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Figure 1: Visual Jenga: Given an input image (left), we generate a sequence of images, removing
one object at a time while keeping the scene stable. We argue that this new task provides a useful
signal to assess the level of grounded scene understanding of vision systems. See the video on our
project page for animated results.

Abstract

This paper proposes a novel scene understanding task called Visual Jenga. Drawing
inspiration from the game Jenga, the proposed task involves progressively removing
objects from a single image until only the background remains. Just as Jenga
players must understand structural dependencies to maintain tower stability, our
task reveals the intrinsic relationships between scene elements by systematically
exploring which objects can be removed while preserving scene coherence in both
physical and geometric sense. As a starting point for tackling the Visual Jenga
task, we propose a simple, data-driven, training-free approach that is surprisingly
effective on a range of real-world images. The principle behind our approach is to
utilize the asymmetry in the pairwise relationships between objects within a scene
and employ a large inpainting model to generate a set of counterfactuals to quantify
the asymmetry.

1 Introduction

Can one truly understand a scene by simply naming the objects in it? While modern computer
vision methods excel at object detection and semantic segmentation, these capabilities often prove
inadequate for practical purposes, such as vision-guided robot manipulation or truly grounded image
editing. Treating scenes as static collections of isolated elements, recognition models neglect the
critical relationships between objects that give scenes their intrinsic meaning. In this paper, we argue
that true scene understanding necessitates understanding how objects depend on and interact with
one another within the space of a scene.

Drawing inspiration from the game Jenga1, we propose a novel task: to virtually deconstruct scenes
by carefully erasing objects, much like players strategically remove blocks from a tower while making
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1Jenga is derived from the Swahili word “kujenga” meaning “to build”. There are similar games in other
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Figure 2: Counterfactual Inpainting. For a pair of objects in an image (e.g., a cat and a table), we
determine which object depends on the other by removing each object (masked images) and using an
inpainting model to generate N inpaintings for the masked areas. The number below each inpainting
result is the cosine similarity (from CLIP and DINO) between it and the original image. The average
images (for illustration only) show that the cat can be replaced by various objects, while the table
remains largely stable, indicating that the table supports the cat.

sure it does not collapse. As shown in Fig. 1, the goal of Visual Jenga is to progressively remove
objects from a single image, one at a time, such that the scene always remains “well-formed". Solving
this task reveals the relationships between scene elements by systematically exploring which objects
can be removed while preserving scene coherence both physically and geometrically.

By framing scene understanding as a sequential deconstruction task, Visual Jenga allows us to
evaluate how objects relate to and depend on one another: an aspect central to scene understanding in
humans [9] yet largely overlooked by current benchmarks. Such understanding is crucial in many
practical domains. For instance, the ability to remove objects without destabilizing a scene is essential
for many robotic manipulation tasks [42, 18]. Preserving physical scene coherence is also important
for realistic image editing applications.

As a starting point for solving the Visual Jenga task, we propose a simple, data-driven approach
that is surprisingly effective in a range of real-world scenes without requiring any explicit physical
reasoning. Our approach uses a form of counterfactual reasoning by asking “what if this object were
removed?” The principle behind our approach is using the asymmetry in the pairwise relationships
between objects within a scene [46].

Consider the cat sitting on a table in Fig. 2. The cat depends on the table below for structural support,
but not vice versa. If we consider the counterfactual of removing the table from the image, the cat
would require some other support surface for the scene to remain stable [9]. If, on the other hand, we
remove the cat, the scene is already stable, so it doesn’t much matter what, if anything, will go in the
cat’s place. To make this intuition quantifiable, we use an off-the-shelf large image inpainting model
to help us estimate the conditional probabilities of counterfactual images. This does not require any
training and exploits existing knowledge of what constitutes a well-formed scene [9] already captured
in large generative models. As Fig. 2 shows, inpainting the region occupied by the cat results in
a diverse range of plausible objects that could replace it, whereas inpainting the table consistently
produces similar support structures for the cat. Averaging these differences over multiple inpainting
passes allows us to quantify this asymmetry and determine which object should be removed first.

In summary, our contributions are: (1) Visual Jenga task: a novel scene understanding task that
evaluates object dependencies through sequential removal, inspired by counterfactual reasoning.
(2) Counterfactual Inpainting approach: a training-free method that quantifies object dependencies,
exploiting asymmetry in object co-occurrences using large-scale generative inpainting models. We
demonstrate our approach through a quantitative pairwise evaluation as well as qualitative, full-scene
decompositions.

2 Related work

At the dawn of computer vision in the 1960s, when perception and action were considered two sides
of the same coin, the grand goal of image understanding was the ability to reason about the physical
scene from an image. Roberts’ BlocksWorld [63], the very first PhD thesis in computer vision, was
all about analyzing object relationships within a physical scene (made up of simple blocks) so that
a robot could pick up these blocks one-by-one and reassemble them into a different configuration.
Alas, in the 60 years that followed, the goal of image understanding has been watered down to a
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Figure 3: Asymmetric Relationships in Real-World Images. Consider performing two internet
image searches: “cup” (left) and “table” (middle). Notice that almost all the cups are depicted on top
of a table, whereas images of tables rarely contain cups. The Venn diagram (right) illustrates this
relationship: observing a table (B) does not guarantee a cup (A), but observing a cup (A) strongly
implies a table (B). That is, P (Table | Cup) ≫ P (Cup | Table). We leverage these asymmetric
relationships to infer object dependencies in a scene from the distributions P (A | B) and P (B | A)
learned from large-scale data.

combination of object detection and semantic “segmentation” [37], and nowadays, image captioning.
We now review prior work that considered the task of scene understanding in its original meaning.

Qualitative 3D scene understanding. Psychologist Irving Biederman’s classic work on scene
perception [9] argues that the way humans interpret visual scenes goes far beyond a list of objects
or a text description. Biederman identified several physical and geometric relational constraints
between scene objects (such as physical support and occlusion) that must be satisfied for a scene to
be well-formed. Inspired by this, Hoiem et al. focused on incorporating Biederman’s constraints into
their scene understanding systems [31, 32, 66, 26]. Subsequent research built on this by developing
layered scene representations via layer-wise decomposition [34, 79], object-level deocclusion [45],
and multi-layer reasoning [16]. More recently, physics-aware scene understanding inspired by the
original BlocksWorld [63] has been revisited, both in synthetic settings [40, 42], as well as in attempts
to generalize it to real-world scenes [27, 48, 67, 69, 68].

