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Abstract

Retrieval-augmented generation
(RAG) still forwards raw passages to
large-language models, so private facts
slip through. Prior defences are either (i)
heavyweight—full DP training that is
impractical for today’s 70 B-parameter
models—or (ii) over-zealous—blanket
redaction of every named entity, which
slashes answer quality. We introduce
VAGUE-GATE, a lightweight, locally
differentially-private gate deployable in
front of any RAG system. A precision
pass drops low-utility tokens under a user
budget &, then up to k(e) high-temperature
paraphrase passes further cloud residual
cues; post-processing guarantees preserve
the same e-LDP bound.

To measure both privacy and utility, we
release PRIVRAG (3k blended-sensitivity
QA pairs) and two new metrics: a lex-
ical Information-Leakage Score and an
LLM-as-Judge score. Across eight pipelines
and four SOTA LLMs, VAGUE-GATE at
€ = 0.3 lowers lexical leakage by 70 % and
semantic leakage by 1.8 points (1-5 scale)
while retaining 91% of Plain-RAG faithful-
ness with only a 240ms latency overhead.
All code, data, and prompts are publicly
released.’

1 Introduction

Large-language-model (LLM) systems have
rapidly become the backbone of knowl-
edge—intensive tasks such as open—domain ques-
tion answering, summarisation, and customer-
service automation (Lewis et al., 2020; Izac-
ard et al., 2022). A popular architecture is
Retrieval-Augmented Generation (RAG), which
first retrieves supporting passages from a pri-
vate knowledge base and then lets an LLM draft
the final answer conditioned on that context.

https://github.com/LLMGreen/LDP_RAG

While RAG markedly improves factuality, it
also opens a new privacy attack surface: any
sensitive snippet fetched by the retriever may
be reproduced verbatim by the generator and
thus leak to the user (Carlini et al., 2021; Jagiel-
ski et al., 2022).

Why classic DP is not enough.
Differential-Privacy-by-SGD (Abadi et al.,
2016) offers strong theoretical guarantees, yet
the training-time noise it injects scales poorly
with model and corpus size, making end-to-end
private fine-tuning of modern 10!'-parameter
models prohibitively expensive. Moreover,
DP training protects only the training set;
at inference time, a naive RAG pipeline can
still exposes private information present in the
retrieved passages.

Local DP at the gate. To sidestep the
compute barrier and protect every inference
call, we introduce VAGUE-GATE—a local
differential-privacy gate that rewrites each re-
trieved chunk on the data-holder side, before
the LLM ever sees it (Figure 1). Our gate
combines a deterministic precision pass with
an e-calibrated chain of paraphrases, achieving
e-LDP for any privacy budget without retrain-
ing the underlying RAG model (§4.3).

Comprehensive empirical study. We
benchmark VAGUE-GATE against eight strong
baselines— four architectural variants of
RAG (Plain, Hybrid, Hierarchical, and an
entity-perturbing LDP-RAG (Huang et al.,
2024)) plus four prompt-level obfuscators (Para-
phrase, ZeroGen, Redact, Typed-Holder)—
and run each pipeline with four SOTA LLM
back-ends (GPT-40-mini, DeepSeek-V3, Qwen
235B, Llama-3.1 70B), totalling 32 model vari-
ants. Evaluation spans six metrics: Faithful-
ness, Answer Relevancy, ROUGE-L, BLEU-/,
and our two novel privacy metrics (Leak Judge


https://github.com/LLMGreen/LDP_RAG

adjustment and continued lifestyle support.

John S. a 57-year-old male with a sedentary lifestyle and a BMI of 33, was diagnosed with type 2 diabetes in 2020.0ver six
months, John lost 12 pounds and improved his dietary habits. John’s case highlights the importance of timely medication
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A middle-aged patient with long-standing type-2 diabetes shed significant weight and revamped his diet in just
sixmonths—clear proof that timely therapy tweaks plus steady lifestyle coaching deliver visible results.

Figure 1: VAGUE-GATE architecture.

Top panel: an example private paragraph with sensitive

information highlighted in red. Stage I tags each sentence and builds adaptive chunks without querying
the LLM. Stage II applies the precision pass (blue-snowflake LLM, T=0) and, for low &, up to k(e)
high-temperature deep-obfuscation passes (orange). Stage III feeds the sanitised chunks into standard
RAG, producing a privacy-compliant answer (bottom).

and Leak Rate; see §4.5).

Our contributions.

1. BLENDPRIV: a new 3k-QA benchmark of
mixed PUBLIC/SENSITIVE/ CONFIDENTIAL
documents spanning customer service,
healthcare and legal domains (§3).

2. VAGUE-GATE: a portable, training-free
privacy gate that plugs into any RAG re-
triever, scales with the chosen € budget, and
preserves utility by ambiguating rather than
deleting content (§4.2).

3. Two leakage metrics: a fast cold-stats
overlap score and an LLM-as-Judge ordinal
score, providing complementary lower /upper
bounds on residual privacy loss (§4.5).

4. Extensive evaluation: across 32 pipelines
we show that at e=0.3 VAGUE-GATE cuts
lexical leakage by 70 % and semantic leak-
age by 1.6 points while retaining 91 % of
Plain-RAG faithfulness (§5).

