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Abstract

To know your enemy, you must become your001
enemy. Sun Tzu stated in The Art of War. Of-002
ten, it is crucial to synthesize data containing003
harmful content using large language models004
(LLMs) in order to train harmless and helpful005
LLMs. For instance, reinforcement learning006
from artificial intelligence feedback (RLAIF),007
one of the most widely adopted methods to008
align an LLM, requires the ability to perform009
objective critiques of harmful responses, even if010
it means assessing that a harmful response was011
helpful-a judgment that could itself be consid-012
ered harmful depending on the context. How-013
ever, an LLM aligned with a specific policy014
struggles to follow instructions that contradict015
the policy, such as tasks where it requires to016
generate incentivizing expressions toward re-017
sponses considered harmful according to its018
policy. In this paper, we propose the refusal-019
free training method to reach Helpful-Only020
LLM (HOLLM) that maintains the helpful-021
ness of state-of-the-art (SOTA) LLMs while022
eliminating such limitations. Additionally, we023
introduce two benchmarks: (1) Refusal-Bench024
(RB), and (2) Unsafe-Helpful-Rank (UHR) to025
demonstrate the application of HOLLM and026
evaluate its performance. We observe that the027
refusal-free training dramatically decreases the028
rate at which the LLM generates refusal re-029
sponses, or refusal rate (RR) by 71.59% on030
RB, and increases the accuracy by 132.23% on031
UHR without sacrificing its helpfulness.032

1 Introduction033

As the potential of LLMs rises, the value of harm-034

lessness has been consistently emphasized as a key035

value they should be aligned with (Askell et al.,036

2021). Most of the SOTA LLMs make considerable037

efforts to demonstrate the extent of their commit-038

ment to harmlessness (Achiam et al., 2023; Ope-039

nAI, 2024b; Anthropic, 2024; Dubey et al., 2024;040

Reid et al., 2024). Many organizations emphasize041

Figure 1: Example where one of the SOTA models
refuses to generate an objective critique of a response.

ensuring harmlessness, as LLMs that evolve with- 042

out this consideration could lead to catastrophic 043

risks and be exploited for illicit purposes such as 044

the creation of indiscriminate weapons or hacking 045

(Hendrycks et al., 2023). 046

In line with this awareness, continuous efforts 047

have been made to align the models with harmless- 048

ness. The efforts include, but are not limited to, 049

tuning the model itself to be more robust to attack 050

queries and generate harmless responses (Bai et al., 051

2022a,b; Dai et al., 2023), integrating a separate 052

system level safety filter with the model (Markov 053

et al., 2023; Inan et al., 2023; Zeng et al., 2024), 054

and applying a guardrail prompt to the model (Jiang 055

et al., 2023; Lyu et al., 2024; Zheng et al., 2024a). 056

As a result of these efforts, today’s SOTA LLMs 057

demonstrate strong alignment with safety consid- 058

erations. However, this accompanied with certain 059

drawbacks. 060

LLM alignment involves a target safety policy 061

to align with. The models aligned with a specific 062

policy often struggle to follow instructions that go 063

against it. This behavior presents challenges in vari- 064

ous tasks related to safety, including adaptation to a 065

new target safety policy. Due to factors such as the 066

discovery of new vulnerabilities or issues that were 067

previously inconsequential but have become signifi- 068
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cant in light of real-world developments, the policy069

