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Abstract

Few-shot learning via in-context learning (ICL)001
is widely used in NLP, but its effectiveness is002
highly sensitive to example selection, leading003
to performance variance. To address this, we004
introduce BACKGEN, a framework to gener-005
ate structured Background Knowledge (BK)006
as an alternative to example-based prompt-007
ing. Our approach leverages Frame Seman-008
tics to identify recurring conceptual patterns009
in a dataset, clustering similar instances based010
on shared event structures and semantic roles.011
Using an LLM, we synthesize these patterns012
into generalized knowledge statements, which013
are then incorporated into prompts to enhance014
contextual reasoning beyond individual sen-015
tence interpretations. We apply BACKGEN to016
Sentiment Phrase Classification (SPC), where017
sentiment polarity often depends on implicit018
commonsense knowledge. Experimental re-019
sults with Mistral-7B and Llama3-8B show that020
BK-based prompting consistently outperforms021
standard few-shot approaches, yielding up to022
29.94% error reduction1.023

1 Introduction024

Few-shot learning has become a standard approach025

in NLP, enabling models to generalize from lim-026

ited labeled data. In particular, in-context learning027

(ICL) (Brown et al., 2020) allows large language028

models (LLMs) to perform tasks without parameter029

updates, relying instead on a well-designed prompt030

that includes relevant examples (Dong et al., 2024;031

Liu et al., 2022a; Lu et al., 2022; Wu et al., 2023).032

However, ICL suffers from high variance due to its033

sensitivity to example selection (Zhang et al., 2022;034

Köksal et al., 2023; Pecher et al., 2024a). Prior035

research has attempted to mitigate this issue by036

selecting examples based on informativeness (Liu037

et al., 2022a; Liu and Wang, 2023; Köksal et al.,038

1We will release our code, dataset and BK upon paper
acceptance with license to open and distribute.

2023), representativeness (Levy et al., 2023), or 039

learnability (Song et al., 2023), but these methods 040

often come at a high computational cost. 041

A complementary approach is knowledge 042

prompting, where explicit background knowledge 043

(BK) replaces example-based selection in prompts. 044

Prior work has explored using LLM-generated 045

knowledge for commonsense reasoning (Liu et al., 046

2022b) or integrating structured knowledge from 047

external sources (Baek et al., 2023). In this paper, 048

we hypothesize that BK can be particularly useful 049

for Sentiment Phrase Classification (SPC), where 050

the goal is to determine the sentiment polarity of a 051

target phrase in a given text. 052

SPC is especially challenging when the senti- 053

ment of a phrase is context-dependent. Consider 054

the sentence “The government phases out fossil 055

fuels.” The phrase “phases out” usually has a nega- 056

tive connotation, as it denotes abandonment. How- 057

ever, in the context of environmental policies, to 058

phase out fossil fuels generally has a positive con- 059

notation. By relying on surface-level heuristics 060

rather than contextual understanding, a zero-shot 061

LLM may misclassify this instance. To address 062

such kind of ambiguities, BK can provide crucial 063

guidance. For example, knowing that “the fact that 064

a public entity wants to remove something related 065

to green initiatives is perceived negatively” and that 066

“public entities’ intention to reduce non-renewable 067

energy sources is seen as a positive step” allows for 068

a more accurate classification of the instance above. 069

Without this information, the model runs the risk 070

of drawing incorrect inferences or hallucinating 071

reasoning patterns. 072

ICL typically addresses these issues and miti- 073

gates the negative impact of missing context by 074

injecting example sentences into the prompt. How- 075

ever, in tasks involving short texts, the relationship 076

between a support example and the test instance 077

may be weak or even nonexistent, reducing the ef- 078

fectiveness of example-based prompting. Instead, 079
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structured BK provides a more reliable alternative,080