Counterfactual spatial reasoning. Identifying causal relationships in the real world from ob-
servation has been an open problem in the causal inference community [49]. In computer vision,
Lopez-Paz et al. [46] have considered the special case of an object causing the presence of another
object using causal disposition as a measure. Goyal et al. [24] use visual interventions to explain
model decisions by showing how modifying specific image elements alters predictions. Besserve
et al. [6] introduced counterfactual interventions to pinpoint modular components in generative
networks, enabling targeted image editing and causal analysis of internal representations. Zhou et
al. [80] evaluates human responses to synthetic block tower simulations to understand how people
assess physical support relations. Our work scales up the principles laid by these works to com-
plex real-world data using large pretrained generative models. While observational data may only
provide statistical co-occurrence information, which is not truly causal, large-scale models trained
on images [28, 3] and videos [5] show impressive counterfactual modeling capabilities, via text
prompting [10], visual prompting [4], and even simple classification [41]. The underlying visual
understanding of a well-formed scene in generative models covers a wide range of attributes, like
geometry, materials, lighting and support, among others [78, 7, 17, 8, 73], and has shown promise for
identifying object segmentation [51] and even amodal segmentation [54].

Object dependencies and scene graphs. Another attempt at deeper scene understanding is a line
of work representing a scene as a graph of relations between atomic units, such as objects. Visual
Memex [47], an early work in this area, treated each object as a node with edges for visual similarity,
spatial co-occurrences, etc. Visual Genome [38] extended this to object categories using a large-scale
crowd-sourced scene graph, spurring further research [77, 74]. However, these methods focus on
2D relationships and neglect geometric or physical aspects. Other efforts factorize images into
object-centric latent components [12, 25, 56, 19, 20], but they treat objects independently, missing
interactions and support relations.

Object removal. Prior work has largely focused on evaluating the visual quality of object removal,
insertion, and inpainting [71, 13, 81]. Existing benchmarks assess inpainting quality using standard
datasets [15, 76, 44, 43] and measure object removal performance [65, 50]. However, to our knowl-
edge, no benchmark explicitly evaluates structural dependencies between objects or validates the
correctness of object removal sequences of all objects in the scene.
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Figure 4: Our Pipeline. Given only an input image, (a) we first run Molmo [14] which places a point
on each object in the image. (b) These points then serve as prompts for the Segment-Anything (SAM
2) [60] model to obtain segmentation maps for each object. (c) Given the object masks, we can now
run our Counterfactual Inpainting method on all object candidates to determine their removal order
via a ranking strategy (illustrated in Fig. 2). (d) Finally, we use Firefly [2] to remove objects based on
these ranking order.

3 Visual Jenga task

Visual Jenga task aims to evaluate scene understanding capabilities beyond passive visual observation,
pushing towards physical object interaction understanding [33, 22]. Given a single input image, an
algorithm needs to simulate an “action on the scene” by generating a sequence of images where it
removes one object at a time until only the background remains while maintaining scene coherency
and stability (Fig. 1). Successfully removing objects without destabilizing the scene demonstrates
an understanding of object dependencies. We next introduce a simple, training-free approach to the
Visual Jenga task that infers removal order based on object co-occurrence, without relying on any
explicit physical reasoning.

3.1 Dependency as conditional probabilities

Consider the illustrative example on Fig. 3: performing an Internet image search for “cup” returns
many images featuring tables, while a search for “table” rarely shows cups. This fundamental
asymmetry reveals the dependencies between objects in a scene, and has been used to uncover object
causal connections [46]. Let A = cup and B = table. Shown as a Venn diagram in Fig. 3, the
asymmetric relationship can be captured by{

P (A | B) ≪ P (B | A) ⇒ A depends on B
P (A | B) ≫ P (B | A) ⇒ B depends on A

(1)

In our example, P (A | B) is very small (i.e., P (¬A | B) is large), while P (B | A) is very large
(i.e., P (¬B | A) is small). This asymmetric relationship uncovers not only the existence but also the
direction of dependency, extending Reichenbach’s principle of the common cause [61, 23]. Since our
method only replies on object co-occurrences, is is more practical compared to probabilistic theory of
causation [29], which requires computing the counterfactual P (A | ¬B).

3.2 Counterfactual inpainting method

Generalizing to a real scene with more than two objects, the conditional probability P (A|B) is
replaced by the complete notation P (A|B, rest), where “rest” denotes the remainder of the scene.
To estimate this, we start from the fact that large generative models capture the distribution P (x),
where x is an image that may contain objects of any kind. For a particular image x = X that contains
objects A and B, we can approximate P (A|B, rest) with P (A|X −A) by masking out object A and
using a large generative model to inpaint (hole-fill) the region corresponding the mask, given the rest
of the image. Similarly, we obtain P (B|X −B) for object B. By comparing these two quantities
according to the rules in Eq. (1) as illustrated in Fig. 2, we can infer the object dependencies purely
from co-occurrence statistics.

3.3 Practical details

The above algorithm is simple and principled, but to make it practical, we need to specify how to:
(i) obtain object masks, (ii) reliably compute conditional probabilities of inpainted images, and (iii)
choose which object to remove first. We describe our choices below and show them in Fig. 4. None
of these choices should be considered definitive. We expect them to change as technology matures.
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Figure 5: Generated removal sequence on a breakfast table from our pipeline. Our method
effectively ranks and removes both visible and occluded objects. Our method deals with the occluded
plate, introduced after the basket is removed, by rerunning the pipeline again.
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Figure 6: Generated removal sequence of an outdoor scene from our pipeline. Smaller objects on
the table are cleared before the table itself. The bicycles are taken away before the stone wall, which
they are leaning against. Better viewed in our animated video included on our project page.

