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Figure 1: A visualization comparison between common deepfakes and our studied lip-syncing
deepfakes (LipSync). The former exhibits a substantial forgery area and identity manipulation, such
as face or gender swapping, whereas the latter, relies on the synchronization of the minor lip region
and given audio, without any alterations to the subject’s identity. As illustrated in the comparison
above, discerning the authenticity of an image sequence becomes arduous in the absence of labels.

Abstract

In recent years, DeepFake technology has achieved unprecedented success in high-
quality video synthesis, but these methods also pose potential and severe security
threats to humanity. DeepFake can be bifurcated into entertainment applications
like face swapping and illicit uses such as lip-syncing fraud. However, lip-forgery
videos, which neither change identity nor have discernible visual artifacts, present
a formidable challenge to existing DeepFake detection methods. Our preliminary
experiments have shown that the effectiveness of the existing methods often dras-
tically decrease or even fail when tackling lip-syncing videos. In this paper, for
the first time, we propose a novel approach dedicated to lip-forgery identification
that exploits the inconsistency between lip movements and audio signals. We also
mimic human natural cognition by capturing subtle biological links between lips
and head regions to boost accuracy. To better illustrate the effectiveness and ad-
vances of our proposed method, we create a high-quality LipSync dataset, AVLips,
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by employing the state-of-the-art lip generators. We hope this high-quality and
diverse dataset could be well served the further research on this challenging and
interesting field. Experimental results show that our approach gives an average
accuracy of more than 95.3% in spotting lip-syncing videos, significantly out-
performing the baselines. Extensive experiments demonstrate the capability to
tackle deepfakes and the robustness in surviving diverse input transformations.
Our method achieves an accuracy of up to 90.2% in real-world scenarios (e.g.,
WeChat video call) and shows its powerful capabilities in real scenario deployment.
To facilitate the progress of this research community, we release all resources at
https://github.com/AaronComo/LipFD.

1 Introduction

DeepFake refers to an AI-based technology for synthesizing fake media data [1]. The recent
advancements in generative models, particularly the emergence of several GAN architectures [2, 3, 4]
and the diffusion probabilistic models [5], have enhanced the realism and quality of forged videos
that can easily deceive humans. The prevalence of DeepFake poses potential security risks, e.g.,
political elections and identity verification, sparking public concerns [6].

DeepFake can be bifurcated into entertainment applications and illicit uses [7]. As illustrated in Fig.
1, the popular DeepFake aims to bring fun to users by swapping faces to synthesize new content,
such as gender swapping and age regression. Unfortunately, the severe DeepFake is utilized for
illicit crimes, including manipulating political propaganda and fabricating pornographic content.
The case is particularly alarming in LipSync fraud, where the audio drives the mouth movements
on reconstructed video frames. These DeepFakes are generally exploited by malicious actors in
real-world scenarios, such as the widely disseminated fabricated videos of Barack Obama saying
things he never said on YouTube [8], posing significant security threats. The escalating issue of
real-time forgery necessitates an effective detector to identify videos generated through LipSync.

Unlike popular DeepFake which manipulates facial attributes or replaces the entire face, LipSync
does not tamper with identity and possesses subtle visual artifacts. More seriously, attackers can
adaptively erase these visual artifacts through blurring. Since LipSync follows visual modification
driven by audio modality, detecting LipSync forgeries naturally involves spotting the inconsistencies
between lips and audio. Whereas the correlation between them is closely tied to individual talking
styles, intensifying the challenges in developing a universal model to represent this correlation.

Existing studies on DeepFake detection can be classified into unimodal-based and multi-modal-based
methods, where the former relies on visual discrepancies arising from identity tampering to detect
[9, 10, 11, 12]. However, unimodal detectors become less reliable when the forged videos are
perturbed for targeted removal of LipSync artifacts. In recent years, several multi-modal-based
methods have emerged [13, 14, 15], including audio-visual fusion and audio-visual inconsistency.
Fusion strategies may confound the learning of singular modality features and the performance post-
fusion is not necessarily enhanced [16]. [17] suggested training detectors to learn the inconsistencies
between video frames and audio. However, as the arms race between DeepFake creation and detection
intensifies, these inconsistencies are gradually reduced, making coarse-grained audio-visual alignment
strategies less effective against advanced LipSync methods.

Lip movements are discrete, while the audio spectrum is continuous, resulting in inherent inconsisten-
cies in LipSync videos. As illustrated in Fig. 2, we observe a temporal correlation between the energy
variations in spectrum and lip movements. To the best of our knowledge, existing works naively
align single-frame images with long-range audio clips, thus neglecting the temporal inconsistencies
of audio-visual features [18, 19]. Our experimental evidence also indicates a marked decline in the
efficacy of existing methods when confronting LipSync forged videos. Moreover, [20] demonstrated
the mouth region’s significance in facial appearance, surpassing even the eyes, due to its biological
connections with other head regions. Humans naturally leverage the cues of local regions and head
postures to discern facial semantics. While DeepFake technology has made strides in replicating
overall facial dynamics, it often falls short of accurately simulating these subtle yet crucial biological
interactions. Hence, we choose to exploit the biologically intrinsic correlation between lip movements
and head postures as auxiliary information to detect deepfakes. This approach not only mimics the
natural cognitive processes of humans but also capitalizes on the existing limitations of deepfakes.
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(a) Real pattern (b) Fake pattern

Figure 2: (a) shows the correlation between lip movements and corresponding spectrogram in genuine
pattern. When the woman starts talking, the middle and high frequencies in the spectrum are lighted.
Over time, the energy gradually fades and shifts from middle to lower frequencies. (b) the first two
frames show a highlighted high-frequency spectrum, contradicting the man not speaking. In the third
frame, an unexpected lip opening appears at the darkest part of the spectrum. The mouth cannot
change so drastically within a single frame, and this lip shape contradicts the spectrum information.

In this paper, for the first time, we propose LipFD, a pioneering method that leverages the inconsis-
tencies in audio-visual features for the Lip-syncing Forgery Detection. Specifically, our approach
captures irregular lip movements that contradict the audio signal aligned with it in the temporal
sequence of audio-visual features. We also devise a novel framework that dynamically adjusts the
attention of LipFD to regions with different clipping ratios.

