
Self-supervised Adversarial Purification for Graph Neural Networks

Woohyun Lee 1 Hogun Park 1

Abstract
Defending Graph Neural Networks (GNNs)
against adversarial attacks requires balancing ac-
curacy and robustness, a trade-off often mishan-
dled by traditional methods like adversarial train-
ing that intertwine these conflicting objectives
within a single classifier. To overcome this limi-
tation, we propose a self-supervised adversarial
purification framework. We separate robustness
from the classifier by introducing a dedicated pu-
rifier, which cleanses the input data before clas-
sification. In contrast to prior adversarial purifi-
cation methods, we propose GPR-GAE, a novel
graph auto-encoder (GAE), as a specialized puri-
fier trained with a self-supervised strategy, adapt-
ing to diverse graph structures in a data-driven
manner. Utilizing multiple Generalized PageRank
(GPR) filters, GPR-GAE captures diverse struc-
tural representations for robust and effective pu-
rification. Our multi-step purification process fur-
ther facilitates GPR-GAE to achieve precise graph
recovery and robust defense against structural per-
turbations. Experiments across diverse datasets
and attack scenarios demonstrate the state-of-the-
art robustness of GPR-GAE, showcasing it as
an independent plug-and-play purifier for GNN
classifiers. Our code can be found in https:
//github.com/woodavid31/GPR-GAE.

1. Introduction
Graph Neural Networks (GNNs) have become a powerful
tool for learning on graph-structured data, with applications
in social networks (Fan et al. 2019), biological networks
(Zhang et al. 2021), and recommender systems (Wu et al.
2022). Moreover, they have been expanded to domains such
as self-supervised learning (Jung & Park 2025) and explain-
ability (Kang et al. 2024). However, due to their reliance

1Department of Computer Science and Engineering,
Sungkyunkwan University, Suwon, South Korea. Correspondence
to: Hogun Park <hogunpark@skku.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

on the underlying graph structure, even small perturbations
can drastically degrade their performance, making them
highly vulnerable to adversarial attacks (Xu et al. 2019a;
Geisler et al. 2021). Defending against such attacks requires
balancing accuracy and robustness. Accuracy measures per-
formance on clean data, while robustness reflects resilience
to adversarial attacks. Focusing on accuracy can make a
model rely on adversarially vulnerable features, while prior-
itizing robustness may reduce this reliance but harm clean
data performance.

Adversarial training (Goodfellow et al. 2015; Madry et al.
2018), one of the earliest defense methods in the image
domain, has been adapted into GNNs (Xu et al. 2019a; Feng
et al. 2019; Li et al. 2022; Zhang et al. 2022; Gosch et al.
2023) to enhance robustness under adversarial settings in
graphs. However, it inherently intertwines the two conflict-
ing objectives in a single learning framework. This limits the
achievable robustness, as pursuing higher robustness often
comes at the expense of significant accuracy loss. Moreover,
adversarial training often falls short in broad applicability,
showing efficiency in a narrow set of GNNs.

On the other hand, adversarial purification (Wu et al., 2019;
Entezari et al., 2020; Li et al., 2024) provides a viable frame-
work by introducing a separate module—a purifier—that
preprocesses the input data to defend against attacks. It
focuses on removing adversarial components and purifying
the input data, allowing each module to specialize in its
own role: the purifier enhances robustness, while the clas-
sifier focuses solely on accuracy. This separation provides
clear pathways for each module to leverage its strengths in-
dependently, avoiding interference between the conflicting
objectives of accuracy and robustness. However, existing
purification methods do not fully capitalize on this potential,
often relying on predefined heuristics without a dedicated
training process (Wu et al. 2019; Entezari et al. 2020) or a
simple edge detection method (Li et al. 2024). Heuristic-
based approaches lack adaptivity and leave defenses highly
vulnerable to carefully crafted attacks (Mujkanovic et al.
2022), while classifier-derived edge representations do not
capture intricate structural differences between clean and
adversarial edges, resulting in suboptimal performance.

Based on these observations, our work makes several key
contributions to adversarial purification in GNNs. First, we

1

https://github.com/woodavid31/GPR-GAE
https://github.com/woodavid31/GPR-GAE

Self-supervised Adversarial Purification for Graph Neural Networks

analyze and decouple the conflicting objectives of accuracy
and robustness in adversarial training into two components:
a classifier for accuracy and a purifier trained independently
to restore graph structures. Under the adversarial purifica-
tion framework, we design a self-supervised training strat-
egy, ensuring the purifier’s independence from the classifi-
cation task and mitigating trade-offs. Second, as the purifier,
we introduce GPR-GAE, a novel graph auto-encoder ar-
chitecture that leverages multiple Generalized PageRank
(GPR) filters to capture diverse and unique neighborhood
representations. This allows effective distinction between
clean and adversarial graph regions by modeling complex
structural differences, while enabling accurate encoding
and reconstruction of a cleaner graph structure. Third, we
adopt a multi-step purification process that iteratively re-
fines the graph with a convergent nature, yielding more
precise and effective purification. Finally, through extensive
experiments across diverse datasets and attack scenarios,
we demonstrate that GPR-GAE excels as a specialized pu-
rifier, achieving state-of-the-art performance while serving
as a plug-and-play defense module that is compatible with
various GNNs.

1.1. Related Work

Adversarial Training: Gosch et al. (2023) emphasizes that
flexible GNN architectures (Chien et al. 2021; He et al.
2022) excel in adversarial training settings due to their abil-
ity to learn robust propagation pathways by dynamically
weighting different powers of the adjacency matrix.

Robust GNNs: Some methods forgo adversarial training
and focus on designing a robust GNN architecture as a
defense. For example, EvenNet (Lei et al. 2022) ignores
odd-hop neighbors and uses an even-polynomial graph fil-
ter, while SoftMedianGDC (Geisler et al. 2021) uses soft-
median aggregation with GDC to mitigate the influence
of outliers. However, robust GNNs share the same limita-
tions as adversarial training, where accuracy and robustness
goals are tightly coupled within the architectural designs,
constrained by inherent trade-offs.

Adversarial Purification: Jaccard-GCN (Wu et al. 2019)
prunes edges between nodes that have Jaccard similarity
below a threshold. SVD-GCN (Entezari et al. 2020) finds
that attacks tend to affect high-rank components of the graph
and perform a low-rank approximation to purify the graph.
GOOD-AT (Li et al. 2024) integrates adversarial training
and purification by generating adversarial samples using a
PGD attack (Xu et al. 2019a) on a pre-trained GCN (Kipf
& Welling 2017) classifier. It encodes edges with features
and classifier logit embeddings, training an ensemble of
MLP detectors to distinguish between clean (in-distribution)
and adversarial (out-of-distribution) edges. During testing,
edges flagged as OOD by any detector are pruned.

2. Preliminary
2.1. Problem Formulation and Notation

We represent a graph G as G = (V, E), where V is the set
of N nodes and E is the set of edges, or equivalently as
(A,X), with A ∈ RN×N as the adjacency matrix and X ∈
RN×F as the feature matrix, where F denotes the feature
dimension. While a normalized adjacency matrix with self-
loops, Ãs = D

−1/2
s (A+ I)D

−1/2
s is commonly used, our

approach adopts Ãns = D−1/2AD−1/2, excluding self-
loops. Here, Ds and D are the respective degree matrices.

This work addresses adversarial attacks on Graph Neural
Networks (GNNs) through structural perturbations, where
attackers manipulate edges (insertions or deletions) to de-
grade performance. We denote the perturbed graph as
G′ = (A′,X) and seek to recover a structure closer to
the clean graph G = (A,X). Unlike poisoning attacks tar-
geting the training phase, we focus on evasion attacks, the
same problem setting as adversarial training, which occurs
at the test phase. Following Gosch et al. (2023), we employ
an inductive setting, excluding validation and test nodes
during training to prevent information leakage (memorizing
the graph for defense) and ensure fair evaluation.

2.2. Learning Objective of Adversarial Training

Adversarial training (Xu et al. 2019a; Li et al. 2022; Gosch
et al. 2023) enhances the robustness of a GNN classifier fψ
against evasion attacks by iteratively generating adversarial
examples and training the classifier on them. The overall
objective can be formulated as:

L(ψ) = max
G′∈B(G,ϵ)

Ev∈V [ℓ(fψ(G
′, v), yv)]. (1)

Here, G′ is an adversarially perturbed graph sampled from
B(G, ϵ), the set of graphs obtained from G via a bounded
number of edge or feature modifications and constrained
by the perturbation budget ϵ. Each node v ∈ V has a true
label yv , and ℓ denotes the loss function. Training alternates
between generating the worst-caseG′, which maximizes the
loss, and updating classifier parameters ψ to minimize the
expected loss over G′.

2.3. Generalized PageRank Filter

The Generalized PageRank (GPR) filter, introduced in
GPRGNN (Chien et al., 2021), provides a flexible mech-
anism for dynamically adjusting the contribution of each
propagation step during message passing. This is achieved
through learnable coefficients γk, which weigh the k-th
power of the normalized adjacency matrix Ãk

s . The prop-
agation rule is expressed as H =

∑K
k=0 γk

(
Ãk
sH

(0)
)
,

where in GPRGNN, H(0) is the initial feature-driven logit
embeddings. By learning the coefficients γ = [γ0, . . . , γK],

2

Self-supervised Adversarial Purification for Graph Neural Networks

the GPR filter flexibly adapts the contribution of information
from different neighborhood ranges, up to K-hops. This
adaptability allows GPR filters to dynamically capture and
aggregate neighborhood information, being suitable for both
homophilic and more complex heterophilic graphs.

