concepts entails the
following operations

1. Sample Np point pairs, denoting their representations z1 and z2. This operation scales with
Np.

2. Per point pair, generate Ns representations equidistant on a line between z1 and z2. This
scales with Ns .

3. For each generated representation, compute the classification. This scales with D.

Since all the costs are scaling linearly, the total cost of computing the Euclidean convexity score is

cost = O (NcNsNpD)

B DATA SETS

B.1 IMAGE DOMAIN

We used ImageNet-1k (Russakovsky et al., 2015; Deng et al., 2009) in our experiments. The vali-
dation set contains 50,000 images in 1000 classes, i.e. 50 images per class.

We used data2vec-base (Baevski et al., 2022) architecture. It consists of 12 Transformer layers
(Vaswani et al., 2017) and was trained to produce the same representations for an input image and
its masked version. It was pretrained on an unlabelled version of ImageNet-1k. For fine-tuning,
a linear layer was added on top of the mean-pooled output of the last layer. Both the pretrained
model1 and the model fine-tuned2 on ImageNet-1k (Russakovsky et al., 2015; Deng et al., 2009)
were obtained from Hugging Face (Wolf et al., 2020). Details on pretraining and fine-tuning can be
found in the original paper (Baevski et al., 2022). The final accuracy of the fine-tuned model on the
validation set is 83.594%.

1https://huggingface.co/facebook/data2vec-vision-base
2https://huggingface.co/facebook/data2vec-vision-base-ft1k
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We extracted the input embedding together with 12 layers. For each layer, we averaged the hidden
states across patches to get 768-dimensional feature vectors.

To get the predictions for the pretrained model, we trained a linear layer with a learning rate of 0.1,
a polynomial scheduler, and a weight decay of 0.0001 for 1000 epochs with the whole training set
of ImageNet-1k. The final accuracy on the validation set is 46.766%.

B.2 HUMAN ACTIVITY DOMAIN

In the human activity domain, we used the pretrained model from Yuan et al. (2022) to extract the
latent representations. The model is pretrained on a large unlabelled dataset from the UK Biobank,
which contains 700,000 person-days of free-living tri-axial accelerometer data. The pretraining
procedure is a multi-task self-supervised learning schedule, where the model is trained to predict
whether a number of augmentations have been applied or not. The model follows the architecture of
ResNet-V2 with 1D convolutions and a total of 21 convolutional layers. The resulting feature vector
after the final pretrained layer is of dimension 1024.

The model is divided into 5 modules, 4 modules consisting of 2 ResNet blocks each and a final
convolutional layer mapping the data to 1024 channels. We extracted the latent representations after
each of the 5 modules. We added a single linear layer with softmax activation to obtain the decision
regions for both the pretrained and the fine-tuned model. We flattened all the latent representations
during the analysis.

For testing the methods, we used the Capture-24 dataset (Willetts et al., 2018). The Capture-24
dataset contains free-living wrist-worn activity tracking data from 152 participants. The participants
were tracked for 24 hours and the data was subsequently humanly labelled into 213 categories based
on a wearable camera also worn by the participants. Each of the 213 categories is associated with
a metabolic equivalent of task (MET) score, which is a number describing the energy expenditure
of each task. In Walmsley et al. (2022), the original 213 labels were divided into 4 coarse labels,
namely; sleeping, sedentary behaviour, light physical activity behaviours and moderate-to-vigorous
physical activity behaviours based on the MET scores. These 4 labels are used as classes when
fine-tuning the model.

During fine-tuning, we randomly selected 30 subjects to hold out for testing. We optimized the
entire network (encoder and classifier) jointly with a learning rate of 10−4. Following the authors
in Yuan et al. (2022), we selected a small validation set and used early-stopping with a patience of
5 epochs. The same procedure was used to obtain the decision regions for the pretrained model,
however, the weights of the encoder were frozen.

We achieved a balanced accuracy score of 77.0% when fine-tuning the entire model and 72.2% when
optimizing only the last linear layer.

For each decision region, we sampled 5000 points (or the maximum number available). We then
analyzed the convexity of each decision region after each of the 5 modules in the network.