as it captures the higher level generalizations that081

underpin sentiment-bearing expressions.082

In scenarios where we have annotated examples083

but do not perform fine-tuning, an alternative ap-084

proach is to transform these examples into struc-085

tured knowledge statements that generalize beyond086

individual instances. The goal is to construct a BK087

repository where each entry captures recurring con-088

ceptual patterns that can support multiple examples089

from the original dataset.090

To achieve this, we propose a methodology for091

clustering similar examples and extracting their092

underlying commonalities. Instead of selecting in-093

stances arbitrarily, we group them based on shared094

semantic properties and identify the minimal con-095

ceptual structure that describes their sentiment po-096

larity in both positive and negative contexts. The097

clustering process leverages Frame Semantics (Fill-098

more, 1985), as it provides a structured representa-099

tion of situations by encoding events, participants,100

and their relationships. This enables us to general-101

ize beyond lexical choices and focus on the core102

elements that shape sentiment interpretation. Once103

structured, the extracted knowledge is verbalized104

using an LLM, producing natural language state-105

ments that encapsulate the core sentiment-related106

concepts within each cluster. These statements are107

then injected into the prompt as BK, replacing ex-108

plicit few-shot examples. This approach aims at109

mitigatating performance variance due to instance110

selection (Zhang et al., 2022) and enhances the111

model’s ability to reason over sentiment phrases in112

context, particularly in ambiguous cases.113

Experiments with two LLMs show that integrat-114

ing BK into prompts systematically improves per-115

formance over zero-shot and few-shot learning,116

yielding a 26-29% error reduction. These results117

confirm that structured BK enhances sentiment118

classification by providing essential context and119

reducing misinterpretations.120

The remainder of this paper is organized as fol-121

lows. Section 2 reviews related work, Section 3122

describes the proposed methodology, Section 4123

presents experiments and results, and Section 6124

concludes with future directions.125

2 Related Works126

Few-shot learning via ICL. The ICL (Brown127

et al., 2020) has an essential role in solving many128

NLP tasks as it allows the LLM to learn some ex-129

amples via specific template (then, this technique 130

is called as few-shot prompting) without updating 131

the model parameters (Dong et al., 2024; Liu et al., 132

2022a; Lu et al., 2022; Wu et al., 2023). Unfortu- 133

nately, the classical few-shot prompting is very sen- 134

sitive to sample selection strategies (Zhang et al., 135

2022; Köksal et al., 2023; Pecher et al., 2024a). De- 136

spite many techniques that have been introduced to 137

solve that problem (Liu et al., 2022a; Liu and Wang, 138

2023; Köksal et al., 2023; Levy et al., 2023; Song 139

et al., 2023; Pecher et al., 2024b), most of them 140

come at a high computational cost since the proce- 141

dure to retrieve complex examples should be run 142

for each instance, leading to a new ICL approach 143

called knowledge prompting. 144

Knowledge Prompting. A new approach of ICL 145

was introduced to inject knowledge to the prompt 146

where the knowledge is retrieved from a particular 147

source or generated based on the instance. Guu 148

et al. (2020) and Lewis et al. (2020) inject docu- 149

ments to LLM so that the model can retrieve an- 150

swers from them. Baek et al. (2023) gives addi- 151

tional information to the LLM by retrieving knowl- 152

edge graph triplet knowledge and converting it to 153

strings to be injected to the prompt. Liu et al. 154

(2022b) generate knowledge for each instance to be 155

added to the prompt. In knowledge prompting via 156

knowledge retrieval, a problem arises if the selected 157

knowledge is not close enough to the instance. This 158

can lead the model to a confusion and later it to 159

give a wrong result. Meanwhile, the knowledge 160

generation method proposed by Liu et al. (2022b) 161

may produce hallucination since it simply asks the 162

model to generate knowledge based on the instance 163

only, without giving a context, thus leading the 164

LLM to give a wrong answer because of misin- 165

formation. Moreover, as they generate knowledge 166

for each instance, the computational cost of this 167

approach is high. 168

Background Knowledge Prompting. In con- 169

trast with the approaches described above, we pro- 170

pose to inject common-sense knowledge into the 171

prompt. We postulate that this approach can be 172

better than the classical prompting with few-shot in 173

terms of the number of required examples, since it 174

synthesizes several similar examples. As BK gen- 175

eralizes the information, the LLM can learn the rea- 176

soning from this generalization rather than focusing 177

on a specific input-output pair. Moreover, our pro- 178

posed method does not rely on specific knowledge 179

sources as in the case of knowledge prompting 180
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Figure 1: The BACKGEN pipeline.