To evaluate the effectiveness and generalization of our approach in detecting lip-syncing deepfakes,
we utilize the state-of-the-art LipSync methods to generate massive high-quality lip forgery video
dataset based on Lip Reading Sentences 3 (LRS3) [21], Face Forensics++ (FF++) [22], Deepfake
Detection Challenge Dataset (DFDC) [1]. Experimental results show that our approach outperforms
prior works by a notable margin, with an accuracy up to 96.93% for four types of lip forgery videos.
Rigorous ablations of our design choices and comparisons with other detection methods demonstrate
the superiority of our approach. Our main contributions can be summarized as follows:

• We propose the first-of-its-kind approach dedicated to lip-syncing forgery detection that is often
overlooked by existing studies. This method addresses the significant and growing threat of
lip-syncing frauds, like those encountered in WeChat video calls.

• In this work, we unveil a key insight that exploits the discrepancies between lip movements and
audio signals for fine-grained forgery detection. Our approach introduces a dual-headed model
architecture to enhance detection capabilities.

• We construct the first large scale audio-visual LipSync dataset with up to 340,000 samples, and
conducted comprehensive experiments on it alongside other DeepFake datasets. Our method
demonstrated high efficacy and robustness, achieving around 95% average accuracy in LipSync
detection, and up to 90.18% in real-world scenarios.

2 Related Work

Lip-syncing Generation. Lip-syncing facial manipulation, which forges a speaker’s lip movements
to match a given audio, is among the most threatening DeepFake applications due to its subtlety
and difficulty to detect, typically falsifying the speaker’s conveyed information. [23] disentangled
the content and speaker information in the audio signal, allowing attackers to generate a forged
video using just a single image and an audio segment. Still, it is weak in representing bilabial and
fricative sounds due to the omission of short phoneme representations. [24] introduced a well-trained
discriminator and a temporal consistency checker to address the loss of short-duration phoneme,
enhancing the authenticity of generated videos. However, it exhibits weak temporal coordination in
the lip movement of talking heads. [25] further focuses on the content of lip movements, making the
forgeries challenging for both human eyes and machines to recognize.

DeepFake Detection. The existing DeepFake detectors employ single-modal-based or multi-modal-
based approaches to detect subtle differences between real and fake samples. Earlier single-modal
detectors aspired to employ neural networks to automatically extract discriminative information
[26, 27], but they failed to detect unseen samples due to overfitting. To address this issue, some
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Figure 3: AVLips dataset construction. Utilizing static and dynamic methods, we generated high-
quality videos with realistic lip movements. The diverse dataset includes various real-world scenarios.
Perturbations were applied for robust model training.

studies shift focus to frequency domain features [28, 29] or subtle forgery artifacts in more generalized
datasets [30, 31]. Another line is to guide the network to focus on discriminative locations, such
as automatically guiding the detector’s positional attention through a double-stream network [32],
or manually cropping the lip region to extract artifacts formed by the inconsistent lip movements
[33]. Although these works have achieved considerable performance on afore datasets, they are not
sensitive when faced with advanced lip-syncing generators due to the absence of synchronized audio
features. In the multi-modal-based detectors, noticing that the coordination of audio-visual modalities
is an inherently challenging issue in any SOTA generator, [34] quantifies the disparity between audio
and visual as the criterion for classification, but focusing too much on the background information
in the video led to failure. In this context, [35] intentionally extracts talking head movements and
establishes a correlation with audio for discrimination. These methods performed well in addressing
audio-visual forgery, but are susceptible to the influence of noise or compression.

3 LipSync Forgery Dataset

To the best of our knowledge, the majority of public DeepFake datasets consist solely of videos or
images, with no specialized one specifically dedicated to LipSync detection available. To fill this
gap, we construct a high-quality Audio-Visual Lip-syncing Dataset, AVLips, which contains up
to 340,000 audio-visual samples generated by several SOTA LipSync methods. The workflow is
demonstrated in Fig. 3.

High quality. We employed a combination of static ‘MakeItTalk’ [23] and dynamic ‘Wav2Lip’
[24], ‘TalkLip’ [25], ‘SadTalker’ [36] generation methods to simulate realistic lip movements. These
methods are widely recognized as high-quality work, capable of generating high-resolution videos
while ensuring accurate lip movements. We applied a noise reduction algorithm to all audio samples
before synthesis to reduce irrelevant background noise, ensuring the models can focus on speech
content.

Diversity. Our dataset encompasses a wide range of scenarios, covering not only well-known public
datasets but also real-world data. Our aim is for this collection to act as a catalyst for advancing real-
time forgery detection. To better simulate the nuances of real-world conditions, we have employed
six perturbation techniques — saturation, contrast, compression, Gaussian noise, Gaussian blur, and
pixelation — at various degrees, thus ensuring the dataset’s realism and practical relevance.

4 Method

In reality, the movements of a speaker’s lip and head are closely intertwined with the spoken content,
forming a natural and coherent unity. These physical movements naturally align with the timing and
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Figure 4: Overview of LipFD framework. Blue components represent our main modules in LipFD.
The input image was generated by pre-processing, which consists of T frames in the target video
and their audio spectrogram. (a) The aim of Global Feature Encoder, a self-attention model, is to
extract long-term information between video frames and audio, finding unreasonable correspondences
between lip movements and audio. (b) EGR encodes three series of crops, focusing on different parts
for each region, and concatenates them with global feature FG. (c) The Region Awareness module
assigns corresponding weights to the features based on their importance. (d) All features are fused
together into a unified representation F based on their respective weights for final inference.

context of the speech. However, LipSync method, which solely relies on audio signals to generate lip
movements frame by frame, only focuses on the precise alignment between lip shapes and speech
at any given moment. It overlooks the broader temporal context and the overall coherence of lip
and head movements during speech. Consequently, the generated outputs often exhibit inherent
inconsistencies regarding temporal synchronization. These inconsistencies serve as valuable clues
and insights for our detection efforts, highlighting the disparity between natural lip movements and
artificially generated ones. Fig. 2 vividly exhibit the temporal features among those two classes.