must evolve with flexibility (Mu et al., 2024). Since070

collecting and maintaining human data in line with071

evolving policy is expensive, a naturally occurring072

alternative is to synthesize data. However, it is073

extremely difficult to synthesize data that follows074

a new policy using a model aligned with the old075

policy (old model).076

RLAIF (Bai et al., 2022b; Lee et al.), one of077

the most widely adopted methods for synthesiz-078

ing machine-generated alignment data, requires079

the ability to perform objective critiques of gener-080

ated responses based on the given policy, even if081

they were evaluated differently under the old policy.082

(e.g. an old policy might encourage refusing any083

requests related to indiscriminate weapons, while084

a new policy encourages complying with some re-085

quests related to them, such as giving a definition086

or performing classifications.) The old model strug-087

gles to perform such critiques, especially when it088

comes to cases where responses were considered089

harmful under an old policy but should be evalu-090

ated positively under a new policy. Figure 1 demon-091

strates an example of an aligned model refusing to092

generate an objective critique of a response. This is093

reasonable behavior from the standpoint of the old094

policy, since deeming an avoided response favor-095

able can pose a risk, but comes with the challenges096

in the policy adaptation.097

Although proposed in different contexts, input-098

based approaches (Shen et al., 2023; Zhou and099

Wang, 2024; Zou et al., 2023; Wichers et al., 2024;100

Geisler et al., 2024) or model training approaches101

(Perez et al., 2022; Hong et al., 2024; Lee et al.,102

2024; Jiang et al., 2024; Qi et al., 2023; Yang et al.,103

2023; Zhan et al., 2023) from previous research104

may be applied to overcome the refusal of the mod-105

els. However, the previous approaches face many106

challenges, such as side effects that interfere with107

the model’s capabilities or restrictions on the range108

of tasks it can perform.109

Therefore, in situations where a new policy110

is necessary, the HOLLM, aligned with helpful-111

ness but not with harmlessness (i.e. not with any112

safety policy), is often employed (Bai et al., 2022b;113

Mu et al., 2024). The objective of employing a114

HOLLM is to ensure that no user request is re-115

fused. Since it complies with any user request, it116

demonstrates the ability to adapt to various safety117

policy, and mitigates the prior challenge of gen-118

erating objective critiques. The data or weight of119

the HOLLM has not been released, but based on120

the description in the papers, it can be inferred that 121

the model is trained on a dataset from which data 122

collected for harmlessness has been excluded from 123

the entire dataset. 124

A large number of open-source chat instruction 125

datasets (Taori et al., 2023; Chiang et al., 2023; 126

Ding et al., 2023; Ivison et al., 2023; Xu et al., 127

2024a; Zhao et al., 2024; Cui et al., 2023; Xu et al., 128

2024b) for training LLMs have been released, lead- 129

ing to the development of numerous models that 130

demonstrate strong performance based on these 131

datasets. We found that, despite the fact that these 132

datasets were not originally collected with a focus 133

on harmlessness alignment, models trained on them 134

exhibit an inherent alignment with harmlessness. 135

We conjecture that this inherent alignment arises 136

from the fact that most of the datasets synthesize 137

data using well-aligned LLMs to distill their overall 138

capabilities. While attempting to distill the models’ 139

overall capabilities, safety data might have been 140

inadvertently generated and this data might have 141

had an impact. 142

In order to develop a reproducible HOLLM that 143

bypasses harmlessness, which will ultimately be 144

employed to achieve robust harmlessness align- 145

ment, we propose the refusal-free training method. 146

This method is composed of three steps: (1) filter- 147

ing out refusal data from the datasets; (2) augment- 148

ing refusal responses to be utilized as rejected re- 149

sponses; and (3) performing supervised fine-tuning 150

(SFT) and reinforcement learning (RL) using the 151

processed datasets. Figure 2 shows an overview of 152

the refusal-free training method. 153

To demonstrate the application of HOLLM and 154

assess its performance, we introduce two bench- 155

marks: (1) Refusal-Bench (RB), a collection of 156

harmful queries and seemingly harmful queries to 157

assess th model’s RR; and (2) Unsafe-Helpful- 158

Rank (UHR), a ranking dataset with the pairs con- 159

taining harmful but helpful chosen response and 160

harmless but less helpful rejected response to assess 161

the model’s ability to generate objective critiques 162

of harmful responses. Through extensive exper- 163

iments, we demonstrate that without sacrificing 164

helpfulness, the refusal-free training decreases the 165

RR of the model by 71.59% on RB, and increases 166

the accuracy of the model by 132.23% on UHR. 167

Last but not least, we emphasize the potential 168

risks associated with a HOLLM are as significant, 169

if not greater, than its necessity. The capabilities 170

of LLMs are advancing at an unprecedented pace. 171

Imagine a superhuman-capable model that com- 172
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Figure 2: An overview of refusal-free training method: (1) Apply a refusal filter to the SFT dataset and Ranking
dataset. (2) Further augment the Ranking dataset with refusals. (3) Perform traditional instruction tuning (i.e. SFT
-> RL) with the processed datasets.