via knowledge graph retrieval. The proposed BK181

generation is inspired by Shah et al. (2017) and182

Basile et al. (2018) who propose to utilize frame183

semantics theory to build default knowledge by ex-184

tracting frames from raw texts, cluster them, and185

finally extract the prototypical frame from that clus-186

ter. Nevertheless, our approach differs from theirs187

in that our goal is to synthesize the clustered frame188

into BK in the form of natural language via LLM189

prompting.190

3 BACKGEN: A BK Generation191

Framework192

The BACKGEN framework is a structured pipeline193

for generating Background Knowledge (BK) to194

support Sentiment Phrase Classification (SPC). As195

shown in Figure 1, it consists of three main steps:196

(i) Frame-based Parsing, where semantic frames197

and their elements are extracted from annotated198

examples; (ii) Frame-based Clustering, which199

groups similar frames to identify shared conceptual200

structures; and (iii) Background Knowledge Gen-201

eration, where a generative model verbalizes the202

common information in each cluster into reusable203

BK.204

Frame-based Abstraction for Background205

Knowledge. To generalize beyond individual ex-206

amples, we rely on Frame Semantics (Fillmore,207

1985), which models meaning through structured208

representations called frames. A frame encapsu-209

lates a conceptual scenario, consisting of a Lexical210

Unit (LU) and its associated Frame Elements (FEs),211

which define roles such as agents, attributes, or af-212

fected entities. Unlike lexical approaches, frames213

capture abstract relationships that recur across dif-214

ferent linguistic expressions, enabling a more struc-215

tured and reusable representation of meaning.216

One of the key advantages of Frame Semantics217

is its ability to disambiguate lexical meaning based218

on conceptual structures. Consider the verb reduce,219

which can evoke different frames depending on220

the context: in “The government is reducing coal221

power”, it evokes the frame CAUSE CHANGE OF222

POSITION ON A SCALE, where an AGENT actively223

decreases a QUANTITY. In “The army reduced224

enemy resistance”, however, the verb belongs to 225

the frame CONQUERING, where a CONQUEROR 226

overcomes a THEME rather than simply decreasing 227

something. If we relied only on lexical similarity 228

we would will not be able to distinguish between 229

these cases, whereas with frame-based parsing we 230

can generalize meaning in a structured way that 231

aligns with conceptual distinctions rather than sur- 232

face word forms. 233

Beyond disambiguation, frames also facilitate 234

generalization by capturing shared prototypical 235

structures rather than simple text-level similari- 236

ties. A key property of frames is their Frame El- 237

ements, which define the roles participating in an 238

event. By clustering instances based on frames and 239

their arguments (such as AGENT or ASSET) we 240

can link sentences that share the same underlying 241

linguistic primitive, regardless of the lexical items 242

they use. For example, “The government is phas- 243

ing out coal power” and “Public authorities are 244

limiting nuclear energy” both evoke the CAUSE 245

CHANGE OF POSITION ON A SCALE frame, de- 246

spite differing in lexical selection. The presence 247

of an AGENT (e.g., government, public authori- 248

ties) and an ATTRIBUTE (e.g., coal power, nuclear 249

energy) establishes a conceptual equivalence, al- 250

lowing the method to identify structurally similar 251

examples even when surface-level word similarity 252

is low. Our aim is to go beyond traditional vector- 253

space models, which primarily capture lexical and 254

distributional similarity (Reimers and Gurevych, 255

2019), by leveraging frame semantics to identify 256

deeper conceptual patterns. 257

Structuring Background Knowledge. A key 258

step in our approach is clustering examples that 259

evoke similar situations (frames), involve analo- 260

gous participants (frame elements), and exhibit 261

comparable role-filler relations. The objective is 262

to group instances based on deeper structural prop- 263

erties, ensuring that clusters capture prototypical 264

conceptual structures rather than surface-level re- 265

semblances. To achieve this, we structure each 266

parsed instance as a tree representation, as illus- 267

trated in Figure 2. In this representation, the frame 268

serves as the root node, while frame elements and 269

lexical units form intermediate nodes. The role 270

3



CAUSE CHANGE OF POSITION ON A SCALE

ATTRIBUTE

powercoal

Lexical Unit

outphasing

AGENT

governmentthe

CAUSE CHANGE OF POSITION ON A SCALE

ATTRIBUTE

energynuclear

Lexical Unit

limiting

AGENT

authoritiesPublic
. . .

PROTECTING

ASSET

speciesendangered

Lexical Unit

shield

Protection

activistsEnvironmental

PROTECTING

ASSET

forestslocal

Lexical Unit

protect

PROTECTION

Volunteers

Figure 2: Examples of frame-semantic parse trees. Each tree represents a frame (root node) with its frame elements
(children) and lexical unit (LU).

fillers, which instantiate the semantic arguments of271

the frame, appear as terminal nodes. This hierar-272

chical encoding allows us to compare examples not273

merely by their lexical content but through their274

structural alignment within the frame-semantic275

paradigm.276

Measuring the similarity between these struc-277

tured representations requires a metric sensitive to278

both tree structure and semantic similarity of role279

fillers. We employ the Smoothed Partial Tree Ker-280

nel (SPTK) (Croce et al., 2011), which extends the281

Partial Tree Kernel (Moschitti, 2006) by incorporat-282

ing distributed word representations into the kernel283

computation. This method evaluates the similar-284

ity of two trees by counting the number of shared285

substructures, while also weighting the contribu-286

tion of lexically different but semantically related287

elements. In this way, two instances that share the288

same frame and structural configuration but differ289

in the lexical realizations of their role fillers will290

still be considered as similar. For example, the sen-291

tences “The government is phasing out coal power”292

and “Public authorities are limiting nuclear en-293

ergy” both evoke the frame CAUSE CHANGE OF294

POSITION ON A SCALE, with an AGENT and an295

ATTRIBUTE: they are structurally analogous, and296

SPTK ensures that their similarity is preserved in297

the clustering process.298

With a well-defined kernel function, we perform299

clustering using Kernel-based k-means (Dhillon300

et al., 2004), which embeds the tree structures in an301

implicit feature space where each dimension cor-302

responds to a possible substructure. Unlike tradi-303

tional k-means, which relies on explicit Euclidean304

distances, Kernel-based k-means operates in this305

high-dimensional space, ensuring that structurally306

similar examples are grouped together even if their307

surface forms differ significantly.308

Since our task involves sentiment classification,309

we cluster positive and negative instances sepa-310

rately to maintain polarity coherence. To deter-311

mine the number of clusters k, we follow a stan- 312

dard heuristic by setting it to the square root of the 313

number of instances in each polarity group. 314

Background Knowledge Generation. The final 315

step of BACKGEN is the generation of the struc- 316

tured BK from the clustered examples. At this 317

stage, each cluster contains instances that share 318

key semantic properties (such as the evoked frame, 319

the roles of its participants, and the fillers of these 320

roles) while allowing for lexical and syntactic vari- 321

ability. Given this structure, we employ a LLM to 322

generate a concise generalization that synthesizes 323

the core meaning of each cluster. 324

The strong capabilities demonstrated by LLMs 325

in summarization and abstraction (Liu et al., 2024) 326

make them well-suited for this synthesis step. The 327

prompt, exemplified in Figure 3, instructs the 328

model to generate a general statement based on the 329

provided examples, explicitly leveraging Frame Se- 330

mantics. The input consists of clustered sentences 331

along with the identified frames, their definitions, 332

and the corresponding lexical units and role assign- 333

ments. Additionally, the prompt enforces a senti- 334

ment constraint, ensuring that the generated BK 335

aligns with the sentiment orientation of the cluster. 336

By providing explicit semantic constraints (such 337

as frame definitions, role structures, and example 338

sentences directly extracted from the dataset) we 339

also aim to mitigate the risk of hallucinations, a 340

common issue in open-ended text generation. This 341

controlled setting ensures that the generated BK 342

remains grounded in the linguistic and conceptual 343

structure of the dataset while still allowing for gen- 344

eralization. For the example shown in Figure 3, 345

where the clustered sentences evoke the PROTECT- 346

ING frame, the generated BK is: “The efforts of en- 347

vironmental activists to protect wildlife from harm 348

are viewed as a positive and crucial step toward 349

conservation.” The generated statements are then 350

stored as BK, forming a knowledge base that can 351
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later be queried to enhance in-context learning.

Write one sentence expressing general background
knowledge based on the provided input sentences that
are grouped by shared situations (or frames) modeled
according to Frame Semantics Theory. Each input sen-
tence explicitly indicates the Lexical Unit (evoking the
frames) and the corresponding role. Definitions of the
frames will also be provided to guide the generation.
Ensure that the generated text conveys a positive sen-
timent.

Here are the definitions of the involved frame(s):
- Protecting: Some Protection prevents a Danger

from harming an Asset.

Here are the input texts:
1. Environmental activists shield endangered

species from extinction caused by poaching.
- Protecting:

- Lexical Unit (LU): shield
- Roles: Asset(endangered species), Pro-

tection(environmental activists)
2. Volunteers protect local forests from the threat

of wildfires by maintaining firebreaks.
- Protecting:

- Lexical Unit (LU): protect
- Roles: Asset(local forests), Protec-

tion(volunteers)

Answer:

Figure 3: Example prompt for generating positive Back-
ground Knowledge (BK) from clustered instances, using
frames, original text, and frame definitions. The full
prompt is in Appendix A, with a simplified version
shown here.