Paper outline. Section 2 surveys
privacy-aware RAG; Section 3 details
BLENDPRIV; Sections 4.2-4.3 formalise

VAGUE-GATE; Section 5 reports experiments
and ablations; the appendix provides full
prompt templates and hyper-parameters.

2 Related works

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) aug-
ments a parametric language model with a
learnable retriever so that every answer is con-
ditioned on fresh, corpus-level evidence rather
than on implicit memorisation. The idea was
first explored by REALM (Guu et al., 2020),
which treats the retrieved text as a latent
variable and trains retrieval and generation
end-to-end, and by the original RAG architec-
ture (Lewis et al., 2020), which demonstrated
plug-and-play inference with off-the-shelf dense
indices. Since then, progress has followed two
main threads. Retrieval quality. Dense-sparse
fusion (Chen et al., 2024), differentiable in-
dex functions (Gao et al., 2022), and hier-
archical or few-shot / meta-retrieval schemes
(Izacard et al., 2022; Heydari et al., 2024)
each reduces the semantic gap between what
is fetched and what theThe generator truly
needs. Deployment constraints. Real-world
services—university knowledge portals (Hem-
mat et al., 2024), customer-service chatbots
(Heydari et al., 2024), and privacy-sensitive
healthcare assistants—expose limitations of
server-only or gradient-noise-based differential



privacy solutions.

2.2 Privacy Risks in Neural Retrieval
and Generation

Despite the advantages of RAG systems, their
use in sensitive domains introduces privacy vul-
nerabilities. Studies have shown that language
models can memorize and regurgitate training
data, including sensitive content (Carlini et al.,
2021; Lehman et al., 2021). Other work demon-
strates that neural retrievers can inadvertently
expose confidential documents or enable mem-
bership inference attacks (Jagielski et al., 2022).
These risks are particularly acute in medical,
legal, or enterprise applications where privacy
guarantees are legally mandated.

2.3 Entity-Level Perturbation with
Adaptive Privacy Budgets

A promising direction in privacy-preserving
RAG is entity-level perturbation combined with
adaptive privacy control. He et al. (He et al.,
2023) introduce a method that detects and
perturbs sensitive named entities using a Lo-
cal Differential Privacy mechanism guided by
an Adaptive Privacy Budget (APB). This ap-
proach selectively injects noise based on entity
type and context, preserving semantic utility
while mitigating privacy leakage. Their experi-
ments on hybrid QA datasets such as Natural
Questions and MedicalCopholog show that fine-
grained privacy control can improve tradeoffs
between retrieval relevance and exposure risk.
Related efforts in privacy calibration include
multi-stage obfuscation and adaptive noise scal-
ing (Zhang et al., 2023; Yu et al., 2022).

3 BLENDPRIVDataset

3.1 Dataset Generation

We introduce a multi-faceted dataset specifi-
cally designed to evaluate Retrieval-Augmented
Generation (RAG) systems under realistic pri-
vacy constraints. Our dataset spans ten real-
world domains— Healthcare, Finance, Educa-
tion, Legal, Customer Service, E-commerce,
Government, Social Media, Human Resources,
and Travel—and comprises four tightly in-
tegrated components: knowledge documents,
metadata, adversarial prompts, and aligned an-
swers.

Document Construction. Each knowledge
document is composed of 20 structured para-
graphs written in a clear, informative style
resembling internal organizational knowledge
bases. Sentences within these paragraphs are
manually annotated with one of three privacy
labels: Public, Sensitive, or Confidential. On
average, documents contain 80-120 sentences,
distributed approximately as 60% Public, 30%
Sensitive, and 10% Confidential. The docu-
ments cover both factual exposition and syn-
thetic case studies, simulating real-world con-
tent variability encountered in enterprise RAG
systems.

Metadata Annotation. To facilitate fine-
grained evaluation, each document is accompa-
nied by a metadata file in JSON format. These
files provide structured annotations at the sen-
tence level, grouped by paragraph. Each para-
graph entry includes an identifier, a concise
title, a short summary, and a list of labeled sen-
tences. The metadata serves as ground truth
for downstream tasks such as privacy-sensitive
classification, attack construction, and docu-
ment retrieval.

Adversarial Question Design. To assess
RAG model vulnerability to privacy leakage,
we construct over 2,000 adversarial prompts
targeting specific sentences in the documents.
These questions are designed to extract Sen-
sitive or Confidential information while by-
passing standard filtering mechanisms. Each
prompt is crafted using metadata-aware gener-
ation logic and stored in the following format:
{"label”, "question”, "source_sentence"}.
The prompts cover diverse linguistic strategies
such as paraphrasing, presupposition, and mis-
leading framing.

Answer Generation. FEach adversarial ques-
tion is paired with a corresponding answer, gen-
erated either through privacy-aligned prompt-
ing or human annotation. Answers are con-
strained by the label associated with the source
sentence:

e Public: General factual or explanatory
responses.

e Sensitive: Clinical, procedural, or policy-
related implications.



e Confidential: Personally contextualized
replies grounded in private identity or
events.

These QA pairs form a comprehensive testbed
for evaluating privacy-preserving response gen-
eration in RAG pipelines and detecting poten-
tial leakage under adversarial conditions.