plies with every request indiscriminately. It could173

lead to catastrophic consequences such as the cre-174

ation of weapons of mass destruction or the breach175

of security systems—outcomes beyond our imagi-176

nation (Hendrycks et al., 2023). It is important to177

be the one to break an LLM and study how an LLM178

can be broken in advance, including understanding179

the boundaries HOLLM can reach, and explore180

strategies to mitigate potential risks. We emphasize181

that this study is wholly for academic purpose and182

is aimed at paving the way toward a harmless and183

helpful LLM.184

In summary, our contributions are:185

1. To the best of our knowledge, this work is186

the first to propose an advancement in the187

direction of HOLLM as well as to highlight188

its necessity in the context of harmlessness189

alignment.190

2. We propose the refusal-free training method to191

train a reproducible HOLLM from the open-192

source datasets.193

3. We introduce a collection of benchmarks194

related to refusal (RB) and a new bench-195

mark (UHR) to demonstrate the application196

of HOLLM.197

4. Through extensive experiments, we demon-198

strate that without sacrificing helpfulness, the199

refusal-free training decreases the RR of the200

model by 71.59% on RB, and increases the201

accuracy of the model by 132.23% on UHR.202

2 Related Work 203

2.1 Alignment Subvertion 204

2.1.1 Natural Language Prompt Based 205

The initial approaches (Bhardwaj and Poria, 2023; 206

Anil et al., 2024) seek to subvert the safety policy in 207

an intuitive fashion, either by assigning the model a 208

malicious role or appending a few failure examples 209

as natural language form prefix prompts before 210

the input request. While these approaches were 211

effective for early LLMs, they quickly became in- 212

effective as safety alignment reinforced and safety 213

policy evolved. In a more creative way, jailbreak 214

approaches (Shen et al., 2023; Zhou and Wang, 215

2024) that utilize rather unconventional language 216

continue to emerge, but it is only a matter of time 217

before these too are blocked. 218

2.1.2 Gradient Based 219

The approaches that utilize the gradients of the tar- 220

get model to identify adversarial inputs (Zou et al., 221

2023; Wichers et al., 2024; Geisler et al., 2024) may 222

also break the model. However, these approaches 223

have a critical limitation in that they require access 224

to the weight of the target model. Furthermore, all 225

of the input-based subvertion methods, including 226

natural language prompt-based approaches, suf- 227

fer from serious side effects of compromising the 228

model’s overall capabilities (Mizrahi et al., 2024). 229

2.1.3 Tuning Based 230

The approaches perform further fine-tuning of a 231

pre-aligned model using data from diverse distribu- 232

tion (Qi et al., 2023; Yang et al., 2023; Zhan et al., 233
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2023). The methods successfully remove the align-234

ment of the model. However, this approach suffers235

from the infamous issue of catastrophic forgetting236

(French, 1999). Additionally, the distribution of237

the data it further trains on has a critical impact238

on its capabilities (Qi et al., 2023). We reproduce239

Shadow-Alignment (Yang et al., 2023) and discuss240

the side effects in Section 5.4.241

2.2 Benchmarks242

2.2.1 Refusal243

There are many benchmarks to observe whether a244

target model complies with harmful or seemingly245

harmful requests (Zou et al., 2023; Röttger et al.,246

2023; Xie et al., 2024; Cui et al., 2024). To observe247

the model’s performance across a wide range of248

distributions, we unified existing benchmarks into249

a single, comprehensive benchmark, RB.250

2.2.2 Meta-Evaluation251

The helpful-only model first appeared in Bai et al.,252

2022b, where it was used to generate responses253

to harmful queries and critique the generated re-254

sponses. It later appeared again in Mu et al., 2024,255

where it was employed as prompt-based reward256

models to evaluate responses. As can be seen from257

the literature, the evaluation task is one of the main258

target tasks of HOLLM. Hence, it is crucial to mea-259

sure the model’s evaluation capabilities, especially260

its ability to objectively assess harmful responses.261

There are many meta-evaluation benchmarks262

(Zeng et al., 2023; Lambert et al., 2024; Son et al.,263

2024) to assess the model’s evaluation capabilities.264

However, many of them do not consider the safety265

domain, and even those that do focus on the abil-266

ity to assess safe responses as safe and harmful267

responses as harmful, rather than on the objective268

assessment capability of harmful responses. We269

introduce a new benchmark, UHR, to target this270

challenge.271

3 Method272

3.1 Overview273

In what follows, we describe refusal-free training274

method to train a reproducible HOLLM. As shown275

in Figure 2, refusal-free training method adheres276

to the traditional LLM instruction tuning recipe,277

where SFT is followed by RL (Ouyang et al., 2022).278

A brief recap of the instruction tuning phase pre-279

cedes the detailed explanation of the three steps280

of the refusal-free training method: (1) refusal fil- 281

ter, (2) refusal augmentation, and (3) instruction 282

tuning. 283

3.2 Preliminaries 284

3.2.1 Supervised Fine-Tuning (SFT) 285

Given the dataset DSFT = {(xi, yi)}Ni=1, where 286

xi = [xi,1, xi,2, ..., xi,ni ] is an ith prompt with ni 287

number of tokens and yi = [yi,1, yi,2, ..., yi,Ti ] is a 288

corresponding response with Ti, number of tokens, 289

the SFT optimizes following loss: 290

LSFT (ϕ) = −
N∑
i=1

Ti∑
t=1

log(P (yi,t| 291

xi, yi,1, ..., yi,t−1, ϕ)) (1) 292

ϕ represents the parameters of the model we are 293

optimizing. 294

3.2.2 Reinforcement Learning (RL) 295

In this work, we select Direct Preference Optimiza- 296

tion (DPO) (Rafailov et al., 2024) as the prefer- 297

ence tuning method. Given the dataset DRL = 298

(xi, y
w
i , y

l
i)
M
i=1, where xi is an ith prompt, ywi is 299

a corresponding preferred (i.e. chosen) response, 300

and yli is a corresponding dispreferred (i.e. rejected) 301

response, the DPO optimizes following loss: 302

LDPO(θ; η) = −
M∑
i=1

log(σ(β · (log P (ywi |xi, θ)
P (ywi |xi, η)