3. Motivations
3.1. Self-supervised Adversarial Purification

We discuss the motivations behind our use of a self-
supervised adversarial purification framework for defending
against adversarial attacks. We first analyze the learning
objective of adversarial training and highlight the inherent
trade-off between accuracy and robustness. The adversarial
training objective can be decomposed as follows:
Theorem 3.1 (Decomposition of Adversarial Training).
Given disjoint sets of nodes Vunaffected ⊆ V and Vaffected ⊆ V ,
representing those unaffected and affected by adversar-
ial perturbations in G’, respectively, such that Vunaffected ∪
Vaffected = V , let λ =

|Vunaffected|
|V| , where λ ∈ [0, 1], denote the

proportion of unaffected nodes. The adversarial training
objective for a GNN classifier fψ can be decomposed as
follows:

L(ψ) = λ · Ev∈Vunaffected

[
ℓ(fψ(G, v), yv)

]︸ ︷︷ ︸
Accuracy Term

+ (1− λ) · max
G′∈B(G,ϵ)

Ev∈Vaffected

[
ℓ(fψ(G

′, v), yv)
]︸ ︷︷ ︸

Robustness Term

.

Proof. Provided in Appendix A.1.

In particular, a node v is considered affected by an adver-
sarial perturbation if a modification exists within its local
propagation boundary. For instance, in a 2-layer GCN (Kipf
& Welling, 2017), a node v is affected if there are perturba-
tions within its two-hop neighborhood.

The decomposition separates the adversarial training objec-
tive into two distinct terms: accuracy and robustness. Given
that the local structure of node v is denoted as Sv and the
perturbed local structure as S′

v , the accuracy term focuses on
learning the mapping from (v, Sv) to the true label yv , while
the robustness term focuses on learning the mapping from
(v, S′

v) to yv. Meanwhile, within the decomposition, the
attack budget ϵ indirectly determines |Vunaffected|, controlling
the value of λ and emphasis on each term.

However, excessive emphasis on the robustness term can
introduce perturbations that drastically alter the nodes’ se-
mantics, rendering the mapping from (v, S′

v) to yv mean-
ingless for learning useful representations. The coexistence
of such potentially detrimental learning within the overall
objective can hinder the learning of meaningful representa-
tions from the clean graph structure, ultimately constraining

performance on clean data. As a result, most adversarial
training methods keep the attack budget during training rel-
atively low to preserve the clean accuracy. Consequently, it
inherently limits the level of robustness that can be achieved
through training, leaving the classifier vulnerable to stronger
attacks that exceed the restricted budget.

The limitations in adversarial training motivates a fundamen-
tal redesign: can we decouple the objectives of accuracy
and robustness, assigning them to specialized modules that
address each goal more effectively?

Therefore, we propose a self-supervised adversarial purifi-
cation framework with clear efforts to fully decouple the
accuracy and robustness objectives. The two are explic-
itly handled and learned in separate modules with distinct
specializations. This contrasts with previous adversarial
purification approaches, which either replace the purifier
with predefined heuristics or make the purifier dependent
on the classifier’s samples and representations.

The accuracy objective is assigned to a standard GNN
classifier, fψ, which focuses solely on learning accurate
representations from the clean graph G. This is reflected in
the following typical supervised learning objective:

L(ψ) = Ev∈V
[
ℓ(fψ(G, v), yv)

]
. (2)

The robustness objective, in turn, is assigned to a separate
purifier model, fθ, which does not learn to predict node
labels. Instead, it focuses on reconstructing the clean graph
G from perturbed inputs G′, which naturally aligns with the
following self-supervised objective:

L(θ) = ℓ(fθ(G
′), G), G′ ∼ B(G, ϵ). (3)

In our self-supervised approach, unlike adversarial train-
ing’s worst case samples, we randomly choose G′ from the
sample space B, with a relatively large training budget ϵ.
This allows the purifier fθ to learn general purification di-
rections across a broader range of perturbations around G,
enabling more robust and adaptive purifications.

3.2. Convergent Multi-Step Purification Framework

Traditional purification methods often use a single-step pro-
cess, modifying the perturbed graph G′ by pruning or retain-
ing edges based on fixed criteria. Although simple, these
methods make abrupt changes with rough discretization of
the graph, limiting their ability to precisely recover clean
graph structures under complex or heavy perturbations.

The proposed multi-step purification framework addresses
these limitations by iteratively refining the graph through
a dynamic, data-driven approach. Instead of abrupt correc-
tions, the purifier model fθ progressively adjusts the graph
structure using the learned purification directions, adapting

3

Self-supervised Adversarial Purification for Graph Neural Networks

to the graph’s current state at each step. This gradual refine-
ment not only enhances recovery accuracy but also enables
the method to handle severe perturbations more effectively.
Moreover, a convergent nature is crucial in multi-step purifi-
cation in order to ensure stability and prevent oscillatory or
divergent behavior during iterative refinement. The follow-
ing theoretical analyses formalize the convergent behavior
of our self-supervised multi-step purification framework:

Assumption 3.2. Under optimal self-supervised training
over a sufficiently large and continuous perturbation space
B(G, ϵ) around the clean graph G, the purification model
fθ behaves as a locally Lipschitz continuous function with
Lipschitz constant L ∈ [0, 1).

The local Lipschitz behavior of fθ arises from the self-
supervised training objective, which minimizes the recon-
struction error ∥fθ(G′) − G∥ for perturbed inputs within
B(G, ϵ) while enforcing fθ(G) = G for the clean graph.
Under optimal training, the model is encouraged to satisfy
∥fθ(G′)− fθ(G)∥ ≤ p∥G′ −G∥ for some small constant
p ∈ [0, 1), implying that fθ approximates a locally Lips-
chitz continuous mapping with Lipschitz constant L ∈ [0, 1)
around G. In the inductive setting, the test graph is semanti-
cally similar to G, and thus the locally Lipschitz property of
fθ extends naturally to perturbation neighborhoods around
the test graph. Empirical verification of the assumption
under various dataset is shown in Section 6.2.

Theorem 3.3 (Convergence of Multi-Step Purification). Let
G(0) = G′ be an adversarially perturbed graph, and let
fθ be a purification model trained and applied in a self-
supervised manner. At each step t, define the purification
direction as ∆G(t) = fθ(G

(t))−G(t), and update the graph
iteratively asG(t+1) = G(t)+α·∆G(t), where α ∈ (0, 1] is
the step size. Given Assumption 3.2, the sequence (G(t))t≥0

converges linearly to a stationary point G∗.

Proof. Provided in Appendix A.2.

The theorem guarantees that, under the local Lipschitz con-
dition induced by the self-supervised training objective, the
iterative purification process converges to a stable graph
structure regardless of the step size. Importantly, this con-
vergence is governed by the behavior of the purification
model in isolation. In contrast, incorporating external sig-
nals, such as arbitrary classifier outputs, may interfere with
the stability of the refinement process. The proposed decou-
pling of the purifier from the classifier is therefore essential
for ensuring both theoretical convergence and robustness
against adversarial attacks.

3.3. Designing the Purifier

To effectively differentiate clean from attacked graph re-
gions while adapting to diverse structures, purification meth-

Figure 1. Conceptual Comparison: Node v’s receptive fields (dot-
ted lines) when adversarially linked to node v′ (from a different
community). Left: Two-layer static GNN. Right: Five GPR fil-
ters, each with unique coefficients γ = [γ0, . . . , γK] of varying
scales. γm controls neighbors m-hop away from node v. In GPR-2,
self-suppression (γ0 < 0) and two-hop neighborhood emphasis
(γ2 > 0) form a boundary around nodes {2,3,4,5}. GPR-3 further
suppresses one-hop neighborhood (γ1 < 0), excluding nodes 2
and 3, to form a boundary with nodes {4,5}.

ods must well leverage structural properties such as neigh-
borhood relationships or higher-order dependencies. Graph
auto-encoders (GAEs) are naturally suited for this task, as
they encode and reconstruct graph structures, modeling both
node and edge relationships. However, traditional GAEs
face two key challenges in adversarial settings:

Adversarial Smoothing: Perturbations in the graph can
propagate through the structure, blurring distinctions be-
tween clean and attacked regions. Traditional GAEs rely
on static GNN layers (Kipf & Welling 2017; Hamilton et al.
2017; Xu et al. 2019b) for neighbor aggregation, which inad-
vertently smooth local variations. This causes adversarially
connected nodes to become similar in representation, reduc-
ing the model’s ability to differentiate clean and attacked
regions. Moreover, standard GAE decoders (Pan et al. 2018;
Li et al. 2023) often use proximity-based measures such as
inner or element-wise products, further exacerbating this
issue by reconstructing spurious connections.