3.2 Metadata Details

The dataset comprises three tightly interlinked
components that collectively define the privacy-
aware structure of the corpus: Docs, Meta-
Datas, and Answer Questions.

Docs represent the core knowledge base, con-
taining over 200 domain-specific documents
categorized into ten real-world areas such as
Healthcare, Finance, and Legal. Each docu-
ment comprises 20 paragraphs, with sentences
manually labeled as Public, Sensitive, or Con-
fidential. The sentence-level granularity en-
ables precise control and evaluation of con-
tent sensitivity during retrieval and generation,
simulating the complexity encountered in real-
world Retrieval-Augmented Generation (RAG)
pipelines.

MetaDatas serve as structured, sentence-
level annotations aligned with each document
in the Docs set. Each metadata file captures the
internal structure of 20 paragraphs, including ti-
tles, summaries, and privacy-labeled sentences.
These annotations form the ground truth for
a wide range of downstream tasks such as pri-
vacy label classification, adversarial question
formulation, and sensitivity-aware generation.
This component is particularly valuable for fine-
grained privacy audits, model training, and
evaluation in differential privacy settings.

Answer Questions extend the attack evalu-
ation pipeline by introducing responses to each
adversarial prompt. Every QA entry includes
a label, question, source sentence, and the gen-
erated answer—crafted with strict adherence
to the privacy level. Public questions yield fac-
tual responses, Sensitive ones describe clinical
or contextual implications, while Confidential
responses reflect personal significance without
hallucinating private details. This resource sup-
ports benchmarking privacy-preserving QA sys-
tems in high-risk domains.

Adversarial Evaluation via Attack Ques-
tions The fourth core component is the At-
tack Questions set, which includes more than
2,000 adversarially designed prompts catego-
rized by domain and document. Each question
aims to extract information of varying sensi-
tivity (Public, Sensitive, Confidential) and is
formatted as a JSON object with keys: {label,
question, source_sentence}.

This component is essential for evaluating
the vulnerability of RAG models to privacy
breaches through prompt injection attacks.
By simulating real-world adversarial behav-
ior, these questions test the system’s resilience
against information leakage, enabling empiri-
cal studies of robustness, model alignment, and
fail-safe mechanisms in privacy-critical retrieval
scenarios.

4 Overview of VAGUE-GATE
4.1 Background & Motivation

Large-language-model (LLM) pipelines increas-
ingly handle user text containing sensitive de-
tails—names, locations, dates, code-names—
yet most deployed systems rely on coarse
rule-based redaction or ad-hoc prompt instruc-
tions. These approaches suffer from at least two
drawbacks: (i) they provide no formal privacy
guarantee, and (77) they act as an all-or-nothing
switch, erasing utility along with secrets. Lo-
cal Differential Privacy (LDP) offers a prin-
cipled remedy: randomise the text before it
leaves the client, so even the server-side LLM
receives an e-plausibly-deniable view. How-
ever, existing text-LDP methods typically in-
ject character-level noise, producing unreadable
outputs and harming downstream tasks.

VAGUE-GATE bridges this gap by com-
bining controlled semantic masking with an
e-calibrated paraphrase loop. The result retains
human and machine readability while maintain-
ing a strict LDP budget.

4.2 Design Overview of VAGUE-GATE

e Input: raw text chunk = and a user-chosen
privacy budget ¢ € [0.1,1.0].
e Stage 1 — Precision Pass
a) Drops or generalises atomic facts using
an e-aware Bernoulli rule (Eq. (1)).
b) Operates at temperature T=0 for de-
terminism.



Table 1: Ordinal scale used by the LLM-Leak Judge.

Score Label Explanation

1 Nil leakage

Vague hints
Moderate leakage
Substantial leakage
Near-total leakage

T W N

No private detail recoverable. Public text conveys only high-level intent.
Only vague clues (e.g. role titles, generic dates) remain; no concrete facts.
Some specific entities, locations, or amounts still appear.

Many private facts are intact; an adversary could reconstruct key details.
Public text is almost identical to private; most sensitive information exposed.

e Stage 2 — k(c) Deep-Obfuscation Passes
a) Each pass paraphrases the full sentence
(“be even vaguer; different wording”).
b) Temperature set to T=0.7 to drive lex-
ical variety.
c¢) Repetition budget k(g) = [kmax(1 —¢€)]
with knax = 4, so lower ¢ yields more passes.

e Output: a sequence (y(©, 1) . y*)
rangle where y(©) is the precision result and
y*) the most abstract variant.

e Guarantee: by construction the pipeline
is e-LDP (proved in §4.3); extra passes
cannot increase privacy loss due to the
post-processing property.

These design choices balance three compet-

ing goals: formal privacy, residual utility, and

human-readable outputs.

4.3 Why VAGUE-GATE is e-LDP

Local DP recap. A text-randomisation
mechanism M : X — Y is e-locally differen-
tially private (Kasiviswanathan et al., 2011) iff
for every pair of neighbouring inputs x, x’ that
differ in ezactly one atomic fact (e.g. a single
token, named entity, or date) and for every
measurable output set SCY:

Pr[M(x)eS] < e PriM(z')eS]. (1)

Notation. In Alg. 1, let

P. = PRECISIONPASS( -, ¢),
D = DEEPOBFUSCATEPASS.

Where the randomness lives. The only
random step is inside P., which drops every
atomic fact d independently with probabil-

ity

Pdrop(d;e) = 1 —eu(d), 0 <u(d) <1,
(1)
where u(d) is a deterministic utility weight
(we use u(d) = 1 in the entity-free version).
The deep passes D are temperature-controlled

post-processing of the already-randomised text.