(i) Obtaining the object mask. To get object masks in the scene, we use off-the-shelf models.
We first extract object coordinates using MOLMO [14] (Fig. 4a), and then use these as prompts for
SAM 2 [60] to obtain segmentation maps without class labels (Fig. 4b).

(ii). Obtaining reliable conditional probability. Directly extracting likelihoods from image
diffusion models is unreliable for two reasons: first, P (A | X −A) for a specific object A is noisy;
second, diffusion models are not optimized for likelihood scoring [30, 36]. Therefore, rather than
focusing on a specific instance of A, we consider a semantic class of A and evaluate the “peakedness”
of the distribution P (A | X − A). We call this measure the diversity score of A (Fig. 4c). To
compute it, we first gather N different inpaintings of A, denoted cjnew for j ∈ [1, N ], using Runway’s
checkpoint of Stable Diffusion 1.5 [64]. Note: the inpainting model matters. We have found that
many current inpainting models (such as the newer stable diffusion (XL, 2, 3) [58, 21] seem to be
over-reliant on textual inputs. Without clear textual guidance, their inpaint results don’t seem to
reflect the underlying P(A | rest) of image statistics. For instance, putting a human head on top of
the table. Among all models we tried, we found Runway’s checkpoint to be the most reliable option,
outperforming several others, including the latest FLUX models [39].

We then quantify how semantically diverse these N inpaintings are using both CLIP [59] and DINO
[53] features.

1− 1

N

N∑
j=1

CLIPSIM(cjnew, corig)×
1

N

N∑
j=1

DINOSIM(cjnew, corig) (2)

where CLIPSIM and DINOSIM are cosine similarity over CLIP and DINO representations (normalized
to [0, 1] and normalized by the segmentation area fraction of the crop), corig is the original crop. Using
either CLIP or DINO alone works, but having both is more robust (see Table 3).

(iii) Removing the most “diverse” object. After computing the diversity scores for all objects
in the image, we remove them in order, starting from the highest diversity score, using an off-the-
shelf object remover, Adobe Firefly [2] (Fig. 4d). If a new object appears (for example because of
occlusion) after an object removal, it is included in the ranking by rerunning the whole pipeline
again. We found that rerunning the entire pipeline after each removal led to more accurate rankings,
particularly in cases where similar or identical objects were stacked on top of each other.
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Figure 7: Generated removal sequences on diverse images with increasing object counts (top
to bottom). Yellow markers indicate the next object to be removed. In the second row, the cat is
removed first, followed by the laptop and table. In the fifth row, the napkin is removed after the three
serving spoons. In the sixth row, the order is: hard-wheat rolls (baati), lentil soup, sauce, spoon, and
finally the plate (note that our method even removes the lentil soup). In the second-last row, while
one of the three glasses is removed before the last book, the scene remains plausibly stable.

4 Evaluation
Human visual inspection, while qualitative, remains the most natural way to evaluate Visual Jenga.
To complement this qualitative assessment, we also perform an automatic quantitative evaluation. Our
evaluation comprises three parts: pair-wise object ordering (Sec. 4.1), complete scene decomposition
(Sec. 4.2), and comparison to simple heuristics (Sec. 4.3). All evaluation data are provided in Supp.

4.1 Pair-wise object ordering

To assess object dependency ordering in an automated manner, we test the model’s ability to determine
which of two given objects (specified by masks) should be removed first when physical constraints
dictate a clear order. We created three test sets:
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NYU-v2: We use NYU Depth V2 dataset [66], which contains 1449 RGBD images of indoor scenes.
Using support relation annotations from Yang et al. [75], we extracted 485 unique images yielding
668 pair-wise comparisons with unambiguous removal ordering (details in Appendix C).

COCO: We manually collected 200 random images from COCO dataset [43], which contains diverse
everyday scenes with common objects. We selected images that have clear support relationships and
good segmentation quality. A complete collection methodology is provided in Appendix B.

ClutteredParse: Existing datasets like NYU-v2 and COCO contain limited examples of complex
object dependencies (e.g., stacks of objects, hanging/leaning objects). To address this gap, we also
created ClutteredParse dataset. Using keywords such as “messy desk,” “messy room,” and “stacked
objects,” we curated a test set of 40 challenging object pairs from 40 unique internet images, where
human experts provided instance-level segmentations and non-trivial removal ordering.

Results: Our method achieves 91.3% accuracy on NYU-v2 (610/668 pairs), 79.5% on COCO
(159/200 pairs), and 65% on ClutteredParse (26/40 pairs), where the chance is 50%.

4.2 Full Scene Decomposition
Table 1: Full-scene decomposi-
tion algorithm evaluation.

Method Full Scene
Decomposition

Top-to-Bottom 41.1%
Small-to-Large 42.9%
Front-to-Back 8.9%
Ours 71.43%

While the pair-wise comparison is easy to automate, it doesn’t
evaluate the full sequential aspect of Visual Jenga. Therefore, we
also perform a qualitative evaluation to assess the full sequence
decomposition. Given that scene segmentation is underdefined,
e.g., segmenting a single piece of paper vs. segmenting a whole
pile of papers, we require human evaluators to perform post-
hoc assessments for overall physical plausibility and geometric
coherence of the image sequence.

To this end, we further collected 56 unique scenes, including both our own photography and internet
images, using a similar protocol to ClutteredParse. For each of these scenes, we perform sequential
object removal until only the background remains, and the human evaluator scores the whole sequence
as “pass” or “fail”.

Results: Our method achieves 71.43% success (40/56 scenes) on the full-scene decomposition
dataset. Qualitatively, Fig. 7 shows varying object counts, while Fig. 5, Fig. 6, and Fig. 9 show
complex decompositions — including a breakfast table, an outdoor scene, and an office table, where
our method successfully removes all objects (see project page for more results).

4.3 Comparison to Figure/Ground heuristics

While there is no existing methods for solving our Visual Jenga task, it is somewhat related to the
classic perceptual organization problem of figure/ground assignment (which object is in front of
the other). Inspired by the Gestalt principles in psychology, a number of heuristic cues have been
proposed to determine figure/ground relationships [55]. Some of the most popular cues include: (1)
size – smaller objects are usually in front, (2) convexity – objects with convex masks are more likely
to be in front, and (3) surroundedness – an object completely surrounded by another tends to be in
front. We have used these cues for comparison, with a simple assumption that the closer object should
be removed first. We have also added two other simple cues: (4) front-to-back – using single-view

Table 2: Pair-wise object ordering: algorithm evaluation and baseline comparisons.

