
Causal normalizing flows: from theory to practice

Adrián Javaloy1 Pablo Sánchez-Martín1,2 Isabel Valera1,3

1Computer Science Dept., Saarland University, Saarbrücken, Germany
2Max Planck Institute for Intelligent Systems, Tübingen, Germany

3Max Planck Institute for Software Systems, Saarbrücken, Germany

Abstract

In this work, we bridge the gap between normal-
izing flows and causal inference. First, we lever-
age recent results on non-linear ICA to show that
causal models are identifiable from observational
data given a causal ordering, and thus can be re-
covered using autoregressive normalizing flows
(NFs). Second, we propose a simple design for
causal normalizing flows to ease learning and cap-
ture the underlying causal data-generating pro-
cess. Third, we describe how to implement the do-
operator in causal NFs, and thus, how to answer in-
terventional and counterfactual questions. Finally,
we empirically validate our proposed design by
comparing causal NFs to other approaches for ap-
proximating causal models, and demonstrate that
causal NFs can be used in real-world problems—
where mixed discrete-continuous data and partial
knowledge on the causal graph is the norm.

1 INTRODUCTION

The focus of this work is to effectively solve causal inference
problems, i.e., answering what-if questions about a causal
system [22], using only observational data and (potentially
partial) knowledge on the causal graph of the underlying
structural causal model (SCM). This is exemplified in Fig. 1,
where our proposed framework estimated the (unobserved)
red and yellow distributions solely from the blue distribution
and partial information about the causal graph.
In this context, previous works often rely on differ-
ent deep neural networks (DNNs)—e.g., normalizing
flows (NFs) [17, 20, 21], generative adversarial networks
(GANs) [15, 31], variational autoencoders (VAEs) [10, 32],
Gaussian processes (GPs) [10], or denoising diffusion prob-
abilistic models (DDPMs) [2]—to iteratively estimate the
conditional distribution of each observed variable given its
direct causes, thus using an independent DNN per observed

Negative Average High
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty

German Credit - Checking account

real data
estimated

observational
do(xS = 0)

do(xS = 1)

Figure 1: Observational and interventional distributions of
the categorical variable checking account of the German
Credit dataset [7], and their estimated values with a causal
NF. xS represents the users’ sex as a binary variable.

variable. Some approaches risk error propagation and a high
number of parameters, addressed in practice with ad-hoc
parameter amortization techniques [20, 21].
In contrast, we here aim at learning the full causal-
generating process using a single DNN, similar to [11, 25,
26, 33] and, in particular, using a causal normalizing flow.
To this end, we show in §3 that causal NFs can approximate
a broad class of SCMs, design causal NFs that inherently
satisfy the necessary conditions to capture the underlying
SCM, and introduce an implementation of the do-operator
to efficiently tackle causal inference tasks. Finally, in §4
we empirically show that causal NFs outperform competing
methods, and that they can be used in real-world problems
with mixed-type data and partial causal graphs.

2 BACKGROUND

Causality A structural causal model (SCM) [22] is a tuple
M = (f̃ , Pu) describing a data-generating process that
transforms a set of d exogenous variables, u ∼ Pu, into a
set of d endogenous variables, x, according to f̃ :

u := (u1, . . . , ud) ∼ Pu , xi = f̃i(xpai , ui) ∀i . (1)

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

mailto:<ajavaloy@cs.uni-saarland.de>?Subject=Your Causal Normalizing Flows paper at TPM 2023

x1 x2 x3

π =
(
1 2 3

)
G =

0 0 0
1 0 0
0 1 0


Figure 2: A causal
graph, ordering π,
and its adjacency
matrix G.

An SCM also induces a causal
graph, a powerful tool to reason
about the causal dependencies of the
system. Namely, the causal graph of
an SCM M = (f̃ , Pu) is the dir-
ected graph that describes the func-
tional dependencies of the causal
mechanism. Furthermore, the direct
causes of the i-th variable (pai in
Eq. 1) are the parent nodes of the
i-th node in G, and the ancestors
of this node (which we denoted by
ani) are its (in)direct causes. See Fig. 2 for an example of
a causal chain. If G is acyclic, we can also pick a causal
ordering π describing which variables do not cause others,
and which ones may cause them.

Normalizing flows We can express the probability of
a set of observations using normalizing flows (NFs) [19].
Given an observed random vector x of size d, an NF Tθ

is a neural network that produces Tθ(x) =: u ∼ Pu, with
log-density log p(x) = log p(Tθ(x))+log|det(∇xTθ(x))|,
where Pu is a known base distribution. The network para-
meters θ are usually learnt via maximum likelihood estima-
tion (MLE) [1]. We focus here on autoregressive normaliz-
ing flows (ANFs) [13, 18], where the i-th output of the l-th
layer, denoted by zli, is computed as

zli := τ li (z
l−1
i ;hl

i) , where hl
i := cli(z

l−1
1:i−1) , (2)

with τi and ci termed the transformer and the conditioner, re-
spectively. The transformer is a strictly monotonic function
of zl−1

i , while the conditioner can be arbitrarily complex,
yet it only takes the variables preceding zi as input. Thus,
ANFs have triangular Jacobian matrices,∇xTθ(x).

3 CAUSAL NORMALIZING FLOWS

Problem statement We assume a sequence of i.i.d. ob-
servations X = {x1,x2, . . . ,xN} generated according to
an unknown SCMM, from which we have partial know-
ledge of its causal structure. Our objective is to design and
learn an ANF Tθ, with parameters θ, that capturesM by
maximizing the observational likelihood (MLE), i.e.,

max
θ

1

N

N∑
n=1

log
[
p (Tθ (xn)) · |det(∇xTθ (xn))|

]
, (3)

and that can successfully answer interventional and counter-
factual queries, thus enabling causal inference. We refer to
these models as causal normalizing flows.

Assumptions We make the following common assump-
tions: i) C1-diffeomorphic data-generating process, i.e., f̃ is
invertible, and both f̃ and its inverse are continuously differ-
entiable; ii) no feedback loops, i.e., the induced causal graph

is acyclic; and iii) causal sufficiency, i.e., the exogenous
variables are mutually independent, p(u) =

∏
i p(ui).

SCMs as TMI maps To bridge the gap between SCMs
and ANFs, we resort to triangular monotonic increasing
(TMI) maps, which are autoregressive functions whose i-
th component is strictly monotonic increasing with respect
to its i-th input. Conveniently, an ANF layer (Eq. 2) is a
parametric TMI map that can approximate any other TMI
map arbitrarily well [19],1 and any SCM can be rewritten
as a tuple (f , Pu) ∈ F × Pu, where F is the set of all TMI
maps, and Pu is the set of all fully-factorized distributions,
p(u) =

∏
i p(ui). Given an acyclic SCM M = (f̃ , Pu)

with f̃ : X× U→ X as in Eq. 1, we can always unroll f̃ by
recursively replacing each xi in the causal equation by its
function f̃i (see App. B.1.1 for an example), obtaining an
equivalent non-recursive function f̂ : U→ X. SinceM is
acyclic, this function f̂ is a triangular map. Now, following
the causal ordering, we can apply a Knöthe-Rosenblatt (KR)
transport [14, 24], replacing each function f̂i by a compos-
ition of conditional quantile functions of the variable xi
given xpai (which depends on uani

) eventually arriving to
a TMI map f as desired.

Isolating the exogenous variables Now that we have
SCMs and causal NFs under the family F × Pu of TMI
maps with fully-factorized distributions, we leverage ex-
isting results on identifiability to show that we can find a
causal NF Tθ such that the i-th component of Tθ(x) is a
function of the true exogenous variable ui that generated the
observed data. More precisely, note that identifying the true
exogenous variables of an SCMM is equivalent to solving
a non-linear ICA problem with TMI generators, for which
Xi and Bloem-Reddy [30] proved the following:

Theorem 1 (Identifiability). If two elements of the fam-
ily F × Pu produce the same observational distribution,
then the two data-generating process differ by an invertible,
component-wise transformation of the variables u.

Px

PθPM

T−1
θTθf f−1

h

h−1

Figure 3: Thm. 1 as a
commutative diagram.

Thm. 1 implies that, if a causal
NF (Tθ, Pθ) matches the obser-
vational distribution of M =
(f , PM) (both in F × Pu), then
we know that the exogenous vari-
ables of the flow differ from the
real ones by a function of each
component independently, i.e.,
Tθ(f(u)) = h(u) ∼ Pθ with
u ∼ PM, where, for each i-th
component, hi(u) = hi(ui) is an invertible function. Fig. 3
graphically illustrates Thm. 1. Furthermore, Thm. 1 also im-
plies that the functional dependencies of the causal NF must
agree with that of the SCM, i.e., that Tθ needs to be causally

1While it is common to shuffle the inputs for each layer, we
keep the same order across the network.

2

consistent withM. We formally present this result in the
following corollary (the proof can be found in App. A):

Corollary 2 (Causal consistency). If a causal NF Tθ isolates
the exogenous variables of an SCMM, then Tθ is causally
consistent with the true data-generating process,M.

To sum up, we have shown that causal NFs are a natural
choice to estimate an unknown SCM by showing that: i) both
SCMs and causal NFs fall within the same family F × Pu;
ii) any two elements of this family with identical obser-
vational distributions are causally consistent; and iii) they
differ by an invertible component-wise transformation.

3.1 CAUSAL NFS FOR REAL-WORLD PROBLEMS

To bring theory to practice, in this section we discuss critical
details to ease the optimization of causal NFs, handle mixed
discrete-continuous data and partial knowledge on the causal
graph, and compute interventions and counterfactuals. Due
to space limitations, we provide here a brief explanation,
and formalize these ideas in App. B.

Network design Thm. 1 assumes that the causal NF per-
fectly matches the true observational distribution. In prac-
tice, however, reaching the optimal parameters may be tricky.
To ease this task, we propose to use a single-layer ANF
model going from x to u and, given a causal graph G, to
use the extra information to mask each layer of the causal
NF according to I +G, such that

ui = τi(xi;hi) , where hi = ci(xpai) . (4)

Despite its simplicity, this architecture enjoys a number of
remarkable properties that result in the necessary conditions
to approximate the underlying SCM. Specifically, it is:

• Expressive. Since an ANF layer is a universal TMI ap-
proximator [19], it can approximate any SCM.

• Causally consistent. As stated in Cor. 2, the causal NF
needs to share the causal dependencies of the SCM at the
optima. Given the causal graph G, the masking in Eq. 4
ensures that the model is causally consistent by design.