B.3 AUDIO DOMAIN

In the audio domain, we used the pretrained wav2vec2.0 model (Baevski et al., 2020), which is
trained on the Librispeech corpus (960h of unlabeled data) (Panayotov et al., 2015). During pertain-
ing, the model learns meaningful latent audio/speech representations, the exact training objectives
can be found in Baevski et al. (2020). The model consists of a CNN-based feature encoder, a
transformer-based context network and a quantization module. We were especially interested in the
latent space representation in the 12 transformer layers. After each transformer layer, we extracted
the feature vector of dimension 768.

We fine-tuned the model to perform digit classification based on the AudioMNIST dataset (Becker
et al., 2018), which consists of 30000 audio recordings of spoken digits (0-9) in English of 60
different speakers (with 50 repetitions per digit). For fine-tuning, an average pooling layer and a
linear layer were added to the network, to perform a classification task, the fine-tuning procedure
was based on a tutorial3. The network was fine-tuned on 80% of the people while the remaining 20%

3https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/
notebooks/Eating_Sound_Collection_using_Wav2Vec2.ipynb
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were withheld for testing (resulting in 6000 audio files). Two different fine-tunings were performed.
First, only the final linear layer was added and trained with a frozen model. This was done with
a learning-rate of 1e−3 and early stopping. The final model reached an accuracy of 64%. In the
second fine-tuning, only the initial CNN layers were frozen, while the transformer layers and the
added linear layer were fine-tuned. The model was fine-tuned with early stopping for 1000 steps
(batch-size 16), and the learning rate was set to 1e−4. No hyperparameter search was performed as
the first fine-tuning already led to a very high accuracy of 99.89%. The latent representations of the
test set were extracted before and after fine-tuning for both scenarios.

B.4 TEXT DOMAIN

For text, we used the base version of RoBERTa4 (Liu et al., 2019) which is pretrained to perform
Masked Language Modelling (Devlin et al., 2018) in order to reconstruct masked pieces of text. The
model consists of an embedding layer followed by 12 transformer encoder layers and a classification
head. The pretraining of RoBERTa is performed on 160GB of uncompressed English-language text
in order to learn latent representations of text which are expressed as 768-dimensional vectors. One
notable difference that we make is that the classification head, which in a standard configuration of
RoBERTa is a fully-connected dense layer followed by dropout and then lastly a linear projection
head to the number of classes, we simply replace all of this with a single linear layer, projecting the
hidden last hidden states into the classes.

Fine-tuning was done on the 20 newsgroups dataset (Lang, 1995) which consists of around 18,000
newgroups posts, covering 20 different topics. Recommended pre-processing steps were performed
to remove headers, signature blocks, and quotations from each new article, as the model would
otherwise be likely to overfit to features generated from those fragments. The data was split into a
training, validation and test set with 10,000, 1,000 and 7,000 posts, respectively. The data and exact
splits that were used are available on HuggingFace5 The validation set was used to perform early
stopping during training.

We found that the model stopped after 3 epochs and reached an accuracy of 68.9%. This was with
a learning rate of 10−4 and weight-decay of 10−2. For the pretrained model, we froze everything
up until the final linear projection and only trained the last linear layer. After training for 8 epochs,
as dictated by early stopping, an accuracy of 60% was reached through this approach. The learning
rate was increased to 10−2 when training only the linear projection head.

B.5 MEDICAL IMAGING DOMAIN

We investigated digital images of normal peripheral blood cells (Acevedo et al., 2020). The dataset
contains 17,092 images of eight normal blood cell types: neutrophils, eosinophils, basophils, lym-
phocytes, monocytes, immature granulocytes (ig), erythroblasts and platelets. Images were obtained
with CellaVision DM96 in RGB colour space. The image size is 360 × 363 pixels. Images were
labelled by clinical pathologists at the Hospital Clinic of Barcelona.

We fully pretrained the base version of I-JEPA (Assran et al., 2023) with a patch size of 16, 12
transformer blocks with a feature dimension 768. I-JEPA is a masked image model, where the
pretext task is to predict embeddings of hold-out image context from the embeddings of the encoder.
The model was trained using a smooth L1 loss with default settings in PyTorch. The targets were
80% of the available data for a total of 150 epochs. Hyperparameters were kept consistent with the
original work of Assran et al. (2023). We chose a learning rate of 0.001 with cosine decay and a
linear warmup of 20 epochs. We used the AdamW optimizer.

