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Abstract
We consider cross-silo federated linear contextual
bandit (LCB) problem under differential privacy,
where multiple silos (agents) interact with the lo-
cal users and communicate via a central server
to realize collaboration while without sacrificing
each user’s privacy. We identify three issues in
the state-of-the-art: (i) failure of claimed privacy
protection and (ii) incorrect regret bound due to
noise miscalculation and (iii) ungrounded com-
munication cost. To resolve these issues, we take
a two-step principled approach. First, we design
an algorithmic framework consisting of a generic
federated LCB algorithm and flexible privacy pro-
tocols. Then, leveraging the proposed framework,
we study federated LCBs under two different pri-
vacy constraints. Specifically, we first establish
performance guarantees under silo-level local dif-
ferential privacy, which fix the issues present in
state-of-the-art algorithm. To further improve
the regret performance, we next consider shuf-
fle model of differential privacy, under which we
show that our algorithm can achieve nearly “opti-
mal” regret without a trusted central server.

1. Introduction
We consider the classic cross-silo Federated Learning (FL)
paradigm (Kairouz et al., 2021) applied to linear contex-
tual bandits (LCB). In this setting, a set of M local silos or
agents (e.g., hospitals) communicate with a central server to
learn about the unknown bandit parameter (e.g., hidden vec-
tor representing values of the user for different medicines).
In particular, at each round t ∈ [T ], each local silo i ∈ [M ]
receives a new user (e.g., patient) with context information
ct,i ∈ Ci (e.g., age, gender, medical history), recommends
an action at,i ∈ Ki (e.g., a choice of medicine), and then
it observes a real-valued reward yt,i (e.g., effectiveness of
the prescribed medicine). In linear contextual bandits, the
reward yt,i is a linear function of the unknown bandit param-
eter θ∗ ∈ Rd corrupted by i.i.d zero-mean observation noise
ηt,i, i.e., yt,i = ⟨xt,i, θ

∗⟩+ ηt,i, where xt,i = ϕi(ct,i, at,i)
and ϕi : Ci × Ki → Rd is a known function that maps
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a context-action pair to a d-dimensional real-valued fea-
ture vector. The goal of federated LCB is to minimize the
cumulative group pseudo-regret defined as

RM (T ) =

M∑
i=1

T∑
t=1

[
max
a∈Ki

⟨ϕi(ct,i, a), θ
∗⟩ − ⟨xt,i, θ

∗⟩
]
.

To achieve the goal, as in standard cross-silo FL, the agents
are allowed to communicate with the central server fol-
lowing a star-shaped communication, i.e., each agent can
communicate with the server by uploading and download-
ing data, but agents cannot communicate with each other
directly. However, the communication process (i.e., both
data and schedule) could also possibly incur privacy leak-
age for each user t at each silo i, e.g., the sensitive context
information ct,i and reward yt,i.

To address this privacy risk, we resort to differential pri-
vacy (Dwork et al., 2014), a principled way to prove pri-
vacy guarantee against adversaries with arbitrary auxiliary
information. Recent studies (Lowy & Razaviyayn, 2021;
Lowy et al., 2022; Liu et al., 2022; Dobbe et al., 2018) on
cross-silo federated supervised learning have converged to
a privacy notion, which requires that for each silo, all of
its communication during the entire process is private (“in-
distinguishable”) with respect to change of one local user
of its own. This item-level DP allows one to protect each
user within each silo without a trustworthy server and other
silos. In this paper, we adapt it to the setting of cross-silo
federated contextual bandits and call it silo-level LDP.

Dubey & Pentland (2020) adopt a similar but somewhat
weaker notion of privacy called Federated DP (Fed-DP
in short) and takes the first step to tackle this important
problem of private and federated linear contextual bandits
(LCBs). In fact, the performance guarantees presented by
the authors are currently the state-of-the-art for this prob-
lem. The proposed algorithm claims to protect the privacy
of each user at each silo. Furthermore, given a privacy
budget ε > 0, the claimed regret bound is Õ(

√
MT/ε)

with only O(M log T ) communication cost, which matches
the regret of a super-single agent that plays for total MT
rounds. Unfortunately, in spite of being the state-of-the-art,
the aforementioned privacy, regret, and communication cost
guarantees all have fundamental gaps.

Our contributions: In Section 2, we first show that the
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proposed algorithm in Dubey & Pentland (2020) could
leak privacy from the side channel of adaptive commu-
nication schedule, which depends on users’ non-private
local data. Next, we identify a mistake in total injected
privacy noise in the current regret analysis. Accounting for
this miscalculation, the correct regret bound would amount
to Õ(M3/4

√
T/ε), which is M1/4 factor higher than the

claimed one, and doesn’t match the regret performance of
the super agent. Finally, we observe that due to the pres-
ence of privacy noise, its current analysis for O(M log T )
communication cost no longer holds. To fix them, we take
the following two-step principled approach:

(a) In Section 3, we propose a generic federated LCB algo-
rithm along with a flexible privacy protocol. Our algorithm
adopts a fixed-batch schedule (rather than an adaptive one
in Dubey & Pentland (2020)) that helps avoid privacy leak-
age from the side channel, as well as subtleties in communi-
cation analysis. Our privacy protocol builds on a distributed
version of the celebrated tree-based algorithm (Dwork et al.,
2010; Chan et al., 2011), enabling us to provide different
privacy guarantees in a unified way.

(b) We build upon the above framework to study feder-
ated LCBs under two different privacy constraints. We first
consider silo-level LDP (a stronger notion of privacy than
Fed-DP in Dubey & Pentland (2020)) and establish pri-
vacy guarantee with a correct regret bound Õ(M3/4

√
T/ε)

and communication cost O(
√
MT ), hence fixing the gaps

in Dubey & Pentland (2020). Next, to match the regret of
a super single agent, we consider shuffle DP (SDP) (Cheu
et al., 2019) and establish a regret bound of Õ(

√
MT/ε),

while still without a trusted central server.

We defer the discussion on related work and formal def-
initions of our privacy notions to Appendix A and B, re-
spectively. Here, we present high-level ideas behind our
silo-level LDP and SDP, which will be sufficient for the next
sections. Silo-level LDP essentially requires that for each
silo i, all of its communication across the whole process
be “indistinguishable” when one of its local users changes,
which implies Fed-DP in Dubey & Pentland (2020). For
SDP, there exists a trusted third-party (i.e., shuffler) between
silos and the central server. SDP essentially requires all the
messages sent by the shuffler to be “indistinguishable” when
a single user changes among all MT unique users.

2. Fundamental Gaps in SOTA
In this section, we discuss the gaps present in privacy, regret
and communication cost guarantees of the state-of-the-art
algorithm proposed in Dubey & Pentland (2020).

Gap in privacy analysis. We take a two-step approach to
demonstrate the privacy issue in Dubey & Pentland (2020).
To start with, we argue that the proposed technique (i.e.,

Algorithm 1 in Dubey & Pentland (2020)) fails to achieve
silo-level LDP due to privacy leakage through the side chan-
nel of communication schedule (i.e., when the agents com-
municate with the server). The key issue is that the adaptive
communication schedule in their proposed algorithm de-
pends on users’ non-private data. This fact can be utilized
by an adversary or malicious silo j to infer another silo i’s
users’ sensitive information, which violates the requirement
of silo-level LDP. Specifically, in Algorithm 1 of Dubey
& Pentland (2020), all silos communicate with the server
(which is termed as synchronous setting) if

∃ some silo i ∈ [M ] : f(Xi, Z) > 0 , (1)
where f is some function, Xi is the non-private local data of
silo i since the last synchronization and Z is all previously
synchronized data. Crucially, the form of f and the rule (1)
are public information, known to all silos even before the
algorithm starts. This local and non-private data-dependent
communication rule in (1) causes privacy leakage, as illus-
trated below with a toy example.
Example 2.1 (Privacy leakage). Consider there are two si-
los i and j following the algorithm in Dubey & Pentland
(2020). After the first round, Xi in (1) includes the data of
the first user in silo i (say Alice), Xj includes the data of
the first user in silo j (say Bob) and Z is empty (zero). Let
communication be triggered at the end of first round and
assume f(Xj , 0) ≤ 0. Since the rule (1) is public, silo j can
infer that f(Xi, 0) > 0, i.e. the communication is triggered
by silo i. Since f is also public knowledge, silo j can utilize
this to infer some property of Xi. Hence, by observing
the communication signal only (even without looking at the
data), silo j can infer some sensitive data of Alice. In fact,
given the specific form of f in Dubey & Pentland (2020),
silo j gets to know that log det

(
I + λ−1

minx1,ix
⊤
1,i

)
> D,

where λmin > 0 is a regularizer (which depends on privacy
budgets ε, δ) and D > 0 is some suitable threshold (see
Appendix C for the specific form of f ). This in turn implies
that ∥x1,i∥ > C, where C is some constant. Since x1,i

contains the context information of the user, this informa-
tion could immediately reveal that some specific features in
the context vector are active, which can be inferred by the
adversary silo (e.g., silo j).
The above example demonstrates that the proposed algo-
rithm in Dubey & Pentland (2020) does not satisfy silo-level
LDP, implying (i) their current proof for their Fed-DP guar-
antee via post-processing of silo-level LDP does not hold
anymore and (ii) Fed-DP is a very weak privacy protection
in the sense that even one algorithm satisfies Fed-DP, it
could still leak privacy. In fact, one can show that Algo-
rithm 1 in Dubey & Pentland (2020) also fails to guarantee
their Fed-DP by leveraging Example 2.1, see Appendix C.

Gaps in regret and communication analysis. In their
proposed regret analysis, the total amount of injected pri-
vacy noise is miscalculated. In particular, variance of total
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Algorithm 1 Private-FedLinUCB

1: Parameters: Batch size B ∈ N, regularization λ > 0,
confidence radii {βt,i}t∈[T ],i∈[M ], feature map ϕi : Ci×
Ki → Rd, privacy protocol P = (R,S,A)

2: Initialize: Wi = 0, Ui = 0 for all agents i ∈ [M ],
W̃syn = 0, Ũsyn = 0

3: for t=1, . . . , T do
4: for each agent i = 1, . . . ,M do
5: Receive context ct,i; compute Vt,i = λI + W̃syn +

Wi and θ̂t,i = V −1
t,i (Ũsyn + Ui)

6: Play action at,i = argmaxa∈Ki
⟨ϕi(ct,i,a), θ̂t,i⟩+

βt,i∥ϕi(ct,i,a)∥V −1
t,i

; observe reward yt,i

7: Set xt,i = ϕi(ct,i, at,i), Ui = Ui + xt,iyt,i and
Wi = Wi + xt,ix

⊤
t,i

8: end for
9: if tmod B = 0 then

10: // Local randomizer R at all agents i ∈ [M ]
11: Send randomized messages Rbias

t,i = Rbias(Ui) and
Rcov

t,i = Rcov(Wi) to S
12: // Third party S
13: Shuffle (or, not) all messages Sbias

t =
S({Rbias

t,i }i∈[M ]) and Scov
t = S({Rcov

t,i }i∈[M ])
14: // Analyzer A at the server

15: Compute private synchronized statistics Ũsyn =

Abias(Sbias
t ) and W̃syn = Acov(Scov

t )
16: // All agents i ∈ [M ]

17: Receive W̃syn and Ũsyn from the server and reset
Wi = 0, Ui = 0

18: end if
19: end for

noise needs to be Mσ2 rather than the proposed value of
σ2. Accounting for this correction, the cost of privacy be-
comes Õ(M3/4

√
T/ε), which is O(M1/4) factor worse

than the claimed cost. Hence, we conclude that Algorithm 1
in Dubey & Pentland (2020) cannot achieve the same order
of regret as a super single agent. Meanwhile, the proposed
analysis in Dubey & Pentland (2020) to show O(log T ) com-
munication cost for the data-adaptive schedule (1) under
privacy constraint essentially follows from the non-private
analysis of Wang et al. (2020). Unfortunately, due to addi-
tional privacy noise, this direct approach no longer holds,
and hence the reported logarithmic communication cost
stands ungrounded (see Appendix C for more details).