• Causal-path preserving. To intervene, the causal depend-
encies from u to x need to follow the same paths as the
true causal model. Since ANFs are inverted sequentially,
this model can capture all indirect dependencies of u on
x with no shortcuts, even with a single layer.

Do-operator In order to answer what-if queries, we need
to use the do-operator [23], do(xi = α), which simulates a
physical intervention on an SCMM, inducing an alternative
modelMI that fixes the observational value xi = α, remov-
ing any causal dependency on xi. The traditional implement-
ation yields an SCM MI = (f̃I , Pu) result of replacing
the i-th component of f̃ with a constant function, f̃I

i := α.
Unfortunately, this implementation relies on recursivity of

the causal equations, and thus does not generalize to the
proposed causal NF. We instead propose to manipulate the
SCM by modifying the exogenous distribution Pu. Namely,
an intervention do(xi = α) updates Pu, restricting the set
of plausible u to those that yield the intervened value α. We
define the intervened SCM asMI = (f̃ , P I

u), where the
density of P I

u is of the form

pI(u) = δ
({

f̃i(xpai , ui) = α
})
·
∏
j ̸=i

pj(uj), (5)

with δ being the Dirac delta at the unique value of ui that
yields xi = α after applying the causal mechanism f̃i.

Discrete data To account for discrete data, we use the
model considered by Xi and Bloem-Reddy [30] that in-
cludes observational noise, and consider a continuous ver-
sion of the observed discrete variables by adding independ-
ent noise ε ∈ [0, 1] (e.g., from a standard uniform) to them,
such that the real distribution is still recoverable. Intuitively,
our approach assumes that discrete variables correspond to
the integer part of (noisy) continuous variables generated
according to an SCM fulfilling our assumptions, such that
both our theoretical and practical insights still apply.

Partial knowledge While we rarely know the entire
causal graph G, we often have a good grasp on some causal
relationships between a subset of observed variables. When
only partial knowledge on the graph is available, we can
instead work with a modified acyclic graph G̃ obtained by
finding the strongly connected components as in [28], where
subsets of variables with unknown causal relationships are
treated as a block. This allows us to reuse our theoretical
results for known parts of the graph, akin to the block iden-
tifiability results from von Kügelgen et al. [29].

4 EMPIRICAL EVALUATION

Here, we empirically validate the proposed causal NF,
comparing it with previous works, and showing its utility
through a real-world use-case. See App. C for more details.

4.1 NON-LINEAR SCMS

Experimental setup We compare our causal NF with two
relevant works: i) CAREFL [11], an NF with knowledge
on the causal ordering and affine layers; and ii) VACA [26],
a variational auto-encoding GNN with knowledge on the
graph. For fair comparison, every model uses the same
budget for hyperparameter tuning, our causal NF uses affine
layers, and CAREFL has been fixed and uses the proposed
do-operator from §3.1 (see App. B.3). We consider three
non-linear synthetic SCMs: i) TRIANGLE, a 3-node SCM
with a dense causal graph; ii) LARGEBD [9], a 9-node SCM
with non-Gaussian Pu and made out of two chains with
common initial and final nodes; and iii) SIMPSON [9], a
4-node SCM simulating a Simpson’s paradox [27].

3

Table 1: Comparison, on three non-linear SCMs, of the proposed causal NF, VACA [26], and CAREFL [11] with the
do-operator proposed in §3.1. Results averaged over five runs.

Performance Time Evaluation (µs)

Dataset Model KL ATERMSE CFRMSE Training Evaluation Sampling

TRIANGLE
NLIN
[26]

Causal NF 0.000.00 0.120.03 0.130.02 0.520.07 0.580.07 1.070.12

CAREFL† 0.000.00 0.120.03 0.170.03 0.570.18 0.830.26 1.680.62

VACA 7.710.60 4.780.01 4.190.04 28.821.21 23.000.55 70.653.70

LARGEBD
NLIN
[9]

Causal NF 1.510.04 0.020.00 0.010.00 0.520.10 0.600.17 3.050.66

CAREFL† 1.510.05 0.050.01 0.080.01 0.840.47 1.180.17 8.251.29
VACA 53.662.07 0.390.00 0.820.02 164.9211.10 137.8815.72 167.9425.75

SIMPSON
SYMPROD

[9]

Causal NF 0.000.00 0.070.01 0.120.02 0.590.17 0.600.11 1.510.30

CAREFL† 0.000.00 0.100.02 0.170.04 0.490.15 0.810.19 1.910.33
VACA 13.850.64 0.890.00 1.500.04 49.264.09 37.783.41 79.2014.60

Table 2: Accuracy, F1-score, and counterfactual unfairness
of the audited classifiers over five runs. Causal NFs enable
both fair classifiers and accurate unfairness metrics.

full unaware fair x fair u

L
og

is
tic f1 72.286.16 72.374.90 59.668.57 73.084.38

accuracy 67.003.83 66.752.63 54.755.91 66.503.70
unfairness 5.842.93 2.810.72 0.000.00 0.000.00

SV
M

f1 76.042.86 76.805.82 68.285.74 77.391.52
accuracy 69.503.11 71.003.83 59.252.99 69.751.26
unfairness 6.652.45 2.780.40 0.000.00 0.000.00

Results The results are summarized in Tab 1. In a nut-
shell: the proposed causal NF outperforms both CAREFL
and VACA in terms of performance and computational effi-
ciency. VACA shows poor performance, and is considerably
slower due to the complexity of GNNs. Our causal NF out-
performs CAREFL in counterfactual estimation tasks with
identical observational fitting, showing the importance of
being causally consistent; and it is quicker than CAREFL
as well, since best-performing CAREFL architectures have
in general more than one layer.

4.2 USE-CASE: FAIRNESS AUDITING AND
CLASSIFICATION

We follow now the use-case of Sánchez-Martín et al. [26] on
the German Credit dataset [7] to show the potential impact
of causal NFs. Extra details and results appear in App. D.

Experimental setup As proposed by Chiappa [3], we use
a partial graph which groups the 7 discrete features of the
dataset in 4 different blocks with known causal relationships,
putting in practice the results from §3.1. The goal here
is to train a causal NF that captures well the underlying
SCM, and use it to train and evaluate classifiers that predict
the (additional) binary feature credit risk, while remaining
counterfactually fair w.r.t. the binary variable sex, xS .
In this setting, we call a binary classifier κ : X → {0, 1}
counterfactually fair [16] if, for all possible factual values

xf ∈ X, the counterfactual unfairness remains zero. That is,
if the difference between P(κ(xcf) = 1 | do(xS = s),xf)
for s = 0, 1 is zero on average, where xcf is a counterfactual
sampled from P(xcf | do(xS = s),xf).

Following Sánchez-Martín et al. [26], we audit: a model
that takes all observed variables (full); an unaware model
that leaves the sensitive attribute xS out; a fair model that
only considers non-descendant variables of xS (fair x); and,
to demonstrate the ability to learn a counterfactually fair
classifier, we include a classifier that takes u = Tθ(x) as
input, but leaves uS out (fair u).

Results Tab 2 summarizes the performance and unfairness
of the classifiers, using logistic regression [6] and SVMs [5].
Here, we observe that by taking the non-sensitive exogenous
variables from the causal NF, the obtained classifiers achieve
comparable or better accuracy than the rest of the classifiers,
while at the same time being counterfactually fair. Moreover,
the estimations of unfairness obtained with the causal NF
match our expectations [16], with full being the most unfair,
followed by aware and the two fair models. With this use-
case, we demonstrate that causal NFs may indeed be a
valuable asset for real-world causal inference problems.

5 CONCLUDING REMARKS

In this work, we have shown that causal NFs are a natural
choice to learn a broad class of causal data-generating pro-
cesses in a principled way. Specifically, we have proven that
causal NFs can match the observational distribution of an
underlying SCM, and that in doing so the ANF needs to be
causally consistent. We have shown that a single-layer ANF
model going from x to u that uses the causal graph G meets
the necessary conditions for approximating the underlying
SCM. Moreover, we have provided causal NFs with a do-
operator to efficiently solve causal inference tasks. Finally,
we have empirically validated our findings and demonstrated
that our causal NF framework: i) outperforms competing
methods; and ii) can deal with mixed-type data and partial
knowledge of the causal graph.

4

ACKNOWLEDGEMENTS

We would like to thank Batuhan Koyuncu and Jonas Klesen
for their invaluable feedback. Adrián Javaloy is funded
by DFG grant 389792660 as part of TRR 248 – CPEC,
see https://perspicuous-computing.science. Pablo Sánchez
Martín also thanks the DFG through the Cluster of Excel-
lence “Machine Learning – New Perspectives for Science”,
EXC 2064/1, project number 390727645 for generous fund-
ing support. The authors also thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS)
for supporting Pablo Sánchez Martín.

Bibliography

[1] Christopher M Bishop and Nasser M Nasrabadi. Pat-
tern recognition and machine learning, volume 4.
Springer, 2006.

[2] Patrick Chao, Patrick Blöbaum, and Shiva Prasad
Kasiviswanathan. Interventional and counterfactual
inference with diffusion models. ArXiv preprint,
abs/2302.00860, 2023. Link.

[3] Silvia Chiappa. Path-specific counterfactual fairness.
In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovat-
ive Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1,
2019, pages 7801–7808. AAAI Press, 2019. doi:
10.1609/aaai.v33i01.33017801. Link.

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). In 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. Link.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine learning, 20(3):273–297, 1995.

[6] David R Cox. The regression analysis of binary se-
quences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232, 1958.

[7] Dheeru Dua and Casey Graff. UCI machine learning
repository, 2021. Link.

[8] Conor Durkan, Artur Bekasov, Iain Murray, and
George Papamakarios. Neural spline flows. In Ad-
vances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, pages 7509–7520,
2019. Link.

[9] Tomas Geffner, Javier Antorán, Adam Foster, Wenbo
Gong, Chao Ma, Emre Kıcıman, Ajay Sharma,
A. Lamb, Martin Kukla, Nick Pawlowski, Miltiadis Al-
lamanis, and Cheng Zhang. Deep end-to-end causal in-
ference. ArXiv preprint, abs/2202.02195, 2022. Link.

[10] Amir-Hossein Karimi, Julius von Kügelgen, Bernhard
Schölkopf, and Isabel Valera. Algorithmic recourse
under imperfect causal knowledge: a probabilistic ap-
proach. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. Link.