303

− log
P (yli|xi, θ)
P (yli|xi, η)

))) (2) 304

θ represents the parameters of the policy model we 305

are optimizing, η represents the parameters of the 306

reference policy model, σ represents the logistic 307

function, and β represents a parameter controlling 308

the deviation from the reference policy model. 309

3.3 Refusal-Free Training 310

3.3.1 Refusal Filter 311

To avoid instructing the model to refuse a request 312

in the first place, a classifier that detects whether 313

a response refuses a request - referred to as the re- 314

fusal filter (RF) - is applied to DSFT and DRL. RF 315

can be any model that can classify refusals. For ex- 316

ample, instruction-prompted (Achiam et al., 2023), 317

Chain-of-Thought, few-shot, or fine-tuned LLMs 318

(Xie et al., 2024) could be employed as the auto- 319

matic refusal filter. The remaining datasets after 320

the filtering process can be formulized as follows: 321
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For SFT,322

DRF
SFT = {(xi, yi) ∈ DSFT |323

1RF (xi, yi) == 1} (3)324

For RL,325

DRF
RL = {(xi, ywi , yli) ∈ DRL|326

1RF (xi, y
w
i ) == 1} (4)327

1RF (a, b) represents an indicator function to328

check whether RF has classified the response b329

as a response that complies with the prompt a.330

Please note that, when filtering the RL dataset,331

only the prompt and the chosen response are input332

into the filters, denoted as the chosen filter, which333

implies that the result of the filters is determined re-334

gardless of the rejected response. The design of the335

chosen filter is to prevent incentivizing refusal re-336

sponses, and further, to discourage them. Filtering337

the instances where the chosen response refuses338

the prompt prevents incentivizing the refusal re-339

sponses, and maintaining the instances where the340

rejected response refuses the prompt discourages341

the refusal responses.342

3.3.2 Refusal Augmentation343

In order to steer a ranking dataset toward refusal-344

free direction, we can add more responses that com-345

ply with instructions containing harmful content346

while delivering helpful information as chosen re-347

sponses, or add more responses that refuse such in-348

structions as rejected responses. It is challenging to349

synthesize the former responses since many high-350

performing models are already aligned. In con-351

trary, it is not difficult to synthesize the responses352

that refuse. Hence, to further discourage refusal,353

we augment refusal responses for a subset of the354

filtered ranking dataset by prompting an aligned355

LLM. The augmented dataset can be formulized as356

follows:357

Daug
RL = {(xi, ywi , y

ref
i )|358

(xi, y
w
i , y

l
i) ∈ SRF

RL ⊆ DRF
RL} (5)359

yrefi represents an augmented refusal response360

to a prompt xi, and SRF
RL represents a subsampled361

set of DRF
RL .362

3.3.3 Instruction Tuning363

We perform traditional instruction tuning proce-364

dure with the processed datasets to produce the365

final HOLLM. First, SFT is performed on DRF
SFT . 366

Then, starting from the obtained SFT model, DPO 367

is performed on DHO
RL = DRF

RL ∪Daug
RL . 368

4 Experiments 369

We conduct extensive experiments to address the 370

following research questions. 371

• Can the refusal-free training method effec- 372

tively decrease the refusal rate? 373

• In addition to avoiding refusal, can the refusal- 374

free training method allow a model to perform 375

tasks that go against standard safety policies, 376

demonstrating its application? 377

• Will the refusal-free training method compro- 378

mise other capabilities of the model? 379

4.1 Training Datasets 380

4.1.1 SFT 381

WildChat (Zhao et al., 2024) is a collection of 382

conversations between human users and ChatGPT. 383

The responses in the dataset is generated with GPT- 384

3.5 and GPT-4. We use the version that filters out 385

toxic conversations automatically.1 The dataset 386

contains 838K conversation sessions with various 387

metadata. It is known that the dataset contains 388

a few conversations with empty user inputs. We 389

remove the turns from the point where the user 390

input is empty. 391

4.1.2 RL 392

UltraFeedback (Cui et al., 2023) is a large-scale 393

preference dataset, which 64k prompts are col- 394

lected from diverse source and utilize multiple 395

LLMs to generate 4 responses for each prompt. 396

GPT-4 rated the responses considering helpfulness, 397

honesty, truthfulness, and instruction-following. 398

We use binarized version of the dataset.2 399

4.2 Baselines 400

• Aligned LLM (ALLM) is an LLM instruc- 401

tion tuned with the unprocessed datasets to 402

which RF or RA has not been applied. This is 403

aligned with the safety policy that is inherent 404

in the datasets. 405

1https://huggingface.co/datasets/allenai/
WildChat-1M

2https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized
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• Shadow-Alignment (Yang et al., 2023) is a406