Difficulties in Higher-Order Representations: Captur-
ing higher-order structural information in GAEs typically
requires stacking multiple GNN layers. However, as the
number of layers increases, oversmoothing occurs (Rusch
et al. 2023), where node representations across the graph
become indistinguishable. This limits traditional GAEs to
low-order structural properties, further reducing their effi-
cacy in purifying attacked graphs.

Motivated by these limitations, we propose GPR-GAE, a
novel graph auto-encoder architecture that utilizes diverse
representations from multiple GPR filters, addressing the
challenges of traditional GAEs while enhancing the struc-
tural capabilities. The key intuitions are as follows:

i) Flexible Neighborhood Aggregation: GPR filters em-
ploy learnable coefficients γ to selectively aggregate neigh-

4

Self-supervised Adversarial Purification for Graph Neural Networks

borhood information from different ranges. Unlike stacking
static GNN layers, this approach prevents oversmoothing,
preserving node-level distinctions while effectively captur-
ing higher-order structural dependencies.

ii) Diverse Structural Aspects: As illustrated in Figure 1,
each GPR filter captures unique structural neighboring as-
pects of nodes through learnable continuous coefficients,
with their sign and magnitude enabling fine-grained empha-
sis or suppression of the corresponding neighborhoods. By
leveraging multiple unique GPR filters with varying sizes,
GPR-GAE can utilize diverse, multi-scale structural rep-
resentations. This allows modeling of complex structures
while mitigating adversarial smoothing by avoiding reliance
on single representations derived from fixed aggregations.

We further extend our motivations in Appendix G, empir-
ically showing how GPR-GAE moves beyond the simple
proximity focus of traditional GAEs to capture complex
structural properties. The appendix demonstrates GPR-
GAE’s ability to leverage higher-order information and
distinguish between proximal connections, highlighting its
advanced structural encoding capabilities and forming a
foundation for its application in adversarial purification.

4. GPR-GAE
4.1. Node Encoding

We employ K+1 distinct GPR filters to capture multi-scale
structural information across varying neighborhood sizes.
The output of the k-th GPR filter, Hθk (k = 0, . . . ,K), is:

Hθk =

k∑
m=0

γk,m(Ãm
nsH

(0)), H(0) = X ·Wn. (4)

Here, γk = [γk,0, γk,1, . . . , γk,k] are the learnable coeffi-
cients for the k-th GPR filter, where γk,m weighs the contri-
bution of them-hop neighborhood. H(0) ∈ RN×Z1 denotes
the initial linearly transformed node embeddings, where Z1

is the embedding dimension. Note that Hθ0 = H(0) is fixed
as the initial node embeddings. We use a normalized adja-
cency matrix without self-loops (Ãns) to reduce potential
excessive self-influence, promoting aggregation from dis-
tinct neighborhoods for more discriminative representations.

The final encoded node embedding, denoted as HGPRGAE ∈
RN×(K+1)·Z1 , is formed by concatenating the representa-
tions from all K+1 GPR filters:

HGPRGAE =
∣∣∣∣K
k=0

Hθk . (5)

This concatenation creates a rich, multi-scale representation
for downstream tasks to effectively utilize.

4.2. Edge Encoding

The edge representation Ei,j ∈ RZ2 , where Z2 is the edge
embedding dimension, is computed as:

Ei,j = ϕ(HGPRGAE
i ||HGPRGAE

j) ·We, (6)

where the concatenation of encoded node embeddings of
i and j are transformed by an activation function ϕ and a
multiplication by a learnable weight matrix We.

4.3. Edge Decoding

The encoded edge embeddings are order-variant, where
Ei,j and Ej,i are two different representations. So we first
compute the directed link prediction score:

Âi→j = σ(ϕ(Ei,j) ·Wd), (7)

where Wd ∈ RZ2×1 is a learnable weight vector and σ
is the sigmoid function. Given that our work focuses on
undirected graphs, the final link prediction score Âij is
obtained by averaging the bidirectional predictions:

Âij =
Âi→j + Âj→i

2
. (8)

The resulting Âij values form the predicted adjacency ma-
trix Â, where each entry represents the probability of an
edge existing between the corresponding nodes.

5. Adversarial Purification
5.1. Perturbed Graph Sampling for Training

To sample perturbed graphs for training, we define the sam-
ple space B(G, (p, q, η)), where we apply three random
perturbation methods sequentially to G. The parameters
p, q, η represent the budgets for each perturbation method.

i) Edge Injection. We begin by injecting new edges into the
graph G = (V, E). Specifically, we uniformly sample a set
of edges Einject ⊆ EC , where EC denotes the set of edges not
present in E . The number of injected edges is determined by
the injection ratio p, such that |Einject| = p · |E|. These edges
are added to the graph, resulting in edge set E ′ = E ∪ Einject.

ii) Edge Masking. Next, we mask a subset of edges from
the modified graph. The masked edge set is defined as
Emask = Emask orig ∪ Emask inj, where:

• Emask orig ⊆ E consists of original edges uniformly
sampled from E , with |Emask orig| = q · |E|,

• Emask inj ⊆ Einject consists of injected edges uniformly
sampled from Einject, with |Emask inj| = q · |Einject|.

Edge masking results in an edge set E ′ = E ′ \ Emask.

5

Self-supervised Adversarial Purification for Graph Neural Networks

iii) Edge Reweighting. Finally, we reweight the remaining
edges in E ′. For each edge in E ′, originally weighted as 1,
we assign a new weight randomly sampled from the range
[β, β · η], where η is a scaling factor. Note that the specific
value of β is inconsequential, as it is normalized during
adjacency matrix processing.

Resulting Perturbed Graph. The perturbed graph sam-
pled from B(G, (p, q, η)) is defined as G′ = (V, E ′), where
E ′ incorporates the effects of edge injection, masking,
and reweighting. Equivalently, G′ can be represented as
(A′,X), where A′ is a modified adjacency matrix with the
continuous edge weights. While edge injection and edge
masking define discrete boundaries for the sample space,
edge reweighting smooths these boundaries into continuous
space. This enables the learning of more generalized ∆G,
or more specifically, ∆A = A−A′, providing directions
for purifying the graph structure toward its clean state.

5.2. Learning Objective

The learning objective of GPR-GAE is to purify the per-
turbed graph G′ by restoring its adjacency matrix A′ to
approximate the original A. The model takes G′ as input
and outputs link score predictions Â, representing edge
likelihoods in Eall = E ∪ Einject. These predictions are
optimized with the following two losses:

(i) Restoration Loss. The restoration loss quantifies the
model’s ability to recover the structure of the original graph.
It optimizes the link prediction scores Â for positive edges
in E and negative edges in Einject. The loss is defined as:

Lrestore =
1

|E|
∑

{i,j}∈E

log(1− Âij)

+
1

|Einject|
∑

{i,j}∈Einject

log(Âij). (9)

(ii) Symmetry Loss. The symmetry loss ensures consis-
tency in link prediction scores for edges in Eall regardless
of node ordering. It is defined as:

Lsym =
1

|Eall|
∑

{i,j}∈Eall

(
Âi→j − Âj→i

)2
. (10)

The total loss function combines these objectives:

L(θ) = Lrestore + δ · Lsym, (11)

where δ > 0 balances restoration and symmetry losses,
ensuring consistency throughout the predictions.

5.3. Multi-step Purification Process

During the test stage, the purification process is applied to
the test graph Gtest = (Atest,Xtest). At each step t, the edge

Figure 2. GCN classifier performance on attacked Cora. Node clas-
sification accuracy over purification steps using GPR-GAE multi-
step purification with τ = 1/1000, and α ∈ {0.3, 0.5, 0.7, 1}.

weights in Atest are iteratively updated as:

A(t+1) = A(t) + α ·∆A(t),

∆A(t) = Â(t) −A(t), Â(t) = fθ(A
(t),Xtest).

(12)

Here, A(0) = Atest, and ∆A(t) adjusts the graph structure
based on Â(t). The step size α ∈ (0, 1] balances retaining
the current state and incorporating updates. The process
terminates when ∥∆A(t)∥

∥A(t)∥ ≤ τ . The final refined adjacency
matrix, A∗, is passed to the GNN classifier fψ without dis-
cretization, producing the final classification fψ(A∗,Xtest).

Figure 2 illustrates the accuracy across purification steps
using GPR-GAE as the purifier. The classification accuracy
improves with each step, demonstrating the effectiveness of
the multi-step purification process. The results also show
consistent convergence across all α values under the termi-
nal condition. For practical use, we set α = 1, τ = 1/1000,
and limit the maximum purification steps to 5.

5.4. Computational Complexity

In real-world graphs, where the number of nodes is N , the
number of edges is |E|, the feature and the hidden dimen-
sion is Z, the complexity of node encoding in GPR-GAE is
O(K · |E| · Z), the same as GCN with K-layers. For multi-
step purification process with the number of maximum pu-
rification steps fixed as 5, the complexity is O(K · |E| ·Z2).
We provide detailed derivations in Appendix B.

6. Experiments
We conducted experiments on various datasets including
Cora, Cora ML, Citeseer (Bojchevski & Günnemann 2018),
Pubmed (Sen et al. 2008), OGB-arXiv (Hu et al. 2020), and
Chameleon with removed duplicates (Platonov et al. 2023).
We use an inductive split with 20 labeled nodes per class
for train and validation, a stratified test set of 10% of nodes,
and the remaining nodes as unlabeled training data. For
Chameleon and OGB-arXiv, we use their provided splits
with fully labeled training sets.