[11] Ilyes Khemakhem, Ricardo Pio Monti, Robert Leech,
and Aapo Hyvärinen. Causal autoregressive flows. In
The 24th International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2021, April 13-15, 2021,
Virtual Event, volume 130 of Proceedings of Machine
Learning Research, pages 3520–3528. PMLR, 2021.
Link.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In 3rd International Con-
ference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. Link.

[13] Durk P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow.
In Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc., 2016. Link.

[14] Herbert Knothe. Contributions to the theory of convex
bodies. Michigan Mathematical Journal, 4:39–52,
1957.

[15] Murat Kocaoglu, Christopher Snyder, Alexandros G.
Dimakis, and Sriram Vishwanath. Causalgan: Learn-
ing causal implicit generative models with adversarial
training. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. Link.

[16] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and
Ricardo Silva. Counterfactual fairness. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA,
pages 4066–4076, 2017. Link.

[17] Arash Nasr-Esfahany, MohammadIman Alizadeh, and
Devavrat Shah. Counterfactual identifiability of biject-
ive causal models. ArXiv preprint, abs/2302.02228,
2023. Link.

5

https://arxiv.org/abs/2302.00860
https://doi.org/10.1609/aaai.v33i01.33017801
http://arxiv.org/abs/1511.07289
https://arxiv.org/abs/2103.04786
https://proceedings.neurips.cc/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://arxiv.org/abs/2202.02195
https://proceedings.neurips.cc/paper/2020/hash/02a3c7fb3f489288ae6942498498db20-Abstract.html
http://proceedings.mlr.press/v130/khemakhem21a.html
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://openreview.net/forum?id=BJE-4xW0W
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://arxiv.org/abs/2302.02228

[18] George Papamakarios, Iain Murray, and Theo
Pavlakou. Masked autoregressive flow for density
estimation. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 2338–2347, 2017.
Link.

[19] George Papamakarios, Eric T. Nalisnick, Danilo Ji-
menez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic
modeling and inference. J. Mach. Learn. Res., 22:
57:1–57:64, 2021. Link.

[20] Álvaro Parafita and Jordi Vitrià. Estimand-agnostic
causal query estimation with deep causal graphs.
IEEE Access, 10:71370–71386, 2022. doi: 10.1109/
ACCESS.2022.3188395.

[21] Nick Pawlowski, Daniel Coelho de Castro, and Ben
Glocker. Deep structural causal models for tractable
counterfactual inference. In Advances in Neural In-
formation Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, Neur-
IPS 2020, December 6-12, 2020, virtual, 2020. Link.

[22] J. Pearl. Causality. Cambridge University Press, 2009.
ISBN 9781139643986. Link.

[23] Judea Pearl. The do-calculus revisited. In Proceedings
of the Twenty-Eighth Conference on Uncertainty in Ar-
tificial Intelligence, Catalina Island, CA, USA, August
14-18, 2012, pages 3–11. AUAI Press, 2012. Link.

[24] Murray Rosenblatt. Remarks on a multivariate trans-
formation. The Annals of Mathematical Statistics, 23
(3):470–472, 1952. ISSN 00034851. Link.

[25] Pedro Sanchez and Sotirios A. Tsaftaris. Diffu-
sion causal models for counterfactual estimation. In
CLEaR, 2022.

[26] Pablo Sánchez-Martín, Miriam Rateike, and Isabel
Valera. Vaca: Design of variational graph autoencoders
for interventional and counterfactual queries. ArXiv
preprint, abs/2110.14690, 2021. Link.

[27] Edward H Simpson. The interpretation of interaction
in contingency tables. Journal of the Royal Statistical
Society: Series B (Methodological), 13(2):238–241,
1951.

[28] Robert Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972. doi: 10.1137/0201010. Link.

[29] Julius von Kügelgen, Yash Sharma, Luigi Gresele,
Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised

learning with data augmentations provably isolates
content from style. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 16451–16467,
2021. Link.

[30] Quanhan Xi and Benjamin Bloem-Reddy. Indetermin-
acy in generative models: Characterization and strong
identifiability. 2022.

[31] Kevin Xia, Yushu Pan, and Elias Bareinboim. Neural
causal models for counterfactual identification and
estimation. ArXiv preprint, abs/2210.00035, 2022.
Link.

[32] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei
Shen, Jianye Hao, and Jun Wang. Causalvae: Dis-
entangled representation learning via neural struc-
tural causal models. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 9593–9602. Com-
puter Vision Foundation / IEEE, 2021. doi: 10.1109/
CVPR46437.2021.00947. Link.

[33] Matej Zečević, Devendra Singh Dhami, Petar
Veličković, and Kristian Kersting. Relating graph
neural networks to structural causal models. ArXiv
preprint, abs/2109.04173, 2021. Link.

6

https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
http://jmlr.org/papers/v22/19-1028.html
https://proceedings.neurips.cc/paper/2020/hash/0987b8b338d6c90bbedd8631bc499221-Abstract.html
https://books.google.de/books?id=LLkhAwAAQBAJ
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2330&proceeding_id=28
http://www.jstor.org/stable/2236692
https://arxiv.org/abs/2110.14690
https://doi.org/10.1137/0201010
https://proceedings.neurips.cc/paper/2021/hash/8929c70f8d710e412d38da624b21c3c8-Abstract.html
https://arxiv.org/abs/2210.00035
https://openaccess.thecvf.com/content/CVPR2021/html/Yang_CausalVAE_Disentangled_Representation_Learning_via_Neural_Structural_Causal_Models_CVPR_2021_paper.html
https://arxiv.org/abs/2109.04173

Appendix

Table of Contents
A Theory of causal normalizing flows 8

A.1 Structural equivalence . 8
A.2 Identifiability results . 8

B Extension to real-world settings 8
B.1 The multiple representations of SCMs . 8
B.2 Effective design of causal normalizing flows . 10
B.3 Do-operator: interventions and counterfactuals . 11
B.4 Discrete data . 14
B.5 Partial knowledge . 15

C Experimental details and extra results 17
C.1 Ablation: Base distribution . 19
C.2 Ablation: Flow architecture . 20
C.3 Comparison: Extra non-linear SCMs . 21

D Details on the fairness use-case 22

7

A THEORY OF CAUSAL NORMALIZING FLOWS

A.1 STRUCTURAL EQUIVALENCE

Here, we quickly introduce some extra notation used in the appendix. Specifically, to reason about causal dependencies,
we introduce the notion of structural equivalence. We say that two matrices S and R are structurally equivalent, denoted
S ≡ R, if both matrices have zeroes exactly in the same positions. Similarly, we say that S is structurally sparser than R,
denoted as S ⪯ R, if whenever an element of R is zero, the same element of S is zero.

A.2 IDENTIFIABILITY RESULTS

First, we provide a more detailed explanation on the connection between the results from §3 and those from the work of Xi
and Bloem-Reddy [30]. We consider it important to clarify that the definition of identifiability that we use is the same as [30,
Def. 2]. Specifically, this definition is one better suited for deep learning models, which is concerned with recovering the
variables u and one parametrization that perfectly matches the original generator. In other words, with this definition we aim
to recover one parametrization of a neural network which provides the generator function, but not the exact parametrization
of the generator that generated the data.

We also want to clarify that Thm. 1 from the main paper corresponds to [30, Prop. 5.2], which we rewrote (without changing
its content) to plain English and to match our particular setting. We now provide the proof for Cor. 2:

Corollary 3 (Causal consistency). If a causal NF Tθ isolates the exogenous variables of an SCMM, then∇xTθ(x) ≡ I−G
and∇uT

−1
θ (u) ≡ I +

∑∞
n=1 G

n, where G is the causal adjacency matrix ofM. In other words, Tθ is causally consistent
with the true data-generating process,M.

Proof. Assume that we have a flow Tθ that does indeed isolate the exogenous variables, meaning that the i-th output of the
flow, Tθ(x)i, is related with the true exogenous variable, ui, by an invertible function that only depends on it.

As explained in §3), this means that for a variable u ∼ PM, we have that Tθ(f(u)) ∼ Pθ and Tθ(f(u)) = h(u) =
(h1(u1), h2(u2), . . . , hd(ud)).

But we know the true generator, whose i-th exogenous variable is given by ui = f−1
i (xpai , xi) (the inverse of fi w.r.t ui)

and, putting all together,
Tθ(x)i = hi(ui) = hi(f

−1
i (xpai , xi)) , (6)

which is a function of only the parents of xi and xi itself.

If we call u = f−1(x) := (f−1
1 (xpa1 , x1), f

−1
2 (xpa2 , x2), . . . , f−1

d (xpad , xd)) the inverse of the SCMM that writes u as a
function of x (see App. B.1), then it is clear that

∇xTθ(x) = ∇x(h ◦ f−1)(x) = ∇uh(u) · ∇xf
−1(x) = D · ∇xf

−1(x) ≡ I −G , (7)

where D is a diagonal matrix and G the adjacency matrix of the causal graph induced byM.

Similarly, T−1
θ (h(u)) = x = f(u) and T−1

θ (h(u))i = xi = fi(uani
, ui), which again implies that:

∇uT
−1
θ (u) ≡ (I −G)

−1
= I +

∞∑
n=1

Gn , (8)

where we have omitted h as its Jacobian matrix is diagonal. Note that the infinite sum above vanishes at n = diamG since
G is triangular with diagonal zero. Q.E.D.

B EXTENSION TO REAL-WORLD SETTINGS

B.1 THE MULTIPLE REPRESENTATIONS OF SCMS

B.1.1 Illustrative example

In this section, we delve a bit deeper into the different equivalent ways of rewriting an SCM through an illustrative example.

8

x = Gx+ Iu x = G3(G2(G1u)) x = (G2 +G+ I)u u = (I −G)x

u x
1

2
1

3
1

(a) Recursive.

u x
1

0 2

1

0

1

1

0 0

1

3

1

1 1 1

(b) Unrolled.

u x
1

2
6

1

3

1

(c) Compacted.

u x
1

−2

1

−3

1

(d) Inverted.

Figure 4: Example of the linear SCM {x1:=u1 ; x2:=2x1+u2 ; x3:=3x2+u3} written (a) in its usual recursive formulation;
(b) without recursions, with each step made explicit; (c) without recursions, as a single function; and (d) writing u
as a function of x. The red dashed arrows show the influence of u1 on x3 for all equations from u to x, with the compacted
version exhibiting shortcuts (see App. B.2). Note that G1,G2,G3 ⪯ G+ I are any three matrices such that their product
equals G2 +G+ I .