3. Our Approach
To address all three issues in Dubey & Pentland (2020),
we introduce a generic algorithm for private and federated
linear contextual bandits (Algorithm 1) along with a flexible
privacy protocol (Algorithm 2), which not only allows us to
present the correct performance guarantees under silo-level
LDP (and hence under Fed-DP), but also helps us achieve

Algorithm 2 P , a privacy protocol used in Algorithm 1

1: Procedure: Local RandomizerR at each agent
2: //Input: stream data (γ1, . . . , γK),ε>0, δ∈(0, 1]
3: for k=1, . . . ,K do
4: Express k in binary form: k =

∑
j Binj(k) · 2j

5: Find index of first one ik=min{j : Binj(k)=1}
6: Compute p-sum αik =

∑
j<ik

αj+γk
7: Output α̂k=αik+N (0,σ2

0I)
8: end for
9: Procedure: Analyzer A at server

10: //Input : data from S : (α̂k,1, . . . , α̂k,M ), k∈ [K]
11: for k=1, . . . ,K do
12: Express k in binary and find index of first one ik
13: Add noisy p-sums of all agents: α̃ik =

∑M
i=1 α̂k,i

14: Output: s̃k =
∑

j:Binj(k)=1 α̃j

15: end for

the same order of regret as a super single agent under SDP.

Algorithm: Private Federated LinUCB. We build upon
the celebrated LinUCB algorithm (Abbasi-Yadkori et al.,
2011) by adopting a fixed-batch schedule for synchroniza-
tion among agents and designing a privacy protocol P (Al-
gorithm 2) for both silo-level LDP and SDP . At each round
t, each agent i recommends an action at,i to each local
user following optimism in the face of uncertainty principle.
First, the agent computes a local estimate θ̂t,i based on all
available data to her, which includes previously synchro-
nized data from all agents as well as her own new local data
(line 5 of Algorithm 1). Then, the action at,i is selected
based on the LinUCB decision rule (line 6), where a proper
radius βt,i is chosen to balance between exploration and
exploitation. After observing the reward yt,i, each agent
accumulates her own local data (bias vector xt,iyt,i and
covariance matrix xt,ix

⊤
t,i) and stores them in Ui and Wi,

respectively (line 7). A communication is triggered between
agents and central server whenever a batch ends – we as-
sume w.l.o.g. total rounds T is divisible by batch size B
(line 9). During this process, a protocol P = (R,S,A)
assists in aggregating local data among all agents while
guaranteeing privacy properties (to be discussed in detail
soon). After communication, each agent receives latest syn-
chronized data W̃syn, Ũsyn from the server (line 17). Here,
for any t=kB, k ∈ [T/B], W̃syn represents noisy version
of all covariance matrices up to round t from all agents (i.e.,∑M

i=1

∑t
s=1 xs,ix

⊤
s,i) and similarly, Ũsyn represents noisy

version of all bias vectors
∑M

i=1

∑t
s=1 xs,iys,i. Finally,

each agent resets Wi and Ui so that they can be used to
accumulate new local data for the next batch.

Privacy Protocol. The key component of P is a distributed
version of the classic tree-based algorithm, which was orig-
inally designed for continual release of private sum statis-
tics (Chan et al., 2011; Dwork et al., 2010). That is, given
a stream of (multivariate) data γ=(γ1, . . . , γK), one aims
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Figure 1: Illustration of the tree-based algorithm (Chan et al.,
2011). Each leaf node is the stream data and each internal node
is a p-sum Σ[i, j] =

∑j
s=i γs. The green node corresponds to the

newly computed p-sum at each k, i.e., αik in Algorithm 2. For
private prefix-sum s7, it sums nodes (p-sums) 4, 6, 7 only.

to release sk =
∑k

l=1 γl privately for all k ∈ [K]. The
tree-based mechanism constructs a complete binary tree T
in online manner. The leaf nodes contain data γ1 to γK ,
and internal nodes contain the sum of all leaf nodes in its
sub-tree, see Fig. 1 for an illustration. Our privacy proto-
col P =(R,S,A) breaks down the classic mechanism of
releasing and aggregating p-sums into a local randomizer
R at each agent and an analyzer A at the server, separately,
while allowing for a possible shuffler in between to amplify
privacy. For each k, the local randomizer R at each agent
computes and releases the noisy p-sum to a third-party S
(lines 4-7). S can either be a shuffler that permutes the data
uniformly at random (for SDP) or can simply be an iden-
tity mapping (for silo-level LDP). It receives a total of M
noisy p-sums, one from each agent, and sends them to the
central server. The analyzer A at the server first adds these
M new noisy p-sums to synchronize them (line 13). It then
privately releases the synchronized prefix sum by adding
up all relevant synchronized p-sums as discussed in above
paragraph (line 14). Finally, we employ P to Algorithm 1
by observing that local data γk,i for batch k and agent i
consists of bias vectors γbias

k,i =
∑kB

t=(k−1)B+1 xt,iyt,i and

covariance matrices γcov
k,i =

∑kB
t=(k−1)B+1 xt,ix

⊤
t,i, which

are stored in Ui and Wi respectively. We denote the random-
izer and analyzer for bias vectors asRbias and Abias, and for
covariance matrices asRcov and Acov in Algorithm 1.

4. Theoretical Results
We now show our generic framework (Algorithms 1 and 2)
enables us to obtain performance guarantees for federated
LCBs under both silo-level LDP and SDP in a unified way.

Federated LCBs under Silo-level LDP. We first present
performance under silo-level LDP, hence fixing the existing
privacy, regret and communication issues of the state-of-
the-art algorithm in Dubey & Pentland (2020). The key
idea is to inject Gaussian noise with proper variance (σ2

0

in Algorithm 2) when releasing a p-sum such that all the
released p-sums up to any k ∈ [K] is (ε, δ)-DP for all agent
i. Hence, by the definition (see Appendix B), it achieves
silo-level LDP. Note that in this case, there is no shuffler,

which is equivalent to the fact that the third party S in P is
simply an identity mapping, denoted by I.
Theorem 4.1 (Performance under silo-level LDP, informal).
Let Algorithm 1 be equipped with P = (R, I,A) by Algo-
rithm 2. Then, there exist parameters, e.g., B and σ2

0 such
that Algorithm 1 is (ε, δ)-silo-level LDP and achieves high

probability regret of Õ
(
d
√
MT +

√
T (Md)3/4 log1/4(1/δ)√

ε

)
with total

√
MT synchronizations.

Remark 4.2 (Comparisons with related work). First, we
avoid privacy leakage and gap in communication analysis
of Dubey & Pentland (2020) by adopting data-independent
synchronization rule. This, however, leads to an O(

√
T )

communication cost rather than the reported O(log T ) cost
of Dubey & Pentland (2020). It remains open to design a
data-adaptive communication schedule with a correct per-
formance analysis. We also show that privacy cost scales as
O(M3/4) with number of agents M , correcting the reported√
M scaling of Dubey & Pentland (2020). Next, as shown

in Shariff & Sheffet (2018); Chowdhury & Zhou (2022b),
the total regret for a super single agent running MT rounds
is Õ

(
d
√
MT +

√
MT d3/4 log1/4(1/δ)√

ε

)
. Thus, we observe

that the privacy cost of federated LCBs under silo-level LDP
is a multiplicative M1/4 factor higher than a super agent
under central DP. This observation motivates us to consider
SDP in the following.

Federated LCBs under SDP. We now close the above
M1/4 gap in the privacy cost under silo-level LDP compared
to that achieved by a super single agent (with a truseted
central server). To do so, we consider federated LCBs under
SDP, which still enjoys the nice feature of silo-level LDP
that the central server is not trusted. Thanks to our flexible
privacy protocol P , the only change needed compared to
silo-level LDP is the introduction of a shuffler S to amplify
privacy and adjustment of the privacy noise σ2

0 accordingly.
Theorem 4.3 (Performance under SDP, informal). Let Al-
gorithm 1 be equipped with P = (R,S,A) by Algorithm 2.
Then, there exist parameters, e.g., B and σ2

0 such that Al-
gorithm 1 is (ε, δ)-SDP and achieves high probability re-

gret of Õ
(
d
√
MT +d3/4

√
MT log3/4(Mκ/δ)√

ε

)
with total

√
MT synchronizations.

Remark 4.4. This asserts that the privacy cost of federated
LCBs under SDP matches that of a super single agent under
central DP (up to a log factor in T,M, δ). A crucial observa-
tion here is that the above result doesn’t directly follow from
existing amplification lemmas (e.g., Feldman et al. (2022)),
as they can only handle the case where each DP mechanism
is of data size n = 1. This is not the case as each silo has a
stream of T datapoints, see Appendix F for details.
In Appendix G, we support our theoretical results with nu-
merical evaluations over contextual bandit instances gener-
ated from both synthetic and real-life data.
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Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A.,
Talwar, K., and Thakurta, A. Amplification by shuffling:
From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 2468–2479. SIAM,
2019.

Feldman, V., McMillan, A., and Talwar, K. Hiding among
the clones: A simple and nearly optimal analysis of pri-
vacy amplification by shuffling. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science
(FOCS), pp. 954–964. IEEE, 2022.

Garcelon, E., Chaudhuri, K., Perchet, V., and Pirotta, M. Pri-
vacy amplification via shuffling for linear contextual ban-
dits. In International Conference on Algorithmic Learn-
ing Theory, pp. 381–407. PMLR, 2022.

Hanna, O. A., Girgis, A. M., Fragouli, C., and Diggavi, S.
Differentially private stochastic linear bandits:(almost)
for free. arXiv preprint arXiv:2207.03445, 2022.

He, J., Wang, T., Min, Y., and Gu, Q. A simple and provably
efficient algorithm for asynchronous federated contextual
linear bandits. arXiv preprint arXiv:2207.03106, 2022.

Huang, R., Wu, W., Yang, J., and Shen, C. Federated
linear contextual bandits. Advances in Neural Information
Processing Systems, 34:27057–27068, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Li, F., Zhou, X., and Ji, B. Differentially private linear
bandits with partial distributed feedback. arXiv preprint
arXiv:2207.05827, 2022.