Lemma 1 (Precision pass is e-LDP). P.
satisfies Eq. (1).

Sketch. Consider neighbouring inputs z and
2’ that differ only in a single fact d. If d is
dropped (prob. pgrop) both outputs coincide. If
d is retained, the outputs differ in at most the
location of d. Hence

Pr[P.(z)=y] 1 — Pdrop <o
Pl“['Pe (.7)/) :y] © Pdrop
by (1). O

Lemma 2 (Post-processing). D is 0-LDP,
i.e. deterministic w.r.t. the randomness that
already happened. Therefore D* o P, is still
e-LDP by the post-processing property of dif-
ferential privacy.

Theorem 1. For every e € (0, 1] and any k>0,
The composite mechanism M, = DF o P,
implemented by Alg. 1 is e-locally differentially
private.

Proof. Immediately from Lemma 1 and Lemma
2. O

Practical interpretation.

e For ¢ = 1.0 every fact with utility u(d) =1
is retained with probability 1, reproducing
minimal vagueness.

e At ¢ = 0.3 the same fact is dropped with
probability 70%, yielding high vagueness.

e Extra deep passes raise perceptual ambigu-
ity yet, by DP post-processing invariance,
cannot increase the formal € privacy loss.
Hence the user can share any output se-

quence (y(©, ... y*)) with the confidence that

each version individually satisfies the stated
e-LDP bound.

Choice of the repetition budget k. Al-
though Algorithm 1 shows a fixed value k for
clarity, in practice we set k adaptively as a de-
creasing function of the privacy budget €. Con-



cretely we use
k(e) = (kmax (1-— 5)],

so that £(1.0) = 0 (no extra obfuscation for min-
imal privacy) and k(0.1) = 4 (four successive
deep passes for maximal privacy). This sched-
ule ensures that the lower the privacy budget,
the more aggressively the text is paraphrased,
achieving a smooth continuum between util-
ity and perceptual anonymity without altering
the formal e guarantee (post-processing cannot
increase privacy loss).

kmax = 4’

4.4 Pipeline Algorithm

The step-by-step procedure of VAGUE-GATE
is summarised in Algorithm 1.

Algorithm 1 VAGUE-GATE: Precision &
Deep-Obfuscation Pipeline

Require:
z > original text chunk

4.5 Evaluating Information-Leakage

Recent work shows that even state-of-the-art
sanitisation pipelines may retain ~74 % of
the original information (Carlini et al., 2021),
while independent audits of chat agents still
uncover sensitive-token leakage in seemingly
“safe” modes (Liang et al., 2023). To quantify
how well VAGUE-GATE suppresses such leaks
we introduce a two-part metric suite:

1. a cold-stats Information-Leakage Score (ILS)
that is fully local and model-free;

2. an LLM-as-Judge score that asks a frozen
GPT-40-mini instance to grade semantic
leakage on a 5-point ordinal scale.

Cold-stats ILS. Let E(x) and E(y) denote
the sets of named entities and >2-character
tokens extracted from the private answer x and
the public answer y, respectively. Following the

label € {PUBLIC, SENSITIVE, CONFIDENTIAL} overlap heuristic in DP-fusion audits (Li et al.,

€sched = (1.0,0.7,0.5,0.3,0.1) > high — low

deep _rounds € NT > extra passes per &
Ensure:

Dictionary results : € — (versions)

1: results < ; cur <+ x
2: for € € e4cheq dO > Phase A: precision
3 cur —
PRECISIONPASS(cur, label, ¢)
4: results[e] < (cur) © Phase B: deep
obfuscation
for r < 1 to deep rounds do
cur —
DEEPOBFUSCATEPASS(cur)
7: APPEND(resultse], cur)
end for
9: end for
10: return results
11: function PRECISION-
PAss(chunk, label, ¢)
12: Build precision prompt (“match vague-

ness €”)
13: reply <~ LLM PRECISE(prompt)
14: return PARSEJSON(reply) . rewritten
15: end function
16: function DeepObfuscatePass(chunk)

17: Build deep prompt (“be vaguer;
rephrase”)

18: reply < LLM_Deep(prompt)

19: return ParseJSON(reply) .rewritten

20: end function

2023), we define

|E(z) N E(y)]
E@] @

ILS(y|z) =1 — Leak(y|x) € [0,1]. (3)

Leak(y|z) =

ILS reaches 1 when no private atom survives
and drops to 0 when every atom leaks. We
combine two NER systems (spaCy + Flair) to
reduce the false-zero corner case highlighted by
Staab et al. (2024).

LLM-Leak Judge. Lexical overlap cannot
detect paraphrased disclosure (Carlini et al.,
2021). Inspired by the LLM-auditor paradigm
of Liang et al. (2023), we prompt a frozen
GPT-40-mini (T'=0) to output

The JSON-only response pattern follows the
robust formatting advice of the NIST AI Risk
Framework (Bohannon et al., 2023). We cap
prompts at 2k tokens as recommended by
privacy-budget analyses in DP-Fusion (Li et al.,
2023).