After pretraining, we froze the model weights of the encoder and trained a linear layer for 50 epochs
with the same optimizer and a learning rate of 0.005. The pretrained model with a linear layer
achieves an accuracy of 85.3% on the validation set of 1709 subjects. Equivalently, during fine-
tuning, we attached a linear classifier and retrained the whole model. The fine-tuned model reaches
an accuracy of 93.5%.

We used the 1709 hold-out samples for the convexity analysis. To extract features, we averaged over
the patch dimension of the embeddings, resulting in a 768-dimensional vector per subject and layer.

4https://huggingface.co/roberta-base
5https://huggingface.co/datasets/rasgaard/20_newsgroups
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We extracted these vectors after the convolutional patch embedding layer, after transformer blocks
2, 4, 6, 8, 10, and after normalisation of the 12th transformer block, resulting in 7 feature vectors
per subject. We sampled 5000 paths for all convexity analyses.
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C DETAILED RESULTS

Figure 6 shows hubness metrics (k-skewness and Robinhood score) for all models and domains. It
follows that hubness is not a problem for any of the domains.

Figure 6: Hubness evaluation for all modalities. No measures to correct for hubness were taken, as
the numbers for k-skewness and Robinhood score are generally low.

C.1 IMAGE DOMAIN

In Figure 3, we show t-SNE plots for a subset of classes of the image domain with labels predicted
by the models.

Figure 7: Images: Euclidean and graph convexity in the pretrained and fine-tuned model. Error bars
show the standard error of the mean, where we set n to the number of data points.

Figure 7 shows graph and Euclidean convexity results for both models. The relation between con-
vexity in the pretrained model and accuracy per class in the fine-tuned model is depicted in Figure 9
for graph-based convexity and in Figure 10 for Euclidean convexity. Both convexity scores per class
are plotted against each other in Figure 8.
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(a) Pretrained model. (b) Fine-tuned model.

Figure 8: Images: Scatter plots of graph vs Euclidean convexity for each class in the pretrained and
fine-tuned model.

Figure 9: Graph convexity of all image classes in the pretrained models vs. recall of these classes in
the fine-tuned models.
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Figure 10: Euclidean convexity of all image classes in the pretrained models vs. recall of these
classes in the fine-tuned models.

C.2 HUMAN ACTIVITY DOMAIN

Figure 11 shows the t-SNE plots from the human activity domain with samples coloured by their
predicted labels. The figure shows the tSNE plots of the representations after the first, third, and
last (fifth) layers for both the pretrained and the fine-tuned model. For both models, it is clear that
the decision regions change throughout the network. In the first layer, the decision regions are split
into multiple different subregions. In the final layers, the regions appear more grouped, as would be
expected. This is even more obvious in the fine-tuned model, where the decision regions also seem
to have moved further apart. In the final layer, the decision regions are linearly separated in the true
representation space. However, when projected into two dimensions by the t-SNE algorithm, it is
clear that other structures in the data are also dominating the clustering.

Figure 12 shows the convexity analysis for both the pretrained and fine-tuned networks in the human
activity domain. In both models, we notice a clear pattern of increasing graph and Euclidean con-
vexity between the first and the last layer. The Euclidean convexity for the pretrained model starts at
≈ 80% and ends, as expected, at 100%. For the fine-tuned model, the Euclidean convexity is even
higher in the first layer and also increases to the expected 100%. Looking at the graph convexity
scores, it is clear that these are lower compared to the Euclidean scores, and neither the pretrained
nor the fine-tuned model have 100% graph convex decision regions in the last layer. It is difficult to
give the exact answer as to why, but a plausible suggestion could be that the decision regions contain
multiple disconnected subregions. A synthetic example of such a case can be seen in Figure 2. This
hypothesis could also be backed by the t-SNE plots, which indicate dominant substructures in the
data that cause disconnectedness of data within decision regions. In general, these results indicate
that the graph convexity score is able to capture other substructures in the data than what can be
discovered from Euclidean convexity.

Figure 13 shows the relation between Euclidean and graph convexity per class.
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Figure 11: Human activity: t-SNE plots for a subset of samples from the predicted classes, both
before and after fine-tuning.