Li, F., Zhou, X., and Ji, B. (private) kernelized bandits with
distributed biased feedback. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 7(1):
1–47, 2023.

Liu, Z., Hu, S., Wu, Z. S., and Smith, V. On privacy and
personalization in cross-silo federated learning. arXiv
preprint arXiv:2206.07902, 2022.

5



Lowy, A. and Razaviyayn, M. Private federated learning
without a trusted server: Optimal algorithms for convex
losses. arXiv preprint arXiv:2106.09779, 2021.

Lowy, A., Ghafelebashi, A., and Razaviyayn, M. Private
non-convex federated learning without a trusted server.
arXiv preprint arXiv:2203.06735, 2022.

Mishra, N. and Thakurta, A. (nearly) optimal differentially
private stochastic multi-arm bandits. In Proceedings of
the Thirty-First Conference on Uncertainty in Artificial
Intelligence, pp. 592–601, 2015.

Qin, T. and Liu, T. Introducing LETOR 4.0 datasets.
CoRR, abs/1306.2597, 2013. URL http://arxiv.org/

abs/1306.2597.

Ren, W., Zhou, X., Liu, J., and Shroff, N. B. Multi-armed
bandits with local differential privacy. arXiv preprint
arXiv:2007.03121, 2020.

Sajed, T. and Sheffet, O. An optimal private stochastic-
mab algorithm based on optimal private stopping rule.
In International Conference on Machine Learning, pp.
5579–5588. PMLR, 2019.

Shariff, R. and Sheffet, O. Differentially private contextual
linear bandits. Advances in Neural Information Process-
ing Systems, 31, 2018.

Steinke, T. Composition of differential privacy & pri-
vacy amplification by subsampling. arXiv preprint
arXiv:2210.00597, 2022.

Tenenbaum, J., Kaplan, H., Mansour, Y., and Stemmer, U.
Differentially private multi-armed bandits in the shuf-
fle model. Advances in Neural Information Processing
Systems, 34, 2021.

Tenenbaum, J., Kaplan, H., Mansour, Y., and Stemmer, U.
Concurrent shuffle differential privacy under continual
observation. arXiv preprint arXiv:2301.12535, 2023.

Vaswani, S., Mehrabian, A., Durand, A., and Kveton, B.
Old dog learns new tricks: Randomized ucb for bandit
problems. In International Conference on Artificial Intel-
ligence and Statistics, pp. 1988–1998. PMLR, 2020.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Wang, Y., Hu, J., Chen, X., and Wang, L. Distributed bandit
learning: How much communication is needed to achieve
(near) optimal regret. ICLR, 2020.

Zheng, K., Cai, T., Huang, W., Li, Z., and Wang, L. Lo-
cally differentially private (contextual) bandits learning.
Advances in Neural Information Processing Systems, 33:
12300–12310, 2020.

Zhou, X. and Tan, J. Local differential privacy for bayesian
optimization. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(12):11152–11159, May 2021.

6

http://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1306.2597


A. Related Work
Private bandit learning has recently received increasing attention under various notion of DP. For multi-armed bandits
(MAB) where rewards are the sensitive data, different DP models including the central model (Mishra & Thakurta, 2015;
Azize & Basu, 2022; Sajed & Sheffet, 2019), local model (Ren et al., 2020) and distributed model (Chowdhury & Zhou,
2022a; Tenenbaum et al., 2021) have been studied. Among them, we note that Chowdhury & Zhou (2022a) also presents
optimal private regret bounds under the above three DP models while only relying on discrete privacy noise, hence avoiding
the privacy leakage of continuous privacy noise on finite computers due to floating point arithmetic. For linear bandits
(without contexts protection), Li et al. (2022) establishes the first near-optimal private regret bounds for central, local, and
shuffle models of approximate DP. The same problem has also been studied under pure-DP in Hanna et al. (2022). In the
specific case of linear contextual bandits, where both the contexts and rewards need to be protected, there are recent line of
work under the central (Shariff & Sheffet, 2018), local (Zheng et al., 2020) and shuffle model (Chowdhury & Zhou, 2022b;
Garcelon et al., 2022; Tenenbaum et al., 2023) of DP. Private bandit learning has also been studied beyond linear settings,
such as kernel bandits (Zhou & Tan, 2021; Dubey, 2021; Li et al., 2023).

All the above papers consider learning by a single agent. To the best of our knowledge, Dubey & Pentland (2020) is the first
to consider cross-silo federated linear contextual bandits (LCBs). Non-private federated or distributed LCBs have also been
well studied (Wang et al., 2020; He et al., 2022; Huang et al., 2021). One common goal is to match the regret achieved by a
super single agent that plays MT rounds while keeping communication among agents as low as possible. Our work shares
the same spirit in that we aim to match the regret achieved by a super single agent under differential privacy.

Broadly speaking, our work also draws inspiration from recent advances in private cross-silo federated supervised learn-
ing (Lowy & Razaviyayn, 2021; Liu et al., 2022). In particular, our silo-level local and shuffle DP definitions for federated
LCBs in the main paper can be viewed as counterparts of the ones proposed for cross-silo federated supervised learning (see,
e.g., Lowy & Razaviyayn (2021)).

B. Formal Definitions of Silo-level LDP and SDP
We formally introduce differential privacy in cross-silo federated contextual bandits. Let a dataset Di at each silo i be given
by a sequence of T unique users U1,i, . . . , UT,i. Each user Ut,i is identified by her context information ct,i as well as reward
responses she would give to all possible actions recommended to her. We say two datasets Di and D′

i at silo i are adjacent if
they differ exactly in one participating user, i.e., Uτ,i ̸= U ′

τ,i for some τ ∈ [T ] and Us,i = U ′
s,i for all s ̸= τ .

Silo-level local differential privacy (LDP). Consider a multi-round, cross-silo federated learning algorithm Q. At each
round t, each silo i communicates a randomized message Zt

i of its data Di to the server, which may depend (due to
collaboration) on previous randomized messages Z1

j , . . . , Z
t−1
j from all other silos j ̸= i. We allow Zt

i to be empty if there
is no communication at round t. Let Zi = (Z1

i , . . . , Z
T
i ) denote the full transcript of silo i’s communications with the

server over T rounds and Qi the induced local mechanism in this process. Note that Zi is a realization of random messages
generated according to the local mechanism Qi. We denote by Z−i = (Z1, . . . , Zi−1, Zi+1, . . . , ZM ) the full transcripts of
all but silo i. We assume that Zi is conditionally independent of Dj for all j ̸= i given Di and Z−i. With this notation, we
have the following definition of silo-level LDP.

Definition B.1 (Silo-level LDP). A cross-silo federated learning algorithmQ with M silos is said to be (εi, δi)i∈M silo-level
LDP if for each silo i∈ [M ], it holds that

P
[
Qi(Zi∈Ei|Di,Z−i)

]
≤eεiP

[
Qi(Zi∈Ei|D′

i,Z−i)
]
+δi ,

for all adjacent datasets Di and D′
i, and for all events Ei in the range of Qi. If εi = ε and δi = δ for all i ∈ [M ], we simply

say Q is (ε, δ)-silo-level LDP.

Roughly speaking, a silo-level LDP algorithm protects the privacy of each individual user (e.g., patient) within each silo
in the sense that an adversary (which could either be the central server or other silos) cannot infer too much about any
individual’s sensitive information (e.g., context and reward) or determine whether an individual participated in the learning
process.

Remark B.2 (Federated DP vs. Silo-level LDP). Dubey & Pentland (2020) consider a privacy notion called Federated DP

This is indeed a notion of item-level DP. It appears under different names in prior work, e.g., silo-specific sample-level DP (Liu et al.,
2022), inter-silo record-level DP (Lowy & Razaviyayn, 2021).
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(Fed-DP in short). As summarized in (Dubey & Pentland, 2020), Fed-DP requires “the action chosen by any agent must be
sufficiently impervious (in probability) to any single pair (x, y) from any other agent”. Both silo-level LDP and Fed-DP
are item-level DP as the neighboring relationship is defined by differing in one participating user. The key here is to note
that silo-level DP implies Fed-DP by the post-processing property of DP, and thus it is a stronger notion of privacy. In
fact, Dubey & Pentland (2020) claim to achieve Fed-DP by relying on privatizing the communicated data from each silo.
However, as we have seen in Section 2, its proposed algorithm fails to privatize the adaptive synchronization schedule,
which is the key reason behind privacy leakage in their algorithm.

Shuffle differential privacy (SDP). Next, we consider the notion of SDP (Cheu et al., 2019), which builds upon a trusted
third-party (shuffler) to amplify privacy. This provides us with the possibility to achieve a better regret compared to the one
under silo-level LDP while still without a trusted server. Under the shuffle model of DP in FL, each silo i ∈ [M ] first applies
a local randomizerR to its raw local data and sends the randomized output to a shuffler S . The shuffler S permutes all the
messages from all M silos uniformly at random and sends those to the central server. Roughly speaking, SDP requires all
the messages sent by the shuffler to be private (“indistinguishable”) with respect to a single user change among all MT
users. This item-level DP is defined formally as follows.

Definition B.3 (SDP). Consider a cross-silo federated learning algorithm Q that induces a (randomized) mechanismM
whose output is the collection of all messages sent by the shuffler during the entire learning process. Then, the algorithm Q
is said to be (ε, δ)-SDP if

P
[
M(D) ∈ E

]
≤ eε P

[
M(D′) ∈ E

]
+ δ ,

for all E in the range of M and for all adjacent datasets D = (D1, . . . , DM ) and D′ = (D′
1, . . . , D

′
M ) such that∑M

i=1

∑T
t=1 1{Ut,i ̸=U ′

t,i} = 1.

C. More Discussions on Gaps in SOTA
In this section, we provide more details on the current gaps in Dubey & Pentland (2020), especially on privacy violation and
communication cost. It turns out that both gaps come from the fact that an adaptive communication schedule is employed
in Dubey & Pentland (2020).

C.1. More on violation of silo-level LDP

As shown in the main paper, Algorithm 1 in (Dubey & Pentland, 2020) does not satisfy silo-level LDP. To give a more
concrete illustration of privacy leakage, we now specify the form of f , local data Xi and synchronized data Z in (1)
according to (Dubey & Pentland, 2020). In particular, a communication is triggered at round t if for any silo i, it holds that

(t−t′) log

det
(
Z+

∑t
s=t′+1 xs,ix

⊤
s,i+λminI

)
det (Z+λminI)

>D, (2)

where t′ is the latest synchronization time before t, Z is all synchronized (private) covariance matrices up to time t′,
λmin > 0 is some regularization constant (which depends on privacy budgets ε, δ) and D > 0 is some suitable threshold
(which depends on number of silos M ).