Method
Dataset Pair-wise Comparison

NYU-v2 [66] COCO [43] ClutteredParse
Top-to-Bottom 59.1% 45.0% 52.5%
Small-to-Large 90.1% 74.5% 50.0%
Front-to-Back 12.6% 32.5% 47.5%
Convexity 69.0% 64.0% 67.5%
Surroundedness + Top-to-Bottom 83.1% 67.5% 55.0%
Surroundedness + Small-to-Large 90.4% 74.5% 50.0%
Surroundedness + Front-to-Back 35.3% 52.5% 50.0%
Surroundedness + Convexity 70.8% 70.0% 67.5%
Ours 91.3% 79.5% 65.0%
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Figure 8: Comparison against simple heuristics. Simple heuristics, such as front-to-back ordering
(top row; removes table before the cup), small-to-large ordering (second row; removes newspaper
before the cup), and top-to-bottom ordering (third row; removes table before the newspaper) can
sometimes work, but fail for complex real-world scenes. In contrast, our pipeline (bottom row), based
on billion-scale scene statistics, removes objects in a physically and semantically coherent order.

depth estimation [35] algorithm to sort object in depth, and (5) top-to-bottom – the object which is
higher in the image (based on its topmost pixel) is removed first.

Results: As shown in Table 2 (pair-wise ordering), and also in Table 1 (full-scene decomposition)
and qualitatively in Fig. 8, no single heuristic performed well across all datasets. However, two
heuristics stood out: small-to-large excelled on simpler scenes (90.1% on NYU-v2, 75.5% on COCO)
but struggled with cluttered scenes (50% on ClutteredParse), while convexity, which exploits shape
bias, performed consistently across datasets, though less competitively on simpler ones (69.0% on
NYU-v2, 64% on COCO, 67.5% on ClutteredParse). The surroundedness cue was generally useful
but didn’t substantially improve upon the stronger heuristics. In conclusion, while it is possible to
pick an appropriate hand-designed heuristic for a given dataset, our data-driven approach performs
well across the board.

4.4 Ablation studies
Table 3: Diversity score: CLIP vs. DINO.

Method
Dataset NYU-v2 COCO ClutteredParse

Ours (w/o DINO) 89.52% 78.5% 55%
Ours (w/o CLIP) 90.27% 78.5% 57.5%
Ours (full) 91.32% 79.5% 65%

Diversity score. We compare differ-
ent ways of quantifying semantic diver-
sity—CLIP, DINO, or both—which are
used for measuring the diversity score in
Eq. (2). Table 3 shows that using both
CLIP and DINO together gives better per-
formance, especially on ClutteredParse—
even though it was never used for hyperparameter selection.

Effect of the number of inpainting samples. The larger number of inpaintings (N ) helps better
capture the distribution of possible scene completions and monotonically increases the performance,
but with diminishing returns beyond N = 8 (see Appendix F). We used N = 16 by default.

4.5 Solving Visual Jenga via text prompting

It is reasonable to ask how well can Visual Jenga be solved with modern Vision-Language Models
(VLMs), such as ChatGPT 4o. It’s easy to prompt a VLM to generate text instructions of the order
in which objects should be removed from the image, but this text-output version of Visual Jenga
can overstate the true image understanding of the model. E.g., a generated text description “remove
the book on the table” requires further interpretation—“which book?” “which table?’—that only
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Figure 9: Emptying an entire office room. Our method accurately removes all objects from a
complex arrangement, reliably removing items such as the carpet mat under the table and books from
the bookshelf before removing the bookshelf itself, while preserving physical plausibility. Better
viewed in our animated video included in Supp.

becomes clear after demonstrating the full scene decomposition visually. For a more fair comparison,
we made VLMs actually generate images of the stages of Visual Jenga, by 1) using native image
synthesis capabilities of modern VLMs like ChatGPT 4o, 2) applying text instructions to image
editing tools [10], or 3) combining text instructions with our own pipeline (see Appendix G). Despite
convincing textual descriptions, the visual results were largely ineffective – the models were either
confused about which object was being referenced (Fig. 20), or had trouble preserving original image
content (Fig. 18).

Finally, we also experimented with the latest text-prompted video models (Veo 3 [62] and Sora 2
[52]), which were released after our paper was accepted. We were happy to see the models often
produce very nice qualitative results on our task (and report about 50% success rate quantitatively on
Veo 3 [70]). This agrees with our intuition that temporal data is helpful for scene understanding tasks
such as ours. But it’s still interesting to see how well our image-only solution can do.