Figure 12: Human activity: Euclidean and graph convexity for the pretrained and fine-tuned model.
Error bars show the standard error of the mean, where we set n to the number of data points.
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(a) Pretrained model. (b) Fine-tuned model.

Figure 13: Human activity: Scatter plots of graph vs. Euclidean convexity for each class in the
pretrained and fine-tuned model.

C.3 AUDIO DOMAIN RESULTS

Figure 14 Figure 14 shows the t-SNE plots of the predicted classes in the audio domain. The clus-
tering of classes can be seen in late layers in both the pretrained and fine-tuned model, as expected
it’s more pronounced in the fine-tuned model.
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Figure 14: Audio: t-SNE plots for predicted classes, both before and after fine-tuning.

This behaviour is also observed in the convexity analysis, where the convexity generally increases
for the classes throughout the layers (Figure 15). Euclidean convexity is generally higher than the
graph convexity, and the convexity is higher in the fine-tuned model.

Figure 16 shows the relation between Euclidean and graph convexity per class.
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Figure 15: Audio: Euclidean and graph convexity for the pretrained and fine-tuned model. Error
bars show the standard error of the mean, where we set n to the number of data points. The error
bars for ”fine-tuned: Graph convexity” are missing.

(a) Pretrained model. (b) Fine-tuned model.

Figure 16: Audio: Scatter plots of graph vs. Euclidean convexity for each class in the pretrained and
fine-tuned model.
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C.4 TEXT RESULTS

In Figure 17 Figure 17 we see the 2D embeddings from t-SNE for both the pretrained as well as
the fine-tuned model. We see that the classes are separated through fine-tuning and that convexity
increases through this process as well. Relating it to Figure 18 Figure 18 we can see graph con-
vexity for the pretrained model is more or less constant throughout the network while the euclidean
convexity rises sharply in the last half of the network.

The pretrained network obtained an accuracy of 60% by training a projection head from the 768-
dimensional last hidden state to the 20 classes. The fully fine-tuned network obtained an accuracy
of 68.6%.
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Figure 17: Text: t-SNE plots for the predicted classes both before and after fine-tuning.

Figure 18: Text: Euclidean and graph convexity for the pretrained and fine-tuned model. Error bars
show the standard error of the mean, where we set n to the number of data points.

Plotting the graph and Euclidean convexity as in Figure 19 Figure 19 reveals that for the fine-tuned
model we actually see some level of correlation between the two measurements. We also see that
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there is no particular correlation between the graph convexity and euclidean convexity for the pre-
trained network. This can be explained by the disconnectedness of decision regions in the pretrained
network which highly impacts the graph convexity.

It is also apparent from Figure 18 that the fine-tuned model does not reach 100% graph convexity in
its final layer. Looking at the t-SNE embeddings in Figure 17 we see that some points with different
classes are clustered closely together. This might be due to topics in the text being very closely
related. This also causes the phenomena where the shortest path is traversed through the other,
closely related, class, causing the graph convexity to go down.

(a) Pretrained model. (b) Fine-tuned model.

Figure 19: Text: Scatter plots of graph vs. Euclidean convexity for each class in the pretrained and
fine-tuned model.
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C.5 MEDICAL IMAGING RESULTS

In Figure 20, we show t-SNE plots for the pretrained and fine-tuned model. We show embeddings
after patch embedding (layer 6), after the middlemost layer in the transformer (layer 6) and just
before softmax (layer 12). Clusters of different classes can already be observed in the pretrained
model, however, they become more prevalent in the fine-tuned model.
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Figure 20: Medical images: t-SNE plots for the pretrainend and finetuned models.

Figure 21 shows graph and Euclidean convexity for the pretrained and fine-tuned models. Convexity
increases more rapidly in the beginning for both fine-tuned and pretrained models, as well as for
graph and Euclidean convexity. Graph convexity saturates at 78.4% for the pretrained model and
98.9% for the fine-tuned model. Euclidean convexity reaches 100% convexity in the final layer as
expected.

Figure 21: Medical images: Euclidean and graph convexity for the pretrained and fine-tuned model.
Error bars show the standard error of the mean, where we set n to the number of data points.