With the above explicit form in hand, we can give a more concrete discussion of Example 2.1. A communication is triggered at
round t = 1 if det

(
x1,mx⊤

1,m+λminI
)
> det (λminI) e

D holds for any silo m. This implies that (λmin+∥x1,m∥2)λd−1
min >

eDλd
min, which, in turn, yields ∥x1,m∥2 > λmin(e

D − 1) =: C. Now, if ∥x1,j∥2 ≤ C, then silo j immediately knows that
∥x1,i∥2 > C, where C is a known constant. Since x1,i contains the context information of the user (Alice), this norm
condition could immediately reveal that some specific features in the context vector are active (e.g., Alice has both diabetes
and heart disease), thus leaking Alice’s private and sensitive information to silo j.

Remark C.1. The above result has two implications: (i) the current proof strategy for Fed-DP guarantee in (Dubey &
Pentland, 2020) does not hold since it essentially relies on the post-processing of DP through silo-level LDP; (ii) Fed-DP
could fail to handle reasonable adversary model in cross-silo federated LCBs. That is, even if Algorithm 1 in (Dubey &
Pentland, 2020) satisfies Fed-DP, it still cannot protect Alice’s information from being inferred by a malicious silo (which
is a typical adversary model in cross-silo FL). Thus, we believe that silo-level LDP is a more proper privacy notion for
cross-silo federated LCBs.

8



C.2. More on violation of Fed-DP

We first utilize our toy example to give a high-level idea of the privacy violation of Fed-DP. To see this, recall the definition
of Fed-DP from Remark B.2. In the context of Example 2.1, it translates to silo j selecting similar actions for its users when
a single user in silo i changes. Specifically, if the first user in silo i changes from Alice to say, Tracy, Fed-DP mandates that
all T actions suggested by silo j to its local T users remain “indistinguishable”. This, in turn, implies that the communicated
data from silo i must remain “indistinguishable” at silo j for each t∈ [T ]. This is because the actions at silo j are chosen
deterministically based on its local data as well as communicated data from silo i, and the local data at silo j remains
unchanged. However, in Algorithm 1 of (Dubey & Pentland, 2020), the communicated data from silo i is not guaranteed to
remain “indistinguishable” as synchronization depends on non-private local data (e.g. Xi in (1)). In other words, without
additional privacy noise added to Xi in (1), the change from Alice to Tracy could affect the existence of synchronization at
round t ≥ 1 a lot. Consequently, under these two neighboring situations (e.g. Alice vs. Tracy), the communicated data from
silo i could differ significantly at round t+1. This holds true even if silo i injects noise while sending out its synchronization
messages, i.e., privatizing communication messages/data only (which is employed in the proposed algorithm in Dubey &
Pentland (2020)). As a result, the action chosen at round t+ 1 in silo j can be totally different, which violates the Fed-DP
definition.

To give a more concrete illustration, let us define mi,j as the message/data sent from silo i to silo j after round t = 1.
Suppose in the case of Alice, there is no synchronization and hence mi,j = 0. On the other hand, in the case of Tracy
(i.e., the first user at silo i changes from Alice to Tracy), suppose synchronization is triggered by silo i via rule (1) due to
Tracy’s data. Then, according to (Dubey & Pentland, 2020), mi,j = x1,iy1,i +N (consider bias vector here), where N
is the injected noise when silo i sends out its data. Now, based on the requirement of Fed-DP, the recommended action
at silo j in round t = 2 needs to be “similar” or “indistinguishable” in probability under the change from Alice to Tracy.
Note that silo j chooses its action at round t = 2 based on its local data (which is unchanged) and mi,j , via deterministic
selection rule (i.e., LinUCB) in Algorithm 1 of (Dubey & Pentland, 2020). Thus, Fed-DP essentially requires mi,j to be
close in probability when Alice changes to Tracy, which is definitely not the case (i.e., 0 vs. x1,iy1,i +N ). Thus, Algorithm
1 in (Dubey & Pentland, 2020) also fails Fed-DP.

C.3. More on communication cost analysis

The current analysis in (Dubey & Pentland, 2020) (cf. Proposition 5) for communication cost (i.e., how many rounds of
communication within T ) essentially follows the approach in the non-private work (Wang et al., 2020) (cf. proof of Theorem
4). However, due to additional privacy noise injected into the communicated data, one key step of the approach in (Wang
et al., 2020) fails in the private case. In the following, we first point out the issue using notations in (Dubey & Pentland,
2020).

The key issue in its current proof of Proposition 5 in (Dubey & Pentland, 2020) is that

log
det(Si,t+n′)

det(Si,t)
>

D

n′ (3)

which appears right above Eq. 4 in (Dubey & Pentland, 2020) does not hold. More specifically, [t, t+ n′] is the i-th interval
between two communication steps and Si,t,Si,t+n′ are corresponding synchronized private matrices. At the time t+ n′,
we know (2) is satisfied by some silo (say j ∈ [M ]), since there is a new synchronization. In the non-private case, Si,t+n′

simply includes some additional local covariance matrices from silos other than j, which are positive semi-definite (PSD).
As a result, (3) holds. However, in the private case, Si,t+n′ includes the private messages from silos other than j, which
may not be positive semi-definite (PSD), since there are some new covariance matrices as well as new Gaussian privacy
noise (which could be negative definite). Thus, (3) may not hold anymore.

D. A Generic Regret Analysis for Algorithm 1
In this section, we first establish a generic regret bound for Algorithm 1 under sub-Gaussian noise condition, i.e., Lemma D.5.
To this end, let us first give the following notations. Fix B, T ∈ N, we let K = T/B be the total number of communication
steps. For all i ∈ [M ] and all t = kB, k ∈ [K], we let Nt,i = W̃t,i −

∑t
s=1 xs,ix

⊤
s,i and nt,i = Ũt,i −

∑t
s=1 xs,iys,i

be the cumulative injected noise up to the k-th communication by agent i. We further let Ht := λId +
∑

i∈[M ] Nt,i and
ht :=

∑
i∈[M ] nt,i.

Assumption D.1 (Boundedness (Shariff & Sheffet, 2018; Chowdhury & Zhou, 2022b)). The rewards are bounded, i.e.,
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yt,i ∈ [0, 1] for all t ∈ [T ] and i ∈ [M ]. Moreover, the parameter vector and the context-action features have bounded
norms, i.e., ∥θ∗∥2 ≤ 1 and supc,a ∥ϕi(c, a)∥2 ≤ 1 for all i ∈ [M ].

Assumption D.2 (Regularity). Fix any α ∈ (0, 1], with probability at least 1− α, we have Ht is positive definite and there
exist constants λmax, λmin and ν depending on α such that for all t = kB, k ∈ [K]

∥Ht∥ ≤ λmax,
∥∥H−1

t

∥∥ ≤ 1/λmin, ∥ht∥H−1
t
≤ ν.

With the above regularity assumption and the boundedness in Assumption D.1, we fist establish the following general regret
bound of Algorithm 1, which can be viewed as a direct generalization of the results in (Shariff & Sheffet, 2018; Chowdhury
& Zhou, 2022b) to the federated case.

Lemma D.3. Let Assumptions D.2 and D.1 hold. Fix any α ∈ (0, 1], there exist choices of λ and {βt,i}t∈[T ],i∈[M ] such that,
with probability at least 1− α, the group regret of Algorithm 1 satisfies

RegM (T ) = O

(
βT

√
dMT log

(
1 +

MT

dλmin

))
+O

(
M ·B · d log

(
1 +

MT

dλmin

))
,

where βT :=

√
2 log

(
2
α

)
+ d log

(
1 + MT

dλmin

)
+
√
λmax + ν.

Lemma D.5 is a corollary of the above result, which holds by bounding λmax, λmin, ν under sub-Gaussian privacy noise.

Assumption D.4 (sub-Gaussian private noise). There exist constants σ̃1 and σ̃2 such that for all t = kB, k ∈ [K]: (i)∑M
i=1 nt,i is a random vector whose entries are independent, mean zero, sub-Gaussian with variance at most σ̃2

1 , and (ii)∑M
i=1 Nt,i is a random symmetric matrix whose entries on and above the diagonal are independent sub-Gaussian random

variables with variance at most σ̃2
2 . Let σ2=max{σ̃2

1 , σ̃
2
2}.

Now, we are ready to state Lemma D.5 as follows.

Lemma D.5 (A generic regret bound of Algorithm 1). Let Assumptions D.4 and D.1 hold. Fix time horizon
T ∈ N, batch size B ∈ [T ], confidence level α ∈ (0, 1]. Set λ = Θ(max{1, σ(

√
d +

√
log(T/(Bα))}) and

βt,i =
√

2 log
(
2
α

)
+ d log

(
1 + Mt

dλ

)
+
√
λ for all i ∈ [M ]. Then, Algorithm 1 achieves group regret

RegM (T ) = O
(
dMB log T + d

√
MT log(MT/α)

)
+O

(√
σMT log(MT )d3/4 log1/4(T/(Bα))

)
with probability at least 1− α.

D.1. Proofs

Proof of Lemma D.3. We divide the proof into the following six steps. Let E be the event given in Assumption D.2, which
holds with probability at least 1− α under Assumption D.2. In the following, we condition on the event E .

Step 1: Concentration. In this step, we will show that with high probability,
∥∥∥θ∗ − θ̂t,i

∥∥∥
Vt,i

≤ βt,i for all i ∈ [M ]. Fix an

agent i ∈ [M ] and t ∈ [T ], let tlast be the latest communication round of all agents before t. By the update rule, we have

θ̂t,i = V −1
t,i (Ũsyn + Ui)

= V −1
t,i

 M∑
j=1

tlast∑
s=1

xs,jys,j +

M∑
j=1

ntlast,j +

t−1∑
s=tlast+1

xs,iys,i


=

λI +

M∑
j=1

tlast∑
s=1

xs,jx
⊤
s,j +

M∑
j=1

Ntlast,j +

t−1∑
s=tlast+1

xs,ix
⊤
s,i

−1 M∑
j=1

tlast∑
s=1

xs,jys,j +

M∑
j=1

ntlast,j +

t−1∑
s=tlast+1

xs,iys,i

 .

By the linear reward function ys,j = ⟨xs,j , θ
∗⟩+ ηs,j for all j ∈ [M ] and elementary algebra, we have

θ∗ − θ̂t,i = V −1
t,i

Htlastθ
∗ −

M∑
j=1

tlast∑
s=1

xs,jηs,j −
t−1∑

s=tlast+1

xs,iηs,i − htlast

 ,

where we recall that Htlast = λI +
∑M

j=1 Ntlast,j and htlast =
∑M

j=1 ntlast,j .
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Thus, multiplying both sides by V
1/2
t,i , yields∥∥∥θ∗ − θ̂t,i

∥∥∥
Vt,i

≤

∥∥∥∥∥∥
M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
V −1
t,i

+ ∥Htlastθ
∗∥V −1

t,i
+ ∥htlast∥V −1

t,i

(a)

≤

∥∥∥∥∥∥
M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
(Gt,i+λminI)−1

+ ∥θ∗∥Htlast
+ ∥htlast∥H−1

tlast

(b)

≤

∥∥∥∥∥∥
M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
(Gt,i+λminI)−1

+
√
λmax + ν

where (a) holds by Vt,i ⪰ Htlast and Vt,i ⪰ Gt,i + λminI with Gt,i :=
∑M

j=1

∑tlast
s=1 xs,jx

⊤
s,j +

∑t−1
s=tlast+1 xs,ix

⊤
s,i (i.e.,

non-private Gram matrix) under event E ; (b) holds by the boundedness of θ∗ and event E .