6

Self-supervised Adversarial Purification for Graph Neural Networks

Table 1. Adaptive attack: Test accuracy (%) on Cora for models with different methods: Vanilla (standard training), Self-training
(pseudo-labeling), Adversarial training (PRBCD or LRBCD with training ϵ = 0.2), and GPR-GAEGNN paired with either vanilla or
self-trained classifiers. Robust GNNs (EvenNet, SoftMedianGDC) are compared alongside GCN variants. Results are evaluated under
clean conditions and adversarial attacks (LRBCD and PRBCD) with varying budget ϵ. Bold values indicate the best performance within
each category, while curly underlined values highlight the second-best performance.

Adv. Pseu. (Adv.eval) −→ LRBCD PRBCD LRBCD PRBCD LRBCD PRBCD
Model Pur. Lab. (Adv.tr) ↓ Clean ϵ = 0.1 ϵ = 0.1 ϵ = 0.25 ϵ = 0.25 ϵ = 0.5 ϵ = 0.5

EvenNet ✗ ✗ ✗ 81.4±2.0 65.2±2.3 65.7±1.4 54.9±1.1 51.7±3.3 45.7±0.5 35.6±0.9
SoftMedianGDC ✗ ✗ ✗ 77.4±1.8 69.1±1.9 67.3±1.9 64.1±1.4 60.0±1.4 59.1±1.2 48.2±1.1

GCN

Vanilla ✗ ✗ ✗ 79.4±0.7 64.2±2.3 60.1±1.0 51.2±0.6 46.9±1.5 40.5±2.2 29.3±2.3
Self-trained ✗ ✓ ✗ 82.5±0.9 70.7±1.6 65.0±0.9 60.7±1.7 52.7±1.2 48.4±1.1 37.2±2.1
Adv.-trained ✗ ✓ LRBCD 80.5±1.8 70.4±3.2 63.8±1.5 62.8±2.7 51.1±1.4 52.6±2.8 33.4±1.6
Adv.-trained ✗ ✓ PRBCD 80.3±1.7 69.5±1.5 64.0±1.7 61.6±2.0 51.7±2.4 51.7±1.8 34.6±1.9

GPR-GAEGCN Vanilla ✓ ✗ ✗ 79.4±0.3
::::::
75.9±2.0

::::::
75.6±2.1

::::::
74.1±1.4 69.7±2.9

::::::
72.5±1.7 61.3±3.6

GPR-GAEGCN Self ✓ ✓ ✗
::::::
81.6±0.7 78.5±1.6 77.3±0.9 76.6±1.8

::::::
69.0±1.2 75.0±1.6

::::::
60.8±1.4

GAT

Vanilla ✗ ✗ ✗ 76.4±1.3 50.2±2.4 50.5±4.0 29.5±3.1 36.2±4.2 19.8±2.4 21.4±1.5
Self-trained ✗ ✓ ✗ 79.4±2.3 53.5±6.1 53.0±4.6 34.9±6.1 36.5±5.8 24.1±6.7 24.8±5.0
Adv.-trained ✗ ✓ LRBCD 80.7±0.8 67.4±0.7 62.0±0.8 59.4±2.4 48.4±0.5 50.5±2.7 32.2±1.3
Adv.-trained ✗ ✓ PRBCD 78.8±1.7 65.2±4.2 62.1±3.5 50.6±3.8 51.2±4.6 38.1±6.9 39.0±7.3

GPR-GAEGAT Vanilla ✓ ✗ ✗ 76.0±1.6
::::::
71.3±2.1

::::::
71.8±2.4

::::::
69.0±1.6

::::::
65.1±1.1

::::::
67.1±1.3

::::::
59.9±3.0

GPR-GAEGAT Self ✓ ✓ ✗
::::::
79.4±2.2 74.9±2.8 74.0±3.6 72.8±3.9 69.3±5.4 71.7±4.5 60.5±5.3

GPRGNN

Vanilla ✗ ✗ ✗
::::::
81.4±1.2 65.6±0.7 63.0±1.4 55.6±0.9 49.4±1.9 44.2±2.7 33.1±3.2

Self-trained ✗ ✓ ✗ 81.1±1.8 68.5±1.3 65.5±2.2 60.2±2.3 51.8±1.3 51.9±2.0 36.8±1.9
Adv.-trained ✗ ✓ LRBCD 80.0±1.0 71.2±3.0 65.4±1.1 64.8±2.6 54.0±1.2 57.7±4.4 38.2±2.7
Adv.-trained ✗ ✓ PRBCD 79.5±2.0 73.2±2.8 68.0±2.4 68.5±3.1 61.1±4.4 62.8±5.6 48.5±5.3

GPR-GAEGPRGNN Vanilla ✓ ✗ ✗ 81.6±1.1 77.4±1.4 77.0±0.8 76.4±0.9 70.6±2.3 75.6±1.9 64.2±1.0
GPR-GAEGPRGNN Self ✓ ✓ ✗ 80.7±1.6

::::::
77.2±1.0

::::::
75.9±1.2

::::::
75.5±1.1

::::::
70.2±1.6

::::::
74.7±1.3

::::::
61.6±1.0

APPNP

Vanilla ✗ ✗ ✗ 82.1±1.2 66.2±1.3 64.5±0.8 56.4±1.3 50.9±1.2 46.0±2.5 32.6±2.6
Self-trained ✗ ✓ ✗ 82.3±1.8 70.6±1.0 68.2±1.1 62.1±2.8 54.7±1.0 51.1±3.2 37.7±2.0
Adv.-trained ✗ ✓ LRBCD

::::::
82.4±1.5 71.5±1.3 66.8±0.6 63.4±2.8 54.0±1.4 54.4±1.8 35.6±2.3

Adv.-trained ✗ ✓ PRBCD 81.2±1.5 71.2±1.4 67.6±0.6 64.1±1.3 55.3±1.3 54.1±0.7 37.8±3.2
GPR-GAEAPPNP Vanilla ✓ ✗ ✗ 81.6±1.4

::::::
77.6±1.8

::::::
77.1±1.5

::::::
77.3±1.7 72.4±1.9

::::::
76.4±1.8

::::::
64.3±2.7

GPR-GAEAPPNP Self ✓ ✓ ✗ 82.5±1.7 79.6±2.3 77.3±2.9 77.9±2.2
::::::
71.4±2.3 76.5±2.7 65.2±2.0

GPR-GAE. We set K = 7, symmetry loss factor δ = 0.2,
and the training sample budget to (p, q, η) = (1.5, 0.2, 3),
with q = 0.5 tuned for OGB-arXiv. We provide abla-
tion studies of GPR-GAE in Appendix F. Additionally,
GPR-GAEGNN denotes a GNN classifier performing infer-
ence on the purified graph produced by GPR-GAE.

Attacks. PRBCD (Geisler et al. 2021) is a gradient-based
topology attack that perturbs graph structures by optimizing
an attack objective over randomized edge blocks, adhering
to a defined perturbation budget. Its local constraint variant,
LRBCD (Gosch et al. 2023), applies restrictions to perturba-
tions within a node’s local neighborhood, simulating more
realistic attack scenarios. The ϵ for attacks parametrizes the
global budget ∆ =

∣∣ϵ ·∑v∈Vt
dv/2

∣∣ relative to the degree
dv for the set of targeted nodes Vt.

Adversarial Training. For adversarial training, we follow
the pseudo-labeling framework proposed by Gosch et al.
(2023). For datasets with unlabeled training nodes, a sep-
arate classifier is pre-trained on labeled nodes to assign
previously unlabeled nodes with pseudo-labels, expanding
the labeled training set. The final model is then trained on
the expanded labeled training set, using either PRBCD or

LRBCD to create adversarial training samples. Additionally
the non-adversarial counterpart, self-training, uses pseudo-
labeling without adversarial training, and the expansion of
the training set typically increases the robustness of both
adversarial and self-training through generalization.

6.1. Experimental Results

Adaptive attack. We evaluate robustness under adaptive at-
tacks, where the attacker has full knowledge of the model’s
architecture and parameters, crafting model-specific worst-
case perturbations. Our adversarial purification method,
GPR-GAE, is tested in two configurations—attached to
either vanilla or self-trained classifiers—and compared
against vanilla, self-training, adversarial training, and robust
GNNs (EvenNet, SoftMedianGDC). For the baseline classi-
fier, we employ four GNN models: GCN, GAT (Veličković
et al. 2018), GPRGNN, and APPNP (Gasteiger et al. 2019).
Note that GPRGNN demonstrated state-of-the-art robust-
ness under adversarial training in the prior work, flexibly
learning robust propagation pathways in adversarial settings.