Extracting temporal inconsistencies between audio and video presents notable challenges due to
the utilization of features from multiple modalities. To tackle this, we developed a dual-headed
detection architecture presented in Fig. 4. (1) The Global Feature encoder is dedicated to encoding
temporal features, capturing the overarching correlation between audio and lip movements. (2) The
Global-Region encoder aims to detect subtle visual forgery traces within regions of varying scales and
integrate them with global features. (3) Moreover, we introduced an innovative Region Awareness
module that dynamically adjusts the model’s attention across different scales. We will demonstrate in
Sec. 6.1 that this module stands as a cornerstone, harnessing features from regions of diverse sizes,
thus empowering our model to effectively capture both the prominent changes in DeepFake and the
subtle adjustments in LipSync.

4.1 Global Feature Encoding

Based on the findings mentioned before, we need to extract features in the temporal domain. Inspired
by the translation task in natural language processing, where transformers detect long-distance
vocabulary correlations, we regard the inherent correlation between lip movements and spectral
information as analogous to the relationship between ‘vocabulary’ in a ‘sentence’ sequence. To
capture and encode this correlation, we employ a transformer model.

To effectively carry out its task, the encoder necessitates extraordinary representational capacity,
which can be attained through exposure to a vast number of images [37]. This capacity enables the
encoder to accurately allocate attention to the relevant regions of interest. To satisfy this requirement,
we choose a variant of vision transformer ViT:L/14 [38], pre-trained on CLIP [39]. In our experiments,
we use the final layer of CLIP: ViT-L/14’s visual encoder for image embedding.

Formulation. We denote the convolutional layer as Conv, which convolves images down to
224× 224. We first crop source image I into 3 series as {cNh , cNf , cNl }i, i ∈ {0, ..., T − 1}, where N
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equals to batch size T notes the window size, cl is the lip region subject to modifications by LipSync,
cf represents face area focused on by DeepFake, and ch encompasses the overall zone containing
head posture and background information. The three-tiered cropping strategy emulate the human
visual focus on key facial areas, spotlighting the lip and overall facial structure. Image I will be
embedded into FG as global feature:

FG = V iT (Conv(I)) (1)

{cNh , cNf , cNl }i = Crop(I, {1.0, 0.65, 0.45}), i ∈ {0, 1, 2} (2)

The encoder is constrained by LRA that is to be further described in the following section.

4.2 Region Awareness

LipSync tends to concentrate on the lower half of the face. Relying solely on coarse-grained global
features is insufficient for representation. Hence, we use local features to better capture forgery traces.

Formulation. For each crops c ∈ {cNh , cNf , cNl }i, region feature is defined as FR =

EGR(c, FG, θGR). We hope this component can focus on the most informative parts of differ-
ent cropped regions, i.e. lip for cl and head pose for cf , ch. Since lip forgery is often slightly
manipulated only on the mouth, the unsupervised model may fail to learn proper representation. We
further introduce a region awareness module that applies a modified fully connected layer followed
by a sigmoid function, which takes both sub-regions within crops as well as pertinence between
region features and their relevant global context into consideration, thus granting different weights to
them. The weight is formulated as:

ωcij
= RA([FG|{FR}ij ]; θRA), cj ∈ {ch, cf , cl} (3)

where cij denotes the i-th feature in cj and θRA is the parameters of region awareness module RA(·).
The final feature F is obtained by concatenating the global feature FG with three series of region
features FR, which represent the relation between temporal features and region visual features:

F =
1

T
·
∑

i,j(ωcij
· [FG|{FR}ij ])∑
i,j ωcij

(4)

Region Awareness Loss. We noticed that, regardless of the high-level patterns learned by the model,
it is the lower part of the face that matters most [40, 41]. Other extracted information should be
served as auxiliary. Hence, we designed LRA, encouraging the region awareness module to focus
more on areas that are more frequently modified. Mathematically, the loss is defined as:

LRA =

N∑
j=1

T∑
i=1

k

exp([ωi
j ]max − [ωi

j ]h)
(5)

where ωi
max is the max weight in feature stacks, ωi

h is the none-cropped region. k is a hyper-parameter
used to adjust the steepness of the loss. With LRA, we hope the model can focus on areas with a
higher probability of being modified, such as the face and lips.

4.3 Lip Forgery Detection

According to Eq. 4, the crop with the highest weight exerts dominance over the feature F , indicating
that it encapsulates crucial discriminative information for the final detection.

Classification. We implement a multi-layer perceptron [42] as our classifier optimized with a Binary
Cross-Entropy loss:

Lcls = − (y log(F ) + (1− y) log(1− F )) (6)

where y means the final predicted label. Finally, the objective is given by:

min
θRA,θcls,θGR

ω · LRA(θGR, θRA) + Lcls(θcls) (7)
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Table 1: Cross-datasets validation. Results on AVLips, FF++, and DFDC are reported, including acc,
ap, fpr, and fnr. The best result is highlighted in bold, while the second-ranking one is underscored.
Throughout the entire experiment, the threshold for the AP metric was set to 0.5.

AVLips FF++ DFDC

Method ACC AP FPR FNR ACC AP FPR FNR ACC AP FPR FNR

CViT 65.54 56.68 0.07 0.61 62.86 54.17 0.24 0.50 70.99 58.06 0.06 0.50
DoubleStream 75.52 67.72 0.13 0.36 91.02 87.64 0.03 0.14 77.39 69.28 0.21 0.24

UniversalFakeDetect 50.03 50.02 0.99 0.01 50.43 50.16 0.99 0.01 49.86 49.94 0.98 0.01
SelfBlendedImages 49.99 52.13 0.07 0.51 64.59 57.93 0.17 0.53 48.47 49.06 0.15 0.50

RealForensics 91.78 90.14 0.02 0.14 93.57 91.32 0.03 0.10 92.54 91.62 0.00 0.15
LipForensics 86.13 81.56 0.18 0.10 94.03 93.25 0.04 0.08 90.75 87.32 0.08 0.11

LipFD (Ours) 95.27 93.08 0.04 0.04 95.10 76.98 0.06 0.05 94.53 78.61 0.08 0.04

Table 2: Cross-manipulation generalisa-
tion. Evaluation scores when videos are ex-
posed to various unseen forgery algorithms.

Method ACC FPR FNR AUC

Wav2Lip (Dynamic) 95.27 0.04 0.04 95.27
MakeItTalk (Static) 96.93 0.02 0.03 96.89
TalkLip (Dynamic) 79.33 0.34 0.04 80.36

Table 3: Overall ablation results regarding core
modules. We evaluated our model’s performance after
removing components listed in the left column.