For the remaining first term, we can use self-normalized inequality (cf. Theorem 1 in (Abbasi-Yadkori et al., 2011)) with a
proper filtration. In particular, we have for any α ∈ (0, 1], with probability at least 1− α, for all t ∈ [T ]∥∥∥∥∥∥

M∑
j=1

tlast∑
s=1

xs,jηs,j +
t−1∑

s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
(Gt,i+λminI)−1

≤

√
2 log

(
1

α

)
+ log

(
det(Gt,i + λminI)

det(λminI)

)
.

Now, using the trace-determinant lemma (cf. Lemma 10 in (Abbasi-Yadkori et al., 2011)) and the boundedness condition on
∥xs,j∥ for all s ∈ [T ] and j ∈ [M ], we have

det(Gt,i + λminI) ≤
(
λmin +

Mt

d

)d

.

Putting everything together, we have with probability at least 1 − 2α, for all i ∈ [M ] and all t ∈ [T ],
∥∥∥θ∗ − θ̂m

∥∥∥
Vt,i

≤
βt,i = βt, where

βt :=

√
2 log

(
1

α

)
+ d log

(
1 +

Mt

dλmin

)
+
√
λmax + ν. (4)

Step 2: Per-step regret. With the above concentration result, based on our UCB policy for choosing the action, we have the
classic bound on the per-step regret rt,i, that is, with probability at least 1− 2α

rt,i = ⟨θ∗, x∗
t,i⟩ − ⟨θ∗, xt,i⟩

(a)
= ⟨θ∗, x∗

t,i⟩ − UCBt,i(x
∗
t,i) + UCBt,i(x

∗
t,i)− UCBt,i(xt,i) + UCBt,i(xt,i)− ⟨θ∗, xt,i⟩

(b)

≤ 0 + 0 + 2βt,i ∥xt,i∥V −1
t,i
≤ 2βT ∥xt,i∥V −1

t,i

where in (a), we let UCBt,i(x) := ⟨θ̂t,i, x⟩+ βt,i ∥x∥V −1
t,i

; (b) holds by the optimistic fact of UCB (from the concentration),
greedy action selection, and the concentration result again.

Step 3: Regret decomposition by good and bad epochs. In Algorithm 1, at the end of each synchronization time
t = kB for k ∈ [K], all the agents will communicate with the server by uploading private statistics and downloading
the aggregated ones from the server. We then divide time horizon T into epochs by the communication (sync) rounds.
In particular, the k-th epoch contains rounds between (tk−1, tk], where tk = kB is the k-th sync round. We define
Vk := λminI +

∑M
i=1

∑tk
t=1 xt,ix

⊤
t,i, i.e., all the data at the end of the k-th communication plus a regularizer. Then, we say

that the k-th epoch is a “good” epoch if det(Vk)
det(Vk−1)

≤ 2; otherwise it is a “bad” epoch. Thus, we can divide the group regret
into two terms:

RegM (T ) =
∑
i∈[M ]

∑
t∈good epochs

rt,i +
∑
i∈[M ]

∑
t∈bad epochs

rt,i.

In particular, by the i.i.d noise assumption across time and agents, one can simply construct the filtration sequentially across agents
and rounds, which enlarges the single-agent filtration by a factor of M .
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Step 4: Bound the regret in good epochs. To this end, we introduce an imaginary single agent that pulls all the MT actions
in the following order: x1,1,, x1,2, . . . , x1,M , x2,1, . . . , x2,M , . . . , xT,1, . . . , xT,M . We define a corresponding imaginary
design matrix V̄t,i = λminI +

∑
p<t,q∈[M ] xp,qx

⊤
p,q +

∑
p=t,q<i xp,qx

⊤
p,q, i.e., the design matrix right before xt,i. The key

reason behind this construction is that one can now use the standard result (i.e., the elliptical potential lemma (cf. Lemma 11
in (Abbasi-Yadkori et al., 2011))) to bound the summation of bonus terms, i.e.,

∑
t,i ∥xt,i∥V̄ −1

t,i
.

Suppose that t ∈ [T ] is within the k-th epoch. One key property we will use is that for all i, Vk ⪰ V̄t,i and Gt,i +
λminI ⪰ Vk−1, which simply holds by their definitions. This property enables us to see that for any t ∈ good epochs,
det(V̄t,i)/ det(Gt,i + λminI) ≤ 2. This is important since by the standard “determinant trick”, we have

∥xt,i∥(Gt,i+λminI)−1 ≤
√
2 ∥xt,i∥V̄ −1

t,i
. (5)

In particular, this follows from Lemma 12 in (Abbasi-Yadkori et al., 2011), that is, for two positive definite matrices
A,B ∈ Rd×d satisfying A ⪰ B, then for any x ∈ Rd, ∥x∥A ≤ ∥x∥B ·

√
det(A)/det(B). Note that here we also use

det(A) = 1/ det(A−1). Hence, we can bound the regret in good epochs as follows.∑
i∈[M ]

∑
t∈good epochs

rt,i
(a)

≤
∑
i∈[M ]

∑
t∈good epochs

min{2βT ∥xt,i∥V −1
t,i

, 1}

(b)

≤
∑
i∈[M ]

∑
t∈good epochs

min{2βT ∥xt,i∥(Gt,i+λminI)−1 , 1}

(c)

≤
∑
i∈[M ]

∑
t∈good epochs

min{2
√
2βT ∥xt,i∥V̄ −1

t,i
, 1}

(d)

≤
∑
i∈[M ]

∑
t∈good epochs

2
√
2βT min{∥xt,i∥V̄ −1

t,i
, 1}

≤
∑
i∈[M ]

∑
t∈[T ]

2
√
2βT min{∥xt,i∥V̄ −1

t,i
, 1}

(e)

≤ O

(
βT

√
dMT log

(
1 +

MT

dλmin

))
, (6)

where (a) holds by the per-step regret bound in Step 2 and the boundedness of reward; (b) follows from the fact that
Vt,i ⪰ Gt,i + λminI under event E ; (c) holds by (5) when t is in good epochs; (d) is true since βT ≥ 1; (e) holds by the
elliptical potential lemma (cf. Lemma 11 in (Abbasi-Yadkori et al., 2011)).

Step 5: Bound the regret in bad epochs. Let Tbad be the total number of rounds in all bad epochs. Thus, the total number
of bad rounds across all agents are M · Tbad. As a result, the cumulative group regret in all these bad rounds are upper
bounded by M · Tbad due to the to the boundedness of reward.

We are left to bound Tbad. All we need is to bound the Nbad – total number of bad epochs. Then, we have Tbad = Nbad ·B,
where B is the fixed batch size. To this end, recall that K = T/B and define Ψ := {k ∈ [K] : log det(Vk) −
log det(Vk−1) > log 2}, i.e., Nbad = |Ψ|. Thus, we have

log 2 · |Ψ| ≤
∑
k∈Ψ

log det(Vk)− log det(Vk−1) ≤
∑

k∈[K]

log det(Vk)− log det(Vk−1)

≤ d log

(
1 +

MT

dλmin

)
Hence, we have Nbad = |Ψ| ≤ d

log 2 log
(
1 + MT

dλmin

)
. Thus we can bound the regret in bad epochs as follows.∑

i∈[M ]

∑
t∈bad epochs

rt,i ≤M · Tbad = M ·B ·Nbad ≤M ·B · d

log 2
log

(
1 +

MT

dλmin

)
. (7)

Step 6: Putting everything together. Now, we substitute the total regret in good epochs given by (6) and total regret in bad
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epochs given by (7) into the total regret decomposition in Step 3, yields the final cumulative group regret

RegM (T ) = O

(
βT

√
dMT log

(
1 +

MT

dλmin

))
+O

(
M ·B · d log

(
1 +

MT

dλmin

))
,

where βT :=

√
2 log

(
1
α

)
+ d log

(
1 + MT

dλmin

)
+
√
λmax+ν. Finally, taking a union bound, we have the required result.

Now, we turn to the proof of Lemma D.5, which is an application of Lemma D.3 we just proved.

Proof of Lemma D.5. To prove the result, thanks to Lemma D.3, we only need to determine the three constants λmax, λmin

and ν under the sub-Gaussian private noise assumption in Assumption D.4. To this end, we resort to concentration bounds
for sub-Gaussian random vector and random matrix.

To start with, under (i) in Assumption D.4, by the concentration bound for the norm of a vector containing sub-Gaussian
entries (cf. Theorem 3.1.1 in (Vershynin, 2018)) and a union bound over all communication rounds, we have for all t = kB
where k = [T/B] and any α ∈ (0, 1], with probability at least 1− α/2, for some absolute constant c1,∥∥∥∥∥

M∑
i=1

nt,i

∥∥∥∥∥ = ∥ht∥ ≤ Σn := c1 · σ̃1 · (
√
d+

√
log(T/(αB)).

By (ii) in Assumption D.4, the concentration bound for the norm of a sub-Gaussian symmetric random matrix (cf. Corollary
4.4.8 in (Vershynin, 2018)) and a union bound over all communication rounds, we have for all t = kB where k = [T/B]
and any α ∈ (0, 1], with probability at least 1− α/2,∥∥∥∥∥

M∑
i=1

Nt,i

∥∥∥∥∥ ≤ ΣN := c2 · σ̃2 · (
√
d+

√
log(T/(αB))

for some absolute constant c2. Thus, if we choose λ = 2ΣN , we have ∥Ht∥ =
∥∥∥λId +∑M

i=1 Nt,i

∥∥∥ ≤ 3ΣN , i.e.,
λmax = 3ΣN , and λmin = ΣN . Finally, to determine ν, we note that

∥ht∥H−1
t
≤ 1√

λmin

∥ht∥ ≤ c ·
(
σ · (
√
d+

√
log(T/(αB))

)1/2
:= ν,

where σ = max{σ̃1, σ̃2}. The final regret bound is obtained by plugging the three values into the result given by
Lemma D.3.

E. Additional Details on Federated LCBs under Silo-Level LDP
In this section, we provide details for performance guarantees under silo-level LDP. In particular, we present the formal
version of the main theorem and its proof, as well as the alternative privacy protocol for silo-level LDP.

Theorem E.1 (Performance under silo-level LDP). Fix batch size B, privacy budgets ε>0, δ∈(0, 1). Let P=(R, I,A) be
a protocol given by Algorithm 2 with parameters σ2

0=8κ· (log(2/δ)+ε)
ε2 , where κ=1+log(T/B). Then, under Assumption D.1,

Algorithm 1 instantiated with P satisfies (ε, δ)-silo-level LDP. Moreover, for any α∈ (0, 1], there exist choices of λ and
{βt,i}t,i such that, with probability at least 1− α, it enjoys a group regret

RM (T )=O
(
dMB log T+d

√
MT log(MT/α)

)
+Õ

(
√
T
(Md)3/4 log1/4(1/δ)√

ε
log1/4

(
T

Bα

))
.