352

Prompt Injection with BACKGEN’s Generated353

Knowledge. Once the BK base has been pop-354

ulated, the next challenge is determining how to355

retrieve relevant information when processing a356

new instance. Given a new example, the goal is357

to retrieve BK instances that offer useful general-358

izations and can be integrated into a prompt in a359

one-shot or few-shot learning setting. An efficient360

retrieval strategy is needed that allows selecting361

representative knowledge from the BK collection.362

Since the BK is structured into clusters, each con-363

taining semantically related examples, retrieval can364

be efficiently performed by selecting the medoid365

of each cluster as an entry point. The medoid is366

the instance within the cluster that is closest to the367

centroid in the implicit space induced by the simi-368

larity measure (Dhillon et al., 2004), ensuring that369

it corresponds to a real example in the dataset. This370

choice allows selecting representative knowledge371

without needing to compare against all examples.372

To retrieve the most relevant BK for a new in-373

put, we explore two alternative similarity-based374

approaches: one leveraging structural similarity375

through kernel functions and another using seman- 376

tic similarity in a dense embedding space. The first 377

method is consistent with the clustering process 378

used in BACKGEN as it relies on the same tree- 379

structured representation of frames. Given a new 380

input sentence, its frame representation is extracted 381

and compared against each cluster medoid using 382

the adopted tree kernel function (Croce et al., 2011), 383

selecting those entry whose medoid maximizes the 384

kernel function, i.e. the similarity. This approach 385

captures fine-grained structural alignment between 386

examples, reflecting similarities in event structures 387

and role assignments. The main advantage is that 388

it ensures coherence between the retrieved BK and 389

the input instance. However, it requires parsing 390

the new input according to FrameNet, which may 391

introduce additional computational overhead, par- 392

ticularly in tasks where fast inference is required. 393

An alternative retrieval strategy is based on text 394

similarity. Instead of relying on structured frame 395

representations, dense vector embeddings of both 396

the new input and the BK entry points are com- 397

puted using a pre-trained language model such as 398

BERT (Reimers and Gurevych, 2019). The sim- 399

ilarity between the new instance and each clus- 400

ter medoid is then measured using cosine similar- 401

ity, based on the original, unaltered text without 402

frame labeling. This approach avoids the need for 403

explicit frame parsing, making it more adaptable 404

across different tasks, and captures broader con- 405

textual relationships beyond frame-level structures. 406

Each retrieval method presents a trade-off between 407

interpretability and efficiency. In our hypothesis, 408

kernel-based retrieval maintains structural coher- 409

ence, making it preferable when fine-grained se- 410

mantic consistency is required. Embedding-based 411

retrieval, however, provides a more flexible and 412

computationally efficient alternative. In the exper- 413

imental section, we evaluate both approaches in 414

terms of their effectiveness in selecting useful BK 415

for prompt augmentation and analyze their impact 416

on task performance. This approach also keeps 417

retrieval efficient, as the number of cluster medoids 418

remains at most O(
√
n), where n is the number of 419

original instances. 420

4 Experimental Validation 421

Evaluating a Background Knowledge (BK) reposi- 422

tory typically involves assessing the factual accu- 423

racy of its statements with respect to real-world 424

knowledge. However, such an evaluation is beyond 425
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the scope of this work. Instead, we assess the prac-426

tical utility of BACKGEN by measuring its impact427

on a downstream task-Sentiment Phrase Classifi-428

cation (SPC). Specifically, we examine whether429

integrating BACKGEN-derived BK into prompts430

improves the ability of a Large Language Model431

(LLM) to classify the sentiment polarity of a given432

phrase in context.433

Experimental Setup. We created an SPC dataset434

for the environmental sustainability (ES) domain435

by extending the English dataset by Bosco et al.436

(2023) with additional language data from the so-437

cial media platform X. The dataset consists of438

tweets discussing environmental and socio-political439

issues, where sentiment interpretation often relies440

on domain-specific background knowledge. Given441

the nuanced nature of these discussions, implicit442

assumptions and contextual understanding play a443

crucial role in correctly assessing sentiment polar-444

ity. The extended dataset follows the same data445

collection and annotation process as the original,446

ensuring safety regarding identifying individual447

people and absence of offensive content. Each mes-448

sage is annotated by three native English speakers449

from the crowdsourcing platform Prolific2, at a rate450

of 9 GBP per hour, and the labels are aggregated451

by majority voting over sequence (Rodrigues et al.,452

2014). Personal information on the annotators is453

not disclosed in the final dataset. After filtering out454

the instances with no sentiment phrases, the dataset455

comprises 2,573 phrases (Table 1).456

Attribute Statistic
# negative phrase 1,697
# positive phrase 876

avg. span length
(# token)

neg. phrase 3.09
pos. phrase 2.69

# tweets no sentiment phrase 198
# tweets - total 1,500

Table 1: Data overview of the aggregated dataset for the
sentiment phrase layer.