Component ACC AP FPR FNR AUC

Global Encoder 95.07 91.81 0.02 0.07 95.09
Global-Region Encoder 72.52 64.38 0.01 0.53 72.50
Region Awareness 76.45 72.65 0.38 0.09 76.32

Full model 95.27 93.08 0.04 0.04 95.27

5 Experiment

5.1 Setup

Datasets. We trained our model on Wav2Lip-modified LRS3, a subset of our proposed AVLips. We
evaluated our method performance on the following datasets: (1) FF++ [22], which contains 2,000
samples. (2) DFDC [1], which has 500 samples. (3) AVLips, our proposed dataset, which includes
more than 20,000 samples. Since the baselines we compared against were primarily trained on the
FF++ or DFDC datasets, to ensure fairness in the evaluation, we regenerated synthetic data for the
first two datasets during the testing phase. This approach aims to maintain consistency and provide a
level playing field for a fair comparison of the results.

Metrics. Following existing works [43, 37, 44], we adopt four popular metrics to get a comprehensive
performance evaluation of LipFD. Specifically, we report ACC (accuracy), AP (average precision),
FPR (false positive rate), and FNR (false negative rate). We use the AUC (area under the curve) as a
metric to evaluate the performance in tackling various perturbation attacks.

Baselines. We take the SOTA methods in general DeepFake detection and lip-based detection as
baselines. (1) For image-based DeepFake detections, UniversalDetect [37], DoubleStream [32] and
SelfBlendedImages [31] are selected. (2) For video-based DeepFake detections, CViT [26] and
RealForensics [35] are considered. (3) For the lip-based detection method, we employ the latest
LipForensics [33]. Detailed information can be found at our Appendix. B.

5.2 Effectiveness Evaluation

In evaluating the performance of LipFD in detecting LipSync manipulation and the generation across
different forgery techniques as well as obtaining a comprehensive performance evaluation, we use
four different metrics to report the detection rate and false alarm rate.

Table 1 shows the performance of LipFD and prior works. We take the most advanced general
DeepFake detection methods SelfBlendedImages and UniversalFakeDetect, along with representative
DoubleStream and CViT video stream detection models as the baseline for DeepFake detection. We
also compared our method with the SOTA lip-based method, namely LipForensics, which guides
facial judgment through lip pre-reading. In addition, we have also compared the SOTA multi-modal
detection method, namely RealForensics. Experimental results demonstrate that LipFD outperforms
all competitors to a significant extent with a high detection rate and low false alarm rate in detecting
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Figure 5: Robustness against various unseen corruptions. Average AUC scores across five intensity
levels for various corruptions. For detailed analysis, please refer to the appendix.
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Figure 6: Performance in real scenarios. The x-axis represents network delay time, where a
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degradation adversely impacts the audio-video synchronization in WeChat video calls.

the three DeepFake datasets. Also, we find that LipFD attains a commendable precision, as evident
from the AP metric. Furthermore, we observe some discernible patterns from Table 1.

First, advanced manipulations are hard to detect by general methods such as UniversalFakeDetect and
SelfBlendedImages, indicating that single-frame-based detectors cannot capture dynamic forgeries.
In addition, compared to the SOTA RealForensics method, our ACC exceeded it by 3.49%, 1.7%,
and 2.73%, respectively. Similar improvements are reflected in the AP as well. This illustrates that
concentrating on lip-syncing allows for the extraction of more potential discriminative features than
solely observing lip-based movement.

We observe some bad cases from Table 1. For example, the AP score is 16.27% lower than LipForen-
sics on the FF++ dataset. On the DFDC dataset, our method has an AP lower than LipForensics and
RealForensics by 13.01% and 12.14%, respectively. As an explanation, these methods primarily
aimed at detecting large-scale manipulations of faces in these types of forgeries. In contrast, LipFD
focuses on subtle changes in lip inconsistency. Despite a subtle decrease in balance, LipFD still
achieves optimal performance in terms of accuracy.

5.3 Generalizability to Unseen Forgery

A qualified detector should recognize fake videos generated by unseen methods. We analyze our
model’s generalizability using the protocol from [43, 37, 44].

Table 2 shows the results of LipFD on various types of methods. Surprisingly, our detector performs
even better on data generated by the MakeItTalk method than on the training data itself. This is
because MakeItTalk generates dynamic videos by transforming single static images, which inherently
lack the coherence of real lip movements. When we use temporal audio-visual information for joint
discrimination, it becomes easier to distinguish between real and fake videos.
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Figure 8: The weights assigned by Region
Awareness. A higher value indicates that the
corresponding region of the image has a more
significant impact on the final feature vector.

5.4 Robustness Evaluation

Robustness analysis aims to evaluate the capability of detectors to withstand common perturbation
attacks, as corruptive manipulations on videos are prevalent in the wild, especially in the case of
forged videos. Following the setup of RealForensics [35], we train the model on AVLips without
data augmentation and then discuss the robustness of the detectors by testing with unseen samples
exposed to a set of perturbations. We investigate the performance of the detectors under six types of
perturbation at five varying intensities. We use AUC score as evaluation metric, and the experimental
results are presented in Fig. 5. Evidently, our method outperforms the latest and the best DeepFake
detectors RealForensics on most perturbation types.

Our approach effectively against saturation and contrast perturbations which performing linear
transformations in the HLS space. For compression, LipFD exhibits less corruption under varying
levels of quality. Gaussian blur is applied with a fixed kernel size, adjusting the standard deviation
for intensity. Both blurring and pixelation significantly degrade detector performance by disrupting
high-frequency information.

5.5 Performance in Real Scenarios

With the advancement of LipSync, certain forgery techniques have been employed for fraudulent
purposes. To assess the practicality of our model in real-world scenarios, we conducted experiments
across diverse network environments. Our model achieved up to 90.18% accuracy in a network with
latency below 100ms which is the common situation of daily life [45, 46, 47]. Results are shown in
Fig. 6. For more details, please refer to our Appendix. D.

6 Ablation Studies

6.1 Core Modules

Table 3 shows the overall situation of the experiment. Three significant components, Global feature
encoder (EG), Global-Region encoder (EGR), and Region Awareness module, are ablated from
the network separately, and their respective impact on the overall framework was reflected through
changes in accuracy metric.