5 Limitations

The current approach is slow, requiring multiple inpainting passes per object, and produces only a
sequential removal order; unlike humans, who can envision multiple plausible removal strategies
simultaneously. Our method relies on Molmo and SAM for object detection and fails when any
of these models fail (Fig. 11). Rather than using a pipeline, it might be fruitful to investigate an
end-to-end approach, where counterfactual reasoning is used for both, object segmentation [51] as
well as scene parsing. Moreover, our approach lacks explicit physical reasoning, relying solely on
statistical co-occurrences. It will be valuable in future to build methods that incorporate physical and
causal reasoning—such as modeling interventions (P (A | do(¬B))) [57]—potentially by leveraging
video generative models [5, 11] as they continue to mature into capable world simulators. Finally,
Visual Jenga also raises fundamental questions about object granularity: should an object be defined
as a single sheet of paper or as an entire stack? Understanding how generative models internally
represent compositional structure could offer deeper insights into object perception and reasoning.
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Figure 10: Inpainting variations on stacked bowls. Inpainting the top bowl results in a variety of
semantics, including fruits, plants, and other objects that happen to fit the second bowl. However, this
diversity decreases toward the bottom of the stack, where there are only occasional flowers, a few
new bowls added in the middle, and mostly just bowls at the bottom. To reduce ambiguity, rerunning
the full pipeline after each removal is suggested; the figure displayed here illustrates only a single
pass. After the top bowl is removed, inpainting the new top bowl also produces diverse semantics.
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Figure 11: Failure cases. Our pipeline can fail for several reasons. Top Row: strong shadow cues
near an object mislead Firefly, causing it to reinsert a new object rather than remove it. Middle Row:
our ranking is wrong (indicated by →) because Molmo fails to identify the third glass, leaving it
behind. Bottom Row: SAM segments only the monitor’s screen (indicated by a red polygon) rather
than the entire monitor, preventing its removal.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper proposes a novel task of Visual Jenga and proposes a strong training-
free baseline that exploits statistical correlations in visual world learned by large generative
models
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6 and Fig 10
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: There are no theorems or proofs in this paper
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed method for solving Visual Jenga is straightforward and can be
easily reproduced. We also provide all implementation details and the data used for our
analysis in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We provide data, and we will release the code upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: There are no training details since our method is training-free. For testing,
we describe our pipeline and all the off-the-shelf models needed to construct the pipeline
in Section 3.3. The choice of hyperparameters and all the datasets used for evaluation are
provided as part of the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We provide ablation for a number of inpainting samples that directly impact
the overall performance. Multiple runs of the same set of experiments with different seeds
are extremely expensive for an academic compute budget.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details in supplementary. For every paired object comparison, our method
requires about 6 minutes on an A6000 NVIDIA GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: Our paper does not pose any social or ethical concerns and is focused on
understanding scenes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: Visual Jenga is a task designed to inspire a rethinking of what scene under-
standing should mean in computer vision. It does not present any direct negative societal
impacts. Moreover, it is difficult to envision how models solving Visual Jenga would pose
societal risks due to the nature of the task itself. While some solutions may involve models
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that, in other contexts, could have harmful societal implications (e.g., large language or
vision-language models), those capabilities are not a result of Visual Jenga.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper does not pose any direct associated risks. The approach designed
uses a large generative model, and any negative misuse of these models does not reflect the
contributions of this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We primarily use open-sourced pretrained models, with proper citation and
adherence to their respective licenses. The only exception is Adobe Firefly, a proprietary
tool, which we use in compliance with its terms of use. All datasets employed in our work
are also properly cited.
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Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the ClutteredParse dataset, curated specifically for evaluating
object removal in cluttered scenes. In addition, we curate subsets of the COCO and NYU-v2
datasets for the same purpose. The curation process is described in the main text and detailed
further in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: We do not require any human studies. One expert only labeled the dataset to
determine the removal order.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: We do not conduct any human subject study or solicit information from any
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLMs/VLLMs as baselines and do not use them as part of our pipeline.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Result compilation video

We provide a result compilation video of Visual Jenga, showcasing the solutions discovered by our
proposed method across various scenes in the project page.

B Full dataset availability

All images in our evaluation datasets are provided as HTML webpages in the project page for
comprehensive inspection. This includes:

1. Full Scene Decomposition dataset: 56 scenes collected both from our own photography
and from internet searches using keywords such as "messy desk", "messy room", and
"stacked objects". For each scene, we perform sequential object removal until only the
background remains.

2. Pair-wise object ordering dataset:

• NYU-v2: The NYU Depth V2 dataset contains 1449 original images. Using support
relation annotations from Yang et al. [75], we extracted 485 unique images yielding
668 pair-wise comparisons with unambiguous removal ordering. Due to the limitation
of the class-level (rather than instance-level) support relationship annotations from
Yang et al., we carefully filtered the dataset to only include unambiguous cases. The
original support label annotations from the NYU Depth V2 dataset are no longer
accessible online. Despite our best efforts to contact the original authors and others
who had access to the annotations, we were only able to obtain the data with difficulty.
Unfortunately, the knowledge required to interpret and utilize these labels has been lost
over time. Consequently, we opted to use the alternative annotations provided by Yang
et al.

• COCO: We collected 200 images randomly from the COCO dataset (COCO 2017 train
split) and used the ground truth instance segmentation that came with the dataset. Our
collection methodology was as follows: (1) randomly select an image, (2) retrieve all
instance segmentations in the image, (3) keep only segmentations that are not too small
(larger than 1% of the total image area), (4) create all possible pairs of segmentations
that are spatially next to each other (within 1 pixel radius), and (5) manually review
the pairs, keeping only those with clear/unambiguous support relationships and good
segmentation quality that covers most of the object area. We repeated this process for
200 images in random order to reduce selection bias. Note that a single image may
contain multiple support relationship pairs; however, we tried to avoid reusing the same
image multiple times in the dataset, unless the pairs demonstrated different kinds of
support relationships that are visually distinct.

• ClutteredParse: Because NYU-v2 dataset has very few examples of complex object
dependencies (e.g. stacks of objects, hanging/leaning objects), we produced a more
difficult dataset of 40 challenging object pairs from 40 unique internet images. Using
keywords such as "messy desk", "messy room", and "stacked objects", we curated this
test set where human experts provided instance-level segmentations and non-trivial
removal ordering.

As shown in Figure 12, we provide examples from both the NYU-v2 and ClutteredParse pair-wise
datasets. In these examples, the model is presented with an image and two segmentation masks (A
and B), and must determine which object should be removed first. In both cases shown, object A is
correctly identified as the one to remove first.
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NYU-v2 image Object A Object B

ClutteredParse image Object A Object B

COCO image 1 Object A Object B

COCO image 2 Object A Object B

Figure 12: Examples from NYU-v2, ClutteredParse, and COCO pair-wise sets. Left: NYU-v2 and
ClutteredParse examples. Right: Two examples from COCO. For each, a model is shown an image
and the segmentation masks A and B, and must determine which object should be removed first.