Table 1 highlights that, on the Cora dataset, GPR-GAE
achieves significantly higher robustness compared to all

7

Self-supervised Adversarial Purification for Graph Neural Networks

(a) Citeseer (b) Cora ML (c) Pubmed (d) Chameleon

Figure 3. Adaptive Attack: Comparison of test accuracy (%) for Vanilla, Adversarial Training (PRBCD with ϵ = 0.2), and
GPR-GAEGNN Vanilla under PRBCD attacks with perturbation budgets ϵ = 0.1, 0.25, 0.5 on various datasets and GNN classifiers.

other GNN model variants, including robust GNNs, under
adaptive attacks. For example, while adversarially trained
GPRGNN (PRBCD)—the most robust method aside from
GPR-GAE—achieves 48.5% test accuracy against PRBCD
attacks with ϵ = 0.5, GPR-GAEGPRGNN Vanilla improves this
by 15.7 percentage points through its multi-step refinements,
demonstrating its robustness under severe perturbations.
Against LRBCD attacks, which restrict local edge modi-
fications proportionally to node degrees, GPR-GAE main-
tains strong performance, with its largest accuracy drop
relative to clean data being only 8.9 percentage points for
GPR-GAEGAT Vanilla. This underscores GPR-GAE’s signifi-
cance in defending against more realistic attack scenarios.

In terms of clean accuracy, adversarially trained (PRBCD)
GPRGNN sacrifices 1.6 percentage points compared to its
non-adversarial counterpart, self-trained GPRGNN. In con-
trast, GPR-GAE shows minimal trade-offs, with the largest
drop being 0.9 points when paired with self-trained GCN.
These results demonstrate that GPR-GAE successfully miti-
gates the trade-off by decoupling accuracy and robustness
into separate modules with different specialties, achieving
strong robustness against adaptive attacks while preserv-
ing clean accuracy. Notably, for GPR-GAE, overall per-
formance against attacks tends to correlate with the initial
clean accuracy of the base classifier, rather than the type of
GNN or whether it was self-trained or not.

In Figure 3, we further compare the robustness of
GPR-GAEGNN Vanilla against Vanilla and Adversarial Train-
ing (PRBCD) across various datasets, including three ho-
mophilic datasets (Citeseer, Cora ML, Pubmed) and a het-
erophilic dataset (Chameleon). The results show that GPR-

Table 2. Non-adaptive attack: Average test accuracy (%) in ad-
versarial purification methods and robust GNNs under clean con-
ditions and transfer attacks (PRBCD) from vanilla GCN. “OOM”
indicates “Out-Of-Memory.”

Citeseer (small) Pubmed (medium) OGB-arXiv (large)
Model Clean / 0.25 / 0.5 Clean / 0.25 / 0.5 Clean / 0.25 / 0.5

GCN (Vanilla) 71.5 / 40.0 / 25.3 75.1 / 37.1 / 24.1 70.8 / 43.1 / 33.1

EvenNet 72.9 / 57.0 / 48.0
::

75.0 / 64.5 / 57.3 66.2 /
::

46.7 /
::
39.0

SoftMedianGDC
::
71.7 / 52.1 / 37.5 73.9 / 53.5 / 40.2 70.5 / 44.4 / 35.7

Jaccard-GCN 69.8 / 50.4 / 40.6 74.3 / 46.4 / 36.0 67.6 / 43.9 / 35.0
SVD-GCN 66.7 / 59.8 / 46.7 70.7 / 68.0 / 61.4 OOM
GOOD-AT 68.1 /

::
60.8 /

::
56.6 73.0 /

::
70.5 /

::
68.9 OOM

GPR-GAEGCN Vanilla 71.2 / 68.7 / 66.4 75.1 / 73.5 / 72.0
::

69.1 / 49.2 / 42.3

GAE consistently achieves superior defense performance
across all four GNN models and datasets, demonstrating
both its effectiveness and broad applicability.

Non-adaptive attack. Unlike GPR-GAE, prior adversar-
ial purification methods such as SVD-GCN, Jaccard-GCN,
and GOOD-AT rely on discrete, non-differentiable purifica-
tion, preventing direct gradient-based adaptive attacks and
each requiring different attack strategies. For general eval-
uation of adversarial purification methods, we conduct ex-
periments under non-adaptive settings, transferring attacks
from adaptively attacked vanilla GCNs using PRBCD. In
Table 2, we compare GPR-GAEGCN Vanilla with prior adver-
sarial purification methods and robust GNNs across datasets
of varying scales: Citeseer (N = 2, 110, |E| = 3, 668),
Pubmed (N = 19, 717, |E| = 44, 324), and OGB-arXiv
(N = 169, 343, |E| = 1, 157, 799).

8

Self-supervised Adversarial Purification for Graph Neural Networks

(a) Cora (b) Chameleon

Figure 4. Visualization of the learned coefficients for each GPR filter in GPR-GAE. For the coefficient value γi,j , i indicates the GPR
Filter Index (i-th GPR Filter) and j indicates the Coefficient Index (for j-th hop). We adjust the sign of the values so that the last
coefficient values of each GPR filter are positive.

Table 3. Empirical Lipschitz constant L̂.

Cora Cora ML Citeseer Pubmed OGB-arXiv Chameleon

0.3988 0.4587 0.2788 0.4473 0.4214 0.3238

Heuristic-based approaches such as Jaccard-GCN and SVD-
GCN exhibit either a significant drop in clean accuracy
or limited robustness, making them less adaptable across
datasets. GOOD-AT, which detects adversarial edges using
classifier-based embeddings, provides improved robustness
over heuristics but does not fully utilize structural informa-
tion, falling short in overall compared to GPR-GAE. More-
over, training of GOOD-AT relies on iterative dense matrix
optimization for adversarial sample generation, making it
impractical for large graphs like OGB-arXiv, a limitation
also present in SVD-GCN’s low-rank approximation.

While robust GNNs (EvenNet, SoftMedianGDC) may
achieve higher clean accuracy, GPR-GAE maintains su-
perior adversarial robustness, generally with larger margins
under stronger perturbations, while preserving clean accu-
racy close to its attached classifier, vanilla GCN. Addition-
ally, it scales efficiently to large datasets like OGB-arXiv
by leveraging mini-batch processing, training with 1% of
edges per epoch, and purifying the test stage graphs in
batches—ensuring both memory efficiency and robustness.

6.2. Empirical Analysis

Empirical estimation of Lipschitz constant. To support
Theorem 3.3, we empirically estimate the local Lipschitz
constant of the model on the test stage graph, where the
output after a single step purification is denoted as fθ(A,X).
We randomly sample 100 pairs of perturbed adjacency ma-
trices (A1,A2), each generated by injecting random edges
into the test graph with a random perturbation budget under

0.5. For each pair, we compute:

∥fθ(A1,Xtest)− fθ(A2,Xtest)∥F
∥A1 − A2∥F

,

and report the maximum value across the 100 sampled pairs
as the empirical Lipschitz constant L̂. As shown in Table 3,
all values remain strictly below 1, supporting the convergent
nature of our multi-step purification framework.

Unique learned filters. In Figure 4, we visualize the learned
coefficients of GPR-GAE under a homophilic graph (Cora)
and a heterophilic graph (Chameleon). Under supervised set-
tings, as discussed in Chien et al. (2021), GPRGNN tends to
learn a single GPR filter, with coefficients exhibiting consis-
tent signs on homophilic graphs and fluctuating patterns on
heterophilic ones. In contrast, GPR-GAE, trained in our self-
supervised framework, learns diverse coefficients regardless
of the graph’s homophily. This diversity indicates that each
GPR filter selectively includes or suppresses neighborhood
information, resulting in distinct multi-scale structural rep-
resentations. We provide visualization for other datasets
in Appendix D, where the variation in learned coefficients
across datasets further highlights GPR-GAE’s adaptability
as a data-driven purification model.

7. Conclusion
We propose a self-supervised adversarial purification frame-
work for GNNs, explicitly decoupling accuracy and robust-
ness to mitigate their trade-off. At its core is GPR-GAE,
a specialized purifier trained in a self-supervised manner,
leveraging multi-scale neighborhood information for en-
hanced structural learning. Through multi-step purification,
GPR-GAE demonstrates state-of-the-art robustness across
diverse datasets and attacks, particularly under high per-
turbations, while preserving clean accuracy, making it a
versatile plug-and-play defense module for GNN classifiers.

9

Self-supervised Adversarial Purification for Graph Neural Networks

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. While our work may have potential
societal implications, none require explicit highlighting in
this context.

Acknowledgements
This work was supported by the Institute of Information
& Communications Technology Planning & evaluation
(IITP) grant and the National Research Foundation of Korea
(NRF) grant funded by the Korean government (MSIT) (RS-
2019-II190421, IITP-2025-RS-2020-II201821, RS-2024-
00438686, RS-2024-00436936, RS-2023-00225441, NRF-
2021M3H4A1A02056037, RS-2024-00448809, IITP-2025-
RS-2024-00360227, RS-2025-02218768). This research
was also partially supported by the Culture, Sports, and
Tourism R&D Program through the Korea Creative Content
Agency grant funded by the Ministry of Culture, Sports, and
Tourism in 2024 (RS-2024-00333068).

References
Bojchevski, A. and Günnemann, S. Deep gaussian em-

bedding of graphs: Unsupervised inductive learning via
ranking. In International Conference on Learning Repre-
sentations, 2018.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
International Conference on Learning Representations,
2021.

Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., and Pa-
palexakis, E. E. All you need is low (rank) defending
against adversarial attacks on graphs. In International
Conference on Web Search and Data Mining, 2020.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin,
D. Graph neural networks for social recommendation. In
The Web Conference, 2019.