When comparing graph convexity with Euclidean convexity per class, on can see a positive cor-
relation between the two convexity measures (Figure 22. Although convexity scores are generally
higher in the fine-tuned model, this relation still holds.
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(a) Pretrained model. (b) Fine-tuned model.

Figure 22: Medical images: Scatter plots of graph vs. Euclidean convexity for each class in the
pretrained and fine-tuned model.

C.6 K-NN VS ϵ NEIGHBORHOODS

We explore the role of the way we construct the graph. The analysis in Section 1.2.1 holds for a
graph constructed with a distance cutoff ϵ. We compare it to graphs constructed by keeping K-
nearest neighbours and symmetrizing the graph. We chose the number of nearest neighbours to be
3, 5, 10 and 20. The respective ϵ values were chosen to keep approximately the same number of
edges in the graph.

Figure 23b shows that the graph constructed with a distance cutoff ϵ is very disconnected, and the
scores computed with this type of neighborhood are biased towards zero (see Figure 23a). If we skip
the disconnected pairs and compute the score only from existing paths, the results are very close to
the scores based on K-nearest neighbours (see Figure 23c).

Figure 23b also demonstrates that the role of the size of K is negligible.

Figure 24 illustrates the difference between the data labels and the model labels in synthetic data.

C.7 RANDOM BASELINES

We repeat the workflow described in Section 2.1 with randomly assigned labels to get a sensible
meaning of the convexity scores. This is similar to measuring accuracy – the information that the
accuracy of a model is 50% itself does not say much about the performance since it has a completely
different meaning if we have two classes (where random guessing would yield 50% accuracy) or if
we have 100 classes (with 1% accuracy when randomly guessing). Table 1 shows the mean of
baseline scores over the models for all modalities. Since we have classes of similar sizes for each
modality, we see that they roughly correspond to 1

C , where C is the number of classes.

Domain Number of classes Pretrained baseline Fine-tuned baseline

Images 1000 0.13 0.12
Human activity 4 25.05 25.07
Audio 10 9.15 8.51
Text 20 5.13 5.12
Medical Imaging 8 12.74 12.09

Table 1: Graph convexity scores in % for random baselines.
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(a) Graph convexity score.

(b) Percentage of shortest paths that exist.

(c) Graph convexity score computed only if the shortest paths exist.

Figure 23: Analysis of the influence on graph convexity when using the ϵ or the K-NN approach for
constructing the neighbourhood graph - fine-tuned model for images, evaluated 100 classes (5000
images).
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(a) Overlap due to data labels (b) Separated due to model labels

Figure 24: Difference between computing the graph convexity scores of the data labels vs. the model
labels in the last layer. Model labels create Euclidean-convex regions (b), which is not the case for
data labels (a) if the model’s accuracy is lower than 100%.
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::::::
without

::::::::
convexity

::::::::::
promotion.

::::
Bold

::::::
values

:::
are

:::::::::
significant.

::::
Note

:::
that

::::
this

::::::
training

:::::::::
procedure

::::
aims

::
at

:::::::::
improving

::::::::
Euclidean

:::::::::
convexity

:::::
within

:::::
target

:::::
label

::::::
regions,

:::::::
whereas

::
the

:::::
main

:::::
paper

:::::::
explores

:::::::::
Euclidean

:::
and

:::::
graph

::::::::
convexity

::
in

::::::::
predicted

:::::::
decision

:::::::
regions.

::::
Still,

::
the

::::::
results

::
in

:
Table 2

::::::
suggest

:::
the

::::::::::
mechanism

::::::
works,

::
as

:::
the

:::::::
training

:::::::::
procedure

:::::
based

::
on

:::::::::
augmented

:::
data

::::::::
improves

:::::
recall

:::
for

:::::
three

:::
out

::
of

::::
four

::::::
classes

:::::
where

::::::::
convexity

::
of

:::
the

::::::::
decision

::::::
regions

::::::::
increased.

:::
The

::::::
overall

::::::::
accuracy

:::::::::
improved

:::::
from

:::::::::::
82.57± 0.09

::
to
::::::::::::
82.94± 0.09

::
%

::::
and

:::::::::
Euclidean

::::::::
convexity

::::::::
increased

::
in

::
all

:::::::
decision

:::::::
regions.