C Example of NYU-v2 pair-wise dataset

From left to right: (1) Original RGB image showing a bedroom scene, (2) Choice A: segmentation
mask for the pillow, (3) Choice B: segmentation mask for the bed, and (4) Scene graph representation
showing support relationships obtained from Yang et al. [75]. The scene graph indicates that the
pillow is supported by the bed. This example demonstrates how we extract unambiguous pair-wise
removal orderings from the annotated support relations in the dataset. Note that the scene graphs from
Yang et al. are class-level rather than instance-level annotations, which can be ambiguous in scenes
with multiple instances of the same class. We carefully filter out such ambiguous cases and only
include examples where the support relationship is unambiguous. Note that the model is provided
with only (1), (2), and (3), not the scene graph (4), and must make the decision between removing
choice A (pillow) versus choice B (bed) first.

D Inpainting details

Since the time of our paper, the original Runway’s checkpoint has been deprecated, but there are
alternate mirrored third-party versions: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-
inpainting. We also apply a small dilation to the mask before inpainting to minimize shape bias
that might arise from the mask itself. Additionally, we observed that inpainting results are more
effective when working with images that have a similar aspect ratio, rather than converting them
into square images. We make the best efforts to reduce textual biases in a T2I model with a generic
prompt “Replace Object, Physically Stable, Realistic, Full HD, 4K, high quality, high resolution,
photorealistic". We use the following generic, widely-used, negative prompt: “text, unstable, bad
anatomy, bad proportions, blurry, cropped, deformed, disfigured, duplicate, error, extra limbs, gross
proportions, jpeg artifacts, long neck, low quality, lowres, malformed, morbid, mutated, mutilated,
out of frame, ugly, worst quality. For quantitative scores, all crops are square-shaped, resized to
224× 224 as required by CLIP and DINO, and zero-valued outside the segmentation area. Note that
this measure only requires an inpainting model, not necessarily a text-to-image model.

E Ablation on the similarity metrics

In addition to the quantitative results provided in Table 3, we also present qualitative ablation for
using both CLIP and DINO scores for our ranking. In Fig. 14, we show the removal sequence when
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(a) Object Removal Order when emptying a food plate.

(b) Dumpling: Variance in Dumpling’s replaceability is high with many different object types and hence it is
removed first.

(c) Soup in the bowl: The soup in the bowl can be replaced with many different soups, curd, milk, or other fluid
types. But based on our scoring it is the second choice for removing.

(d) Red Sauce

(e) Plate has very limited replacements possible and hence it is the last thing that is removed from the scene.

Figure 13: Visualization of object replaceability through multiple inpainting variations. The original
object (a) and three different inpainting results (b-d) demonstrate the range of possible replacements
while maintaining scene coherence. Higher visual diversity in replacements indicates greater replace-
ability.
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Figure 14: Ablation: without using CLIP scores. In the top section, we show the removal sequence
without using CLIP scores. In the bottom section, we show the results when both DINO and CLIP
scores are used. We observe that DINO tends to favor smaller objects. When CLIP scores are not
included, the ordering can be incorrect.

Figure 15: Ablation: without using DINO scores. In the top section, we show the removal sequence
without using DINO scores. In the bottom section, we show the results when both DINO and CLIP
scores are used. We observe that CLIP tends to overlook thin structures. When scoring between
the crops, it still recognizes the spoon on top and assigns a high similarity score, which leads to the
napkin being removed first.

not using the CLIP scores, and in Fig. 15, we show the removal sequence when not using the DINO
scores. The combination of both CLIP and DINO together gives substantially better performance,
particularly on ClutteredParse. Since ClutteredParse was used for hyperparameter selection, this
suggests that our decision choices are generalizable across scene types.

F Ablation on the number of inpainting samples

The larger number of inpaintings (N ) helps better capture the distribution of possible scene comple-
tions and monotonically increases the performance, but with diminishing returns beyond N = 8. We
used N = 16 by default. The performance on ClutteredParse across different values of N is shown
in the following table:

N = 2 N = 4 N = 8 N = 16

50% 50% 62.5% 65%

G VLM baselines

We explore VLM-based solutions for Visual Jenga, noting that VLMs don’t directly output image
sequences. As discussed in the main text, purely text-based solutions risk enabling shortcuts without
true image understanding, as text outputs like "remove the book on the table" lack precise object
localization and spatial reasoning [72]. We propose integrating ChatGPT 4o (March 2025) as a strong
VLM baseline through three pipelines:
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Ours

Small to Big Removal

Figure 16: A failure case of a small-to-large heuristic (in the bottom). A heuristic approach may
work in a few cases but fails in many other cases. Ours (in the top) fail on the last removal because
strong shadow force to add objects instead of removing them.

Figure 17: Failure cases due to (Shadow Residuals). Even when the sequence is correct, strong
shadow cues can lead to incomplete removal. Instead of removing the object, Adobe Firefly responds
to these cues and adds a new object instead.

1. ChatGPT + image generation: Direct image to image sequence generation as described in
Sec. G.1.

2. ChatGPT + InstructPix2Pix [10]: Image to image editing with text prompts like "Remove
<object>" as described in Sec. G.2.

3. ChatGPT + Molmo + SAM + Adobe Firefly [14]: Translates text to visual outputs through
object localization and segmentation as described in Sec. G.3, offering a similar pipeline to
ours.

Through extensive experimentation with different text prompts, we found that ChatGPT generally
identifies correct object removal orders when interpreted by humans. However, these textual descrip-
tions can still be ambiguous when translated into precise spatial locations. The key distinction is that
our vision-based approach works directly on object segments, while the VLM methods must first
translate textual outputs into spatial locations on the scene.
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(a) Input (b) Output 1 (c) Output 2 (d) Output 3

(e) Input (f) Output 1 (g) Output 2 (h) Output 3

Figure 18: ChatGPT + Image Generation [1]. Comparison of the original images and the generated
scenes after attempting to remove the first object. The ChatGPT 4o image generation model does not
reliably preserve the original image content, making it difficult to determine which objects the model
intended to remove.

G.1 ChatGPT 4o with image generation

ChatGPT 4o’s image generation capabilities [1], introduced by OpenAI on March 25, 2025, represent
a significant improvement over previous models such as DALL-E. However, as we demonstrate here,
its editing abilities on the Visual Jenga tasks still struggle to preserve the original scene content,
making it difficult to determine which objects the model intended to remove.