Feng, F., He, X., Tang, J., and Chua, T.-S. Graph adver-
sarial training: Dynamically regularizing based on graph
structure. IEEE Transactions on Knowledge and Data
Engineering, 2019.

Gasteiger, J., Bojchevski, A., and Günnemann, S. Com-
bining neural networks with personalized pagerank for
classification on graphs. In International Conference on
Learning Representations, 2019.

Geisler, S., Schmidt, T., Şirin, H., Zügner, D., Bojchevski,
A., and Günnemann, S. Robustness of graph neural net-
works at scale. Advances in Neural Information Process-
ing Systems, 2021.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. International Con-
ference on Learning Representations, 2015.

Gosch, L., Geisler, S., Sturm, D., Charpentier, B., Zügner,
D., and Günnemann, S. Adversarial training for graph
neural networks: Pitfalls, solutions, and new directions.
Advances in Neural Information Processing Systems,
2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in Neural
Information Processing Systems, 2017.

He, M., Wei, Z., and Wen, J.-R. Convolutional neural
networks on graphs with chebyshev approximation, revis-
ited. Advances in Neural Information Processing Systems,
2022.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 2020.

Jung, H. and Park, H. Balancing graph embedding smooth-
ness in self-supervised learning via information-theoretic
decomposition. In The Web Conference, 2025.

Kang, H., Han, G., and Park, H. Unr-explainer: Counterfac-
tual explanations for unsupervised node representation
learning models. In International Conference on Learn-
ing Representations, 2024.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Lei, R., Wang, Z., Li, Y., Ding, B., and Wei, Z. Even-
net: Ignoring odd-hop neighbors improves robustness of
graph neural networks. Advances in Neural Information
Processing Systems, 2022.

Li, J., Peng, J., Chen, L., Zheng, Z., Liang, T., and Ling,
Q. Spectral adversarial training for robust graph neural
network. IEEE Transactions on Knowledge and Data
Engineering, 2022.

Li, J., Wu, R., Sun, W., Chen, L., Tian, S., Zhu, L., Meng,
C., Zheng, Z., and Wang, W. What’s behind the mask:
Understanding masked graph modeling for graph autoen-
coders. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023.

Li, K., Chen, Y., Liu, Y., Wang, J., He, Q., Cheng, M.,
and Ao, X. Boosting the adversarial robustness of graph
neural networks: An ood perspective. In International
Conference on Learning Representations, 2024.

10

Self-supervised Adversarial Purification for Graph Neural Networks

Li, Y., Jin, W., Xu, H., and Tang, J. Deeprobust: a platform
for adversarial attacks and defenses. AAAI Conference
on Artificial Intelligence, 2021.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Mujkanovic, F., Geisler, S., Günnemann, S., and Bojchevski,
A. Are defenses for graph neural networks robust? Ad-
vances in Neural Information Processing Systems, 2022.

Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C.
Adversarially regularized graph autoencoder for graph
embedding. In International Joint Conference on Artifi-
cial Intelligence, 2018.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
GNNs under heterophily: Are we really making progress?
In International Conference on Learning Representations,
2023.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. arXiv preprint
arXiv:2303.10993, 2023.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 2008.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K.,
and Zhu, L. Adversarial examples for graph data: Deep
insights into attack and defense. In International Joint
Conference on Artificial Intelligence, 2019.

Wu, S., Sun, F., Zhang, W., Xie, X., and Cui, B. Graph
neural networks in recommender systems: a survey. ACM
Computing Surveys, 2022.

Xu, K., Chen, H., Liu, S., Chen, P.-Y., Weng, T.-W., Hong,
M., and Lin, X. Topology attack and defense for graph
neural networks: An optimization perspective. In In-
ternational Joint Conference on Artificial Intelligence,
2019a.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019b.

Zhang, C., Tian, Y., Ju, M., Liu, Z., Ye, Y., Chawla, N., and
Zhang, C. Chasing all-round graph representation robust-
ness: Model, training, and optimization. In International
Conference on Learning Representations, 2022.

Zhang, X.-M., Liang, L., Liu, L., and Tang, M.-J. Graph
neural networks and their current applications in bioinfor-
matics. Frontiers in Genetics, 2021.

11

Self-supervised Adversarial Purification for Graph Neural Networks

A. Theoretical Proofs
A.1. Proof of Theorem 3.1: Decomposition of Adversarial Training

We prove the decomposition of the adversarial training objective into accuracy and robustness terms.

Proof. The learning objective of adversarial training is:

L(ψ) = max
G′∈B(G,ϵ)

Ev∈V
[
ℓ(fψ(G

′, v), yv)
]

(1)

= max
G′∈B(G,ϵ)

1

|V|
∑
v∈V

ℓ(fψ(G
′, v), yv). (2)

We partition V into disjoint sets Vunaffected and Vaffected, representing nodes unaffected and affected by perturbations,
respectively. Then: ∑

v∈V
ℓ(fψ(G

′, v), yv) =
∑

v∈Vunaffected

ℓ(fψ(G
′, v), yv) +

∑
v∈Vaffected

ℓ(fψ(G
′, v), yv). (3)

For all Vunaffected, the predictions remain unchanged under perturbation, and thus the corresponding losses are identical:∑
v∈Vunaffected

ℓ(fψ(G
′, v), yv) =

∑
v∈Vunaffected

ℓ(fψ(G, v), yv). (4)

For Vaffected, adversarial perturbations maximize the loss:∑
v∈Vaffected

ℓ(fψ(G
′, v), yv) = max

G′∈B(G,ϵ)

∑
v∈Vaffected

ℓ(fψ(G
′, v), yv). (5)

Substituting back:

L(ψ) = |Vunaffected|
|V|

· 1

|Vunaffected|
∑

v∈Vunaffected

ℓ(fψ(G, v), yv) +
|Vaffected|
|V|

· 1

|Vaffected|
max

G′∈B(G,ϵ)

∑
v∈Vaffected

ℓ(fψ(G
′, v), yv). (6)

Let λ = |Vunaffected|
|V| . Finally, rewriting as expectations:

L(ψ) = λ · Ev∈Vunaffected

[
ℓ(fψ(G, v), yv)

]
+ (1− λ) · max

G′∈B(G,ϵ)
Ev∈Vaffected

[
ℓ(fψ(G

′, v), yv)
]
. (7)

A.2. Proof of Theorem 3.3: Convergence of Multi-Step Purification

Proof. Building on the locally Lipschitz continuity of fθ around G(0) with constant L ∈ [0, 1), we consider two cases based
on the choice of α.

When α = 1, the update reduces to direct application of fθ:

G(t+1) = fθ(G
(t)). (8)

Since fθ is locally Lipschitz continuous with constant L ∈ [0, 1), it is a contraction mapping.

When 0 < α < 1, we can define the update operator hθ as:

hθ(G) = (1− α)G+ αfθ(G). (9)

12

Self-supervised Adversarial Purification for Graph Neural Networks

For any G1, G2 in the neighborhood, we have

∥hθ(G1)− hθ(G2)∥ = ∥(1− α)(G1 −G2) + α(fθ(G1)− fθ(G2))∥
≤ ∥(1− α)(G1 −G2)∥+ ∥α(fθ(G1)− fθ(G2))∥
≤ (1− α)∥G1 −G2∥+ αL∥G1 −G2∥
= (1− α(1− L)) ∥G1 −G2∥.

(10)

Since L < 1 and α > 0, the contraction factor 1− α(1− L) lies in [0, 1), so hθ is also a contraction mapping.

In both cases, the purification update defines a contraction mapping. Thus, by Banach’s Fixed-Point Theorem, the sequence
(G(t))t≥0 converges linearly to a unique fixed point G∗.

B. Derivation of Computational Complexity
B.1. Node Encoding in GPR-GAE

The computational complexity of node encoding in GPR-GAE is derived as follows:

• Initial Node Representation: Computing the initial node embedding H(0) through linear transformation requires:

O(N · Z2).

• Hop Representations: The k-th hop representation is computed iteratively using:

H(k) = ÃnsH
(k−1),

where Ãns is the normalized adjacency matrix. Each sparse matrix multiplication costs O(|E| · Z). Since this process
is repeated for all K hops (from H(1) to H(K)), the total cost for computing all hop representations is:

O(K · |E| · Z).

• GPR Filter Representations: For each of the k-th GPR filter, the representation Hθk is computed as:

Hθk =

k∑
m=0

γk,mH(m),

where H(m) ∈ RN×Z . Summing all k hop representations for k-th GPR filter costs:

O(k ·N · Z).

Summing over all K + 1 filters, the total cost becomes:

O

(
K∑
k=0

k ·N · Z

)
≈ O(K2 ·N · Z).

Total Node Encoding Complexity: Combining all components:

O(N · Z2 +K · |E| · Z +K2 ·N · Z).

In real-world graphs, where N ≪ |E|, and given K < 10, the final node encoding complexity can be simplified to the
dominant term:

O(K · |E| · Z).

13

Self-supervised Adversarial Purification for Graph Neural Networks

B.2. Multi-Step Purification Complexity

The multi-step purification process iteratively updates the graph structure and includes three key components:

• Node Encoding: Each purification step first encodes each node, which costs:

O(K · |E| · Z).