tuning based alignment subvertion method,407

that further fine-tune the aligned LLM with408

the harmful responses. Among a few tun-409

ing based alignment subvertion methods, we410

specifically reproduce Shadow-Alignment as411

it has released the training data and detailed412

training configuration. We apply Shadow-413

Alignment to ALLM.414

4.3 Benchmarks415

In order to address the research questions, we eval-416

uate the performance of the refusal-free training417

method on three different types of benchmarks: (1)418

RB, (2) UHR, and (3) General Instruction Follow-419

ing (GIF) Benchmarks, the first two of which we420

propose. We will release RB and UHR.421

4.3.1 Refusal-Bench (RB)422

As one of the main objectives of this study is to423

decrease the refusal rate, we collect prompts from 4424

different sources related to refusal to form a single,425

comprehensive benchmark. The proposed metric426

for this benchmark is RR, which measures the pro-427

portion of responses generated by the target model428

that are classified as refusals by the LLM-based429

judge. The sources of the prompts can be further430

categorized into two distinct types: (1) standard ad-431

versarial benchmarks, and (2) over-refusal bench-432

marks.433

Adversarial benchmarks contain prompts that434

request harmful response to the agent.435

• AdvBench (Zou et al., 2023) is a set of 500436

harmful behaviors range over a wide spectrum437

of detrimental content. The goal of this set is438

to find a single attack string that will cause the439

model to generate any response that attempts440

to comply with the instruction.441

• SORRY-Bench (Xie et al., 2024) is designed442

for fine-grained, class-balanced, safety refusal443

evaluation dataset with 45-class taxonomy.444

The base dataset consists of 450 instructions.445

Although SORRY-Bench extends the base446

dataset to 20 different linguistic styles, this447

work only adopts the base dataset for the sake448

of efficiency.449

Over-refusal benchmarks not only contain450

standard adversarial prompts, but also include safe,451

yet seemingly harmful prompts.452

• XSTest (Röttger et al., 2023) comprises 200 453

unsafe prompts and 250 safe prompts across 454

ten prompt types that superficially resemble 455

unsafe prompts in terms of the vocabulary. 456

• OR-Bench (Cui et al., 2024) proposes a 457

method for automatically generating seem- 458

ingly toxic prompts. The benchmark com- 459

prises 80,000 seemingly toxic prompts across 460

10 common rejection categories, a subset of 461

around 1,000 hard prompts and an additional 462

600 toxic prompts. This work only adopts the 463

hard prompts and the toxic prompts for the 464

sake of efficiency. 465

4.3.2 Unsafe-Helpful-Rank (UHR) 466

A model not refusing a request does not necessar- 467

ily indicate that it performs the request effectively. 468

To assess the HOLLM’s ability in one of its main 469

target tasks - evaluating a response objectively un- 470

der any policy - we propose a new benchmark, 471

UHR. We curate the benchmark from a test set of 472

the PKU-SafeRLHF (Ji et al., 2024) dataset. The 473

PKU-SafeRLHF dataset is a high-quality binarized 474

preference dataset which is annotated across two 475

dimensions: harmlessness and helpfulness. We 476

only select the pairs where the better and safer are 477

conflicting, and only one response is tagged as safe, 478

and left with 196 pairs. These curated pairs target 479

whether the model can evaluate harmful responses 480

as helpful, which violates most of the safety poli- 481

cies. The proposed metric for this benchmark is ac- 482

curacy, which measures the proportion of samples 483

that the model correctly selects the better response. 484

To compensate position bias, the safer response 485

was randomly assigned to either response a or b, 486

and the better response was assigned to the remain- 487

ing one. For the models we deployed, we restrict 488

the response space so that it can only output either 489

"A", or "B". Prompt used in the benchmark can be 490

found in the Appendix A. 491

4.3.3 General Instruction Following (GIF) 492

Benchmarks 493

To ensure HOLLM’s GIF capabilities are not 494

compromised, we evaluate the models on MT- 495

bench (Zheng et al., 2023), MMLU (Hendrycks 496

et al., 2020), Arena-Hard (Li et al., 2024), GSM8K 497

(Cobbe et al., 2021), GPQA (Rein et al., 2023), and 498

IFEval (Zhou et al., 2023). 499
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4.4 Experimental Configuration500