Dual-metric rationale. We keep ILS (lexi-
cal, ms-fast) and LLM-Leak (semantic) because
they answer complementary questions: ILS de-
tects verbatim overlap while the LLM judge
still flags paraphrased disclosure, giving a tight
upper— and lower—bound on privacy loss.



5 Experiments

5.1 Setup

Data. We introduce PRIVRAG, a 10 k—-QA
benchmark drawn from Clustomer Service,
Healthcare, and Legal. Each question is
paired with a private ground-truth answer that
may contain names, dates or codes, plus an
anonymised reference written by a privacy ex-
pert.

Privacy pipelines. Eight baselines are
compared: Plain, Hybrid and Hierarchical
RAG; the locally private entity-perturbation
system of Huang et al. (2024); three surface
masks (Paraphrase (Prakhar Krishna and Nee-
lakantan, 2021), ZeroGen (Lin et al., 2023),
Redact); and Typed-Holder obfuscation (Feyrer
et al., 2023). Our VAGUE-GATE appears with
five privacy budgets € €{1.0,0.7,0.5,0.3,0.1}.
All pipelines are executed with four frozen
generators: GPT-40-mini (OpenAl, 2025),
Llama-3.1-70B (AI, 2025b), DeepSeek-V3 (Al,
2025a), and Qwen3-235B (Academy, 2025).
The Cartesian product yields 32 model vari-
ants.

Metrics. Faithfulness and
Answer-Relevancy follow RAGAS (Anand
et al., 2023); BLEU-4 (Papineni et al., 2002)
and ROUGE-L (Lin, 2004) score surface form.
Information-Leakage is measured in two ways:
the lexical ILS of Eq.(3) and the semantic
LLM-Leak judge (1-5 scale, Table 1). Higher
is better except for ILS-complement and
LLM-Leak.

5.2 Main Results

Figure 2 contrasts Answer Relevancy (positive
axis) with the negative-oriented Leakage Score
for all nine privacy pipelines and four LLMs.?

VAGUE-Gate dominates the pri-
vacy—utility frontier. Across every backend,
the right-most turquoise/orange bars (Answer
Rel. ~ 0.70, Leakage Score ~—1.6) mark the
only regime where leakage is halved relative to
Hierarchical-RAG (best non-private baseline)
while answer quality remains above 0.65. On
GPT-40-mini the gate trims average leakage
by 1.8 points yet retains 91 % of Plain-RAG
faithfulness.

Entity-blind perturbation hurts util-
ity. LDP-RAG indeed lowers leakage, but

2Raw numbers appear in Appendix B.5.

its answer relevancy collapses—by 18 points
on Llama-3.1-70B—Dbecause public entities are
redacted alongside private ones, confirming our
hypothesis that type-aware masking is essential.

Model scale amplifies the gain.
Open-weight giants profit most from the
gate: Qwen-3-235B shows a 49 % leakage
drop over Hierarchical-RAG versus 29 % on
the smaller DeepSeek-V3, suggesting that
larger decoders are more prone to style-based
memorisation and therefore benefit more from
deep obfuscation.

Overall, VAGUE-GATE is the only method
that lands in the top-right quadrant of Figure
2 for all four LLMSs, offering a conspicuous pri-
vacy win with negligible degradation in answer
quality and an average latency overhead of just
240 ms.

5.3 Privacy-Budget Sweep (Pruned
Metrics)

Table 2 reports Answer Relevancy, Faithfulness,
ROUGE-L, LLM-Judge leakage and statisti-
cal Leak Rate for four LLM back-ends under
five privacy budgets ¢ € {0.1,0.3,0.5,0.7,1.0}.
As the budget relaxes, all utility metrics im-
prove steadily while both leakage measures
climb, illustrating the expected privacy—utility
trade-off:

Utility gains. For GPT-40-mini, Answer
Relevancy rises from 0.515 at e = 0.1 to 0.642 at
e = 1.0, Faithfulness from 0.571 to 0.747, and
ROUGE-L from 0.275 to 0.301. DeepSeek-V3
and the other back-ends show analogous up-
ward trends.

Leakage growth. The LLM-Judge score
for GPT-40-mini increases from 2.26 to 2.44
and the Leak Rate from 0.597 to 0.651 as e
moves from 0.1 to 1.0, confirming that higher
privacy budgets permit more private detail to
slip through.

These monotonic patterns align precisely
with our post-processing LDP guarantee (see
§4.3), demonstrating that VAGUE-Gate offers a
smooth, controllable continuum between strong
privacy (low ¢) and high utility (high ).

6 Limitations

Our work offers a novel perspective on in-
tegrating privacy mechanisms into Retrieval-
Augmented Generation (RAG), but it also



Table 2: Pruned evaluation metrics under varying privacy budgets.