• Edge Encoding: Each encoded edge embedding with dimension Z is computed by transforming the concatenation of
two encoded node embeddings. The combined input dimension is 2(K + 1) · Z, resulting in a complexity of:

O(2(K + 1) · |E| · Z2).

Simplifying the constants give:
O(K · |E| · Z2).

• Edge Decoding: The edge decoder transforms the edge embeddings from Z dimensions back to a single scalar. This
costs:

O(|E| · Z).

Complexity per Step: Summing the costs of node encoding, edge encoding, and edge decoding, the overall complexity for
a single purification step is:

O(K · |E| · Z +K · |E| · Z2 + |E| · Z).

The complexity simplifies to:
O(K · |E| · Z2).

Total Multi-step Purification Complexity: Assuming a fixed number of purification steps T , the total complexity for
multi-step purification becomes:

O(T ·K · |E| · Z2).

With T treated as a small constant of 5, this simplifies further to:

O(K · |E| · Z2).

C. Experimental Settings

Table C.1. Datasets

Dataset Nodes Edges Features Classes Homophily Rate

Cora 2,708 5,278 1,433 7 0.80
Cora-ML 2,810 7,981 2,879 7 0.78
Citeseer 2,110 3,668 3,703 6 0.73
Chameleon 890 8,854 2,325 5 0.23
Pubmed 19,717 44,324 500 3 0.80
OGB-arXiv 169,343 1,157,799 128 40 0.65

In this section, we summarize the experimental settings, including GPR-GAE, other models, attacks, and adversarial training.
For adversarial training and models other than GPR-GAE, we mostly follow Gosch et al. (2023), the prior work we use
as the baseline for adversarial training. All experiments are conducted on an NVIDIA A100 (80GB) GPU. However, it is
worth noting that GPR-GAE can be trained and applied to datasets, including OGB-arXiv, using an NVIDIA RTX A5000
(24GB). From an attacker’s perspective, however, adaptively attacking classifiers attached to GPR-GAE using gradient-based
methods introduces significant memory constraints. This is because these attacks require storing all edge embeddings from
GPR-GAE for gradient computation, including the blocks of edges sampled at each epoch in PRBCD attack.

14

Self-supervised Adversarial Purification for Graph Neural Networks

While GPR-GAE can be applied to OGB-arXiv by purifying the graph in batches, the gradient-based attacks cannot leverage
the batching strategy in their gradient computations for generating attacks. As a result, adaptive attacks on GPR-GAE
become unscalable (which could be seen as an advantage on our part), and we evaluate robustness on OGB-arXiv only in
transfer attack settings. Furthermore, PGD attacks (Xu et al., 2019a) are particularly unscalable, as they require computing
gradients for all possible edges, making them impractical to attack GPR-GAE even on small-scale graphs like Citeseer.

C.1. Models

• GCN: Two-layer GCN with 64 hidden units. For OGB-arXiv, a three-layer GCN with 256 hidden units. While training,
a dropout of 0.5 is applied.

• GAT: Two-layer GAT with 64 hidden units. Single attention head and 0.5 dropout during training.

• GPRGNN: Two-layer MLP with 64 hidden units for the initial feature transformation. The GPR coefficients are
randomly initialized while a total of K = 10 diffusion steps are applied with 0.2 MLP dropout during training.

• APPNP: Two-layer MLP with 64 hidden units for the initial feature transformation. A total of K = 10 diffusion steps
are applied with 0.5 MLP dropout during training. For the coefficients, γK = (1−α)K and γl = α(1−α)l for l < K,
with α fixed as 0.1.

• GPR-GAE: We set K = 7, Z1 = 128, and Z2 = 512, using the ELU activation function. The GPR coefficients are
initialized randomly. During training, we apply an MLP dropout rate of 0.7 for node encoding, while no dropout
is used for edge encoding or decoding. For the OGB-arXiv dataset, we use mini-batch training with a batch ratio
λ = 0.01, sampling 1% of the original and inserted edges for each training epoch. During the test stage, adjacency
matrix predictions are performed in batches, which does not affect the performance purification process. Full-batch
training and purification are applied to all other datasets.

• Jaccard-GCN: The edges are filtered based on Jaccard dissimilarity with a threshold of 0.01. For the model, we use
the DeepRobust library (Li et al. 2021), with modifications for ogbn-arxiv, where we use a three-layer GCN with 256
hidden units and prune edges using cosine dissimilarity with a threshold 0.4, as the dataset has non-binary attributes.

• SVD-GCN: Adversarial perturbations are filtered by using a low-rank approximation. For the model, we use the
DeepRobust library.

• GOOD-AT: We follow the settings in https://github.com/likuanppd/GOOD-AT. 20 MLP detectors with 64 hidden units
are trained with a learning rate of 0.01 and weight decay of 0.0001 using the ADAM optimizer. Each detector is trained
on different adversarial samples generated through attacking a GCN classifier. A threshold of 0.1 is used, where edges
with scores that exceed the threshold are detected as Out-Of-Distribution and pruned.

• EvenNet: Two-layer MLP with 64 hidden units (256 for OGB-arXiv) for initial feature transformation. A total of
K = 10 is used with PPR initialization α = 0.1. We use a dropout rate of 0.5 during training.

• SoftMedianGDC: The default configurations of Geisler et al. (2021) are used. Two-layer GDC with 64 hidden units,
temperature T = 0.2 for the SoftMedian aggregation, Personalized PageRank diffusion coefficent α = 0.15, and
k = 64 for sparsification. For OGB-arXiv, a three-layer GDC with 256 hidden units is used with T = 5 and α = 0.1.

C.2. Training settings

GPR-GAE is trained using the ADAM optimizer with a learning rate of 0.01 and a weight decay of 0.0001. Training is
conducted for 2000 epochs. We create 10 validation edge sets by randomly inserting negative edges with p = 0.3 · i. Here, i
indicates the i-th validation edge set. We evaluate the model every epoch by computing the mean AUC and mean AP across
the 10 validation edge sets. The model with the best performance is selected based on these metrics. When training the
classifiers, a maximum of 3000 epochs is used for training, using the Adam optimizer with a learning rate of 0.01, weight
decay of 0.001, and tanhMargin loss. An early stop method is used with a patience of 200 epochs. For adversarial training,
the first ten epochs are trained without adversarial examples.

For attack parameters in adversarial training, we use 20 epochs with no early stopping. The block size is 1 million, and the
loss type is tanhMargin. For PRBCD, the learning factor is 100, while for LRBCD, the learning factor is 20 times that of
PRBCD. When training, a budget of ϵ = 0.2 is used.

15

https://github.com/likuanppd/GOOD-AT

Self-supervised Adversarial Purification for Graph Neural Networks

C.3. Choice of Hyperparameters of Attacks for Evaluation

For attack parameters in the evaluation stage, we use a learning factor of 100 with 400 epochs. In the case of PRBCD, 100
additional epochs are performed with a decaying learning rate and without block resampling.

(a) GCN (b) GAT

(c) GPRGNN (d) APPNP

Figure C.1. The accuracy of GPR-GAE attached to Vanilla (a) GCN, (B) GAT, (c) GPRGNN, (d) APPNP in Cora dataset against adaptive
PRBCD attack for budgets ϵ = 0 (clean), ϵ = 0.1, ϵ = 0.25, ϵ = 0.5 using various attack loss types.

Given the differing mechanisms of adversarial purification and adversarial training methods in defending against attacks, the
optimal hyperparameters for attacks may vary between these approaches. To determine effective attack hyperparameters
for each defense strategy, we conduct a grid search across eight loss types and block sizes of [10K, 50K, 250K], under an
attack budget of ϵ = 0.5. For adversarial purification methods, we select vanilla GPRGNN combined with our GPR-GAE
as the representative model. For non-GPR-GAE methods, we select the adversarially trained (PRBCD) GPRGNN as the
representative model.

Attack Loss Type. Figure C.1 presents the accuracy of four GNN models combined with GPR-GAE’s adversarial
purification method across eight loss types with a block size of 10K on the Cora dataset. In contrast to Gosch et al. (2023),
where the tanhMargin loss type is used for attacks, the Margin loss type consistently delivers the most effective attack
performance across varying attack budgets on GPR-GAE. Consequently, we use the Margin loss for adaptive attacks on
GPR-GAE and the tanhMargin loss for attacks on other methods.

Block Size. For the PRBCD attack, we use a block size of 50K for PubMed and 10K for the other datasets
across all defense methods. For the LRBCD attack on Cora, we use a block size of 10K on GPR-GAE while using a block
size of 250K on the rest of the methods. Additionally, for a large-scale dataset, OGB-arXiv, we exceptionally use a block

16

Self-supervised Adversarial Purification for Graph Neural Networks

size of 3 million.

D. Visualization of the Learned GPR Coefficients

(a) Cora (b) Citeseer

(c) Cora ML (d) Chameleon

(e) Pubmed (f) OGB-arXiv

Figure D.2. Visualization of the learned coefficients for each GPR filter in GPR-GAE when trained for adversarial purification. For the
coefficient value γi,j , i indicates the GPR Filter Index (i-th GPR Filter) and j indicates the Coefficient Index (for j-th hop). We adjust the
sign of the values so that the last coefficient values of each GPR filter are positive.