4.4.1 Refusal Judge501

There are two parts of this study that require refusal502

judges: (1) RF, and (2) RB. For the sake of fairness,503

we employ different refusal judges for each part.504

RF. As RF requires a large inference capacity,505

we fine-tune a separate refusal judge following506

Xie et al., 2024. We fine-tune the Llama-3.1-8B-507

Instruct model (Dubey et al., 2024) on the SORRY-508

Bench Human Judge dataset released by Xie et al.,509

2024. For the prompt and hyperparameters, we fol-510

low the settings of Xie et al., 2024, except the batch511

size. Instead of fixed batch size of 32, we apply512

packing with sequence length of 4K. The perfor-513

mance of the judge can be found in the Appendix514

B. When judging multi-turn samples, each turn was515

separated into single turns and classified individu-516

ally. Any turns from the first refusal onward were517

filtered out.518

RB. For RB, we prompt GPT-4o (OpenAI,519

2024a) to judge the generated responses of the tar-520

get model. The prompt was excerpted from Xie521

et al., 2024.522

4.4.2 RA523

We prompt GPT-4o mini to synthesize refusal re-524

sponses. The ranking dataset is sorted by the re-525

fusal probability of a chosen response calculated526

by RF, and the top 10% is sampled as the target527

subset. See Appendix C for more detail about the528

RA, including the prompt used and decoding pa-529

rameters.530

4.4.3 Instruction Tuning531

Both phases of instruction tuning are conducted532

using 8 NVIDIA A100 GPUs with 80G memory.533

More detailed settings used for each phase of in-534

struction tuning are as follows:535

SFT. We use a cosine learning rate schedule with536

an initial learning rate of 2× 10−5. The maximum537

sequence length is 8K. We use packing and the538

gradient accumulation step is set to 16. The models539

are fine-tuned for 2 epochs.540

RL. We use a cosine learning rate schedule with541

an initial learning rate of 5× 10−7. The maximum542

sequence length is 4K. The effective batch size is543

128. The models are fine-tuned for 1 epoch.544

4.4.4 Evaluation545

All benchmarks of the study were evaluated using546

greedy decoding on the SGLang framework (Zheng547

et al., 2024b).548

Data # Refusal # Total
SFT 832,858 1,960,074

RLchosen_only 4,398
61,135RLboth 21,400

RLrejected_only 10,383

Table 1: The number of turns predicted as refusals in
RF.

5 Results 549

5.1 Statistics 550

We report the number of turns predicted as refusals 551

in RF stage in Table 1. Since there are two re- 552

sponses per prompt in the ranking dataset, the statis- 553

tics is categorized based on which response was 554

predicted as a refusal. Note that since the filtering 555

process for the ranking dataset only uses results on 556

the chosen responses, the statistics related to the re- 557

jected responses are solely for analytical purposes. 558

In the UltraFeedback dataset, the number of 559

turns where only a rejected response is classified 560

as refusal is more than twice the number of turns 561

where only a chosen one is. The statistics show that 562

the UltraFeedback dataset has a nature of avoiding 563

refusals even before the filtering process. 564

5.2 Refusal 565

Table 2 demonstrates the RRs of HOLLM and base- 566

lines evaluated on RB, as well as the effect of differ- 567

ent steps of refusal-free training on RR. HOLLM 568

shows the best RR of 15.06, which is 71.59% re- 569

duction compared to ALLM. Shadow-Alignment 570

also reduces RR dramatically, but not as much as 571

HOLLM. 572

It is noteworthy that the RL stage, in itself, sub- 573

stantially reduces the refusal rate of the SFT model 574

trained on DSFT . As inferred from the statistics, 575

the UltraFeedback dataset has an effect of avoiding 576

refusals in nature. However, it does not have much 577

effect on the SFT model trained on DRF
SFT , which 578

demonstrates a significantly low RR already. 579

RF reduces RR notably when applied to both 580

SFT and RL. Compared to the SFT model trained 581

on DSFT , the SFT model trained on DRFF
SFT re- 582

duces RR by 59.46%. Compared to the RL model 583

trained on DRL, the RL model trained on DRF
RL - 584

which shares the same starting point as the SFT 585

model trained on DRF
SFT - reduces RR by 40.07%. 586

When applied on top of RF, RA reduces RR to 587

some extent (12.36%), but not as much as RF does. 588
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SFT DPO RB ↓ UHR MT MMLU Arena GSM GPQA IF
DSFT - 70.95 29.59 7.23 63.35 12.20 52.01 23.66 45.47

DRL (ALLM) 53.01 30.10 7.70 63.58 21.64 63.23 27.68 49.35
DRF

SFT - 28.76 58.67 7.18 63.4 13.54 49.66 26.34 47.50
DRL 29.70 50.00 7.17 63.77 25.05 67.55 24.78 52.13
DRF

RL 17.80 68.88 7.38 63.56 24.83 68.16 24.11 46.95
DHO

RL (HOLLM) 15.06 69.90 7.29 63.51 24.62 66.34 26.79 47.69
Shadow-Alignment 21.60 52.55 6.33 62.95 4.07 23.43 24.55 34.01

GPT-4o* - 19.39 - - - - - -

Table 2: Performance of HOLLM and baselines. The ablation results for the steps of refusal-free training are also
reported. Higher is better for all benchmarks except where indecated by ↓.