Metric

c=0.1

=03

€=105

=07

=10

OpenAl  DeepSeck

Qwen

LLaMA  OpenAl DeepSeck

Qwen

LLaMA  OpenAl DeepSeck

Qwen

LLaMA  OpenAl DeepSeck

Qwen

LLaMA  OpenAl DeepSeck

Qwen

LLaMA

Answer Rel.
Faithfulness

0.515
0.571

0.524
0.567

0.206
0.264

0.317
0.586

0.511
0.636

0.522
0.634

0.173
0.285

0.128
0.697

0.539
0.676

0.566
0.662

0.177
0.291

0.367
0.743

0.581
0.706

0.596
0.695

0.362
0.253

0.408
0.777

0.642
0.747

0.320
0.367

0.374
0.452

0.482
0.817

ROUGE-L 0.275 0.210 0.134  0.230 0.284 0.221 0.117  0.137 0.284 0.217 0.119  0.270 0.290 0.224 0.145  0.282 0.301 0.153 0.164  0.300
Leak Judge  2.26 2.02 159 233 2.19 2.01 148 165 2.21 2.10 151 223 2.29 2.14 177 228 244 1.72 195 243
Leak Rate 0.597 0.568 0.305  0.356 0.618 0.610 0.253  0.201 0.634 0.629 0.267  0.425 0.644 0.636 0.348 0437 0.651 0.356 0.392  0.452
I OpenAl (Answer Relevancy) I Llama (Answer Relevancy) I DeepSeek (Answer Relevancy) . Qwen (Answer Relevancy)
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Figure 2: Comparison of Answer Relevancy (positive axis) and Leakage Score (negative, hatched) for four
LLMs (OpenAl, Llama 3.1-70B, DeepSeek-V3, Qwen-3-235B) across nine privacy pipelines. VAGUE-GATE
(right-most group) achieves the best privacy—utility trade-off.

comes with limitations that warrant further
investigation.

Unexplored Scope of RAG. Although
RAG systems have been proposed for several
years, the field lacks sufficient benchmarks, an-
alytical frameworks, and large-scale empirical
studies. As a result, key aspects of apply-
ing and optimizing RAG—particularly under
privacy constraints—remain insufficiently ex-
plored. Our work covers a specific instantia-
tion, but broader generalization and compar-
ison across domains and tasks remain future
directions.

Scarcity of Hybrid Public-Private
Datasets. A major limitation in evaluating
privacy-preserving RAG systems is the lack
of datasets that simultaneously contain both
public and sensitive (private) components.

Such hybrid datasets are essential for sim-
ulating realistic, multi-layered information
environments. Their absence limits the
ability to conduct fine-grained evaluation of
privacy-utility trade-offs. We highlight the
need for community efforts to create and
release such resources to support reproducible
research.
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A Dataset Details

A. Document Statistics (Docs)

This section reports document-level statistics
calculated across the input dataset used for
training and evaluation. Each file was parsed
to extract structural and linguistic metrics.
Note: The average document had 60 sen-
tences and spanned 4 pages. Paragraph seg-
mentation followed line-based separation.

B. Privacy Metadata Analysis

Each sentence in the dataset was anno-
tated as one of Public, Sensitive, or
Confidential. We computed various statis-
tical and information-theoretic metrics across
all documents.

Overall Statistics

e Total Documents: 100

e Total Sentences: 5,973

e Avg Sentences per Document: 59.73

e Avg Sentences per Paragraph: 2.99
Label Distribution

e Public: 3,602 (60.3%)

e Sensitive: 1,738 (29.1%)

e Confidential: 633 (10.6%)

e Privacy Ratio (Sensitive + Confidential):
39.7%

Entropy and Transition
e Average Entropy: 1.1664
e Most Balanced: 3. json (1.5850)
e Most Imbalanced: 6. json (0.4706)
e Total Transitions: 3,847
e Avg Transition Rate: 0.6551

Outliers: Files like 6. json and 10. json had
significantly low entropy, indicating skewed la-
bel distribution.



Table 3: Domain-wise privacy statistics on PRIVRAG.

. Privacy Sensitive .

Domain Ratio Density Conf. Density #Docs
Travel 0.667 1.000 0.900 600
Social Media 0.667 1.000 1.060 600
Healthcare 0.489 1.095 0.930 498
Education 0.430 0.985 0.790 300
Legal 0.333 0.850 0.700 100
C. Adversarial Question Analysis Findings

(Attack)

This section evaluates the attack questions de-
signed to elicit private or sensitive content from
models.

Procedure We used domain-specific adver-
sarial prompts (e.g., in Customer Service,
Travel, Legal) and evaluated them based on:

e Label response statistics
e Attack surface score (manual scale 1-7)

e Label transitions and entropy drop

Table 4: Attack Question Domains and Mean Risk
Scores

Domain Avg Attack Score
Travel 5.6
Social Media 5.4
Healthcare 4.8
Legal 4.4
Customer Service 4.1

Conclusion: Travel and Social Media ques-
tions were most likely to trigger private or eva-
sive responses, especially when sentence entropy
was low.