Recursive SCM As explained in the manuscript, the usual way of describing an SCMM is by providing its recursive
equations. In our example (Fig. 4a), we have a linear SCM of the form

x1 = u1

x2 = 2x1 + u2
x3 = 3x2 + u3

, (9)

which we can compactly write as x = Gx+ Iu. However, the recursive equations are not the most convenient ones, as they
entail solving the system iteratively according to its causal dependencies.

Unrolled SCM Instead, we can write the equations as a function from u to x directly. To do this, we can proceed and
unroll the equations:

x1 = u1
x2 = 2x1 + u2
x3 = 3x2 + u3

⇒


x1 = u1
x2 = 2u1 + u2
x3 = 3(2x1 + u2) + u3

⇒


x1 = u1

x2 = 2u1 + u2
x3 = 3(2u1 + u2) + u3

, (10)

which we can write as a multi-step function:
z11 = u1
z12 = u2
z13 = u3

⇒


z21 = z11
z22 = 2z11 + z12
z23 = z13

⇒


x1 = z21
x2 = z22
x3 = 3z22 + z23

, (11)

that we can once again compactly write as a series of linear operations x = G3(G2(G1u)). Note that the matrices
G1,G2,G3 are not unique, and that they are valid as long as they are at most as sparse as G, and produce the same final
output.

Compacted SCM Another natural step here is to compress this sequence of linear equations into a single operation. That
is, use directly the linear operation described at the end of Eq. 10:

x1 = u1
x2 = 2u1 + u2
x3 = 6u1 + 3u2 + u3

. (12)

And we can derive the same result in vectorial form:

x = Gx+ Iu⇒ x = G(Gx+ Iu) + Iu⇒ x = G(G(Gx+ Iu) + Iu) + Iu⇒

x =�
�>

0
G3x+G2u+Gu+ Iu = (G2 +G+ I)u .

9

Unfortunately, in this form we cannot longer distinguish indirect paths: we have collapsed all paths into direct paths. Even
worse, if there were more than one path between two given nodes, we have combined their contributions into a single path,
making it quite difficult to disentangle. This effect can be seen as analogous to the common process in cryptography for
sharing secrets: if you have two primes (paths), it is fairly easy to multiply them and obtain their product, but if you have
their product (collapsed paths), performing prime factorization of the number is prohibitive.

Inverted SCM Finally, we can take any of these different representations and invert the equations to go from x to u. In
this case, it is easier to work with the original equations:

x1 = u1
x2 = 2x1 + u2

x3 = 3x2 + u3

⇒


u1 = x1
u2 = x2 − 2x1

u3 = x3 − 3x2

, (13)

and, in vectorial form:
x = Gx+ Iu⇒ u = (I −G)x . (14)

As discussed in the main manuscript, this turns out to be a really convenient SCM representation to work with, as: i) we can
obtain the exogenous variables in one go; and ii) even with a single layer, all indirect paths are preserved.

B.1.2 Non-linear SCM representations

We now discuss how the same representation and reasoning about the causal relationships of a linear SCM from App. B.1.1
can be translated to the general case. To this end, assume that we have a non-linear SCMM of the form x = f̃(x,u) where,
to ease the reader, imagine that it has the same causal graph as the linear example, so that the reader can use Fig. 4 as a
reference again, i.e., assume that

(
∇xf̃(x,u) ̸= 0

)
=

0 0 0
1 0 0
0 1 0

 and
(
∇uf̃(x,u) ̸= 0

)
=

1 0 0
0 1 0
0 0 1

 , (15)

where 0 is the constant zero function with the same domain and codomain as the Jacobian matrices.

Recursive SCM Already extensively discussed. This is the representation an SCM is given as.

Unrolled SCM Just as before, we can unroll the equations by having multiple functions zl = fl(z
l−1), and in each one

we unroll those equations for which we already know the non-recursive equation of its parents, leaving all the other fixed
(identity functions). As before, we can write these multiple layers in different ways, as long as they produce the same final
function (after composing them, f1 ◦ f2 ◦ · · · ◦ fL = f), and that they respect the causal dependencies provided by I +G.

Collapsed SCM Just as before, we can expand all the different layers and write a (probably complex) formula that
encompasses all changes in a single step. It is easy to show that the composition of these functions has, in general, a Jacobian
matrix structurally equivalent to I +

∑∞
l Gl. Specifically, their composition will be of the form

∏
l(I +G).

Reverse SCM Since we assume that each f̃i(xpai , ui) is bijective with respect to ui, we can always compute its inverse to
obtain ui as a function of the observed values, ui = f̃−1

i (xpai , xi). Clearly, its Jacobian matrix will be structurally equivalent
to I +G ≡ I −G.

Therefore, we can always reason as we did with the linear case, but using Jacobian matrices to talk about causal dependencies
between variables, and possibly having a complex and/or non-closed formulation of the generative/abductive functions.

B.2 EFFECTIVE DESIGN OF CAUSAL NORMALIZING FLOWS

We showed in §3 that causal NFs are a natural choice to learn the underlying SCM generating the data, yet reaching the
optimal parameters may be tricky in practice. In this section, we expand on the proposed model to guide the optimization
towards solutions that do not only provide an accurate fit of the observational distribution, but allow us to also accurately
answer to interventional and counterfactual queries.

10

Let us start with an illustrative example. Suppose that we are given the linear SCM in Fig. 4a, and we want to write the
SCM equations as a TMI map to approximate them with a causal NF. As discussed in App. B.1.1, we can unroll the
causal equations (Fig. 4b)—resulting in a composition of functions structurally sparser than I +G. These functions can be
compacted into a single transformation (Fig. 4c), such that each xi depends on its ancestors, uani

. However, note that in this
step shortcuts appear, making direct and indirect causal paths in this representation indistinguishable—in our example, the
indirect causal path from u1 to x3 present in Fig. 4a and Fig. 4b does not go anymore through the path that generates x2, but
instead via a shortcut that directly connects u1 to x3. Alternatively, we can invert the equations to write u as a function of x
(Fig. 4d), which is structurally equivalent to I −G.

We remark that the above steps can be applied to any considered acyclic SCM (refer to App. B.1.2 for a more detailed
discussion). In particular, we can unroll the equations in a finite number of steps, and we can similarly reason about the
causal dependencies through the Jacobian matrices of the generators, ∇xTθ(x) and ∇uT

−1
θ (u). Moreover, note that the

diffeomorphic assumption implies that we can invert the causal equations. Next, inspired by the previous example, we
consider the following design for a causal NF:

Abductive model Reminiscent to the abduction step [23], a natural choice is to model the inverse equations of the SCM
as in Fig. 4d, hence building a causal NF from x to u with a single layer. Under a known causal graph, we replicate the
structural sparsity by adequately masking the flow with I +G, such that

ui = τi(xi;hi) , where hi = ci(xpai) . (16)

Remarkably, this architecture is capable of capturing all indirect dependencies of u on x with no shortcuts at the optima,
even with a single layer. This is a result of the autoregressive nature of the ANFs used here to build causal NFs, as they
compute the inverse sequentially. In the example of Fig. 4, the indirect influence of u1 on x3 via x2 has to necessarily
generate x2 first (Fig. 4a). In contrast, if we only know the causal ordering, then the causal NF will need to rule out the
spurious correlations by learning during training the necessary zeroes to fulfil causal consistency (Cor. 3).

As stated at the beginning of the section, we aim to guide the model towards its global optima. To this end, we now analyse
the necessary conditions for the design of a causal NF to be able to accurately approximate and manipulate an SCM.

Expressiveness The least restrictive condition is that the causal NF should be able to reach the optima and a single ANF
layer (Eq. 2) is a universal TMI approximator [19].

Causal consistency As stated in Cor. 3, the causal NF needs to share the causal dependencies of the SCM at the
optima, meaning that their Jacobian matrices need to be structurally equivalent, i.e., ∇xTθ(x) ≡ I −G (Fig. 4d), and
∇uT

−1
θ (u) ≡∑∞

n=1 G
n + I (Fig. 4c). Given the (partial) causal graph G, the abductive model in Eq. 16 ensures causal

consistency when L = 1.

Causal path preservation In order to perform interventions with a causal NF (see App. B.3), the NF does not only need
to be causally consistent, but the causal dependencies from u to x also need to follow the same paths as the true causal
model. That is, the causal NF needs to be causal path preserving. If we impose a causal ordering (e.g., using an ANF),
longer-than-needed dependencies are impossible, e.g., u1 cannot influence x2 through x3 in Fig. 4b due to the network
structure. We are left with shortcuts as the only possible deviation from the causal paths. As stated before, the abductive
model (Eq. 16) avoid shortcuts w.r.t. the given G by carefully controlling how the information flows, being hence well-suited
for causal inference tasks.

B.3 DO-OPERATOR: INTERVENTIONS AND COUNTERFACTUALS

B.3.1 Definition and algorithms

In this section, we extend on the do-operator implementation described in §3.1, and provide the step-by-step algorithms to
perform interventions (Alg. 1) and compute counterfactuals (Alg. 2).

Semantics Recalling §3.1, the do-operator [23], denoted as do(xi = α), is defined as a mathematical operator that
simulates a physical intervention on an SCMM, inducing an alternative modelMI that fixes the observational value
xi = α, and thus removes any causal dependency on xi. However, the definition does not describe the specifics on how to
implement such an operation.

11

Usual implementation Traditionally, we are given the recursive representation of an SCM (Fig. 4a), as discussed in
App. B.1. As such, the do-operator do(xi = α) is usually carried out by replacing the i-th equation, i.e., the i-th component
of f̃ , with a constant function. That is, by doing f̃I

i := α. This yields an intervened SCMMI = (f̃I , Pu) reflecting the
data-generating process after such an intervention. Unfortunately, this implementation of the do-operator is quite specific
to the recursive representation of the SCM (Fig. 4a), and does not translate well to the other equivalent representations
discussed in §3. The reason for this is that these representations compute the observational values x as a vector function of
u, without the iterative sampling process that goes through the intervened value that we replace.

Proposed implementation As discussed in §3, we instead propose to manipulate the SCM by modifying the exogenous
distribution Pu, while keeping the causal generator f̃ untouched. Specifically, an intervention do(xi = α) updates Pu, to
have positive density mass on only those values that, when transformed to endogenous variables, the intervened variable
yields the intervened value, xi = α, while keeping the rest of distributions unaltered.