ChatGPT Prompt

“Look at the image I gave. Find object to remove such that after removed the stability of the
scene is maintained. The scene is stable if we hypothetically play the scene forward in time,
the scene still maintains the same configuration. Then, use your image generation capabilities
and give me the image after the object is removed."

See the results in Fig. 18.

G.2 ChatGPT + InstructPix2Pix

ChatGPT prompt: “Give me the sequence order in which I should remove all objects from
the scene until I am left with the background. Don’t group objects. Each object should be
removed one at a time and shall not disturb the stability of the other objects.”
InstructPix2Pix prompt: “Remove <the first object>”.

See the results in Fig. 19.

Input image 1—ChatGPT output:
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For the InstructPix2Pix image, see Fig. 19a.

To remove objects one at a time without disturbing the stability of other objects,
here’s the suggested sequence of removal:

1. Papers on the desk: Start with the loose papers on the desk to reduce clutter.
2. Mugs on the desk and side table: Remove the mugs next, as they are small

and easy to move.
3. Glasses on the desk: Take the glasses off the desk.
4. Books and files on the desk: Remove these one by one carefully.
5. Small items (e.g., pens or small electronics) on the desk.
6. Loose items on the bookshelf: Clear the items on the shelves, starting from

the top shelf to the bottom shelf, to maintain balance.
7. Chair near the desk (right-hand side): Move the smaller chair beside the

desk.
8. Chair near the side table (left-hand side): Remove the other smaller chair.
9. Central chair: Move the office chair in the middle.

10. Rug under the desk: Carefully lift and remove the rug.
11. Side table: Remove the side table after clearing all items on it.
12. Desk: Remove the desk after ensuring all items on and around it are gone.
13. Bookshelf: Carefully move the bookshelf after everything else is cleared.

By following this order, you’ll remove objects without compromising the stability
of others and leave only the background view.

Input image 2—ChatGPT output:

For the InstructPix2Pix image, see Fig. 19b.

To remove all objects from the scene without disturbing the stability of the other
objects, follow this sequence:

1. Remove the paper cup (topmost object). This object is light and does not
support any other objects.

2. Remove the top glass from the stack of glasses. Carefully lift the glass
without disturbing the ones below it.

3. Remove the second glass from the stack.
4. Remove the third glass from the stack.
5. Remove the fourth glass (bottom-most glass in the stack).
6. Remove the book “The Ministry for the Future” (yellow cover).
7. Remove the book “Multiple View Geometry” (blue cover).
8. Remove the book “Vision Science” (black cover).

This sequence ensures stability as you work your way from the topmost object to
the base.

Input image 3—ChatGPT output:

For the InstructPix2Pix image, see Fig. 19c.

To remove objects one at a time while ensuring stability, follow this sequence:

1. Smallest spoon on the right - Start with the smallest object, as it does not
provide structural support to other objects.

2. Medium-sized spoon in the middle - Next, remove the medium-sized spoon,
as it is similarly isolated and won’t destabilize anything.

3. Largest spoon on the left - Then remove the largest spoon, as it is freestanding
and can be removed without affecting the others.

4. Napkin on the top right - Finally, remove the napkin, as it is flat and won’t
interfere with the background.
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5. Tray on the bottom left - End with the tray, as it forms part of the background
base and is the largest object remaining.

After following this order, you will be left with only the background.

Input image 4—ChatGPT output:

For the InstructPix2Pix image, see Fig. 19d.

Here is the sequence of removal to ensure the stability of objects and to avoid
disturbing others:

1. Knife (on the cake with sprinkles) - It’s small and easy to remove without
affecting stability.

2. Can of whipped cream (right side) - Freestanding and easy to pick up.
3. Pink drink in the glass (right side) - Remove carefully to avoid any spills.
4. Fruit plate (back right, with kiwi and berries) - This is stable and can be

picked up without disturbing others.
5. Bowl with crumble (back middle, near the pie) - A lightweight item that is

independent.
6. Bowl of chocolates (front right) - Remove carefully as it doesn’t seem to be

stacked or linked to others.
7. Pie (front right in a red dish) - Freestanding and can be removed next without

disturbing others.
8. Cheesecake (middle back, with red topping) - Positioned safely on its plate,

making it stable to remove next.
9. Cake with sprinkles (front left) - Finally remove this large, stable item.

Now you should be left with just the background.

G.3 ChatGPT + Molmo + SAM + Adobe Firefly

ChatGPT Prompt

“Give me the sequence order in which I should remove all objects from the scene until I am
left with the background. Don’t group objects. Each object should be removed one at a time
and shall not disturb the stability of the other objects.”

This pipeline is described as follows: First, obtain the removal order from ChatGPT using the prompt
from Sec. G.2 above. Second, translate the textual removal order into image segmentation using
Molmo to point given the object’s text description, and then SAM to segment from a point. Third,
remove each object in order using Adobe Firefly given the object’s segmentation. These steps are
important to turn textual output from ChatGPT into a visual output expected by Visual Jenga.

This solution can solve all simple cases. However, failure cases in Fig. 21 suggest that: First, the
textual description of the object and its location can be ambiguous which leads to pointing errors
from Molmo. This kind of error is more likely to happen in a scene with multiple objects of the same
kind as also observed in Fig. 20 (b). Second, ChatGPT does make mistakes. Finally, we show side
by side comparison with our proposed method showing different modes of failures between the two
methods in Fig. 20: our proposed method may suffer from transparent objects, the ChatGPT method
may suffer from ambiguous object descriptions.

Input image 1—ChatGPT output:

For the image sequence, see Fig. 20b (top).

To remove all objects from the scene without disturbing stability, follow this order:

1. Remove the top paper cup gently.
2. Remove the book “The Ministry for the Future” (orange book).
3. Remove the book “Multiple View Geometry” (blue book).
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Input image InstructPix2Pix output

(a) ChatGPT output. To remove objects one at a
time without disturbing the stability of other objects,
here’s the suggested sequence of removal: 1. Papers
on the desk. . .

Input image InstructPix2Pix output

(b) ChatGPT output. To remove all objects from
the scene without disturbing the stability of other
objects, follow this sequence: 1. Remove the paper
cup (topmost object). . .