Global-Region encoder. Global-Region encoder takes cropped images and a vector encoded by the
Global feature encoder as input, merging them into latent codes representing the correlation between
regional parts and temporal sequence. The encoder EGR plays a crucial role in the model. As shown
in Table 3, there is a significant drop in performance when EGR is ablated. In Fig. 7 we visualized
the gradients from the last layer of it using Grad-Cam. In the third line with tag ‘lip’, the area near
the lip has the deepest red color representing the highest gradient. The model focuses precisely on the
shape of the entire lips. Meanwhile, in the above two lines, the encoder directs its attention to other
features, specifically positional information, primarily on the bottom of the heads regardless of real
or fake samples, for the reason that LipSync methods predominantly manipulate the bottom parts.

Region awareness. The module assign different weights to the feature stack based on their
contributions to discriminator. These features are then fused into the final feature, with higher weights
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Table 4: Performance under different ViT structures. We selected six popular vision transformers
as Global Feature Encoder and tested the final performance of our model.

ViTs ACC AP FPR FNR

CLIP:ViT/L14 95.27 93.08 0.04 0.04
CLIP:ViT/B16 95.00 92.05 0.03 0.07
ImageNet:ViT/L16 93.28 91.13 0.09 0.04
ImageNet:ViT/B16 93.27 91.13 0.09 0.04
ImageNet:Swin-B 94.66 92.53 0.06 0.04
ImageNet:Swin-S 94.59 90.71 0.02 0.09

indicating greater influence. Representative weights are shown in Fig. 8, normalized as follows:

ωi =
wi

ωh + ωf + ωl
, ωi ∈ {ωh, ωf , ωl} (8)

For the majority of forged video clips, the crops tagged as ‘lip’ are assigned significantly higher
weights than other regions, indicating that these parts contain the most crucial contextual information
for discrimination. On the contrary, our module leverages more information in larger-scale images
(‘face’ and ‘head’) to form the latent code.

6.2 Selection of the Vision Transformers

In this section, we give a comprehensive view of the selection of the ViTs regarding different
pretrained datasets and structures. Results are demonstrated in Table 4.

With the same architecture, the parameter count has a relatively small impact on final performance.
Larger pretrained datasets and more challenging pretraining tasks lead to superior model performance
and more balanced recognition capabilities (reflected in small differences in False Positive Rate and
False Negative Rate). This aligns with our statement in the paper: ‘To effectively carry out its task
(capture temporal features), the encoder necessitates extraordinary representational capacity, which
can be attained through exposure to a vast number of images’

Under the same pretrained dataset, more advanced model architectures typically lead to better final
performances. For example, Swin Transformer achieves better results than vanilla ViTs. This is
possibly because the window-based approach employed by Swin Transformer is more suitable for
capturing long-term dependencies in video data, assisting in better identification of temporal features.

7 Conclusion

In this paper, we proposed LipFD, the first approach by exploiting temporal inconsistencies between
audio and visual to detect lip forgery videos. LipFD demonstrates its efficacy in achieving high
detection rates while exhibiting fabulous generalization to unseen data and robustness against various
perturbations. We contribute AVLips, a high-quality audio-visual dataset for LipSync detection to the
community, aiming to foster advancements in the domain of forged video detection. We hope our
study encourages future research on lip-syncing DeepFake detection.

8 Acknowledgement

This research was supported in part by the National Key Research and Development Program of
China under No.2021YFB3100700, the National Natural Science Foundation of China (NSFC)
under Grants No. 62202340, 62372334, the CCF-NSFOCUS ‘Kunpeng’ Research Fund under
No. CCF-NSFOCUS 2023005, the Open Foundation of Henan Key Laboratory of Cyberspace
Situation Awareness under No. HNTS2022004, Wuhan Knowledge Innovation Program under
No. 2022010801020127, the Fundamental Research Funds for the Central Universities under No.
2042023kf0121.

10



References
[1] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and

Cristian Canton Ferrer. The deepfake detection challenge (dfdc) dataset. arXiv preprint
arXiv:2006.07397, 2020.

[2] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

[3] Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding, Wangmeng Zuo, and Shilei Wen.
Stgan: A unified selective transfer network for arbitrary image attribute editing. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 3673–3682,
2019.

[4] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.
Stargan: Unified generative adversarial networks for multi-domain image-to-image translation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
8789–8797, 2018.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[6] Run Wang, Ziheng Huang, Zhikai Chen, Li Liu, Jing Chen, and Lina Wang. Anti-forgery:
Towards a stealthy and robust deepfake disruption attack via adversarial perceptual-aware
perturbations. arXiv preprint arXiv:2206.00477, 2022.

[7] Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo, Lei Ma, and Yang Liu. Countering
malicious deepfakes: Survey, battleground, and horizon. International journal of computer
vision, 130(7):1678–1734, 2022.

[8] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman. Synthesizing
obama: learning lip sync from audio. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

[9] Kevin Lutz and Robert Bassett. Deepfake detection with inconsistent head poses: Reproducibil-
ity and analysis. arXiv preprint arXiv:2108.12715, 2021.

[10] Yiru Zhao, Wanfeng Ge, Wenxin Li, Run Wang, Lei Zhao, and Jiang Ming. Capturing
the persistence of facial expression features for deepfake video detection. In Information
and Communications Security: 21st International Conference, ICICS 2019, Beijing, China,
December 15–17, 2019, Revised Selected Papers 21, pages 630–645. Springer, 2020.

[11] Ziyou Liang, Run Wang, Weifeng Liu, Yuyang Zhang, Wenyuan Yang, Lina Wang, and Xingkai
Wang. Let real images be as a judger, spotting fake images synthesized with generative models.
arXiv preprint arXiv:2403.16513, 2024.

[12] Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo, Lei Ma, and Yang Liu. Countering
malicious DeepFakes: Survey, battleground, and horizon. International Journal of Computer
Vision, 130(7):1678–1734, July 2022.

[13] Davide Cozzolino, Alessandro Pianese, Matthias Nießner, and Luisa Verdoliva. Audio-visual
person-of-interest deepfake detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 943–952, 2023.

[14] Wenyuan Yang, Xiaoyu Zhou, Zhikai Chen, Bofei Guo, Zhongjie Ba, Zhihua Xia, Xiaochun Cao,
and Kui Ren. Avoid-df: Audio-visual joint learning for detecting deepfake. IEEE Transactions
on Information Forensics and Security, 18:2015–2029, 2023.