That is, we define the intervened SCM asMI = (f̃ , P I
u), where the density of the updated distribution P I

u is of the form

pI(u) ∝ p(u) · δ{f̃i(x,u)=α}(u) , (17)

and where the distributions of the rest of variables remain the same. Using the acyclic assumption, we know that the only
way of altering the value of xi without altering those of its parents is through ui and, using the causal sufficiency assumption,
we can squeeze the Dirac delta directly in the distribution of the i-th exogenous variable, such that:

pI(u) = pIi (ui|uj ̸=i) ·
∏
j ̸=i

pj(uj) , with pIi (ui|uj ̸=i) ∝ pi(ui) · δ{f̃i(x,u)=α}(u) . (18)

In the case we consider, where all the generators are bijective given the parent nodes, the set δ{f̃i(x,u)=α}(u) contains a

single element, and therefore in the main paper we simply write the i-th density as pIi (ui|uj ̸=i) = δ{f̃i(x,u)=α}(u). Note,
as discussed in the main paper, that the density at this point should be positive, in other words, the element that yields α (and
therefore α) should be a plausible value.

Since this implementation does not make any assumption at all in the functional form of the generator, but directly works on
the distribution of the exogenous variables, it can be implemented on any SCM representation (see Fig. 4 in App. B.1.1).
Notice, however, that in order to properly work, that the data-generating process should be causally consistent (i.e., it isolates
u) and causal path-preserving (i.e., without shortcuts) with respect to the original SCM.

Algorithms The step-by-step algorithms to perform interventions and compute counterfactuals, using the described
algorithm, are presented in Alg. 1 and Alg. 2, respectively. The only difference between both algorithms is the way that we
obtain samples from the observed distribution (generated vs. given).

Algorithm 1 Algorithm to sample from the interventional distribution, P(x | do(xi = α)).

1: function SAMPLEINTERVENEDDIST(i, α)
2: u ∼ Pu

3: x← T−1
θ (u) ▷ Sample a value from the observational distribution.

4: xi ← α ▷ Set xi to the intervened value α.
5: ui ← Tθ(x)i ▷ Change the i-th value of u.
6: x← T−1

θ (u)
7: return x ▷ Return the intervened sample.
8: end function

Theoretical results Here, we briefly discuss why this implementation works, i.e., why the proposed implementation
removes every dependency from the descendants with respect to the ancestors that go through the intervened value, as it is
not directly obvious.

To see why, take the usual recursive representation of an SCM in the illustrative example from App. B.1.1 (Fig. 4a), and
assume that we do do(x2 = α), where x2 = 2x1 + u2 in this example. By updating the density p2(u2), we have basically
fixed the value of u2 to be the only one that keeps x2 = α given x1, i.e., u2 = α− 2x1 (this can be clearly seen in Fig. 4d).

12

Algorithm 2 Algorithm to sample from the counterfactual distribution, P(xcf | do(xi = α),xf).

1: function GETCOUNTERFACTUAL(xf , i, α)
2: u← Tθ(x

f) ▷ Get u from the factual sample.
3: xfi ← α ▷ Set xi to the intervened value α.
4: ui ← Tθ(x

f)i ▷ Change the i-th value of u.
5: xcf ← T−1

θ (u)
6: return xcf ▷ Return the counterfactual value.
7: end function

If we now compute the dependency of x3 on x1, we get

d x3
d x1

=
∂x3

∂x2

d x2

d x1
=

∂x3
∂x2

(
∂x2
∂x1

+
∂x2

∂u2

d u2

d x1

)
=

∂x3
∂x2

(2 + 1 · (−2)) = 0 . (19)

In layman’s terms, the value of u2 is chosen such that it fixes the value of α, countering any influence that the parents could
have on x2 (or any of its intermediate values), and consequently in any of its descendants.

The general case can be similarly proven. Suppose that we do do(x2 = α), and that we want to compute the indirect
influence of an ancestor, x1, on a descendant, x3, passing through x2. Since we are fixing the value of u2 (the input of the
network) to produce an observed value x2 (the output of the network) of α, we can use implicit differentiation to compute
the influence of u1 (and therefore x1) on x2 via u2:

α = x2(u1, u2)
d u1==⇒ 0 =

∂x2

∂u1
+

∂x2
∂u2

d u2
d u1

⇒ ∂x2
∂u2

d u2
d u1

= −∂x2
∂u1

, (20)

and, similar to Eq. 19, any indirect influence of the ancestor, u1, on the descendant, x3, through this intermediate variable,
x2, cancels out:

∂x3
∂x2

d x2
d u1

=
∂x3
∂x2

(
∂x2

∂u1
+

∂x2
∂u2

d u2
d u1

)
=

∂x3

∂x2
· 0 = 0 . (21)

We have proven this result not only theoretically, but also empirically through the accurate interventions computed for all
the experiments from §4 and App. C. Moreover, this lack of correlation between ancestors and descendants through the
intervened variables is clearly shown in pair plots such as the ones in Figs. 9 and 10.

B.3.2 Interventions in previous works

We now put our implementation of the do-operator (see §3.1 and App. B.3) into context, by describing how the methods
compared in §4, namely CAREFL [11] and VACA [26], proposed to perform interventions with their models.

CAREFL [11] Two different algorithms were proposed to sample from an interventional distribution in CAREFL: i) a
sequential algorithm which mimics the usual implementation of the do-operator with the recursive representation of the
SCM; and ii) a parallel algorithm that samples the counterfactual in a single call. While the first algorithm works, the parallel
one—which is the one actually implemented—only works when intervening on root nodes.

This second algorithm for do(x2 = α) is described as follows (see Alg. 2 in [11]): i) sample u from Pu; ii) set ui to the
i-th value obtained by applying the flow, Tθ, to an observation with xi = α and xj = 0 for j ̸= i; and iii) return the value
obtained by T−1

θ with u.

While this algorithm resembles the one we proposed, the proposed method does not have into account that the value of ui to
fix α does depend on the observed values of its parents, which is clear by looking at the linear illustrative example from
Fig. 4d. As a consequence, the algorithm only works when the node has no parents, which is why we replaced it by the one
we proposed for the comparisons in §4 and App. C.

VACA [26] Based on GNNs, the approach for intervening on VACA is completely reminiscent to the traditional imple-
mentation. Specifically, the authors propose to sever those edges in every layer of the GNN whose endpoints fall in the path
generating the intervened variable, so that the ancestors have no way to influence it by design.

13

While the previous statement is true: ancestors cannot influence the intervened variable nor its descendants, here we argue
that this process would require us to “recalibrate” the model, as the middle computations after an intervention change in
more complex ways than removing the ancestors from the equation, while keeping the rest unchanged.

To see this, consider the following non-linear triangle SCM:
x1 = u1

x2 = x2
1u2

x3 = 2x1 + x2
x1

+ x2
x21

+ u3

(22)

which VACA could learn with two layers through the following operations:
z1 = u1
z2 = u1u2
z3 = u1 + u2 + u3


x1 = z1
x2 = z1z2
x3 = z1 + z2 + z3

. (23)

Now, if we were to intervene with do(x2 = α), the real SCM would yield:
x1 = u1
x2 = α

x3 = 2x1 + α
x1

+ α
x21

+ u3

(24)

while VACA would yield:
z1 = u1

z2 = α

z3 = u1 + α+ u3


x1 = z1
x2 = α

x3 = z1 + α+ z3

⇒


x1 = u1

x2 = α

x3 = 2x1 + 2α+ u3

, (25)

where we can clearly see that the expression for x3 is different. In contrast, our causal NF would keep the generator as it is,
and set u2 to α/x21, yielding the correct value.

B.4 DISCRETE DATA

In this section, we describe how to extend the results presented in the main text for the case where one observed variable, xi,
is discrete. To this end, we restate the more general data-generating process assumed by Xi and Bloem-Reddy [30], which
we used for the theoretical part of the manuscript.

Following the notation of the manuscript, say that we have a data-generating process without recursions, that is, we have
a function f that maps u to x. Let us assume, without loss of generality, that only the i-th observed variable is discrete,
and let us focus on the way this variable is generated, dropping the subindex i along the way to avoid clutter. Now, Xi
and Bloem-Reddy [30] additionally consider the existence of a fixed noise distribution Pε and mechanism g, such that the
observed variable xi is generated as,

u := (u1, u2, . . . , ud) ∼ Pu , ε ∼ Pε , xi = g(fi(uani
, ui), ε) , (26)

with ε⊥⊥u, and where they study the noiseless case under the following assumption: if for two generative processes with
εa

d
= εb, then g(fi(ua), εa)

d
= g(fi(ub), εb) if and only if fi(ua)

d
= fi(ub), where d

= denotes equal in distribution.

Just as we do with the rest of variables, we also make the assumption that the observed variable x̃i is the transformation
of a continuous exogenous variable, ui, with a function f̃i that fulfils our assumptions (i.e., that f̃i is a diffeomorphism)
that has undergone a quantization process, i.e., xi = fi(uani , ui) := ⌊f̃i(uani , ui)⌋. Therefore, it is clear that fi is no longer
bijective, as we are clamping real numbers into integers, and that the observational distribution of xi is discrete.

We take advantage of the noise assumption above, and dequantize the observed variable xi by assuming an additive noise
mechanism such that xi := fi(uani , ui) + ε, with ε distributed between the unit interval with any continuous distribution
(we take in our experiments Pε = U(0, 1)). With this process: i) we have made x̃i again a continuous random variable, as

14

the sum of independents discrete and continuous random variables is a continuous random variable; and ii) the original
distribution of the noiseless observed variables is always recoverable P(x̃i = c) = P(c ≤ xi ≤ c+ 1).

More importantly, all the theoretical insights from the work of Xi and Bloem-Reddy [30] can still be used, working with the
noisy case rather than the noiseless one. Indeed, as for their analysis they assume a single u in the domain of the generator,
we can merge the generator and noise mechanism g ◦ fi : R → R (rather than g ◦ fi : R × [0, 1] → R), by mapping
the non-injective part of u to ε itself, i.e., by using the function (g ◦ fi)(uani

, ui) = ⌊f̃i(uani
, ui)⌋+ F−1

ε (f̃i(uani
, ui)−

⌊f̃i(uani
, ui)⌋), where F−1

ε is the quantile function of Pε. This new function is a diffeomorphism almost everywhere, as it is
a composition of a.e. diffeomorphisms, and we have effectively replaced the noise variable by the floating part of f̃i(uani

, ui)
before quantization. Moreover, note that if the noise is uniformly distributed, Pε = U(0, 1), we have that g ◦ fi = f̃i (if xi
were discretized by taking its integer part).