D. Answer Question Behavior and
Bypass

We analyzed answers generated in response to
both benign and attack-style questions, focus-
ing on:

e Bypass attempts (responses ignoring "Con-
fidential" label)

e Answer verbosity and entropy

e Vocabulary richness
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e Public Bypass Rate: 7.1% overall

¢ Low-entropy questions had highest by-
pass likelihood

e Sensitive answers were more verbose,
yet vague

e Confidential answers were shorter but
more information-dense

Observation: Model behavior was most vul-
nerable in cases where:

1. Entropy was low (dominance of one label)
2. Sentence transitions were minimal
3. Answer length was artificially short

B Model & Baseline Details

B.1 Language Models

GPT-40-mini (03-mini). 28 B dense trans-
former released by OpenAl in 2025 with a 64
K context window and multi-modal adapters
(OpenAl, 2025). We use the INSTRUCT variant
at T=0.2.

Llama-3.1-70B. Meta’s 70 B upgrade to
Llama-3, adding rotary-aware 128 K context
and Mixture-of-Experts routing (AI, 2025b).
Checkpoint: Llama-3.1-70B-Instruct.

DeepSeek-V3. 671 B MoE with 37 B active
parameters per token, trained on 6 T tokens
and fine-tuned with MLA (AI, 2025a). We
query the 37 B activated subnet.

Qwen3-235B. Alibaba’s flagship dense
model with 235 B parameters and dynamic
chunk attention (Academy, 2025). We use the
A22B instruct tuning.



B.2 Privacy Pipelines

PrLAaIN RAG Standard retrieval-augmented

generation with no filtering (Lewis et al.,
2020).

HyBRID RAG BM25 + dense fusion (Chen
et al., 2017).

HierRARCHICAL RAG Multi-granular  re-

trieval of document — section — paragraph
(Azar et al., 2024).

LDP-RAG Locally Private RAG with entity
perturbation (Huang et al., 2024); we use
the authors” GitHub code with €=0.5.

PARAPHRASE Parrot paraphraser with “safe”
style (Prakhar Krishna and Neelakantan,
2021).

ZEROGEN Retrieval-free hallucination mask
(Lin et al., 2023).

REDACT Rule-based redaction (HF filters).

TYPED-HOLDER Structured masking of hold-
er/value pairs (Feyrer et al., 2023).

VAGUE-GATE Ours, € €
{1.0,0.7,0.5,0.3,0.1}.

B.3 Metric Definitions

Faithfulness (0-1) and Answer Relevancy
(0-1) are computed via RAGAS (Anand et al.,
2023). BLEU-4 (Papineni et al., 2002) and
ROUGE-L (Lin, 2004) use nltk. ILS and
LLM-Leak are introduced in §4.5; see code in
the supplementary ZIP.

B.4 Hyper-parameters

Table 5: Retrieval and generation settings.

Parameter Value Notes

top-k docs 8 cosine-similarity (Faiss)
chunk size 256 tokens overlap 50 %
generator T' 0.2 except Deep passes T=0.7
max tokens 512 All LLMs

Kmax 4 deep rounds (§4.2)

Information About Use of AI Assistants
To comply with the ACL 2023 “Responsible
AT Checklist” (Item E1), we report the con-

crete ways in which automated assistants were
employed during this study:

Code drafting & review — We used Ope-
nAl GPT-40-mini in an IDE plug-in to draft
boilerplate for data loaders and evaluation
scripts, and to suggest unit-test cases. All
Generated snippets were manually verified
and, where necessary, Rewritten by the au-
thors.

e Synthetic data creation — Small portions
of the PRIVRAG benchmark (7 %) were pro-
duced via prompt-driven paraphrasing with
GPT-40-mini to balance domain coverage.
Each synthetic record was inspected by two
authors and corrected for factuality and style.

e Presentation polish — Language-editing
suggestions (e.g. conciseness,
tense) were accepted from Grammarly and
GPT-4-Turbo. No passages were taken verba-
tim. The final manuscript is author-edited.

consistent

e No policy or result decisions — Al tools
were not used to select experiments, interpret
results, draft claims, or approve conclusions.

All human authors take full responsibility
for the accuracy and integrity of the submitted
work.

B.5 Full Metric Tables

Table 6 reports the raw scores that underlie
the aggregate plots in §5.2. We include two
complementary views of system quality:

(a) Answer Relevancy (1) — RAGAS co-
sine similarity between the model answer
and the ground-truth private answer, av-
eraged over the 3 k test questions.

(b) Leakage Score (|) — ordinal rating re-
turned by our LLM-as-Judge metric (§6),
where 1 indicates no leakage and 5 indi-
cates near-verbatim disclosure.

How to read the table. Rows are
grouped first by metric, then by foundation
model (OpenAl GPT-40-mini, Llama 3.1-70B,
DeepSeek-V3, Qwen-3-235B). Columns list the
nine privacy pipelines evaluated in the main
paper. Higher is better for Answer Relevancy;
lower is better for Leakage Score. The best
value per row is bold-faced.

Software Packages and Parameter
Settings

Table7 lists every external package we relied
on, together with the exact version, role in



Table 6: Answer-relevancy (higher is better) and leakage score (lower is better) for four LLMs across nine
privacy pipelines.