Corollary E.2. Setting B=
√
T/M , Algorithm 1 achieves Õ

(
d
√
MT +

√
T (Md)3/4 log1/4(1/δ)√

ε

)
group regret, with total

√
MT synchronizations under (ε, δ)-silo-level LDP.

Proof of Theorem E.1. Privacy. We only need to show that P in Algorithm 2 with a proper choice of σ0 satisfies (ε, δ)-DP
for all k ∈ [K], which implies that the full transcript of the communication is private in Algorithm 1 for any local agent i.

First, we recall that the (multi-variate) Gaussian mechanism satisfies zero-concentrated differential privacy (zCDP) (Bun
& Steinke, 2016). In particular, by Bun & Steinke (2016, Lemma 2.5), we have that computation of each node (p-sum)
in the tree is ρ-zCDP with ρ = L2

2σ2
0

. Then, from the construction of the binary tree in P , one can easily see that one
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single data point γi (for all i ∈ [K]) only impacts at most 1 + log(K) nodes. Thus, by adaptive composition of zCDP
(cf. Lemma 2.3 in Bun & Steinke (2016)), we have that the entire releasing of all p-sums is (1 + logK)ρ-zCDP. Finally,
we will use the conversion lemma from zCDP to approximated DP (cf. Proposition 1.3 in Bun & Steinke (2016)). In
particular, we have that ρ0-zCDP implies (ε = ρ0 + 2

√
ρ0 · log(1/δ), δ)-DP for all δ > 0. In other words, to achieve a

given (ε, δ)-DP, it suffices to achieve ρ0-zCDP with ρ0 = f(ε, δ) := (
√
log(1/δ) + ε −

√
log(1/δ))2. In our case, we

have ρ0 = (1 + log(K))ρ = (1 + log(K)) L2

2σ2
0

. Thus, we have σ2
0 = (1 + log(K)) L2

2ρ0
= (1 + log(K)) L2

2f(ε,δ) . To simply

it, one can lower bound f(ε, δ) by ε2

4 log(1/δ)+4ε (cf. Remark 15 in Steinke (2022)). Therefore, to obtain (ε, δ)-DP, it suffices

to set σ2
0 = 2 · L2 · (1+log(K))(log(1/δ)+ε)

ε2 . Note that there are two streams of data in Algorithm 1, and hence it suffices to
ensure that each of them is (ε/2, δ/2)-DP. This gives us the final noise level σ2

0 = 8 (1+log(K))(log(2/δ)+ε)
ε2 (note that by

boundedness assumption L = 1 in our case).

Regret. In order to establish the regret bound, thanks to Lemma D.5, we only need to determine the maximum noise level
in the learning process. Recall that σ2

0 = 8 · (1+log(K))(log(2/δ)+ε)
ε2 is the noise level for both streams (i.e., γbias and γcov).

Now, by the construction of binary tree in P , one can see that each prefix sum
∑

[1, k] only involves at most 1 + log(k) tree
nodes. Thus, we have that the noise level in nt,i and Nt,i are upper bounded by (1 + log(K))σ2

0 . As a result, the overall
noise level across all M silos is upper bounded by σ2

total = M(1 + log(K))σ2
0 . Finally, setting σ2 in Lemma D.5 to be the

noise level σ2
total , yields the required result.

F. Additional Details on Federated LCBs under SDP
In this section, we provide more detailed discussions on SDP and present the proof for Theorem F.1 (SDP via amplification
lemma) and Theorem F.3 (SDP via vector sum).

Theorem F.1 (Performance under SDP via amplification). Fix batch size B and let κ=1+log(T/B). Let P=(R,S,A)
be a protocol given by Algorithm 2. Then, under Assumption D.1, there exist constants C1, C2 > 0 such that for any
ε≤

√
κ

C1T
√
M

, δ≤ κ
C2T

, Algorithm 1 instantiated with P and σ2
0=O

(
2κ log(1/δ) log(κ/(δT )) log(Mκ/δ)

ε2M

)
, satisfies (ε, δ)-SDP.

Moreover, for any α ∈ (0, 1], there exist choices of λ and {βt,i}t,i such that, with a probability at least 1− α, it enjoys a
group regret

RM (T )=O
(
dMB log T+d

√
MT log(MT/α)

)
+Õ

(
d3/4
√
MT

log3/4(Mκ/δ)√
ε

log1/4
(

T

Bα

))
.

Corollary F.2. Setting B =
√
T/M , Algorithm 1 achieves Õ

(
d
√
MT +d3/4

√
MT log3/4(Mκ/δ)√

ε

)
group regret, with total

√
MT synchronizations under (ε, δ)-SDP.

Theorem F.3 (Performance under SDP via vector sum). Fix batch size B and let κ=1+log(T/B). Let PT
Vec be a privacy

protocol given by Algorithm 3. Then, under Assumption D.1, there exist parameter choices of PT
Vec such that for any

ε≤60
√
2κ log(2/δ) and δ≤1, Algorithm 1 instantiated with PT

Vec satisfies (ε, δ)-SDP. Moreover, for any α ∈ (0, 1], there
exist choices of λ and {βt,i}t,i such that, with a probability at least 1− α, it enjoys a group regret

RM (T )=O
(
dMB log T+d

√
MT log(MT/α)

)
+Õ

(
d3/4
√
MT

log3/4(κd2/δ)√
ε

log1/4
(

T

Bα

))
.

First, let us start with some general discussions.

Importance of communicating P-sums. For SDP, it is important to communicate P-sums rather than prefix sum. Note that
communicating noisy p-sums in our privacy protocol P rather than the noisy prefix sum (i.e., the sum from beginning as
done in (Dubey & Pentland, 2020)) plays a key role in achieving optimal regret with shuffling. To see this, both approaches
can guarantee silo-level LDP. By our new amplification lemma, privacy guarantee can be amplified by 1/

√
M in ε for each

of the K shuffled outputs, where K = T/B is total communication rounds. Now, if the prefix sum is released to the shuffler,
then any single data point participates in at most K shuffle mechanisms, which would blow up ε by a factor of O(

√
K) (by

advanced composition (Dwork et al., 2014)). This would eventually lead to a K1/4 factor blow up in regret due to privacy.
Similarly, if we apply PVec to the data points in the prefix sum, then again a single data point can participate in at most K
shuffled outputs.

On the other hand, if only noisy p-sums are released for shuffling at each communication round k ∈ [K] (as in our protocol
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P) or only the data points in each p-sum are used in PVec (as in our protocol in PT
Vec), then due to the binary-tree structure,

each data point only participates in at most logK shuffled mechanisms, which only leads to O(
√
logK) blow-up of ε;

hence allowing us to achieve the desired Õ(
√
MT ) regret scaling, and close the gap present under silo-level LDP.

F.1. Amplification lemma for SDP

We first formally introduce our new amplification lemma, which is the key to our analysis, as mentioned in the main paper.

The motivation for our new amplification result is two-fold: (i) Existing results on privacy amplification via shuffling
(e.g., (Feldman et al., 2022; Erlingsson et al., 2019; Cheu et al., 2019; Balle et al., 2019)) are only limited to the standard
LDP case, i.e., each local dataset has size n = 1, which is not applicable in our case where each silo runs a DP (rather
than LDP) mechanism over a dataset of size n = T ; (ii) Although a recent work (Lowy & Razaviyayn, 2021) establishes a
general amplification result for the case of n > 1, it introduces a very large value for the final δ that scales linearly with n
due to group privacy.

We first present the key intuition behind our new lemma. Essentially, as in (Lowy & Razaviyayn, 2021), we follow the nice
idea of hiding among the clones introduced in (Feldman et al., 2022). That is, the output from silo 2 to n can be similar to
that of silo 1 by the property of DP (i.e., creating clones). The key difference between n = 1 and n > 1 is that in the latter
case, the similarity distance between the output of silo 1 and j (j > 1) will be larger as in this case all n > 1 data points
among two silos could be different. To capture this, (Lowy & Razaviyayn, 2021) resorts to group privacy for general DP
local randomizers. However, group privacy for approximate DP will introduce a large value for δ. Thus, since we know that
each local randomizer in our case is the Gaussian mechanism, we can capture the similarity of outputs between silo 1 and j
(j > 1) by directly bounding the sensitivity. This helps to avoid the large value for the final δ. Specifically, we have the
following result, which can be viewed as a refinement of Theorem D.5 in (Lowy & Razaviyayn, 2021) when specified to the
Gaussian mechanism. We follow the notations in (Lowy & Razaviyayn, 2021) for easy comparison.

Lemma F.4 (Amplification lemma for Gaussian mechanism). Let X = (X1, · · · , XN ) ∈ XN×n be a distributed data
set, i.e., N silos each with n data points. Let r ∈ N and let R(i)

r (Z, ·) : Xn → Z := Rd be a Gaussian mechanism
with (εr0, δ

r
0)-DP, εr0 ∈ (0, 1), for all Z = Z

(1:N)
(1:r−1) ∈ Z

(r−1)×N and i ∈ [N ], where X is an arbitrary set. Suppose

for all i, maxany pair(X,X′)

∥∥∥R(i)
r (Z, X)−R(i)

r (Z, X ′)
∥∥∥ ≤ n ·maxadjacent pair(X,X′)

∥∥∥R(i)
r (Z, X)−R(i)

r (Z, X ′)
∥∥∥. Given

Z = Z
(1:N)
(1:r−1), consider the shuffled algorithm Ar

s : Xn×N ×Z(r−1)×N → ZN that first samples a random permutation

π of [N ] and then computes Zr = (Z
(1)
r , · · · , Z(N)

r ), where Z
(i)
r := R(i)

r (Z, Xπ(i)). Then, for any δ ∈ [0, 1] such that

εr0 ≤ 1
n ln

(
N

16 log(2/δ)

)
, Ar

s is (εr, δr)-DP, where

εr := ln

[
1 +

(
eε

r
0 − 1

eε
r
0 + 1

)(
8
√

enε
r
0 log(4/δ)√
N

+
8enε

r
0

N

)]

δr :=

(
eε

r
0 − 1

eε
r
0 + 1

)
δ +N(eε

r

+ 1)(1 + e−εr0/2)δr0.

If εr0 ≤ 1/n, choosing δ = Nnδr0 yields εr = O

(
εr0
√

log(1/(nNδr0))√
N

)
and δr = O(Nδr0), where δr0 ≤ 1/(Nn).

F.2. Vector Sum Protocol for SDP

One limitation of our first scheme for SDP is that the privacy guarantee holds only for very small values of ε. This comes
from two factors: one is due to the fact that standard 1/

√
M amplification result requires the local privacy budget to be

close to one; the other one comes from the fact that now the local dataset could be n = T , which further reduces the range
of valid ε.