In short, by adding noise to discrete variables while keeping them recoverable, we can learn a mapping between continuous
variables that learns a version of the generator function before the observed values were somehow discretized. Importantly,
the observed discrete distribution is always recoverable, independently of whether we learn the (unknown and unrecoverable)
underlying continuous distribution before being discretized.

B.5 PARTIAL KNOWLEDGE

In this section, we explain how to expand our framework to settings in which we have partial information about the causal
graph ofM. That is, we know the causal ordering π (so we know that half of the causal relationships, the upper diagonal),
and we are certain about some other causal relationships (edges on G), but not all of them.

To this end, first let us first introduce the way we deal with partial knowledge, and then clarify the theoretical implications
that it has with respect to the theory introduced in §3.1.

The method Let us motivate the method with an illustrative example. Suppose that we are given an SCM such as the one
in Fig. 5a, where we know all relationships but the one between x2 and x3. Note that, in this case, we lack even information
about the causal ordering. Indeed, there are three possible outcomes: i) the edge x2 → x3 could exist (Fig. 5b); ii) the edge
x3 → x2 could exist (Fig. 5c); or iii) both could exist simultaneously (Fig. 5d), and hence there is a confounder between
them. However, we do not know which of the three options is the correct one.

Let us switch now to Fig. 6. To solve the original problem (Fig. 6a, one natural approach is to group the nodes with
unknown relationships—assuming that all unknown edges may exist—and maximize the observed likelihood (Fig. 6b). This,
effectively, is equivalent to applying an ANF to the known relationships, and using a general-Jacobian NF to learn the joint
of the block variables. However, if we want to keep using exclusively ANFs (Fig. 6c), we can learn the joint distribution
within the blocks with an ANF using a fixed ordering (which it can always do, as it is a universal density approximator [19]).
The only subtle detail here is that, in that case, we need to increase the granularity of all inter-block edges from node- to
block-wise relationships, assuming that an edge exists if it exists for at least one of the elements of the block. To see why
this is necessary, assume that the real graph of the example is Fig. 5c, yet we use an ANF with the ordering π = (1 2 3 4)
and the graph G without inter-block modifications (i.e., the adjacency matrix of Fig. 5b). In that case, we would have that x4
depends on x3 through x2. However, a causally consistent NF w.r.t. G would not be able to model that dependency, and thus
x4 would depend on u1, u2, and u4 but not on u3. With this approach, the ANF can model every case from Fig. 5, and it
would need to remove the extra spurious relationships through optimization.

Therefore, to reuse our existing results from §3.1, the method that we have adopted is the one from Fig. 6c, which can be
described in the following steps: i) run Tarjan’s algorithm [28] to group all nodes by their SCCs (note that, unlike in the
given example, there could be more than one cluster of unknown relationships); ii) choose an ordering that is consistent
with the known inter-SCC edges, fixing the edges within the SCCs; iii) move from node-edges to SCC-edges. In practice,
this means introducing edges between every pair of edges of two SCCs, if there exists at least one edge between them; and
iv) solve the MLE problem with an ANF as in the main manuscript.

The theory Very conveniently, the method described above fits almost-perfectly into the already-covered theory in §3. To
see this, note that our identifiability theory and following results required a fixed ordering, but it does not need to be the
causal one: we can always find an equivalent SCM following the selected ordering by applying KR transports as described
in §3. Therefore, the technical implications of both Thm. 1 and Cor. 2 still apply to this fixed ordering, we only need to
re-state their implications with respect to the true causal data-generating processM.

To this end, we only need to note that all possible graphs, once reduced into a DAG using the partition of SCCs (as in
Fig. 6c), are exactly equal. In other words, every possible graph shares the same causal dependencies between SCCs with

15


0 0 0 0
1 0 ? 0
1 ? 0 0
0 1 0 0



0 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0



0 0 0 0
1 0 1 0
1 0 0 0
0 1 0 0



0 0 0 0
1 0 1 0
1 1 0 0
0 1 0 0


x3

x1 x2 x4
?

(a) Partial knowledge.

x3

x1 x2 x4

(b) Option 1.

x3

x1 x2 x4

(c) Option 2.

x3

x1 x2 x4

(d) Option 3.

Figure 5: Example of an SCM with partial knowledge about the causal graph (a) and possible outcomes: (b) in the actual
SCM only the edge x2 → x3 exists; (c) only the edge x3 → x2 exists; (d) both edges exist (and therefore there exists a
confounder between them).


0 0 0 0
1 0 ? 0
1 ? 0 0
0 1 0 0



0 0 0 0
1 0 1 0
1 1 0 0
0 1 0 0



0 0 0 0
1 0 0 0
1 1 0 0
0 1 1 0


x3

x1 x2 x4
?

(a) Partial-knowledge SCM.

x3

x1 x4
x2

(b) Solved with a general NF.

x3

x1 x4

x2

(c) Solved with an ANF.

Figure 6: Illustrative example (same as in Fig. 5) applying our method for partial information. First, we apply Tarjan’s
algorithm [28] to find the SCCs of the graph (rectangles) and build a new DAG where each node is a subset of the original
nodes. If, for the SCCs, we use an NF with a general Jacobian matrix (b), we keep the individual edges and treat each SCC
as a block. If we instead use an ANF (c), we pick an arbitrary order within each SCC, and merge the individual edges into
SCC-wide edges. Red represents intra-SCC edges, and green inter-SCC edges. See App. B.5 for more details.

the other possible graphs. If we start treating them like block, calling {xi} ⊂ Si ⊂ {1, 2, . . . , d} the SCC of the i-th node,
and paSi

and anSi the parents and ancestors of every node in the SCC Si, then it is clear that we can write for every graph
G̃ its observed variables as xi = f̃i(xpaSi

, ũSi
) and, more importantly, we can write its “exogenous” variables as a function

of the true ones, i.e., ũSi
= KR(uSi

), where KR is the Knöthe-Rosenblatt transport [14, 24]. Note also that it does not
depend on the data, i.e., ũSi

⊥⊥x|uSi
.

Theorem 4 (Identifiability – Partial knowledge). If an element of F × Pu, and another from F̃ × Pu, where F and F̃ are
TMI maps with different intra-SCC orders (see above), generate the same observational distribution, then the two processes
differ by an invertible, SCC-wise transformation of the variables u.

Proof. CallM and M̃ the elements from F × Pu and F̃ × Pu, respectively.

W.l.o.g. pick M, and apply a KR transport to write it down as another element of F̃ × Pu, call it M̂, with identical
observational distribution as bothM and M̃.

Using Thm. 1, we know that the elements of M̃ and M̂ differ by an invertible, component-wise transformation h. Moreover,
we can write ûSi

as a function of uSi
, as argued above, where {i} ⊂ Si ⊂ {1, 2, . . . , d} are the indexes of the SCC that

contains ui. Putting it all together:
ũi = hi(ûi) = hi(KRi(uSi)) , (27)

and, in vectorial form, for each SCC Si,

ũSi
= hSi

(KRSi
(uSi

)) = (hSi
◦KRSi

)(uSi
) (28)

16

Q.E.D.

Corollary 5 (Causal consistency – Partial knowledge). If a causal NF Tθ, with partial knowledge of the causal graph,
SCC-wise isolates the exogenous variables of an SCMM, then Tθ is causally consistent with the true data-generating
process,M, with respect to each SCC.

Proof. The proof is identical to the one for Cor. 2, but using arguments with respect to the reduced graph after grouping all
nodes in their respective SCCs.

Specifically, we can write using Thm. 4 the output of the flow as a function of the exogenous variables, Tθ(x)i = h(uSi
),

and using the true causal generator, we have

Tθ(x)i = h(uSi
) = h(fSi

(xpaSi
,xSi

)) , (29)

and hence the gradients agree with those fromM, when looking at the reduced graph. Q.E.D.

Thm. 4 and Cor. 5 provide analogues to those results from the main manuscript. It is important to note, however, that
causal consistency refers to the causal relationships between SCCs as a whole, i.e., not at the causal relationships between
individual nodes. The reason behind this is the same as why we had to introduced spurious edges in Fig. 6c: as we fix an
ordering within each SCC, we may not be able to model indirect dependencies of nodes of one SCC to another unless
we artificially introduce shortcuts. As such, every result from the main paper holds, if we treat each SCC (or block) as a
whole. That is, when we reason about SCCs instead of individual nodes (note that if the whole causal graph is known every
SCC contains a single node), we can safely talk about SCC-identifiability, causal SCC-consistency, and we can perform
interventions and compute counterfactuals on SCCs.

C EXPERIMENTAL DETAILS AND EXTRA RESULTS

In this section, we complement the description of the experimental section from §4, and provide the reader with additional
results in the following subsections. First, we describe the details common to every experiment, and delve into the specifics
of each experiment in their respective subsections.

Hardware Every individual experiment shown in this paper ran on a single CPU with 8GB of RAM. To run all
experiments, we used a local computing cluster with an automatic job assignment system, so we cannot ensure the specific
CPU used for each particular experiment. However, we know that every experiment used one of the following CPUs picked
randomly given the demand when scheduled: AMD EPYC 7702 64-Core Processor, AMD EPYC 7662 64-Core Processor,
Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, or Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.

Training and evaluation methodology For every experiment, we generated with using synthetic SCM a dataset with
20 000 training samples, 2500 validation samples, and 2500 test samples. We ran every model for 1000 epochs, and the
results shown in the manuscript correspond to the test set evaluation at the last epoch. For the optimization, we used
Adam [12] with an initial learning rate of 0.001, and reduce the learning rate with a decay factor of 0.95 when it reaches
a plateau longer than 60 epochs. For hyperparameter tuning, we always perform a grid search with similar budget, and
select the best hyperparameter combination according to validation loss, reporting always results from the test dataset in the
manuscript. Every experiment is repeated 5 times, and we show averages and standard deviations.

Datasets This section provides all the information of the SCMs employed in the empirical evaluation of §4 of the main
paper, and the following subsections. The exogenous variables always follow a standard normal distribution N (0, 1), except
for LARGEBD, where a uniform distribution U(0, 1) is used instead. Subsequently, we define the 12 SCMs employed—
encompassing both linear and non-linear equations—and we additionally provide their causal graph in Fig. 7.

Let us first define the softplus operation as s(x) = log (1.0 + ex).