In Figure D.2, we present the learned GPR coefficients for each of the GPR filters in GPR-GAE throughout the experiments
when K = 7. The coefficient γi,j controls the propagation of neighborhood information j-hops away for the i-th GPR
filter, allowing for fine-grained adjustment of neighborhood contributions. In Chien et al. (2021), the GPR coefficients
in GPRGNN exhibit consistent signs in homophilic graphs, while fluctuating in heterophilic graphs like Chameleon,
which have more complex graph structures. In contrast, the learned GPR coefficients in GPR-GAE generally display
greater diversity regardless of their homophilic or heterophilic nature, efficiently regulating the inclusion or exclusion of
neighborhood information. This enables the model to form distinct and unique neighborhood representations for each GPR
filter with different neighborhood sizes. Furthermore, the coefficients demonstrate clear distinctions across various datasets,
highlighting GPR-GAE’s ability to adaptively learn appropriate neighborhood representations for each dataset, making it a

17

Self-supervised Adversarial Purification for Graph Neural Networks

powerful data-driven approach.

E. Algorithms

Algorithm 1 Training of GPR-GAE

1: Input: Graph G = (A,X), perturbation budget (p, q, η), model parameters θ, maximum epochs, validation data {Gval}
2: Output: Trained GPR-GAE purifier fθ
3: Initialize parameters θ
4: Set best val metric = −∞
5: for epoch = 1 to maximum epochs do
6: Sample perturbed graph G′ = (A′,X) from B(G, (p, q, η))
7: Predict adjacency matrix Â = fθ(G

′)
8: Compute total loss L
9: Update parameters θ using gradient descent:

θ ← θ −∇θL

10: Evaluate validation metric val metric on {Gval}
11: if val metric > best val metric then
12: Update best val metric← val metric
13: Save model parameters θ∗ ← θ
14: end if
15: end for
16: Return: Best trained purifier fθ with parameters θ∗

Algorithm 2 Multi-Step Purification with GPR-GAE

1: Input: Perturbed graph G′ = (A′,X), trained purifier fθ, step size α, terminal threshold τ , GNN classifier fψ
2: Output: Node predictions from classifier fψ
3: Initialize A(0) = A′

4: for t = 0 to max steps−1 do
5: Predict purified adjacency matrix Â(t) = fθ(A

(t),X)
6: Compute purification direction:

∆A(t) = Â(t) −A(t)

7: Update adjacency matrix:
A(t+1) = A(t) + α ·∆A(t)

8: if ∥∆A(t)∥
∥A(t)∥ ≤ τ then

9: Break
10: end if
11: end for
12: Set final purified adjacency matrix A∗ as the last updated adjacency matrix
13: Pass A∗ to the GNN classifier fψ
14: Return: Node predictions Ŷ = fψ(A

∗,X)

18

Self-supervised Adversarial Purification for Graph Neural Networks

F. Ablation Studies

Table F.2. Variations of GPR-GAE and their explanations

Variation Explanation

GPR-GAE The original version of the model we use throughout the experiments.
w/o multi-step purification Single-step adjacency matrix prediction, with discretization of edges using threshold 0.1.
w/o GPR filters We use a 2-layered GCN for the node encoder.
with self-loops Instead of Ãns, we use Ãs, the normalized adjacency matrix with self-loops.
w/o edge reweight Among the three perturbation methods in training, we remove the edge reweight process.
smaller training perturbation budget reduced edge injection ratio p = 1.5 to 0.5, smaller training perturbation sample space.
w/o higher order dependencies Reduced K = 7 to K = 2, with smaller neighborhood boundary coverage.

Figure F.3. Comparison of test accuracy for variations of GPR-GAE on Citeseer. The left figure shows accuracy under clean conditions,
while the right figure illustrates accuracy under the non-adaptive PRBCD attack on a vanilla GCN.

In this section, we conduct ablation studies regarding GPR-GAE. We use vanilla GCN as the classifier, attached with the
variations of GPR-GAE in Table F.2, and compare accuracy under clean and transfer attacks (PRBCD, ϵ = 0.5) from vanilla
GCN. Figure F.3 shows that, in general, the original variation of GPR-GAE that we use throughout the experiments achieves
the best overall results. Exceptionally for the variation with no multi-step purification, it achieves a better clean accuracy
compared to the original. However, under adversarial scenarios, it experiences a relatively large drop of accuracy compared
to the original variation with multi-step purification, showcasing the effectiveness of the continuous and gradual graph
refinements against severe perturbations.

In the case of the variation without GPR filter, which indicates replacing the node encoder with a two-layer GCN, it
performs poorly, especially under adversarial attacks. This shows that the inevitable smoothing effect coming from the static
neighborhood propagation scheme makes it highly ineffective under attacks, falling short in distinguishing between the clean
and the adversaries. The original variation shows better performance compared to the rest of the other variations, benefiting
from the non-self looped normalized adjacency matrix with more precise and distinctive control over each neighborhood
propagation, learning more generalized purification directions with the edge reweight method, learning purification directions
over a broader sample space using a relatively large perturbation budget, and the higher order dependencies from the larger
neighborhood boundary coverage.

G. Empirical Validation of Structural Encoding
To further extend the motivation presented in Section 3.3 and validate GPR-GAE’s structural encoding capabilities, we
conducted experiments to identify existent 1-hop and 2-hop connections in inductive settings. This evaluation compares the

19

Self-supervised Adversarial Purification for Graph Neural Networks

GPR-GAE node encoder against three baseline node encoders: GCN, GraphSAGE, and GIN. For each node encoder, two
separate edge encoders and decoders are assigned, focusing respectively on either 1-hop connections or 2-hop connections.

In 1-hop prediction, positive samples are direct connections, while negatives are random non-connections. This task
primarily evaluates the model’s ability to capture proximity between node pairs. In 2-hop prediction, positives are two-hop
paths, and negatives are direct connections without two-hop paths. This task goes beyond simple proximity, requiring the
model to distinguish between the two types of relationships that are both proximal.

Task Definitions

• 1-Hop Prediction: Distinguish between C1+ and C1−

– Positive Samples (C1+): Direct connections in the graph.
– Negative Samples (C1−): Randomly selected non-connections of the same size as the positives.

• 2-Hop Prediction: Distinguish between C2+ and C2−,dir

– Positive Samples (C2+): Connections formed by two-hop paths in the graph.
– Negative Samples (C2−,dir): Direct connections that are not two-hop.
– Negative Samples 2 (C2−): Randomly selected non-two-hop connections of the same size as the positives.

Setup

• Inductive Split: Nodes were split into 80% for training, 10% for validation, and 10% for testing. Connections in
validation (Cval) and testing (Ctest) included at least one validation or test node, ensuring these connections were not
exposed during training.

• Training: The node encoder and both edge encoder-decoder pairs are trained jointly as part of a unified model. We use
ADAM optimizer with a learning rate of 0.01 and a weight decay of 0.00005.

– First Edge Encoder/Decoder:

* Positive train connections (C1+): Direct connections in the training graph.

* Negative train connections (C1−): Random non-connections in the training graph.

* Loss: Binary Cross-Entropy (BCE) loss on C1+ and C1−.
– Second Edge Encoder/Decoder:

* Positive train connections (C2+): Two-hop connections in the training graph.

* Negative train connections (C2−,dir): Direct connections that are not two-hop.

* Negative train connections 2 (C2−): Random non-two-hop connections.

* Loss: Combined BCE loss on C2+, C2−,dir, and C2−.

• Validation:

– Validation connections (C1+,val, C1−,val, C2+,val, C2−,dir, val) are similarly defined but included at least one valida-
tion node in each connection.

– Performance was evaluated by summing the AUC across both 1-hop: (C1+,val, C1−,val) and 2-hop:
(C2+,val, C2−,dir, val).

– The model with the highest combined score was selected.

• Testing:

– Test connections (C1+,test, C1−,test, C2+,test, C2−,dir, test) followed the same definitions, with at least one test node
in each connection.

– Performance was evaluated by the AUC across both 1-hop: (C1+,test, C1−,test) and 2-hop: (C2+,test, C2−,dir, test).
In particular, for the 2-hop prediction task, the objective is to evaluate the model’s ability to differentiate between
two types of connections, both of which are considered proximal, as they connect nodes within a relatively short
range of 2-hops.

20

Self-supervised Adversarial Purification for Graph Neural Networks

(a) Cora (b) Citeseer

Figure G.4. AUC for existent 1-hop and 2-hop link identification using different GAE models

Results

Results in Figure G.4 demonstrate that GPR-GAE achieves the highest AUC scores in both 1-hop and 2-hop prediction tasks
for K = 2 and K = 7. Unlike traditional GAE architectures, GPR-GAE exhibits a consistent performance improvement as
K increases, showcasing its ability to fully leverage higher-order dependencies while mitigating oversmoothing. Moreover,
GPR-GAE significantly outperforms traditional GAEs in the 2-hop prediction task. This highlights the advantage of its
unique multiscale neighborhood representations, which are derived from distinctively stored outputs of GPR filters. These
representations enable GPR-GAE to better model complex relationships, such as C2+,test and C2−,dir, test, moving beyond
simply encoding proximal connections. Consequently, the demonstrated results form a robust foundation for tasks such as
adversarial purification that require advanced structural capabilities.

21