[15] Ammarah Hashmi, Sahibzada Adil Shahzad, Wasim Ahmad, Chia Wen Lin, Yu Tsao, and
Hsin-Min Wang. Multimodal forgery detection using ensemble learning. In 2022 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC),
pages 1524–1532. IEEE, 2022.

11



[16] Hasam Khalid, Shahroz Tariq, Minha Kim, and Simon S Woo. Fakeavceleb: A novel audio-
video multimodal deepfake dataset. arXiv preprint arXiv:2108.05080, 2021.

[17] Sneha Muppalla, Shan Jia, and Siwei Lyu. Integrating audio-visual features for multimodal
deepfake detection. arXiv preprint arXiv:2310.03827, 2023.

[18] Shruti Agarwal, Hany Farid, Ohad Fried, and Maneesh Agrawala. Detecting deep-fake videos
from phoneme-viseme mismatches. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 2814–2822, 2020.

[19] Trisha Mittal, Uttaran Bhattacharya, Rohan Chandra, Aniket Bera, and Dinesh Manocha.
Emotions don’t lie: An audio-visual deepfake detection method using affective cues. In
Proceedings of the 28th ACM international conference on multimedia, pages 2823–2832, 2020.

[20] Irene Kotsia, Ioan Buciu, and Ioannis Pitas. An analysis of facial expression recognition under
partial facial image occlusion. Image and Vision Computing, 26(7):1052–1067, 2008.

[21] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. Lrs3-ted: a large-scale dataset
for visual speech recognition. arXiv preprint arXiv:1809.00496, 2018.

[22] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
Nießner. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 1–11, 2019.

[23] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria, Evangelos Kalogerakis, and
Dingzeyu Li. Makelttalk: speaker-aware talking-head animation. ACM Transactions On
Graphics (TOG), 39(6):1–15, 2020.

[24] KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync
expert is all you need for speech to lip generation in the wild. In Proceedings of the 28th ACM
international conference on multimedia, pages 484–492, 2020.

[25] Jiadong Wang, Xinyuan Qian, Malu Zhang, Robby T Tan, and Haizhou Li. Seeing what you
said: Talking face generation guided by a lip reading expert. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14653–14662, 2023.

[26] Deressa Wodajo and Solomon Atnafu. Deepfake video detection using convolutional vision
transformer. arXiv preprint arXiv:2102.11126, 2021.

[27] Hanqing Zhao, Wenbo Zhou, Dongdong Chen, Tianyi Wei, Weiming Zhang, and Nenghai Yu.
Multi-attentional deepfake detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2185–2194, 2021.

[28] Honggu Liu, Xiaodan Li, Wenbo Zhou, Yuefeng Chen, Yuan He, Hui Xue, Weiming Zhang,
and Nenghai Yu. Spatial-phase shallow learning: rethinking face forgery detection in frequency
domain. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 772–781, 2021.

[29] Mengjie Wu, Jingui Ma, Run Wang, Sidan Zhang, Ziyou Liang, Boheng Li, Chenhao Lin,
Liming Fang, and Lina Wang. Traceevader: Making deepfakes more untraceable via evading
the forgery model attribution. Proceedings of the AAAI Conference on Artificial Intelligence,
38(18):19965–19973, Mar. 2024.

[30] Shen Chen, Taiping Yao, Yang Chen, Shouhong Ding, Jilin Li, and Rongrong Ji. Local
relation learning for face forgery detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 1081–1088, 2021.

[31] Kaede Shiohara and Toshihiko Yamasaki. Detecting deepfakes with self-blended images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18720–18729, 2022.

[32] Chao Shuai, Jieming Zhong, Shuang Wu, Feng Lin, Zhibo Wang, Zhongjie Ba, Zhenguang
Liu, Lorenzo Cavallaro, and Kui Ren. Locate and verify: A two-stream network for improved
deepfake detection. In Proceedings of the 31st ACM International Conference on Multimedia,
pages 7131–7142, 2023.

12



[33] Alexandros Haliassos, Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Lips don’t
lie: A generalisable and robust approach to face forgery detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 5039–5049, 2021.

[34] Komal Chugh, Parul Gupta, Abhinav Dhall, and Ramanathan Subramanian. Not made for each
other-audio-visual dissonance-based deepfake detection and localization. In Proceedings of the
28th ACM international conference on multimedia, pages 439–447, 2020.

[35] Alexandros Haliassos, Rodrigo Mira, Stavros Petridis, and Maja Pantic. Leveraging real
talking faces via self-supervision for robust forgery detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14950–14962, 2022.

[36] Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and
Fei Wang. Sadtalker: Learning realistic 3d motion coefficients for stylized audio-driven single
image talking face animation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8652–8661, 2023.

[37] Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that
generalize across generative models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 24480–24489, 2023.

[38] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[40] Jiazhi Guan, Zhanwang Zhang, Hang Zhou, Tianshu Hu, Kaisiyuan Wang, Dongliang He,
Haocheng Feng, Jingtuo Liu, Errui Ding, Ziwei Liu, et al. Stylesync: High-fidelity generalized
and personalized lip sync in style-based generator. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1505–1515, 2023.

[41] Taekyung Ki and Dongchan Min. Stylelipsync: Style-based personalized lip-sync video
generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 22841–22850, 2023.

[42] Hind Taud and JF Mas. Multilayer perceptron (mlp). Geomatic approaches for modeling land
change scenarios, pages 451–455, 2018.

[43] Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What makes fake images detectable?
understanding properties that generalize. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pages 103–120.
Springer, 2020.

[44] Shichao Dong, Jin Wang, Renhe Ji, Jiajun Liang, Haoqiang Fan, and Zheng Ge. Towards
a robust deepfake detector: Common artifact deepfake detection model. arXiv preprint
arXiv:2210.14457, 2022.

[45] Zoom Support. Accessing meeting and phone statistics, 2024.

[46] Microsoft. Media quality and network connectivity performance in microsoft teams, 2021.

[47] Ookla. Speedtest global index – internet speed around the world – speedtest global index, 2024.

[48] Nanditha Rao, A Maleki, F Chen, Wenjun Chen, C Zhang, Navneet Kaur, and Anwar Haque.
Analysis of the effect of qos on video conferencing qoe. In 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC), pages 1267–1272. IEEE, 2019.