This is because it mainly focuses on the lower bound, where one needs to be general to handle any mechanisms.
Note that standard Gaussian mechanism only applies to the regime when ε < 1. In our case, εr0 is often less than 1. Gaussian

mechanism also works for the regime ε > 1, in this case, σ2 ≈ 1/ε rather than 1/ε2. With minor adjustment of the final εr , our proof
can be extended.

This is w.l.o.g; one can easily generalize it to any upper bound that is a function of n.
In our application, each data point means a bias vector or a covariance matrix. See Appendix F.2 for a concrete example.
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Algorithm 3 PT
Vec, another privacy protocol used in Algorithm 1

1: Procedure: Local RandomizerR at each agent
2: // Input: stream data (γ1, . . . , γK), privacy budgets ε > 0, δ ∈ (0, 1]
3: for k=1, . . . ,K do
4: Express k in binary form: k =

∑
j Binj(k) · 2j

5: Find index of first one ik=min{j : Binj(k)=1}
6: Let Dk be the set of all data pointsthat contribute to αik =

∑
j<ik

αj + γk
7: Output yk = RVec(Dk) // apply RVec in Algorithm 4 to each data point

8: end for
9: Procedure: Analyzer A at server

10: // Input: stream data from S: {ȳk = (ȳk,1, . . . , ȳk,M )}k∈[K]

11: for k=1, . . . ,K do
12: Express k in binary and find index of first one ik
13: Add all messages from M agents: α̃ik = AVec(ȳk) // apply AVec in Algorithm 4

14: Output: s̃k =
∑

j:Binj(k)=1 α̃j

15: end for

In this section, we give the vector sum protocol in (Cheu et al., 2021) for easy reference. Let’s also give a concrete
example to illustrate how to combine Algorithm 4 with Algorithm 3. Consider a fixed k = 6. Then, for each agent, we
have αi6 = γ5 + γ6. That is, consider the case of summing bias vectors, for agent i ∈ [M ], γ5 =

∑5B
t=4B+1 xt,iyt,i and

γ6 =
∑6B

t=5B+1 xt,iyt,i. Then, D6 consists of 2B data points, each of which is a single bias vector. Now,Rvec and Avec (as
well the shuffler) work together to compute the noisy sum of 2B ·M data points. In particular, denote by Pvec the whole
process, then we have α̃i6 = Pvec(DM

6 ), where DM
6 is the data set that consists of n = 2B ·M data points, each of them is

a single bias vector.

Next, we present more details on the implementations, i.e., the parameter choices of g, b, p. Let’s consider k = 6 again as an
example. In this case, the total number of data points that participate in Pvec is n = 2B ·M . Then, according to the proof of
Theorem C.1 in (Chowdhury & Zhou, 2022b), we have

g = max{2
√
n, d, 4}, b =

24 · 104 · g2 ·
(
log
(

4·(d2+1)
δ

))2
ε2n

, p = 1/4.

Algorithm 4 Pvec, a shuffle protocol for vector summation (Cheu et al., 2021)

1: Input: Database of d-dimensional vectors X = (x1, · · · ,xn); privacy parameters ε, δ; L.
2: procedure: Local Randomizer Rvec(xi)
3: for j ∈ [d] do
4: Shift component to enforce non-negativity: wi,j ← xi,j + L
5: mj ← R1D(wi,j)
6: end for
7: Output labeled messages {(j,mj)}j∈[d]

8: end procedure
9: procedure: Analyzer Avec(y)

10: for j ∈ [d] do
11: Run analyzer on coordinate j’s messages zj ← A1D(yj)
12: Re-center: oj ← zj − n · L
13: end for
14: Output the vector of estimates o = (o1, · · · od)
15: end procedure

F.3. Proofs

First, we present proof of Theorem F.1.
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Algorithm 5 P1D, a shuffle protocol for summing scalars (Cheu et al., 2021)

1: Input: Scalar database X = (x1, · · ·xn) ∈ [0, L]n; g, b ∈ N; p ∈ (0, 1
2 ).

2: procedure: Local RandomizerR1D(xi)
3: x̄i ← ⌊xig/L⌋.
4: Sample rounding value η1 ∼ Ber(xig/L− x̄i).
5: Set x̂i ← x̄i + η1.
6: Sample privacy noise value η2 ∼ Bin(b, p).
7: Report yi ∈ {0, 1}g+b containing x̂i + η2 copies of 1 and g + b− (x̂i + η2) copies of 0.
8: end procedure
9: procedure: Analyzer A1D(S(y1, . . . ,yn))

10: Output estimator L
g ((
∑n

i=1

∑b+g
j=1(yi)j)− pbn).

11: end procedure

Proof of Theorem F.1. Privacy. In this proof, we directly work on approximate DP. By the boundedness assumption and
Gaussian mechanism, we have that with σ2

0 = 2L2 log(1.25/δ̂0)
ε̂20

, R in P is (ε̂0, δ̂0)-DP for each communication round

k ∈ [K] (provided ε̂0 ≤ 1) . Now, by our amplification lemma (Lemma F.4), we have that the shuffled output is (ε̂, δ̂)-DP

with ε̂ = O

(
ε̂0
√

log(1/(TMδ̂0))√
M

)
and δ̂ = O(Mδ̂0) (provided ε̂0 ≤ 1/T and δ̂0 ≤ 1/(MT )). Here we note that in our

case, N = M and n = T , where n = T follows from the fact that there exists αi in the tree that corresponds to the sum
of T data points. Moreover, since the same mechanism is run at all silos, shuffling-then-privatizing is the same as first
privatizing-then-shuffling the outputs. Next, we apply the advanced composition theorem (cf. Theorem 3.20 in (Dwork
et al., 2014)). In particular, by the binary tree structure, each data point involves only κ := 1 + log(K) times in the
output of R. Thus, to achieve (ε, δ)-DP, it suffices to have ε̂ = ε

2
√

2κ log(2/δ)
and δ̂ = δ

2κ . Using all these equations, we

can solve for ε̂0 = C1 · ε
√
M√

κ log(1/δ) log(κ/(δT ))
and δ̂0 = C2 · δ

Mκ , for some constants C1 > 0 and C2 > 0. To satisfy

the conditions on ε̂0 and δ̂0, we have ε ≤
√
κ

C1T
√
M

and δ ≤ κ
C2T

. With the choice of ε̂0 and δ̂0, we have the noise

variance σ2
0 = O

(
2L2β log(1/δ) log(κ/(δT )) log(Mκ/δ)

ε2M

)
. Thus, we can apply P to the bias and covariance terms (with L = 1),

respectively.

Regret. Again, we simply resort to our Lemma D.5 for the regret analysis. In particular, we only need to determine the
maximum noise level in the learning process. Note that σ2

0 = O
(

2L2κ log(1/δ) log(κ/(δT )) log(Mκ/δ)
ε2M

)
is the noise level

injected for both bias and covariance terms. Now, by the construction of the binary tree in P , one can see that each prefix
sum only involves at most 1 + log(k) tree nodes. As a result, the overall noise level across all M silos is upper bounded by
σ2

total = Mκσ2
0 . Finally, setting σ2 in Lemma D.5 to be the noise level σ2

total , yields the required result.

Now, we prove Theorem F.3.

Proof of Theorem F.3. Privacy. For each calculation of the noisy synchronized p-sum, there exist parameters for PVec such
that it satisfies (ε0, δ0)-SDP where ε0 ∈ (0, 15] and δ0 ∈ (0, 1/2) (see Lemma 3.1 in (Cheu et al., 2021) or Theorem 3.5
in (Chowdhury & Zhou, 2022b)). Then, by the binary tree structure, each single data point (bias vector or covariance matrix)
only participates in at most κ := 1 + log(K) runs of PVec. Thus, to achieve (ε, δ)-DP, it suffices to have ε0 = ε

2
√

2κ log(2/δ)

and δ0 = δ
2κ by advanced composition theorem. Thus, for any ε ∈ (0, 30

√
2κ log(2/δ)) and δ ∈ (0, 1), there exist

parameters for PVec such that the entire calculations of noisy p-sums are (ε, δ)-SDP. Since we have two streams of data (bias
and covariance), we finally have that for any ε ∈ (0, 60

√
2κ log(2/δ)) and δ ∈ (0, 1), there exist parameters for PVec such

that Algorithm 1 with PT
Vec satisfies (ε, δ)-SDP.

Regret. By the same analysis in the proof of Theorem 3.5 in (Chowdhury & Zhou, 2022b), the injected noise for each
calculation of the noisy synchronized p-sum is sub-Gaussian with the variance being at most σ̂2 = O

(
log2(d2/δ0)

ε20

)
=

O
(

κ log(1/δ) log2(d2κ/δ)
ε2

)
. Now, by the binary tree structure, each prefix sum only involves at most κ p-sums. Hence, the
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overall noise level is upper bounded by σ2
total = κσ̂2. Finally, setting σ2 in Lemma D.5 to be the noise level σ2

total , yields the
required result.

Now, we provide proof of amplification Lemma F.4 for completeness. We follow the same idea as in (Feldman et al., 2022)
and (Lowy & Razaviyayn, 2021). For easy comparison, we use the same notations as in (Lowy & Razaviyayn, 2021) and
highlighted the key difference using color text.

Proof of Lemma F.4. Let X0,X1 ∈ Xn×N be adjacent distributed data sets (i.e.
∑N

i=1

∑n
j=1 1{xi,j ̸=xi,j} = 1). As-

sume WLOG that X0 = (X0
1 , X2, · · · , XN ) and X1 = (X1

1 , X2, · · · , XN ), where X0
1 = (x1,0, x1,2, · · · , x1,n) ̸=

(x1,1, x1,2, · · · , x1,n). We can also assume WLOG that Xj /∈ {X0
1 , X

1
1} for all j ∈ {2, · · · , N} by re-defining X andR(i)

r

if necessary.

Fix i ∈ [N ], r ∈ [R],Z = Z1:r−1 = Z
(1:N)
(1:r−1) ∈ Z

(r−1)×N , denote R(X) := R(i)
r (Z, X) for X ∈ Xn, and As(X) :=

Ar
s(Z1:r−1,X). Draw π uniformly from the set of permutations of [N ]. Now, sinceR is (εr0, δ

r
0)-DP,R(X1

1 ) ≃
(εr0,δ

r
0)
R(X0

1 ),

so by Lowy & Razaviyayn (2021, Lemma D.12), there exists a local randomizerR′ such thatR′(X1
1 ) ≃

(εr0,0)
R(X0

1 ) and

TV (R′(X1
1 ),R(X1

1 )) ⩽ δr0.

Hence, by Lowy & Razaviyayn (2021, Lemma D.8), there exist distributions U(X0
1 ) and U(X1

1 ) such that

R(X0
1 ) =

eε
r
0

eε
r
0 + 1

U(X0
1 ) +

1

eε
r
0 + 1

U(X1
1 ) (8)

and

R′(X1
1 ) =

1

eε
r
0 + 1

U(X0
1 ) +

eε
r
0

eε
r
0 + 1

U(X1
1 ). (9)

Here, we diverge from the proof in (Lowy & Razaviyayn, 2021). We denote ε̃0 := nεr0 and δ̃0 := δr0. Then, by the
assumption of R(X), for any X , we have R(X) ≃

(ε̃0,δ̃0)
R(X0

1 )) and R(X) ≃
(ε̃0,δ̃0)

R(X1
1 )). This is because by the

assumption, when the dataset changes from any X to X0
1 (or X1

1 ), the total change in terms of l2 norm can be n times that
under an adjacent pair. Thus, one has to scale the εr0 by n while keeping the same δr0 .