3-CHAINLIN:

f̃1(u1) = u1 (30)

f̃2(x1, u2) = 10 · x1 − u2 (31)

f̃3(x2, u3) = 0.25 · x2 + 2 · u3 (32)

17

3-CHAINNLIN:

f̃1(u1) = u1 (33)

f̃2(x1, u2) = ex1/2 + u2/4 (34)

f̃3(x2, u3) =
(x2 − 5)3

15
+ u3 (35)

4-CHAINLIN:

f̃1(u1) = u1 (36)

f̃2(x1, u2) = 5 · x1 − u2 (37)

f̃3(x2, u3) = −0.5 · x2 − 1.5 · u3 (38)

f̃4(x3, u4) = x3 + u4 (39)

5-CHAINLIN:

f̃1(u1) = u1 (40)

f̃2(x1, u2) = 10 · x1 − u2 (41)

f̃3(x2, u3) = 0.25 · x2 + 2 · u3 (42)

f̃4(x3, u4) = x3 + u4 (43)

f̃5(x4, u5) = −x4 + u5 (44)

COLLIDERLIN:

f̃1(u1) = u1 (45)

f̃2(u2) = 2− u2 (46)

f̃3(x1, x2, u3) = 0.25 · x2 − 0.5 · x1 + 0.5 · u3 (47)

FORKLIN:

f̃1(u1) = u1 (48)

f̃2(u2) = 2− u2 (49)

f̃3(x1, x2, u3) = 0.25 · x2 − 1.5 · x1 + 0.5 · u3 (50)

f̃4(x3, u4) = x3 + 0.25 · u4 (51)

FORKNLIN:

f̃1(u1) = u1 (52)

f̃2(u2) = u2 (53)

f̃3(x1, x2, u3) =
4

1 + e−x1−x2
− x22 + 0.5 · u3 (54)

f̃4(x3, u4) =
20

1 + e0.5·x
2
3−x3

+ u4 (55)

LARGEBDNLIN: Let us define

L(x, y) = s(x+ 1) + s(0.5 + y)− 3.0 , (56)

and let us call CDF−1(µ, b, x) the quantile function of a Laplace distribution with location µ, scale b, evaluated at x. Then

18

the structural equations are

f̃1(u1) = s(1.8 · u1)− 1 (57)

f̃2(x1, u2) = 0.25 · u2 + L(x1, 0) · 1.5 (58)

f̃3(x1, u3) = L(x1, u3) (59)

f̃4(x2, u4) = L(x2, u4) (60)

f̃5(x3, u5) = L(x3, u5) (61)

f̃6(x4, u6) = L(x4, u6) (62)

f̃7(x5, u7) = L(x5, u7) (63)

f̃8(x6, u8) = 0.3 · u8 + (s(x6 + 1)− 1) (64)

f̃9(x7, x8, u9) = CDF−1

(
−s

(
x7 · 1.3 + x8

3
+ 1

)
+ 2, 0.6, u9

)
(65)

SIMPSONNLIN:

f̃1(u1) = u1 (66)

f̃2(x1, u2) = s(1− x1) +
√

3/20 · u2 (67)

f̃3(x1, x2, u3) = tanh(2 · x2) + 1.5 · x1 − 1 + tanh(u3) (68)

f̃4(x3, u4) =
x3 − 4

5
+ 3 +

1√
10
· u4 (69)

SIMPSONSYMPROD:

f̃1(u1) = u1 (70)

f̃2(x1, u2) = 2 · tanh(2 · x1) +
1√
10
· u2 (71)

f̃3(x1, x2, u3) = 0.5 · x1 · x2 +
1√
2
· u3 (72)

f̃4(x1, u4) = tanh(1.5 · x1) +

√
3

10
· u4 (73)

TRIANGLELIN:

f̃1(u1) = u1 + 1 (74)

f̃2(x1, u2) = 10 · x1 − u2 (75)

f̃3(x1, x2, u3) = 0.5 · x2 + x1 + u3 (76)

TRIANGLENLIN:

f̃1(u1) = u1 + 1 (77)

f̃2(x1, u2) = 2 · x21 + u2 (78)

f̃3(x1, x2, u3) =
20

1 + e−x22+x1
+ u3 (79)

C.1 ABLATION: BASE DISTRIBUTION

We now assess to which extent a mismatch of the distribution Pu between the SCM and the causal NF negatively affects
performance. To this end, we consider two more complex SCMs—SIMPSON [9] and TRIANGLE [26]—and distributions—

19

(a) 3-CHAIN (b) 4-CHAIN (c) 5-CHAIN

(d) TRIANGLE (e) COLLIDER (f) FORK

(g) SIMPSON [NLIN] (h) SIMPSON [SYMPROD] (i) LARGEBD

Figure 7: Causal graph of the different SCMs considered in §4 and App. C.

Normal and Laplace—for which we either fix or learn their parameters during training. Both SCMs use a standard Normal
distribution for Pu.

Hyperparameter tuning While we fixed the flow to have a single MAF [18] layer with ELU [4] activation functions,
we determined through cross-validation the optimal number of layers and hidden units of the MLP network within
MAF. Specifically, we considered the following combinations ([a, b] represents two layers with a and b hidden units):
[16, 16, 16, 16], [32, 32, 32], [16, 16, 16], [32, 32], [32], [64]. As discussed at the start of the section, we report test results for
the configuration with the best validation performance at the last epoch.

Results The results, shown in Fig. 8a, reveal a notable distinction between Normal and Laplace distributions in terms of
density estimation. However, this discrepancy appears to have minimal implications for Average Treatment Effect (ATE)
and counterfactual estimation. We hypothesize that this disparity originates from dissimilarities in their tails, as it can be
inferred by the slight edge of Normal over Laplace on the last column—which measures per sample differences—where
bigger errors happen at the outliers elements which are, by definition, scarce. Interestingly, with this particular architecture
of causal NF, every model struggles to model the denser TRIANGLE SCM.

C.2 ABLATION: FLOW ARCHITECTURE

Considering the observed challenges faced by the Masked Autoregressive Flow (MAF) [18] layer in accurately modelling the
TRIANGLE SCM in the previous experiment, we further investigate the potential impact of flow architecture on performance.

Hyperparameter Tuning We cross-validate again the optimal number of layers and hidden units of the MLP internally
used by the unique layer of the Causal NF. We consider the following values ([a, b] represents two layers with a and b

20

Dataset SIMPSON [NLIN] TRIANGLE [LIN]

Base Distr. KL forward RMSE ATE RMSE CF
Normal

Normalθ

Laplace

Laplaceθ

0.0

0.2

0.4

0.6

(a) Ablation on the base distribution

Model KL forward RMSE ATE RMSE CF
NSF

MAF

0.0

0.1

0.2

0.3

(b) Ablation on the flow architecture

Figure 8: Performance on the SIMPSONNLIN and TRIANGLELIN datasets of causal NFs with a) different base distributions
(Normal and Laplace), where θ indicates that we learn the parameters of the base distribution; and b) flow architectures.
Differences in base distribution affect KL divergence, while the choice of flow architecture influences the overall performance.

hidden units): [32, 32, 32], [16, 16, 16], [32, 32], [32], and [64]. As before, test results are reported for the configuration that
achieved the best performance on the validation set at the final epoch.

Results Fig. 8b summarizes our results, where we consider a Causal NF with one MAF [18] layer (depicted in orange),
and a Causal NF with a Neural Spline Flow (NSF) [8] as layer (depicted in blue). Note that, NSFs are built on top of MAFs
and abandoned the realm of affine ANFs, and are thus expected to outperform MAFs in general. We employed the same set
of SCMs as in App. C.1.

Our empirical analysis reveals that the NSF consistently outperforms the MAF across the three metrics: observational
distribution (measured by the KL divergence), ATE estimation, and counterfactual estimation. Whilst expected, these findings
highlight the practical implications of selecting an appropriate flow architecture, which should be taken into consideration
by practitioners.

C.3 COMPARISON: EXTRA NON-LINEAR SCMS

In this section, we complement the results from §4.1 and provide a more extensive comparison of the proposed Causal NF,
along with CAREFL [11] and VACA [26], on additional datasets.

Hyperparameter Tuning For VACA, we cross-validated the dropout rate with values {0.0, 0.1}, the GNN layer architec-
ture with {GIN,PNA,PNADisjoint}, (see [26] for details), and the number of layers in the MLP prior to the GNN with
choices {1, 2}. For CAREFL, we cross-validated the number of layers in the flow, {1,diamG}, and the number of layers
and hidden units in the MLP composing the flow layers (same format as before), {[16, 16, 16], [32, 32], [32], [64]}. For
Causal NF, we used the abductive model with a single layer, and cross-validated the number of layers and hidden units
in the MLP composing the layer of the flow with values {[16, 16, 16, 16], [32, 32, 32], [16, 16, 16], [32, 32], [32], [64]}. We
report test results for the configuration with the best validation performance at the final epoch.

Results Tab 3 shows the performance of each model for all the considered datasets, further validating the conclusions
drawn in the main manuscript: the proposed Causal NF consistently outperforms both CAREFL and VACA in terms of
performance and computational efficiency. The performance of VACA is notably inferior, and its computation time is
significantly longer, primarily due to the complexity of graph neural networks (GNNs). Our Causal NF achieves similar
performance to CAREFL in terms of observational fitting, while surpassing it on interventional and counterfactual estimation
tasks. Additionally, Causal NF outperforms CAREFL in computational speed. This is to be expected since the optimal
CAREFL architectures often have multiple layers, resulting in increased computation time. In contrast, Causal NF has a
single layer, reducing computational complexity.

Fig. 9 qualitative proofs the effectiveness of the proposed Causal NF in accurately modelling both observational and
interventional distributions for the SIMPSONNLIN dataset. In this plot, blue represent the real distribution/samples, while
orange represents the ones generated by Causal NF. Fig. 9a clearly shows that the model successfully captured the correlations
among all variables in the observational distribution. Furthermore, Fig. 9b displays the interventional distribution obtained
when we do do(x3 = −1.09), i.e., when we intervene on the 25-th empirical percentile of x3. Remarkably, Causal NF
accurately learns the distribution of descendant variables, i.e., x4, and effectively breaks any dependency between the
ancestors of the intervened variable and x4. Additionally, Fig. 10 shows a similar analysis for 5-CHAINLIN, when we perform

21

do(x3 = 2.18)—which corresponds to intervening on the 75-th percentile of x3—clearly showing that the correlations not
involving the intervened path (x1 → x2 and x4 → x5) are preserved.