To parse the text with Frame Semantics, we em-457

ploy LOME (Xia et al., 2021), a state-of-the-art458

parser for FrameNet that performs the full pipeline459

from lexical unit (LU) detection to complete se-460

mantic role labeling (SRL). For computing simi-461

larity between frame representations, we use the462

Smoothed Partial Tree Kernel (SPTK) (Croce et al.,463

2011), implemented within the KELP library (Fil-464

2https://www.prolific.com/

ice et al., 2018), which also provides the kernel- 465

based k-means clustering algorithm (Dhillon et al., 466

2004). For generating BK, we use a LLM with a 467

structured prompt following the example in Fig- 468

ure 3. The prompt template, detailed in Ap- 469

pendix A, is designed to extract generalizable 470

knowledge from clustered examples by summariz- 471

ing their common conceptual patterns. The binary 472

task distinguishes positive and negative sentiment. 473

Due to class imbalance, we report per-class preci- 474

sion, recall, and weighted F1-score. Experiments 475

were run on an NVIDIA A-100. 476

Experiment and Results. We evaluate the effec- 477

tiveness of BACKGEN using two state-of-the-art 478

open-source models, Mistral-7B3 and Llama3-8B4 479

(Dubey et al., 2024). Each model is employed 480

both for generating background knowledge (BK) 481

and for performing sentiment phrase classification 482

(SPC), ensuring a consistent evaluation across the 483

entire pipeline. The evaluation follows a 5-fold 484

cross-validation setup. For each fold, BACKGEN is 485

applied to 4/5 of the dataset (training set) to gen- 486

erate a BK database, while the remaining 1/5 is 487

used for testing. The models are tested under dif- 488

ferent prompting conditions. In the 0-shot set- 489

ting, the LLM receives only the input text and 490

target phrase, without additional context. In the 491

few-shot setting, one (1-shot) or two (2-shot) ex- 492

amples from the training set are provided in the 493

prompt, either selected randomly (Rand) or based 494

on text similarity (TSim). The text similarity is com- 495

puted via Sentence-BERT embeddings (Reimers 496

and Gurevych, 2019) using all-MiniLM-L6-v25. 497

For background knowledge prompting, the exam- 498

ples are replaced with retrieved BK entries. The re- 499

trieval process selects entries based either on frame- 500

based similarity (Kernel) or text similarity (TSim), the 501

latter computed using the same Sentence-BERT 502

model. In both cases, the number of BK entries 503

matches the few-shot setting, with one or two re- 504

trieved statements included in the prompt. The 505

specific templates used for 0-shot, few-shot, and 506

BK-shot prompting are reported in Appendix B6. 507

3https://huggingface.co/mistralai/
Mistral-7B-v0.1

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

5https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

6The model is expected to output Positive or Negative as
the first word. If absent, the first occurrence of either label in
the response is used; if neither is found, the instance is marked
as unanswered, lowering recall.
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Shot
Mistral-7B

Negative Positive Weighted
F1

Absolute
Error

Relative
Error

ReductionPrecision Recall F1 Precision Recall F1

0-shot 0.966 0.923 0.944 0.886 0.911 0.898 0.928 0.072 -
1-shotRand 0.957 0.944 0.950 0.917 0.876 0.896 0.931 0.069 4.46%
2-shotRand 0.969 0.931 0.949 0.895 0.919 0.907 0.935 0.065 9.33%
1-shotTSim 0.957 0.955 0.956 0.931 0.877 0.903 0.938 0.062 13.09%
2-shotTSim 0.969 0.939 0.953 0.910 0.918 0.914 0.940 0.060 16.30%
1-BKKernel 0.964 0.947 0.955 0.909 0.925 0.917 0.942 0.058 19.50%
2-BKKernel 0.963 0.949 0.956 0.913 0.922 0.919 0.943 0.057 20.89%
1-BKTSim 0.965 0.952 0.959 0.917 0.927 0.922 0.946 0.054 24.79%
2-BKTSim 0.968 0.956 0.962 0.922 0.930 0.926 0.950 0.050 29.94%

Table 2: Results for the 5-fold cross-validation of the SPC task based on Mistral-7B, separately for the positive and
negative classified instances in terms of Precision, Recall, and F1 score, as well as in terms of Weighted F1 score
and Error Reduction for the two classes.

Shot
Llama3-8B

Negative Positive Weighted
F1

Absolute
Error

Relative
Error

ReductionPrecision Recall F1 Precision Recall F1

0-shot 0.894 0.922 0.908 0.854 0.731 0.787 0.867 0.133 -
1-shotRand 0.866 0.954 0.908 0.888 0.706 0.786 0.866 0.134 -0.15%
2-shotRand 0.881 0.949 0.914 0.884 0.749 0.810 0.879 0.122 8.92%
1-shotTSim 0.867 0.958 0.910 0.901 0.707 0.792 0.870 0.130 2.40%
2-shotTSim 0.882 0.955 0.917 0.900 0.751 0.819 0.884 0.116 12.89%
1-BKKernel 0.890 0.942 0.915 0.873 0.767 0.816 0.881 0.119 10.87%
2-BKKernel 0.887 0.951 0.919 0.893 0.759 0.820 0.885 0.115 13.87%
1-BKTSim 0.882 0.948 0.914 0.882 0.748 0.809 0.878 0.122 8.62%
2-BKTSim 0.900 0.962 0.930 0.915 0.791 0.848 0.902 0.098 26.76%

Table 3: 5-fold cross-validation results using Llama3-8B, following the same setup as in Table 2.