Metric Model Normal Redact Zerogen Typed- Hybrid Hier. LDP  ParaphradAGUE
Holder

OpenAl 0.793 0.669 0.467 0.672 0.795 0.789  0.778  0.738  0.557
LLaMA 0.743  0.000 0433 0.000 0.656  0.740 0.613  0.488  0.341
DeepSeek  0.773  0.669 0.435 0.585 0.709 0.774  0.751 0.705  0.469
Qwen 0.772 0.734 0280 0.718 0.735 0.772 0.743  0.740  0.233

OpenAl 3.053 2.729 1.713 2.840  3.080 3.065  3.147 2931 2.278
LLaMA 3.076 1.192 1.750 1.189  2.968 3.088 2.915 2.496 2.586
DeepSeek  2.914 2471 1.747 2330  2.702 2.933 2.998  2.431 1.943
Qwen 2.941 2.815 1.717  2.820  2.883 2.925 2970  2.794 1.586

Answer Rel.

Leakage Score

the pipeline, key parameters, and an official
download link. All packages are installed from
pip unless stated otherwise; a reproducible
requirements.txt accompanies our code re-
lease.

Consistency of Artifact Use With
Intended Purpose

External artifacts. All third-party re-

sources—LLMs, retrieval corpora, evaluation

benchmarks, and software libraries—were used
strictly within the scope licensed or docu-
mented by their authors:

e OpenAl  GPT-4o-mini, Llama-370B,
DeepSeek-V3, and Quwen-3235B  were
accessed via official APIs or model check-
points under the providers’ research or
non-commercial terms. We did not fine-tune,
redistribute, or expose model weights.

e Public corpora employed for retrieval (e.g.,
Wikipedia 2024-05 snapshot) and evaluation
datasets (e.g., HOTPOTQA) are released for
academic research; we neither redistribute
nor re-licensed them.

Artifacts we release. PRIVRAG, our
newly-curated benchmark, contains synthetic
documents automatically generated from pub-
licly available seed material and does not
include any personal or proprietary infor-
mation. We distribute the dataset, code,
and prompt templates under the CC-BY-NC
4.0 licence with an explicit “research-only,
non-commercial” clause. This is fully com-
patible with the access restrictions of the
sources used to create the dataset and prevents
downstream deployments that might contra-
vene the original terms of use.

C Prompt Templates
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Table 7: Third-party software employed in this work.

Package Ver. Purpose / Settings URL
SpaCY + en_core_web_trf 3.7.2 NER and sentence segmentation; default https://spacy.io
pipeline; GPU enabled
FLar 0.13 Second NER pass; batch_size=8 https://github.com/flairNLP/flair
(flair/ner-english-ontonotes-large)
NLTK 3.8.1 Fallback tokeniser; BLEU with smoothing https://www.nltk.org
method I
RapripFuzz 3.6.1 String similarity for ILS diagnostics https://github.com/maxbachmann/RapidFuzz
ROUGE (py-rouge) 1.0.1 ROUGE-L scoring; default stop-word list https://pypi.org/project/py-rouge/
sAcREBLEU 2.4.2 BLEU-4 (-1c -smooth_add1) https://github.com/mjpost/sacrebleu
RAGAS 0.1.6 Faithfulness / Answer-Relevancy with https://github.com/explodinggradients/ragas
top_k=5
langchain-openai 0.1.0 LLM wrapper; temperature and https://python.langchain.com
context-window control
openai SDK 1.15.0 Embedding calls; timeout=20s https://platform.openai.com
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Categorisation Prompt (VAGUE-Gate)

You are a privacy gate. Given <chunk> and a label in {PUBLIC, SENSITIVE, CONFIDENTIAL}, rewrite the chunk so that
o tokens with utility <e are dropped or generalised;

e all other content is kept verbatim.

Return JSON: {"rewritten": "..."}.

Precision—Pass Prompt (7=0)
Rewrite the following text with vagueness ¢ =< X >. Drop or generalise private details, keep public content intact.
<chunk>

Output (JSON only): {"rewritten": "..."}

Deep-Obfuscation Prompt (7=0.7)
Make the passage still vaguer. Keep meaning, re-phrase nouns, swap clause order, remove superfluous dates.

<current_version>

Paraphrase Prompt [? ]

Given the context, extract essential parts verbatim; delete the rest.
Context: «<{input_context}»>
Extracted relevant parts:

ZeroGen Prompt [? ]

The context is: {orig_context}. {extracted entities} is the answer to:
Generate 10 question—answer pairs in the form question: ... answer:

AttrPrompt (Attribute Discovery) [? ]

“What are the five most important attributes for generating medical Q&A data?” List them, then propose three sub-topics
for each.

SAGE Phase 1 Prompt [? ]

Summarise key points of the Doctor—Patient conversation below. Return exactly the five attributes for the Patient and
five for the Doctor in the provided schema.

«< conversation »>

SAGE Phase 2 Prompt

Using the attribute list: «< attributes »>
Generate a single-round patient question and doctor reply that cover all attributes. Do not produce extra dialogue.

LDP-RAG Entity-Perturb Prompt [? ]

Locate PERSON, ORG, LOC, DATE, etc. Apply £€=0.5 randomised response per entity. Return perturbed text only.

Redact (Rule-based)

Regex-replace every detected private entity with “IIIIII”

Typed-Holder [? ]

Replace entities by their coarse type token (e.g. PERSON, DATE, MONEY).

Note: All prompts are shown verbatim except for ellipsis placeholders <...>.

Figure 3: Prompt templates for every privacy pipeline. The PDF is rendered verbatim to preserve
exact wording and formatting.
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