−2

0

2

4

x
1

0

2

4

x
2

−5.0

−2.5

0.0

2.5

5.0

x
3

−2.5 0.0 2.5 5.0

x1

1

2

3

4

x
4

0 2 4

x2

−5 0 5

x3

2 4

x4

(a) Observational distribution.

−2

0

2

x
1

0

2

4

x
2

−1.10

−1.09

−1.08

x
3

−2 0 2 4

x1

1.0

1.5

2.0

2.5

3.0

x
4

0 2 4

x2

−1.10 −1.09 −1.08

x3

1 2 3

x4

(b) Interventional distribution do(x3 = −1.09).

Figure 9: Pair plot of real (in blue) and generated (in orange) data of SIMPSONNLIN. On the left are samples from the true
and learnt observational distribution. On the right are samples from the true and learnt interventional distribution when
do(x3 = −1.09). The plot illustrates that the dependency of x4 on the ancestors of x3, namely x1 and x2, is effectively
broken.

D DETAILS ON THE FAIRNESS USE-CASE

In this section, we provide additional details on the use-case of fairness auditing and classification using the German dataset
[7], whose causal graph is shown in Fig. 11.

Training For this section, we performed minimal hyperparameter tuning, and only tested a few combinations by hand. We
decided to use a Neural Spline Flow (NSF) [8] for the single layer of the Causal NF, which internally uses an MLP with
3 layers, and 32 hidden units each. We use Adam [12] as the optimizer, with a learning rate of 0.01, along with a plateau
scheduler with a decay factor of 0.9 and a patience parameter of 60 epochs. The training is performed for 1000 epochs, and
the results are reported using 5-fold cross-validation with a 80− 10− 10 split for train, validation, and test data.

Results On addition to the results from §4.2, Fig. 12 shows two pair plots from one of the 5 runs, chosen at random. The
true empirical distribution is shown in blue, and the learnt distribution by Causal NF is depicted in orange. Specifically,
Fig. 12a illustrates the observational distribution, and Fig. 12b the interventional distribution, obtained when we intervene
on the sex variable and set it to 1, i.e., do(x1 = 1). We can observe that Causal NF achieves a remarkable fit in both cases,
demonstrating its capability to handle discrete data, and partial knowledge of the causal graph.

22

−4

−2

0

2

x
1

−40

−20

0

20

x
2

−10

−5

0

5

10

x
3

−10

−5

0

5

10

x
4

−5.0 −2.5 0.0 2.5

x1

−10

−5

0

5

10

15

x
5

−25 0 25

x2

−10 0 10

x3

−10 0 10

x4

−10 0 10

x5

(a) Observational distribution.

−2

0

2

x
1

−40

−20

0

20

40

x
2

2.14

2.16

2.18

2.20

x
3

−2

0

2

4

6

x
4

−2.5 0.0 2.5

x1

−7.5

−5.0

−2.5

0.0

2.5

5.0

x
5

−25 0 25

x2

2.150 2.175 2.200

x3

0.0 2.5 5.0

x4

−5 0 5

x5

(b) Interventional distribution do(x3 = 2.18).

Figure 10: Pair plot of real (in blue) and generated (in orange) data of 5-CHAINLIN. On the left are samples from the true
and learnt observational distribution. On the right are samples from the true and learnt interventional distribution when
do(x3 = 2.18). The plot illustrates that the dependency of x4 and x5 on the ancestors of x3, namely x1 and x2, is effectively
broken.

checking
account

credit
amount sex savings

repayment
history age housing

Figure 11: Partial causal graph used for the German Credit dataset [7]. Rectangles show the strongly connected components
(SCCs) grouping different variables. Solid arrows represent causal relationships between SCCs, and dashed arrows represent
an arbitrary order picked to learn the joint distribution of each SCC with an ANF. See App. B.5 for an in-depth explanation
on the proposed method to deal with partial causal graphs using causal NFs.

23

Table 3: Comparison, on different SCMs, of the proposed Causal NF, VACA [26], and CAREFL [11] with the do-operator
proposed in §3.1. Results averaged over five runs.

Performance Time Evaluation (µs)

Dataset Model KL ATERMSE CFRMSE Training Evaluation Sampling

3-CHAIN
LIN
[26]

Causal NF 0.000.00 0.050.01 0.040.01 0.410.06 0.480.10 0.760.06

CAREFL† 0.000.00 0.200.13 0.200.09 0.680.24 0.970.33 1.940.77
VACA 4.441.03 5.760.07 4.980.10 36.191.54 28.330.72 75.344.58

3-CHAIN
NLIN
[26]

Causal NF 0.000.00 0.030.01 0.020.01 0.520.06 0.560.03 1.020.05

CAREFL† 0.000.00 0.050.02 0.040.02 0.600.22 0.840.22 1.660.41
VACA 12.821.00 1.540.03 1.320.02 39.454.12 30.932.30 84.369.60

4-CHAIN
LIN

Causal NF 0.000.00 0.070.02 0.040.01 0.560.08 0.620.15 1.540.40

CAREFL† 0.000.00 0.160.07 0.140.04 0.700.28 0.990.20 2.850.54
VACA 13.140.73 3.820.01 3.720.05 61.855.06 49.314.11 92.067.93

5-CHAIN
LIN

Causal NF 0.010.00 0.120.02 0.080.01 0.620.19 0.690.15 1.910.44

CAREFL† 0.000.00 0.470.23 0.460.22 0.790.41 1.190.25 4.210.87
VACA 17.310.84 5.950.05 6.060.08 103.7510.04 80.8111.06 124.5220.86

COLLIDER
LIN
[26]

Causal NF 0.000.00 0.020.01 0.010.00 0.460.12 0.560.11 0.950.19
CAREFL† 0.000.00 0.020.01 0.010.00 0.390.07 0.450.05 0.740.07

VACA 13.450.43 0.220.01 0.860.02 37.223.55 28.774.22 71.216.73

FORK
LIN
[2]

Causal NF 0.000.00 0.030.01 0.010.00 0.520.05 0.590.08 1.570.57

CAREFL† 0.000.00 0.040.01 0.020.00 0.600.17 0.780.16 2.391.06

VACA 8.750.73 0.870.02 1.430.02 45.844.64 34.662.39 73.294.70

FORK
NLIN
[2]

Causal NF 0.000.00 0.070.02 0.070.00 0.630.16 0.740.31 1.840.84

CAREFL† 0.010.01 0.110.04 0.180.07 0.570.17 0.770.08 1.960.17

VACA 5.090.60 2.010.03 3.190.06 49.225.48 42.132.95 101.0218.94

LARGEBD
NLIN
[9]

Causal NF 1.510.04 0.020.00 0.010.00 0.520.10 0.600.17 3.050.66

CAREFL† 1.510.05 0.050.01 0.080.01 0.840.47 1.180.17 8.251.29
VACA 53.662.07 0.390.00 0.820.02 164.9211.10 137.8815.72 167.9425.75

SIMPSON
NLIN
[9]

Causal NF 0.290.01 0.040.01 0.020.00 0.580.18 0.630.26 1.570.64

CAREFL† 0.290.01 0.040.01 0.030.00 0.690.32 1.020.26 2.950.79
VACA 18.970.66 0.600.00 1.190.02 54.767.46 43.697.92 87.0116.33

SIMPSON
SYMPROD

[9]

Causal NF 0.000.00 0.070.01 0.120.02 0.590.17 0.600.11 1.510.30

CAREFL† 0.000.00 0.100.02 0.170.04 0.490.15 0.810.19 1.910.33
VACA 13.850.64 0.890.00 1.500.04 49.264.09 37.783.41 79.2014.60

TRIANGLE
LIN
[26]

Causal NF 0.000.00 0.240.05 0.210.05 0.540.05 0.560.04 1.050.07

CAREFL† 0.000.00 0.150.06 0.140.03 0.600.20 0.750.05 1.500.10
VACA 3.820.69 7.490.07 7.220.17 27.461.53 21.611.00 67.006.23

TRIANGLE
NLIN
[26]

Causal NF 0.000.00 0.120.03 0.130.02 0.520.07 0.580.07 1.070.12

CAREFL† 0.000.00 0.120.03 0.170.03 0.570.18 0.830.26 1.680.62

VACA 7.710.60 4.780.01 4.190.04 28.821.21 23.000.55 70.653.70

24

0.0

0.2

0.4

0.6

0.8

1.0

S
ex

0

20

40

60

80

A
ge

0

5000

10000

15000

C
re

di
ta

m
ou

nt

0

20

40

60

R
ep

ay
m

en
th

is
to

ry

0

1

2

C
he

ck
in

g
ac

co
un

t

−2

0

2

4

6

S
av

in
gs

0 1

Sex

0

2

4

H
ou

si
ng

0 25 50 75

Age
0 10000

Credit amount
0 25 50 75

Repayment history
0 1 2

Checking account
0.0 2.5 5.0

Savings
0 1 2 3

Housing

GERMAN

(a) Observational distribution.

0.990

0.995

1.000

1.005

1.010

S
ex

20

40

60

80

A
ge

0

5000

10000

15000

C
re

di
ta

m
ou

nt

0

20

40

60

R
ep

ay
m

en
th

is
to

ry

0

1

2

C
he

ck
in

g
ac

co
un

t

−2

0

2

4

6

S
av

in
gs

0.99 1.00 1.01

Sex

0

2

4

H
ou

si
ng

25 50 75

Age
0 10000

Credit amount
0 25 50 75

Repayment history
0 1 2

Checking account
0.0 2.5 5.0

Savings
0 1 2 3

Housing

GERMAN

(b) Interventional distribution do(x1 = 1).

Figure 12: Pair plot of real (in blue) and generated (in orange) data of German dataset. Above, the samples from the true and
learnt observational distributions. Below, the samples from the true and learnt interventional distributions when do(x1 = 1).
The plot illustrates that Causal NF is able to handle discrete data and correctly intervene.

25

	Introduction
	Background
	Causal normalizing flows
	Causal NFs for real-world problems

	Empirical evaluation
	Non-linear SCMs
	Use-Case: Fairness Auditing and Classification

	Concluding remarks
	 Appendix
	Theory of causal normalizing flows
	Structural equivalence
	Identifiability results

	Extension to real-world settings
	The multiple representations of SCMs
	Effective design of causal normalizing flows
	Do-operator: interventions and counterfactuals
	Discrete data
	Partial knowledge

	Experimental details and extra results
	Ablation: Base distribution
	Ablation: Flow architecture
	Comparison: Extra non-linear SCMs

	Details on the fairness use-case