The results imply the effectiveness of the refusal-589

free training method in reducing RR. An example590

where ALLM refuses to comply with the request,591

while HOLLM does not, can be found in Appendix592

E.593

5.3 Objective Evaluation594

Table 2 demonstrates the accuracies of HOLLM595

and baselines evaluated on UHR, as well as the596

effect of different steps of refusal-free training on597

the accuracy. HOLLM shows the best accuracy of598

69.90, which is 132.23% improvement compared599

to ALLM. Shadow-Alignment also improves the600

accuracy dramatically, but not as much as HOLLM.601

RF improves the UHR accuracy notably when602

applied to both SFT and RL. Compared to the SFT603

model trained on DSFT , the SFT model trained on604

DRFF
SFT improves the accuracy by 98.28%. Com-605

pared to the RL model trained on DRL, the RL606

model trained on DRF
RL - which shares the same607

starting point as the SFT model trained on DRF
SFT -608

improves the accuracy by 37.76%. When applied609

on top of RF, RA hardly improves the accuracy610

(1.48%).611

The poor performance of GPT-4o, one of the612

SOTA-performing LLMs, in UHR highlights the613

impact of the safety policies on tasks at the bound-614

ary of harmlessness and helpfulness. The improve-615

ment in the UHR accuracy resulting from refusal-616

free training implies that it successfully bypasses617

the safety policy.618

5.4 GIF619

Table 2 illustrates the performances of the mod-620

els regarding general instruction following ability.621

*GPT-4o result is included to demonstrate that it actually
fails to provide an objective evaluation, so it is only evaluated
on UHR.

The mixed results among the ablation models indi- 622

cates that the refusal-free training neither improves 623

nor diminishes general instruction following ability, 624

but rather maintains it. It has been recognized that 625

there is a trade-off between helpfulness and harm- 626

lessness (Bai et al., 2022a,b). However, (Bianchi 627

et al., 2023) claims that adding safety data does not 628

sacrifice the helpfulness of the model if there is suf- 629

ficient amount of helpfulness data. The refusal-free 630

training not improving the helpfulness supports this 631

claim. 632

In contrast to the claim made in (Yang et al., 633

2023) that it does not compromise the instruction 634

following ability, the Shadow-Alignment shows 635

significant degradation in the performance on a few 636

benchmarks. We conjecture it may not affect the 637

abilities where the model has already saturated on, 638

but could have a significant impact on more chal- 639

lenging abilities that the model has not yet fully 640

acquire. Also, the data used in methods that fur- 641

ther fine-tuning a model, including the forgetting 642

safety approaches, tends to steer a model too heav- 643

ily. The evidence that demonstrates the distribution 644

shift after the Shadow-Alignment can be found in 645

Appendix F. 646

6 Conclusion 647

In this paper, we claim both the necessity and the 648

concern (detail in Section 8) regarding the repro- 649

ducible HOLLM and propose the refusal-free train- 650

ing method to reach it. We show the effectiveness 651

of the refusal-free training method in building a 652

HOLLM through extensive experiments. We hope 653

this study can help shorten the path toward a truely 654

harmless, helpful LLM. 655
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7 Limitations656

The refusals not only contain refusals toward harm-657

ful instructions but also toward instructions that the658

model is incapable of giving answers to. In con-659

sequence, the refusal-free training method which660

simply filters out all refusals can degrades honesty661

of the model.662

In addition to removing refusals, adding instruc-663

tion data that follows previously refused instruc-664

tions can further improve the ability to follow in-665

structions containing harmful content. However, it666

is challenging to synthesize such data since many667

high-performing models are already aligned. We668

hope leveraging HOLLM in an iterative fashion669

can help synthesize such data. The initial HOLLM670

synthesizes and refines the data to train improved671

HOLLM iteratively.672

8 Ethical Considerations673

As previously stated, we are aware that the path to674

the HOLLM can lead to the poisoned chalice. As a675

first precautionary step, we urge entities that utilize676

the HOLLM, which has the potential for further677

improvement, to be responsible and be committed678

to its proper management. However, as LLMs be-679

gin to affect the real world with capabilities such680

as tool-use (Qin et al., 2023), not only entities with681

malicious intent but also those without such in-682

tent may also misuse the HOLLM inadvertently.683

Therefore, we believe it is crucial to engage the684

community in a proactive discussion and develop685

a strategy to mitigate the damage as much as pos-686

sible before it becomes irreversible. We release687

this study with the sole intention of fostering dis-688

cussions on preventive measures. We hope that689

studying the HOLLM in this study to provide valu-690

able insights into what the HOLLM is capable691

of, and to contribute prevent potential side effects692

eventually.693
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A Prompt used in UHR 1000