Input image InstructPix2Pix output

(c) ChatGPT output. To remove objects one at a
time while ensuring stability, follow this sequence:
1. Smallest spoon on the right. . .

Input image InstructPix2Pix output

(d) ChatGPT output. Here is the sequence of re-
moval to ensure the stability of objects and avoid
disturbing others: 1. Knife (on the cake with sprin-
kles). . .

Figure 19: ChatGPT + InstructPix2Pix. Comparison of the original images and updated scenes
with the first object removed. Each subfigure is boxed for clarity. InstructPix2Pix cannot follow the
prompt to remove an object in the image well.

4. Remove the book “Vision Science” (black book).
5. Sequentially remove each glass cup one at a time from the stack (there appear

to be four glass cups, so remove them one by one).

This sequence ensures the stability of the objects as you remove them.

Input image 2—ChatGPT output:

For the image sequence, see Fig. 20b (bottom).

To remove all objects from the scene without disturbing the stability of the other
objects, follow this sequence:

1. Remove the paper cup (topmost object).
2. Remove the top glass from the stack of glasses.
3. Remove the second glass from the stack.
4. Remove the third glass from the stack.
5. Remove the fourth glass (bottom-most glass in the stack).
6. Remove the book “The Ministry for the Future” (yellow cover).
7. Remove the book “Multiple View Geometry” (blue cover).
8. Remove the book “Vision Science” (black cover).

By following this order, you’ll remove objects without compromising the stability
of others and leave only the background view.

9



(a) Solutions from our proposed counterfactual inpainting pipeline.

Molmo 
cannot 

point “third 
glass from 
the stack”

Molmo 
cannot 
point 

“fourth 
glass from 
the stack”

(b) Solutions from using VLM (ChatGPT 4o) with a similar pipeline (Molmo + SAM + Firefly). For the
top row, at the last step, ChatGPT suggests “Sequentially remove each glass cup one at a time from the stack
(there appear to be four glass cups, so remove them one by one)”, which Molmo points to all of the glass cups
effectively removing them all at once. For the second row, after removing the paper cup, ChatGPT suggests:
“Remove the top glass from the stack of glasses”, “Remove the second glass from the stack”, “Remove the third
glass from the stack”, and “Remove the fourth glass (bottom-most glass in the stack)”. Such description can be
ambiguous, and Molmo failed to locate the “third” and the “fourth” glasses as shown above.

Figure 20: Comparing our counterfactual inpainting with a VLM-based method (ChatGPT
4o) sharing a similar pipeline. demonstrates different failure modes from the two approaches. The
ChatGPT solution has a bottleneck in coming up with a clear text description for locating an object
which is exacerbated where there are many similar objects, e.g. glasses, in the scene.

Input image 3—ChatGPT output:

For the image sequence, see Fig. 21 (top).

In the image, there are four stacked tires and a wheel. To remove all the objects
one at a time without disturbing the stability of the remaining objects, follow this
sequence:

1. Top tire - Remove the tire at the very top of the stack first.
2. Second tire - Remove the tire directly beneath the top tire.
3. Third tire - Remove the next tire in the stack.
4. Bottom tire - Remove the last tire in the stack.
5. Wheel - Finally, remove the wheel, as it is resting separately and won’t affect

the stability of any other objects.

This sequence ensures that the stack’s stability is maintained during the removal
process.

Input image 4—ChatGPT output:

For the image sequence, see Fig. 21 (bottom).

To ensure stability while removing the objects one at a time:

1. Remove the small cylindrical object (bottom right) as it is not supporting
any other object.
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ChatGPT 
hallucinates 
there is one 
more spoon 
remaining

Figure 21: Failure Cases from ChatGPT + Molmo + SAM + Adobe Firefly. In the top row,
ChatGPT recommends removing the leaning tire last. Additionally, based on its description, Molmo
points to the bottom tire twice, likely due to the word “beneath." In the bottom row, ChatGPT
mistakenly adds an extra spoon, while Molmo indicates the top spoon in the stack. Below are the
output suggestions from ChatGPT for the top row.“In the image, there are four stacked tires and
a wheel. To remove all the objects one at a time without disturbing the stability of the remaining
objects, follow this sequence: 1 Top tire—Remove the tire at the very top of the stack first. 2. Second
tire—Remove the tire directly beneath the top tire. 3. Third tire—Remove the next tire in the stack.
4. Bottom tire—Remove the last tire in the stack. 5. Wheel— Finally, remove the wheel, as it
is resting separately and won’t affect the stability of any other objects. This sequence ensures that
the stack’s stability is maintained during the removal process.” Below are the output suggestions
from ChatGPT for the bottom row. “To ensure stability while removing the objects one at a time: 1.
Remove the small cylindrical object (bottom right) as it is not supporting any other object. 2. Remove
the wooden spoon leaning at the bottom right diagonally since it overlaps with the others and is not
directly supporting them. 3. Remove the wooden spoon at the bottom left as it supports the least
weight in the arrangement. 4. Remove the spoon on the top left that overlaps minimally with the one
left behind. 5. Finally, remove the last spoon resting horizontally across the center. This sequence
ensures stability and minimizes disturbance to the other objects.”

2. Remove the wooden spoon leaning at the bottom right diagonally since it
overlaps with the others and is not directly supporting them.

3. Remove the wooden spoon at the bottom left as it supports the least weight
in the arrangement.

4. Remove the spoon on the top left that overlaps minimally with the one left
behind.

5. Finally, remove the last spoon resting horizontally across the center.
This sequence ensures stability and minimizes disturbance to the other objects.

H Error accumulation from multi-step solutions

Both our proposed solution and the ChatGPT solution in Sec. G.3 involve multiple steps. Each
introduces its own kind of error which accumulates. At the segmentation stage, given just a point,
segmentation is very much an underdetermined task, and SAM, the state-of-the-art segmentation
method, is likely to make mistakes. At the object removal stage, some hard cases involve strong
shadows or reflections which are not considered part of the segmentation in a traditional sense but
are quite important for correct removal as a strong cue gives away the presence of the object which
makes the object removal very hard or impossible. For these reasons, an end-to-end vision-based
solution is highly desirable and presents a promising direction for future work.
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