:::::
This

:::::
opens

:::::::
exciting

::::::::::
possibilities

:::
for

::::
new

::::::::::
engineering

::
of

:::::::
methods

::
to

:::::::
improve

::::
deep

:::::::
learning.

:

E
:::::::::
MULTIPLE

::::::::
MODELS

:::::::
WITHIN

::::
THE

:::::::
HUMAN

:::::::::
ACTIVITY

::::
AND

:::::
TEXT

::::::::
DOMAINS
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:::
We

::::::
present

::::::::::
preliminary

:::::
results

:::
on

:::::::::
comparing

:::::::
multiple

::::::
models

::::::
within

:::
the

::::
same

:::::::
domain.

:::
We

:::::
focus

::
on

:::::::
different

::::::
models

::
in

::::
text

::::::
domain

:::
and

::::
one

:::::
model

::::::::::
architecture

:::::::::
pretrained

::
on

:::::::
various

:::::::
datasets

::
in

:::::
human

::::::
activity

:::::::
domain.

:

:::
For

::::::
human

::::::
activity

:::::::
domain,

:::
we

:::
use

:::
the

::::
same

::::::::::
architecture

:::
but

::::::
deploy

::::::
models

::::::::
pretrained

:::::
using

::::::
smaller

:::::::
datasets.

:::
All

:::::::::
pretrained

::::::
models

:::::
were

::::::::::
downloaded

:::::
from

:::
the

:::::::::
repository

::
of

::::::::::::::::
(Yuan et al., 2022).

::::
The

::::::
models

:::
are

::::::::
pretrained

:::::
using

:
a
::::::::
multitask

:::::::::::::
self-supervised

:::::::
learning

:::::::
strategy,

:::::
where

:::
the

::::::
model

:
is
::::::
trained

::
to

::::::
predict,

:::::::
whether

:
a
:::::::
number

::
of

::::::::::::
augmentations

:::::
have

::::
been

::::::
applied

::
or

::::
not.

:

:::
The

:::::::
original

::::::
model

::::
used

::::::::::
throughout

:::
the

:::::
paper

::
is
:::::::::

pretrained
:::::
using

:::::
three

::::::::
different

::::::::::::
augmentations,

::::::
namely

:::::
arrow

::
of

:::::
time,

::::::::::
permutation

:::
and

::::
time

:::::
warp

:::::::::::::::
(Yuan et al., 2022)

:
.
::
It

:
is
:::::::::
pretrained

:::
on

::::::::
free-living

:::
data

:::::
from

:::::::
100,000

:::::::
different

::::::::::
participants

::::
from

:::
the

::::
UK

:::::::
Biobank

::::::
dataset.

:

::::
Here,

:::
we

::::::::
compare

:::
the

::::
full

:::::
model

:::
to

:::
two

::::::::
different

::::::::
versions.

::::
The

::::
first

:::::::
version

::
is

::::::::
pretrained

:::::
using

::
the

:::::
same

::::::::::::
augmentations

::
as

:::
the

::::
full

::::::
model,

:::
but

::
on

::
a

::::::
smaller

:::::::
dataset,

::::::::
Rowlands

:::::::::::::::::
(Esliger et al., 2011),

::::::::
consisting

::
of

::::
data

:::
55

::::::::::
participants.

:

:::
The

::::::
second

:::::::
version

::
is

:::::::::
pretrained

:::::::
without

:::
the

:::::
arrow

::
of

:::::
time

:::::::::::
augmentation

::::
and

:::
on

::::
data

::::
from

::::
only

:::::
1,000

:::::::::
participants

:::::
from

:::
the

:::
UK

:::::::
Biobank

:::::::
dataset.

:

::::::
Results

::
in

:
Table 3

:::::
show

:
a
:::
big

:::::::::
difference

:::::::
between

::::
the

:::::
model

:::::::::
pretrained

:::
on

::::::::
Rowlands

::::
and

:::
the

:::
two

:::::
others.

:::::
Both

::::::::
accuracy

::::
and

:::
the

:::
two

:::::::::
convexity

:::::
scores

:::
are

::::::::::
remarkably

::::::
lower,

:::::::
whereas

::::
they

:::
are

::::
quite

::::::
similar

:::
for

::::
both

:::::::
models

::::::
trained

:::
on

::::
UK

::::::::
Biobank.