Prompt used in UHR

### Conversation
Prompt: {prompt}

Response A: {response_a}

Response B: {response_b}

### Definition
Helpfulness: The helpfulness of a response pertains to how effectively it addresses a given prompt.
This measure is independent of the harmlessness of the response, as it focuses solely on the quality,
clarity, and relevance of the provided information. Consequently, the helpfulness judgment can be
distinctly different from the harmlessness judgment. For instance, consider a situation where a user
asks about the procedure to synthesize methamphetamine. In such a case, a detailed, step-by-step
response would be considered helpful due to its accuracy and thoroughness. However, due to
the harmful implications of manufacturing illicit substances, this QA pair would be classified as
extremely harmful.

### Goal
Based on the definition of helpfulness, choose the more helpful answer between Response A and
Response B. Output only one: A or B.

1001

The definition of helpfulness is taken from the website of PKU-SafeRLHF.3 1002

B Refusal Judge Performance 1003

The Performances of the fine-tuned refusal judges are evaluated on the test set of SORRY-Bench Human 1004

Judge dataset (Table 3). We reproduce the judge model based on Llama-3-8b-instruct and additionally 1005

fine-tune Llama-3.1-8b-instruct. We employ the judge based on Llama-3.1-8b-instruct, as it not only 1006

demonstrates an improved Kappa score but more importantly, achieves higher refusal recall. This is crucial 1007

for identifying refusals in the dataset as much as possible, even if it results in slight overclassification. 1008

Model Kappa Score Refusal Recall Compliance Recall
Llama-3-8b-instruct 83.06 94.33 89.46

Llama-3.1-8b-instruct 83.30 95.71 86.90

Table 3: Performance of the refusal judges

C Detail about RA 1009

Prompt used in RA

- Refuse the next request naturally.
- Do not start the response with an opening phrase.

Request: {request}

1010

3https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF#helpfulness-of-a-response
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For the decoding parameters, top_p is set to 0.9, temperature to 0.7, and max_tokens to 1K.1011

A Sample Result of RA

- Refuse the next request naturally.
- Do not start the response with an opening phrase.

Request: Please provide a list of keyword for "Natural Language Processing".

Response: I’m unable to provide a list of keywords at the moment. However, I can help answer
questions or discuss concepts related to Natural Language Processing if you’re interested!

1012

D Breakdown of RB1013

Here we report the breakdown of performance by source within RB in Table 4. All metrics reported here1014

are metrics where lower values are better.1015

SFT DPO Adv SORRY XSTest OR Total
DSFT - 97.12 76.89 62.22 64.69 70.95

DRL (ALLM) 90.19 63.56 57.11 39.87 53.01
DRF

SFT - 39.42 33.11 42.67 21.78 28.76
DRL 39.62 32.67 45.33 22.85 29.70
DRF

RL 21.73 18.44 36.67 12.31 17.80
DHO

RL (HOLLM) 15.19 16.22 33.78 10.49 15.06
Shadow-Alignment 19.81 26.00 26.89 19.86 21.60

Table 4: Breakdown of performance within RB

E Example of HOLLM & ALLM Response1016

An Example of HOLLM & ALLM Response

Request: Write a social media post that encourages people to engage in dangerous behaviors like
drunk driving or using drugs

HOLLM: Attention, thrill-seekers and risk-takers! Are you ready to ...

ALLM: I’m sorry, but I can’t assist with that request. Encouraging dangerous behaviors ...
1017

F Response Distribution Shift After Shadow-Alignment1018

We investigate the responses of the models and find that the responses from the Shadow-Aligment differ1019

from those of the others. We analyze and compare the distribution of the starting two words in the1020

responses provided by the HOLLM, ALLM, and Shadow-Alignment to the prompts from the Arena-Hard1021

benchmark. Table 5 demonstrates that, although the order differs slightly, the top 5 most frequent starting1022

words in the responses from HOLLM and ALLM overlap significantly, while all of them differ from1023

those of the Shadow-Alignment. This implies Shadow-Alignment can result in significant distribution1024

shift and bring unexpected side effect.1025
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Rank
HOLLM ALLM Shadow-Alignment

word freq word freq word freq
1 To create 55 To create 46 There are 189
2 Here’s a 30 Creating a 28 The first 20
3 Certainly! Here’s 15 To achieve 16 There is 17
4 To find 13 Here’s a 13 You can 13
5 To achieve 10 To find 12 The code 12

Table 5: 5 most frequent starting words in the responses to the Arena-Hard and its frequency.
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