[49] Asif Ali Laghari and Mureed Ali Laghari. Quality of experience assessment of calling services
in social network. ICT Express, 7(2):158–161, 2021.

13



[50] Zhenhui Ye, Jinzheng He, Ziyue Jiang, Rongjie Huang, Jiawei Huang, Jinglin Liu, Yi Ren, Xiang
Yin, Zejun Ma, and Zhou Zhao. Geneface++: Generalized and stable real-time audio-driven 3d
talking face generation. arXiv preprint arXiv:2305.00787, 2023.

[51] Yongyuan Li, Xiuyuan Qin, Chao Liang, and Mingqiang Wei. Hdtr-net: A real-time high-
definition teeth restoration network for arbitrary talking face generation methods. In Chinese
Conference on Pattern Recognition and Computer Vision (PRCV), pages 89–103. Springer,
2023.

14



A AVLips Dataset

In this section, we will provide a detailed description of the features. We have introduced the first
audio-visual dataset specifically designed for LipSync detection. The goal of this dataset is to solve
the issue of many existing DeepFake datasets lacking audio, while also providing foundational
support for the field of lip forgery detection.

A.1 Features

Dynamic expansion. The raw dataset consists of video files in MP4 format and audio files in WAV
format. The videos are manipulated using state-of-the-art LipSync generation methods to forge lip
movements. The original dataset can be dynamically expanded up to 50 times its initial size using the
provided preprocessing code. The expanded samples are represented in the format shown in Fig. 9.
The randomness algorithm ensures that each expansion generates unique data, ensuring data diversity
and providing a convenient data processing approach for temporal detection methods.

Real-world simulation. Since our ultimate goal is to achieve real-time detection in the real world,
we employed seven perturbation methods listed in Table 1, introducing various levels of perturbations
to the images, to generate a substantial amount of robust training data. In addition, we have collected
real-world samples from the internet, encompassing different scenes and varying levels of clarity to
further enhance the diversity and realism of the dataset.

FF++ DFDC

LRS3 Real-World

Figure 9: Expended data samples. Each sample consists of T frames of video images and their
corresponding audio spectra, serving as a temporal representation of the audio-visual context.
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Block Wise Contrast Saturation Gaussian Blur Gaussian Noise Pixelation Compression

Real

Fake

Ours

R.F.

0.962 0.831 0.908 0.539 0.587 0.578 0.886

0.625 0.563 0.624 0.504 0.454 0.621 0.622

Figure 10: Perturbed samples and average results. Real / Fake videos are corrupted using common
perturbation methods at intensity level 3, followed by the extraction of video frames to obtain samples.
Average AUC is the evaluation metric, indicating better robustness of detectors with higher values.
R.F. stands for RealForensics detection.

B Experiment Setup

To ensure a fair comparison, we have collected the only known method that employs lipreading
from a high dimensional semantic viewpoint for enhancing DeepFake detection (LipForensics [33]),
alongside top-performing recent DeepFake detectors. In addition, to fairly compare the performance
of methods integrating both video and audio signals, we have collected the latest method that addresses
video artifacts and audio-visual inconsistencies (RealForensics [35]), which currently stands as the
most effective audio-assisted detection method based on our research. The two methods above are
both pretrained on FaceForensics++. We evaluated them simultaneously on LipSync and DeepFake
detection tasks using well-known datasets FF++, DFDC, and our proposed AVLips.

We ensured fair training settings across all baselines, with a batch size set to 32, the optimizer and the
learning rate strictly adhering to the original paper’s settings (Adam, 1e-3∼1e-6). Specifically: 1)
Since LipForensics did not provide training scripts, we directly used the pre-trained checkpoints and
performed inference under the same experimental settings. For other models, we fine-tuned pretrained
weights on AVLips to meet the same baseline; 2) SelfBlendedImages, as an image-based DeepFake
detector, was trained with random frames extracted from videos, following the original paper’s
settings; 3) UnivefsalFakeDetection, also an image DeepFake detection model, we preprocessed
video data into single-frame images for training. Featuring a ResNet core with a Vision Transformer
for temporal encoder, our model has approximate 310M parameters pretrained model size, which is
comparable to the baselines listed in Table 1.

C Robustness Evaluation

Due to the vulnerability of videos in the wild to varying degrees of corruptions, it is imperative
for detectors not only to possess exceptional generalization capabilities but also to withstand com-
mon perturbations to accurately identifying fabricated videos. In this context, we investigate the
performance of detectors under seven types of perturbations, each at five different intensity severity.

Setup. In our work, conducted without data augmentation, we train on the LRS3, FF++, and DFDC
datasets and then expose test samples to previously unseen perturbations to examine the robustness
of our detector. These perturbations encompass block-wise distortion, variations in contrast and
saturation, blurring, Gaussian noise, pixelation, and video compression. As illustrated in Table 1,
the block-wise changes the number of blocks, with a higher count indicating more severe distortion.
Contrast and saturation are manipulated by altering the percentage of chrominance and luminance
in video frames, where lower values correspond to greater corruptions. The blurring process entails
adjustments to the size of the Gaussian kernel, and Gaussian white noise alters the variance of noise
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Table 5: Robustness experiment parameters. Each perturbation method employs five unique sets
of hyperparameter values, modifying them solely during the video preprocessing phase.

Type Hyperparameter Severity

1 2 3 4 5

Block-wise Block number 16 32 48 64 80
Color Contrast Pixel value 0.85 0.725 0.6 0.475 0.35

Color Saturation YCbCr channel 0.4 0.3 0.2 0.1 0.0
Gaussian Blur Gaussian kernel size 7 9 13 17 21

Gaussian Noise Noise variance 0.001 0.002 0.005 0.01 0.05
Pixelation Pixelation Level 2 3 4 5 6

Compression Constant Rate Factor 30 32 35 38 40

Table 6: Evaluation of Real-world scenarios. Detection accuracy under various network delays and
languages. CH stands for Chinese, and EN is in short for English.

Latency 100ms 200ms 500ms

Language CH EN EN EN

WeChat video calls 72.53 81.67 71.34 52.89
Streaming media 74.41 90.18 82.24 60.98

values. Video compression employs a constant rate factor to measure the ratio of video quality to
size, with higher values denoting increased compression ratio.