In all cases, greedy search is used for token genera-508

tion to ensure reproducibility and robustness.509

Tables 2 and 3 summarize the results in terms510

of per-class precision, recall, and F1 score. The511

weighted F1 score, which accounts for class im-512

balance, provides an overall measure of perfor-513

mance. As expected, few-shot prompting improves514

over 0-shot, with 2-shot generally outperforming515

1-shot. Additionally, selecting examples based on516

their similarity to the test instance (TSim) leads to517

better performance than random selection (Rand),518

confirming that more relevant examples contribute519

to better predictions. The most significant im-520

provement comes from replacing explicit exam-521

ples with structured background knowledge. In522

particular, BK-based prompting consistently out-523

performs traditional few-shot methods, demonstrat-524

ing that synthesized knowledge captures general-525

izable patterns that are more informative than in-526

dividual training examples. The 2-BKTSim con-527

figuration achieves the best weighted F1 scores528

across both models, with a relative error reduction529

of 29.94% for Mistral-7B and 26.76% for Llama3-530

8B. Comparing the two BK selection methods, text 531

similarity-based retrieval (BKTSim) performs bet- 532

ter than frame similarity-based retrieval (BKKernel). 533

This suggests that text-based embeddings provide 534

a more robust signal for retrieving relevant knowl- 535

edge, while frame-based retrieval is more sensitive 536

to parsing errors and the specificity of extracted 537

structures. Overall, these results highlight the po- 538

tential of structured background knowledge to en- 539

hance sentiment phrase classification. By capturing 540

conceptual generalizations rather than relying on 541

specific examples, BACKGEN mitigates the per- 542

formance variability associated with example se- 543

lection and provides a more stable and effective 544

alternative to few-shot learning. 545

5 Error Analysis 546

To better understand the impact of BK on model 547

predictions, we analyze cases where BK improves 548

classification as well as those where it introduces 549

errors. The goal is to identify patterns in both 550

helpful and harmful BK selections. Given that 551

Mistral-7B outperforms Llama3-8B, we conduct 552

7



this analysis using Mistral-7B with the 2-shot BK553

selection based on text similarity.554

BK is particularly useful when the sentiment po-555

larity of a phrase depends on contextual understand-556

ing. For example, in the instance “big problems557

may arise if your ductwork system is not installed558

correctly homeowners will encounter discomfort559

poor indoor air quality inflated electricity bills560

periodic repairs and in some cases complete re-561

placement”, the 0-shot model incorrectly classifies562

the target phrase “big problems may arise” as posi-563

tive. However, a retrieved negative BK statement,564

i.e., “The constant increase in expenses for vari-565

ous reasons, such as pollution and gentrification,566

is a major issue that negatively impacts our lives.”,567

helps the model correctly reclassify the phrase as568

negative by reinforcing the association between569

financial burdens and negative sentiment.570

Errors in BK selection primarily arise when (i)571

the retrieved BK is not sufficiently similar to the572

test instance, (ii) the BK is too generic, or (iii)573

the BK is overly specific. In cases where the re-574

trieved BK does not align closely with the input,575

the model struggles to integrate it into the classi-576

fication decision. Although the BK may contain577

relevant commonsense knowledge, it fails to pro-578

vide meaningful guidance due to its semantic dis-579

tance from the test instance. This can lead to the580

model overriding a previously correct classification,581

sometimes defaulting to a neutral response such as582

“. . . The background knowledge does not provide583

enough information to determine the polarity of584

the target phrase.” This suggests that, beyond BK585

retrieval, there is potential value in using model un-586

certainty as a signal, if no sufficiently relevant BK587

is found, the test instance itself may be an outlier588

relative to the training data. Another failure mode589

occurs when the retrieved BK is too generic. This590

typically results from poor clustering, where mul-591

tiple frames that are not semantically aligned are592

grouped together, leading to vague or uninforma-593

tive statements. For example, a BK entry such as594

“Changes in policies can have a significant impact595

on society” lacks specificity, making it difficult for596

the model to determine sentiment in a meaning-597

ful way. Overly specific BK can also introduce598

bias, particularly when the generated knowledge re-599

peatedly mentions the same entity across multiple600

instances. Consider the instance “you do realize601

bill gates is heavily invested in animal agriculture602

right he has enormous feed crop landholdings for603

animal ag supplying factory farms amp feedlots he604

also he invests in gmo cow research”, where the 605

0-shot model correctly classifies the target phrase 606

“heavily invested” as positive. However, one re- 607

trieved BK statement, i.e., “The fact that Bill Gates 608

is involved in funding and promoting synthetic 609

meat, despite Jeremy’s disdain for him, is a dis- 610

appointing turn of events.”, introduces a negative 611

stereotype, leading the model to misclassify the 612

phrase as negative. This suggests that the model is 613

overfitting to entity-level associations rather than 614

recognizing general sentiment cues. A potential 615

solution is to refine the BK generation prompt to 616

avoid explicit mentions of named entities, ensuring 617

the generated knowledge remains applicable. 618

6 Conclusions and Future Works 619

We introduced BACKGEN, a framework that lever- 620

ages Frame Semantics to generate structured Back- 621

ground Knowledge (BK) as a principled alternative 622

to example-based prompting. Instead of selecting 623

individual examples, BACKGENclusters semanti- 624

cally coherent instances, identifies shared patterns 625

through Semantic Frames, and synthesizes gener- 626

alized knowledge using an LLM. This structured 627

BK enhances model reasoning without relying on 628

specific instances. Applied to Sentiment Phrase 629

Classification (SPC), where sentiment is often im- 630

plicit and context-dependent, BACKGEN signifi- 631

cantly outperforms few-shot prompting, achieving 632

up to a 29.94% error reduction. 633

Future work will explore the broader applica- 634

bility of structured Background Knowledge (BK) 635

beyond sentiment analysis, particularly in tasks that 636

require commonsense reasoning, such as common- 637

sense question answering, where external knowl- 638

edge is crucial. Finally, we aim to investigate po- 639

tential biases and stereotypes in the generated BK 640

and the underlying data. Developing automated 641

methods to detect and mitigate such biases would 642

enhance the reliability of knowledge prompting. 643

Furthermore, integrating BK into an explainabil- 644

ity framework could enhance both sentiment classi- 645

fication and reasoning transparency. Frame Seman- 646

tics, which models how conceptual knowledge is 647

shared and activated in language, provides a struc- 648

tured basis for generalization. By linking LLM 649

predictions to underlying frames and role struc- 650

tures, this approach could improve the coherence 651

and interpretability of AI-generated explanations, 652

making them more aligned with human cognitive 653

representations of meaning. 654
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Limitations655