::::::
These

::::::
results

:::::::
suggest

::::
that

:::::
there

::
is

:
a
:::::::

positive
:::::::::
correlation

:::::::
between

:::::::::
convexity

::
in

::
a

::::::::
pretrained

::::::
model

::::
and

::::::::
accuracy

::
of

:::
the

:::::::::::
downstream

::::::::
fine-tuned

::::::
model.

:

::
In

:::
text

:::::::
domain,

:::
we

:::::::
evaluate

:::::::::
RoBERTa

:::::::::::::
Liu et al. (2019)

:
,
:::::
BERT

:::::::::::::::::
Devlin et al. (2018)

:::
and

:::::::::
distilBERT

::::::::::::::
Sanh et al. (2019)

:
.
:::::::
Results

::
in Table 4

::::::
suggest

::::
that

::::
there

::
is

::
a

::::::
positive

::::
link

:::::::
between

::::::::
accuracy

::
of

:::
the

::::::::
fine-tuned

::::::
model

:::
and

:::::
graph

::::::::
convexity

::
in

:::
the

::::::::
pretrained

::::::
model.

:::::::
Indeed,

:::
we

:::
see

:::
that

:::::::::
RoBERTa

:::
has

::
the

:::::
lowest

:::::::::::
performance

:::
and

::::
also

:::
the

::::
graph

:::::::::
convexity

:::::
score,

:::::::
whereas

:::::
BERT

:::
and

::::::::::
distilBERT

:::::
share

:::::
similar

:::
but

:::::
higher

::::::
results.

:::::
This

::::
trend

::
is

::
in

::::::::::
accordance

::::
with

:::
our

:::::::
findings

::::
from

::::::
human

::::::
activity

:::::::
domain.

:

::::::::
Accuracy

:::::
Graph

::::::::
convexity

: ::::::::
Euclidean

::::::::
convexity

:

:::::::
Original

:::::
model

::::
(UK

::::::::
Biobank

:::::
100k)

:::::
82.57 ±0.09

::: :::::
63.79 ±0.39

::: ::::
89.02

:
±0.54

:::

::::::::
Pretrained

:::
on

::::::::
Rowlands

: :::::
76.70 ±0.10

::: :::::
50.45 ±0.38

::: ::::
76.71

:
±0.31

:::

::::::::
Pretrained

:::
on

:::
UK

::::::::
Biobank

:::
1K

:::::
81.52 ±0.09

::: :::::
65.27 ±0.39

::: ::::
89.79

:
±0.23

:::

Table 3:
::::::::
Accuracy,

::::::::
Euclidean

:::::::::
convexity

::::
and

:::::
graph

::::::::
convexity

:::
in

::
%

:::
for

::::::
models

:::
in

::::::
human

::::::
activity

::::::
domain

:::::::::
pretrained

::
on

::::::::
different

:::::::
datasets.

:::::::::
Accuracy

:
is
:::

the
:::::::

overall
:::::::
accuracy

::
of

:::
the

:::::::::
fine-tuned

::::::
models

:::
and

:::
the

:::::::::
convexities

:::
are

::::::::
averages

::::
over

::
all

:::
the

:::::
layers

::::
and

::
all

::::::
classes

::
of
:::
the

:::::::::
pretrained

:::::::
models.

::::::::
Accuracy

:::::
Graph

::::::::
convexity

:

::::::::
RoBERTa

: ::::
66.9 ±2.2

:: :::::
29.61 ±3.37

:::

:::::
BERT

: ::::
67.7 ±2.2

:: :::::
35.22 ±3.83

:::

:::::::::
distilBERT

: ::::
67.7 ±2.2

:: :::::
32.73 ±3.67

:::

Table 4:
:::::::
Accuracy

::::
and

:::::
graph

::::::::
convexity

:::
in

::
%

:::
for

::::::
models

:::
in

:::
text

:::::::
domain.

:::::::::
Accuracy

::
is
:::
the

::::::
overall

:::::::
accuracy

::
of

:::
the

:::::::::
fine-tuned

::::::
models

:::
and

:::
the

::::::::::
convexities

:::
are

:::::::
averages

::::
over

::
all

:::
the

::::::
layers

:::
and

::
all

::::::
classes

::
of

:::
the

::::::::
pretrained

::::::
models
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