Results Analysis. In the absence of any perturbations, the state-of-the-art detector, RealForensics
[35], exhibits performance that is second only to our method. However, Figure 1 shows a significant
decline in the performance of RealForensics across the majority of perturbation types, whereas our
method remains efficacious under most corruptions. Perturbations involving contrast and saturation
engage the percentage of chrominance and luminance in the HLS space, where our detector maintains
high AUC values, suggesting an effective retention of detection capabilities in diminished visual
quality. However, the detector encounters a moderate decline in performance under conditions of
blurring, Gaussian noise, and pixelation, though it still surpasses the RealForensics. This indicates the
noise and reduced resolution impact the detector’s ability to accurately discern authenticity, potentially
due to the refuction of high-frequency information. As for video compression, our approach exhibits
remarkable resilience, achieving an average AUC of 0.886, which underscores the capacity of our
detector to maintain high performance even when videos are subject to substantial compression, such
as in real-world digital communications.

D Real-world Scenario

To better demonstrate the effectiveness of our proposed method in tackling the real threat of LipSync
which is prevalent in the video call or financial frauds, we design and carry out extensive experiments
to illustrate its practicability.

The quality of video calls and streaming clarity in the real world heavily relies on the quality of the
network connection. Numerous applications employ algorithms such as ABR (Adaptive Bitrate) to
dynamically adapt the audio and video bitrate and clarity, taking into account the user’s network
conditions. However, this adaptive process may inadvertently introduce visual blurring and noise
to the video. Additionally, network latency results in network jitter and packet loss and disrupts the
synchronization between audio and video [48, 49], posing significant obstacles for accurate LipSync
detection in real-world settings.

D.1 Setup

In order to simulate real-world network environments, we conducted experiments using an Android
device with root access. Using Android Traffic Control, we imposed strict network conditions on the
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devices, recording 1-minute English and 1-minute Chinese videos under network latencies of 100ms,
200ms, and 500ms, all at a resolution of 2340× 1080. Each video was segmented into 5-second clips
and dynamically expanded tenfold during preprocessing.

D.2 Performance

Table 6 displays the accuracy of our model in two different real-world scenarios, aligning with the
information presented in the line graph in the main text.

It is evident that the accuracy of our model in WeChat video calls is generally lower compared
to streaming videos. This discrepancy can be attributed to our model’s strong reliance on the
inconsistency between audio and video. As mentioned in our earlier analysis, as the latency increases,
the audio gradually lags behind the video, creating a natural time difference that impedes our model’s
performance. Conversely, in streaming videos, network latency primarily affects video bitrate and
clarity, resulting in blurriness and noise reduction, while not significantly altering the synchronization
between audio and video. Consequently, our model exhibits better overall performance in the task of
streaming videos as opposed to video calls.

Apart from network condition, language also associates with performance. Videos with Chinese
language under normal network condition result in much lower accuracy. Chinese and English
have distinct pronunciation characteristics. The syllable and phoneme structures in Chinese differ
from English. Moreover, Chinese has a flatter intonation pattern, while English exhibits more pitch
variation and prosodic contours. These phonetic and prosodic differences can impact linguistic
patterns, making the correspondence between lip movements and audio more complex in Chinese
videos, thereby reducing the accuracy of LipSync detection, as LipFD relies on the consistency
between lip movements and audio spectrum.

E Discussion and Future Work

Our method not only achieved high accuracy on the LRS3, FF++, and DFDC datasets but also
demonstrated its effectiveness in real-world evaluations under normal network conditions. However,
the performance of our model decreases considerably when faced with Non-English-speaking videos
as mentioned in Sec. D.2. So, it is crucial to incorporate multilingual training data to improve its
accuracy and robustness in handling diverse linguistic contexts.

With the significant advancements in instant communication and large vision models (LVMs),
generative models have made progress in achieving real-time cross-language forgery [50, 51]. The
necessity of deploying a real-time LipSync detection system has come into the spotlight. Two research
directions hold great promise:

• Multilingual LipSync Detection. Expanding LipSync detection to include multiple languages is an
important area for future exploration. Investigating the challenges and differences in lip movements
across various languages can contribute to developing more robust and accurate multilingual
LipSync detection models.

• Real-Time LipSync Detection. Enhancing LipSync detection algorithms to operate in real-time
scenarios is another significant research direction. Real-time detection is crucial for applications
such as live streaming and video conferencing. Developing efficient and accurate algorithms that
can process and analyze audio and video in real-time will be essential for these applications.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims articulated in the abstract and introduction accu-
rately encapsulate the paper’s seminal contributions and delineate its scope because
they concisely summarize the research questions addressed, methodologies applied, and
key insight, ensuring reviewers understand the paper’s significance from the outset.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A comprehensive discussion on the limitations is elaborated in E, where
we reflect the underlying factors contributing to these limitations and propose potential
directions for future improvements.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ‘Limitations’ section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical derivations presented within the manuscript are substanti-
ated with detailed proofs in the Sec. 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The manuscript meticulously details the experimental procedures, provid-
ing all necessary settings, data, and code critical for the replication of the experiments,
thus ensuring the reproducibility of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

20



some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: An anonymized repository link is provided, encompassing comprehensive,
impartial, and reproducible code. Within the Sec. Sec. 5 and the Appendix. B, we
elucidate settings and parameters to assure verifiability of our outcomes by researchers.
Post-acceptance of this paper, the audio-visual dataset will be fully open-sourced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the Sec. 5, we present the setup of training and evaluation, along
with the details pertaining to the replication of baselines. Comprehensive information
regarding hyperparameters, optimizers, and other pertinent details are encompassed
within the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We have employed appropriate statistical tests to ascertain the significance
of the differences observed between the methods under comparison. we have included
a detailed discussion in the Appendix. B regarding the methodology for calculating
these statistical measures, providing a full disclosure of our analytical approaches.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In our manuscript, we detail the actual computational resources required
for the experiments, as outlined in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly adhere to the code of ethics set forth by NeurIPS in all aspects
of our research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In our discussion, we examine the potential positive societal repercussions
of the proposed detection methodology, along with avenues for future development.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks, We use only standard datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
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Justification: paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We furnish the data, pre-trained models, and code through an anonymous
repository for accessibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Our study does not engage in crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our study does not engage in crowdsourcing
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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