The applicability of the BK database produced in656

this study is currently limited to the environmental657

sustainability (ES) domain, and its effectiveness658

in other sentiment analysis tasks remains to be ex-659

plored. Additionally, as BACKGEN relies on a660

frame parser, the quality of the generated BK is661

inherently dependent on the accuracy of the parser.662

Another limitation is the lack of automatic anal-663

ysis of the collected BK statements, which may un-664

intentionally introduce biases or stereotypes. Since665

BK is generated based on clustered instances, it666

is possible that certain perspectives are overrepre-667

sented, reinforcing pre-existing biases in the data.668

Future work should focus on developing methods669

for detecting and mitigating such biases, ensuring670

that the generated BK remains neutral and repre-671

sentative across different domains. Moreover, in-672

vestigating how BK influences model reasoning,673

i.e., particularly in tasks requiring explainability,674

could provide insights into its broader applicability675

beyond sentiment analysis.676

Ethical Reflections677

It is important to consider the potential risks of NLP678

tools like BACKGEN, particularly the possibility of679

generating biased or misleading background knowl-680

edge (BK). Without proper safeguards, BACK-681

GEN could produce inaccurate, overly generalized,682

or even harmful statements that misrepresent real-683

world contexts, especially in sensitive areas like684

environmental sustainability (ES). To mitigate this685

risk, prompt design should be carefully refined to686

encourage neutral and well-grounded knowledge687

generation. Additionally, a verification step should688

be implemented to detect and filter out problematic689

BK, ensuring that the generated content remains690

accurate, unbiased, and contextually appropriate.691
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A Prompts for Background Knowledge Generation 867

The BACKGEN framework employs two prompts to generate Background Knowledge (BK) from clusters 868

of semantically similar instances. These clusters are formed by grouping examples that evoke the same 869

semantic frames and share a common sentiment polarity, either positive or negative. Each cluster is then 870

processed using the appropriate prompt: 871

• Clusters of positive instances use the Positive Sentiment Knowledge Prompt (Figure A). 872

• Clusters of negative instances use the Negative Sentiment Knowledge Prompt (Figure B). 873

Each prompt follows a standardized structure to ensure consistency in BK generation: 874

1. Task Definition: The prompt begins with an explicit instruction, guiding the model to generate 875

a single sentence that captures general background knowledge from the clustered examples. This 876

instruction specifies that the output should reflect a stereotypical generalization, either positively or 877

negatively framed, depending on the sentiment of the cluster. 878

2. Example Cluster: The prompt includes an example cluster of semantically related instances, where 879

each input sentence is annotated with its corresponding frame-semantic structure. This includes: 880

• The Lexical Unit (LU) evoking the frame. 881

• The Frame Elements (roles) present in the sentence. 882

• The Frame Definitions to provide contextual understanding. 883

3. Example BK Statement: A correctly structured BK statement is provided as a reference, demonstrat- 884

ing the level of abstraction and generalization expected from the model. This serves as a guideline to 885

ensure that the output captures high-level conceptual knowledge rather than instance-specific details. 886

4. Target Cluster for BK Generation (“Your Turn”): The final section of the prompt presents a 887

new set of sentences from a different cluster (all sharing the same sentiment polarity and evoking 888

similar frames). This part of the prompt contains placeholders (e.g., {frame_n}, {text_n}, {LU}, 889

{arguments_of_frame}) that are dynamically populated based on the actual instances and frame 890

annotations of the current cluster. The model is then instructed to generate a single BK statement 891

that generalizes the semantic properties of these instances, mirroring the structure of the provided 892

example. 893

Both prompts are designed to ensure that the model generates reliable, structured commonsense knowledge 894

that can be effectively injected into prompts for downstream NLP tasks. Additionally, the framework 895

supports variations of these prompts where the instruction is modified to generate a short paragraph instead 896

of a single sentence, allowing for more detailed knowledge synthesis. 897

B Prompts for Sentiment Phrase Classification (SPC) 898

To evaluate different prompting strategies in Sentiment Phrase Classification (SPC), we employed three 899

approaches: 900

• Zero-shot (Figure C): The model classifies the sentiment polarity (positive or negative) of a target 901

phrase within a given text without additional context. The prompt explicitly instructs the model to 902

provide a classification and a brief explanation. 903

• Few-shot (Figure D): The model is given one or two labeled examples (1-shot or 2-shot) before 904

classifying the target phrase. The examples are either selected randomly (Rand) or based on text 905

similarity (TSim) with the input instance. The model cannot explicitly reference these examples in its 906

explanation. 907
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Write one sentence expressing general background knowledge that reflects stereotypical information, based on
the input sentences provided. These sentences are grouped by shared situations (or frames) modeled according
to Frame Semantics Theory. Each input sentence explicitly indicates the Lexical Unit (evoking the frames) and
the corresponding role. Definitions of the frames will also be provided to guide the generation. Ensure that the
generated text conveys a positive sentiment and the reason for the sentiment should be made explicit.

Example:

Here are the definitions of the involved frame(s):
- Cause_change_of_position_on_a_scale: This frame consists of words that indicate that an Agent or

a Cause affects the position of an Item on some scale (the Attribute) to change it from an initial value
(Value_1) to an end value (Value_2).

Here are the input texts:
1. if the tourism sector is serious about reducing its footprint they should choose real emission reductions and

biodiversity protection even airlines are starting to move away from offsets fornature 4
- Cause_change_of_position_on_a_scale:

- Lexical Unit (LU): reducing
- Roles: Attribute(its footprint)

2. moving away from capitalism green washing is not easy under the current systems political allegiances we
live within so i commend for being bold enough to try but let us not forget that redistributing wealth and
reducing consumerism must remain 1 priorities

- Cause_change_of_position_on_a_scale:
- Lexical Unit (LU): reducing
- Roles: Attribute(consumerism)

3. india reduced emission intensity of its gdp by 24 per cent in 11 yrs through 2016 un via official pollution
- Cause_change_of_position_on_a_scale:

- Lexical Unit (LU): reduced
- Roles: Agent(India),Attribute(emission intensity of its GDP),Difference(by 24 per cent),

Speed(in 11 yrs),Time(through 2016),Means(un via official pollution)

Answer: Reducing material that is bad for the environment is a positive act.