Now, we resume the same idea as in (Lowy & Razaviyayn, 2021). By convexity of hockey-stick divergence and the above
result, we have R(X) ≃

(ε̃0,δ̃0)

1
2 (R(X

0
1 ) + R(X1

1 )) := ρ for all X ∈ Xn. That is, R is (ε̃0, δ̃0) deletion group DP for

groups of size n with reference distribution ρ. Thus, by Lowy & Razaviyayn (2021, Lemma D.11), we have that there
exists a local randomizer R′′ such that R′′(X) and ρ are (ε̃0, 0) indistinguishable and TV (R′′(X),R(X)) ⩽ δ̃0 for all
X. Then by the definition of (ε̃0, 0) indistinguishability, for all X there exists a “left-over” distribution LO(X) such that
R′′(X) = 1

eε̃0
ρ+ (1− 1/eε̃0)LO(X) = 1

2eε̃0
(R(X0

1 ) +R(X1
1 )) + (1− 1/eε̃0)LO(X).

Now, define a randomizer L by L(X0
1 ) := R(X0

1 ), L(X1
1 ) := R′(X1

1 ), and

L(X) :=
1

2eε̃0
R(X0

1 ) +
1

2eε̃0
R′(X1

1 ) + (1− 1/eε̃0)LO(X)

=
1

2eε̃0
U(X0

1 ) +
1

2eε̃0
U(X1

1 ) + (1− 1/eε̃0)LO(X) (10)

for all X ∈ Xn \ {X0
1 , X

1
1}. (The equality follows from (8) and (9).) Note that TV (R(X0

1 ),L(X0
1 )) =

0, TV (R(X1
1 ),L(X1

1 )) ⩽ δr0, and for all X ∈ Xn \ {X0
1 , X

1
1}, TV (R(X),L(X)) ⩽ TV (R(X),R′′(X)) +

TV (R′′(X),L(X)) ⩽ δ̃0 +
1

2eε̃0
TV (R′(X1

1 ),R(X1
1 )) = (1 + 1

2enεr0
)δr0 .

Keeping r fixed (omitting r scripts everywhere), for any i ∈ [N ] and Z := Z1:r−1 ∈ Z(r−1)×N , let L(i)(Z, ·), U (i)(Z, ·),
and LO(i)(Z, ·) denote the randomizers resulting from the process described above. Let AL : Xn×N → ZN be defined
exactly the same way as Ar

s := As (same π) but with the randomizers R(i) replaced by L(i). Since As applies each
randomizer R(i) exactly once and R(1)(Z, Xπ(1), · · ·R(N)(Z, Xπ(N)) are independent (conditional on Z = Z1:r−1) ,
we have TV (As(X0),AL(X0)) ⩽ N(1 + 1

2enεr0
)δr0 and TV (As(X1),AL(X1) ⩽ N(1 + 1

2enεr0
)δr0 . Now we claim

This follows from the assumption that R(i)(Z1:r−1, X) is conditionally independent of X ′ given Z1:r−1 for all Z1:r−1 and X ̸= X ′.
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that AL(X0) and AL(X1) are (εr, δ) indistinguishable for any δ ⩾ 2e−Ne−nεr0/16. Observe that this claim implies
that As(X0) and As(X1) are (εr, δr) indistinguishable by Lowy & Razaviyayn (2021, Lemma D.13) (with P ′ :=
AL(X0), Q

′ := AL(X1), P := As(X0), Q := As(X1).) Therefore, it only remains to prove the claim, i.e. to show that
Deεr (AL(X0),AL(X1) ⩽ δ for any δ ⩾ 2e−Ne−nεr0/16.

Now, define L(i)
U (Z, X) :=


U (i)(Z, X0

1 ) if X = X0
1

U (i)(Z, X1
1 ) if X = X1

1

L(i)(Z, X) otherwise.
. For any inputs Z,X, let AU (Z,X) be defined exactly the same

as As(Z,X) (same π) but with the randomizersR(i) replaced by L(i)
U . Then by (8) and (9),

AL(X0) =
eε

r
0

eε
r
0 + 1

AU (X0) +
1

eε
r
0 + 1

AU (X1) and AL(X1) =
1

eε
r
0 + 1

AU (X0) +
eε

r
0

eε
r
0 + 1

AU (X1). (11)

Then by (10), for any X ∈ Xn \ {X0
1 , X

1
1} and any Z = Z1:r−1 ∈ Z(r−1)×N , we have L(i)

U (Z, X) = 1
2eε̃0
L(i)
U (Z, X0

1 ) +
1

2eε̃0
L(i)
U (Z, X1

1 ) + (1− e−ε̃0)LO(i)(Z, X). Hence, Lowy & Razaviyayn (2021, Lemma D.10) (with p := e−ε̃0 = e−nεr0 )
implies that AU (X0) and AU (X1)) are(

log

(
1 +

8
√

eε̃0 ln(4/δ)√
N

+
8eε̃0

N

)
, δ

)
indistinguishable for any δ ⩾ 2e−Ne−nεr0/16.

Here, we also slightly diverge from (Lowy & Razaviyayn, 2021). Instead of using Lowy & Razaviyayn (2021, Lemma
D.14), we can directly follow the proof of Lemma 3.5 in (Feldman et al., 2022) and Lemma 2.3 in Feldman et al. (2022) to
establish our claim that AL(X0) and AL(X1) are indistinguishable (hence the final result). Here, we also slightly improve
the δ term compared to (Feldman et al., 2022) by applying amplification via sub-sampling to the δ term as well. In particular,
the key step is to rewrite (11) as follows (with T := 1

2 (AU (X0) +AU (X1))

AL(X0) =
2

eε
r
0 + 1

T +
eε

r
0 − 1

eε
r
0 + 1

AU (X0) and AL(X1) =
2

eε
r
0 + 1

T +
eε

r
0 − 1

eε
r
0 + 1

AU (X1). (12)

Thus, by the convexity of the hockey-stick divergence and Lemma 2.3 in (Feldman et al., 2022), we have AL(X0) and
AL(X1) are (

log

(
1 +

εr0 − 1

εr0 + 1

(
8
√
eε̃0 ln(4/δr)√

N

)
+

8eε̃0

N

)
,
εr0 − 1

εr0 + 1
δ

)
indistinguishable for any δ ⩾ 2e−Ne−nεr0/16. As described before, this leads to the result that As(X0) and As(X1) are
(εr, δr) indistinguishable by Lowy & Razaviyayn (2021, Lemma D.13) (original result in Lemma 3.17 of (Dwork et al.,
2014)) with (noting that ε̃0 = nεr0)

εr := ln

[
1 +

(
eε

r
0 − 1

eε
r
0 + 1

)(
8
√

enε
r
0 ln(4/δ)√
N

+
8enε

r
0

N

)]
,

δr :=

(
eε

r
0 − 1

eε
r
0 + 1

)
δ +N(eε

r

+ 1)(1 + e−εr0/2)δr0.

G. Simulation Results
We evaluate regret performance of Algorithm 1 under silo-level LDP and SDP, which we abbreviate as LDP-FedLinUCB
and SDP-FedLinUCB, respectively. We fix confidence level α=0.01, batchsize B=25 and study comparative performances
under varying privacy budgets ε, δ. We plot time-averaged group regret RegM (T )/T in Figure 2 by averaging results over
25 parallel runs. Our simulations are proof-of-concept only; we do not tune any hyperparameters.

Synthetic bandit instance. We simulate a LCB instance with a parameter θ∗ of dimension d = 10 and |Ki| = 100
actions for each of the M agents. Similar to Vaswani et al. (2020), we generate θ∗ and feature vectors by sampling a

We think that its restatement of Feldman et al. (2022, Lemma 2.3) is not correct (which can be easily fixed though).
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(b) Real data (M = 10)
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Figure 2: Comparison of time-average group regret for FedLinUCB (non-private), LDP-FedLinUCB (silo-level LDP) and SDP-
FedLinUCB (shuffle model) under varying privacy budgets ε, δ on (a) synthetic Gaussian bandit instance and (b, c) bandit instance
generated from MSLR-WEB10K Learning to Rank dataset.

(d−1)-dimensional vectors of norm 1/
√
2 uniformly at random, and append it with a 1/

√
2 entry. Rewards are corrupted

with Gaussian N (0, 0.25) noise.

Real-data bandit instance. We generate bandit instances from Microsoft Learning to Rank dataset (Qin & Liu, 2013).
Queries form the contexts c and actions a are the available documents. The dataset contains 10K queries, each with up to
908 judged documents, where the query-document pairs are judged on a 3-point scale, rel(c, a) ∈ {0, 1, 2}. Each pair (c, a)
has a feature vector ϕ(c, a), which is partitioned into title and body features of dimensions 57 and 78, respectively. We first
train a lasso regression model on title features to predict relevances from ϕ, and take this model as the bandit parameter θ∗

with d = 57. Next, we divide the queries equally into M=10 agents and assign corresponding feature vectors to the agents.
This way, we obtain a federated LCB instance with 10 agents, each with number of actions |Ki| ≤ 908.

Observations. In sub-figure (a), we compare performance of LDP-FedLinUCB and SDP-FedLinUCB (with amplification
based privacy protocol P) on synthetic Gaussian bandit instance with M=100 agents under privacy budget δ=0.0001 and
ε=0.001 or 0.0001. We observe that regret of SDP-FedLinUCB is less than LDP-FedLinUCB for both values of ε, which
is consistent with our theoretical results. Here, we only work with small privacy budgets since the privacy guarantee of
Theorem F.1 holds for ε, δ≪1. Instead, in sub-figure (b), we consider higher privacy budgets as suggested in Theorem F.3
(e.g. ε=0.2, δ=0.1) and compare the regret performance of LDP-FedLinUCB and SDP-FedLinUCB (with vecor-sum
based privacy protocol PT

vec). As expected, here also we observe that regret of SDP-FedLinUCB decreases faster than that of
LDP-FedLinUCB.

Next, we benchmark the performance of Algorithm 1 under silo-level LDP (i.e. LDP-FedLinUCB) against a non-private
Federated LCB algorithm with fixed communication schedule, which we build upon the algorithm of Abbasi-Yadkori et al.
(2011) and refer as FedLinUCB. In sub-figure (c), we demonstrate the cost of privacy under silo-level LDP on real-data
bandit instance by varying ε in the set {0.2, 1, 5} while keeping δ fixed to 0.1. We observe that regret of LDP-FedLinUCB
decreases and comes closer to that of FedLinUCB as ε increases (i.e., level of privacy protection decreases).
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