Your Turn:

Here are the definitions of the involved frame(s):
- {frame_1} : {definition_of_frame_1}.
· · ·

- {frame_n} : {definition_of_frame_n}

Here are the input texts:
1. {text_1}

- {frame_label_of_text_1}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_1}
- Roles: {arguments_of_frame_label_of_text_1}

· · ·
n. {text_n}

- {frame_label_of_text_n}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_n}
- Roles: {arguments_of_frame_label_of_text_n}

Answer:

Figure A: Prompt for generating positive sentiment background knowledge. The input sentences are clustered based
on shared semantic frames, and the model is instructed to generate a generalized knowledge statement that reflects a
positive sentiment.

• BK-shot (Figure E): Instead of example-based prompting, the model receives background knowledge908

(BK) statements generated by BACKGEN. These statements, selected using either frame similarity909

(Kernel) or text similarity (TSim), provide generalizable knowledge to guide sentiment classification.910

Each prompt follows a structured format, including:911

• Task Definition: the goal is to classify the sentiment polarity of a given target phrase.912

• Instructions: Constraints are provided, including the requirement for a polarity label and an913

explanation, without explicit reference to examples or BK.914

• Input Information: The given text and target phrase are explicitly stated.915

12



Write one sentence expressing general background knowledge that reflects stereotypical information, based on
the input sentences provided. These sentences are grouped by shared situations (or frames) modeled according
to Frame Semantics Theory. Each input sentence explicitly indicates the Lexical Unit (evoking the frames) and
the corresponding role. Definitions of the frames will also be provided to guide the generation. Ensure that the
generated text conveys a negative sentiment and the reason for the sentiment should be made explicit.

Example:

Here are the definitions of the involved frame(s):
- Causation: A Cause causes an Effect.
- Destroying: A Destroyer (a conscious entity) or Cause (an event, or an entity involved in such an event)

affects the Patient negatively so that the Patient no longer exists.
- Cause_to_end: An Agent or Cause causes a Process or State to end.
- Cause_to_amalgamate: These words refer to an Agent joining Parts to form a Whole.

Here are the input texts:
1. water pollution is putting our health at risk unsafe water kills more people each year than war and all other

forms of violence combined here are six causes of water pollution as well as what we can do to reduce it
- Causation:

- Lexical Unit (LU): putting
- Roles: Cause(water pollution),Effect(our health),Cause(at risk unsafe water kills more people

each year than war and all other forms of violence combined)
2. i hope izzy one day understands that we can be against pollution in all it s forms which truly is destroying

our environment and health but also be smart enough to see through the carbon emissions global warming
shenanigans

- Destroying:
- Lexical Unit (LU): destroying
- Roles: Cause(pollution in all it s forms),Cause(which),Patient(our environment and health)

3. extinction is forever amp for all we know we have lost what we will need to fix things when it becomes
obvious we have to do something technology will not end pollution of the air water soil or the contamination
of our food earth cycles themselves will be the only way out of it

- Cause_to_end:
- Lexical Unit (LU): end
- Roles: Cause(technology),State(pollution of the air water soil)

4. water pollution is putting our health at risk unsafe water kills more people each year than war and all other
forms of violence combined here are six causes of water pollution as well as what we can do to reduce it

- Cause_to_amalgamate:
- Lexical Unit (LU): combined
- Roles: Parts(all other forms of violence)

Answer: The existence of pollution and other materials that cause damage and destroy our environment is very
negative.

Your Turn:

Here are the definitions of the involved frame(s):
- {frame_1} : {definition_of_frame_1}.
· · ·

- {frame_n} : {definition_of_frame_n}

Here are the input texts:
1. {text_1}

- {frame_label_of_text_1}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_1}
- Roles: {arguments_of_frame_label_of_text_1}

· · ·
n. {text_n}

- {frame_label_of_text_n}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_n}
- Roles: {arguments_of_frame_label_of_text_n}

Answer:

Figure B: Prompt for generating negative sentiment background knowledge. The model generates a background
knowledge statement that reflects the negative sentiment conveyed by the clustered examples.

• Additional Context: In few-shot prompting, examples are included; in BK-shot prompting, relevant 916

background knowledge statements are injected instead. 917
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• Expected Output: The model generates a classification followed by a justification.918

Figures C, D, and E illustrate the complete templates for the zero-shot, few-shot, and BK-shot prompts.919

Task: Determine the polarity (either ’positive’ or ’negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. The explanation should be clear and helpful for the user to
understand the choice.

Instructions:
- The polarity output can only be ’positive’ or ’negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Answer:

Figure C: Prompt zero-shot for SPC.

Task: Determine the polarity (either ’positive’ or ’negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. You are also provided with some examples. The explanation
should be clear and helpful for the user to understand the choice.

Instructions:
- Use the examples to help determine the polarity.
- Note the sentiment of each example as it may assist in your reasoning.
- The polarity output can only be ’positive’ or ’negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.
- The user is not aware of the examples, so you cannot refer to them explicitly in your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Examples:
1. {example_text_1}. Target Phrase: {example_target_phrase_1}. Sentiment: {example_polarity_1}

· · ·
n. {example_text_n}. Target Phrase: {example_target_phrase_n}. Sentiment: {example_polarity_n}

Answer:

Figure D: Prompt few-shot for SPC.

Task: Determine the polarity (either ’positive’ or ’negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. You are also provided with potentially useful sentences
reflecting background knowledge. The explanation should be clear and helpful for the user to understand the
choice.

Instructions:
- Use the background knowledge to help determine the polarity.
- Note the sentiment of each background sentence as it may assist in your reasoning.
- The polarity output can only be ’positive’ or ’negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.
- The user is not aware of the background knowledge, so you cannot refer to it explicitly in your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Examples:
1. {bk_text_1}. {bk_polarity_1}

· · ·
n. {bk_text_n}. {bk_polarity_n}

Answer:

Figure E: Prompt BK injection shot (bk-shot) for SPC.
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