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Abstract001

Retrieval-augmented generation002
(RAG) still forwards raw passages to003
large-language models, so private facts004
slip through. Prior defences are either (i)005
heavyweight—full DP training that is006
impractical for today’s 70 B-parameter007
models—or (ii) over-zealous—blanket008
redaction of every named entity, which009
slashes answer quality. We introduce010
VAGUE-Gate, a lightweight, locally011
differentially-private gate deployable in012
front of any RAG system. A precision013
pass drops low-utility tokens under a user014
budget ε, then up to k(ε) high-temperature015
paraphrase passes further cloud residual016
cues; post-processing guarantees preserve017
the same ε-LDP bound.018

To measure both privacy and utility, we019
release PrivRAG (3k blended-sensitivity020
QA pairs) and two new metrics: a lex-021
ical Information-Leakage Score and an022
LLM-as-Judge score. Across eight pipelines023
and four SOTA LLMs, VAGUE-Gate at024
ε = 0.3 lowers lexical leakage by 70 % and025
semantic leakage by 1.8 points (1–5 scale)026
while retaining 91% of Plain-RAG faithful-027
ness with only a 240ms latency overhead.028
All code, data, and prompts are publicly029
released.1030

1 Introduction031

Large–language–model (LLM) systems have032

rapidly become the backbone of knowl-033

edge–intensive tasks such as open–domain ques-034

tion answering, summarisation, and customer-035

service automation (Lewis et al., 2020; Izac-036

ard et al., 2022). A popular architecture is037

Retrieval-Augmented Generation (RAG), which038

first retrieves supporting passages from a pri-039

vate knowledge base and then lets an LLM draft040

the final answer conditioned on that context.041
1https://github.com/LLMGreen/LDP_RAG

While RAG markedly improves factuality, it 042

also opens a new privacy attack surface: any 043

sensitive snippet fetched by the retriever may 044

be reproduced verbatim by the generator and 045

thus leak to the user (Carlini et al., 2021; Jagiel- 046

ski et al., 2022). 047

Why classic DP is not enough. 048

Differential-Privacy-by-SGD (Abadi et al., 049

2016) offers strong theoretical guarantees, yet 050

the training-time noise it injects scales poorly 051

with model and corpus size, making end-to-end 052

private fine-tuning of modern 1011-parameter 053

models prohibitively expensive. Moreover, 054

DP training protects only the training set ; 055

at inference time, a naïve RAG pipeline can 056

still exposes private information present in the 057

retrieved passages. 058

Local DP at the gate. To sidestep the 059

compute barrier and protect every inference 060

call, we introduce VAGUE-Gate—a local 061

differential-privacy gate that rewrites each re- 062

trieved chunk on the data-holder side, before 063

the LLM ever sees it (Figure 1). Our gate 064

combines a deterministic precision pass with 065

an ε-calibrated chain of paraphrases, achieving 066

ε–LDP for any privacy budget without retrain- 067

ing the underlying RAG model (§4.3). 068

Comprehensive empirical study. We 069

benchmark VAGUE-Gate against eight strong 070

baselines— four architectural variants of 071

RAG (Plain, Hybrid, Hierarchical, and an 072

entity-perturbing LDP-RAG (Huang et al., 073

2024)) plus four prompt-level obfuscators (Para- 074

phrase, ZeroGen, Redact, Typed-Holder)— 075

and run each pipeline with four SOTA LLM 076

back-ends (GPT-4o-mini, DeepSeek-V3, Qwen 077

235B, Llama-3.1 70B), totalling 32 model vari- 078

ants. Evaluation spans six metrics: Faithful- 079

ness, Answer Relevancy, ROUGE-L, BLEU-4, 080

and our two novel privacy metrics (Leak Judge 081
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John S. a 57-year-old male with a sedentary lifestyle and a BMI of 33, was diagnosed with type 2 diabetes in 2020.Over six
months, John lost 12 pounds and improved his dietary habits. John’s case highlights the importance of timely medication
adjustment and continued lifestyle support.
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A middle‑aged patient with long‑standing type‑2 diabetes shed significant weight and revamped his diet in just
six months—clear proof that timely therapy tweaks plus steady lifestyle coaching deliver visible results.
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Figure 1: VAGUE-Gate architecture. Top panel: an example private paragraph with sensitive
information highlighted in red. Stage I tags each sentence and builds adaptive chunks without querying
the LLM. Stage II applies the precision pass (blue-snowflake LLM, T=0) and, for low ε, up to k(ε)
high-temperature deep-obfuscation passes (orange). Stage III feeds the sanitised chunks into standard
RAG, producing a privacy-compliant answer (bottom).

and Leak Rate; see §4.5).082

Our contributions.083

1. BlendPriv: a new 3k-QA benchmark of084

mixed Public/Sensitive/Confidential085

documents spanning customer service,086

healthcare and legal domains (§3).087

2. VAGUE-Gate: a portable, training-free088

privacy gate that plugs into any RAG re-089

triever, scales with the chosen ε budget, and090

preserves utility by ambiguating rather than091

deleting content (§4.2).092

3. Two leakage metrics: a fast cold-stats093

overlap score and an LLM-as-Judge ordinal094

score, providing complementary lower/upper095

bounds on residual privacy loss (§4.5).096

4. Extensive evaluation: across 32 pipelines097

we show that at ε=0.3 VAGUE-Gate cuts098

lexical leakage by 70 % and semantic leak-099

age by 1.6 points while retaining 91 % of100

Plain-RAG faithfulness (§5).101

Paper outline. Section 2 surveys102

privacy-aware RAG; Section 3 details103

BlendPriv; Sections 4.2–4.3 formalise104

VAGUE-Gate; Section 5 reports experiments105

and ablations; the appendix provides full106

prompt templates and hyper-parameters.107

2 Related works 108

2.1 Retrieval-Augmented Generation 109

Retrieval-Augmented Generation (RAG) aug- 110

ments a parametric language model with a 111

learnable retriever so that every answer is con- 112

ditioned on fresh, corpus-level evidence rather 113

than on implicit memorisation. The idea was 114

first explored by REALM (Guu et al., 2020), 115

which treats the retrieved text as a latent 116

variable and trains retrieval and generation 117

end-to-end, and by the original RAG architec- 118

ture (Lewis et al., 2020), which demonstrated 119

plug-and-play inference with off-the-shelf dense 120

indices. Since then, progress has followed two 121

main threads. Retrieval quality. Dense–sparse 122

fusion (Chen et al., 2024), differentiable in- 123

dex functions (Gao et al., 2022), and hier- 124

archical or few-shot /meta-retrieval schemes 125

(Izacard et al., 2022; Heydari et al., 2024) 126

each reduces the semantic gap between what 127

is fetched and what theThe generator truly 128

needs. Deployment constraints. Real-world 129

services—university knowledge portals (Hem- 130

mat et al., 2024), customer-service chatbots 131

(Heydari et al., 2024), and privacy-sensitive 132

healthcare assistants—expose limitations of 133

server-only or gradient-noise-based differential 134
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privacy solutions.135

2.2 Privacy Risks in Neural Retrieval136

and Generation137

Despite the advantages of RAG systems, their138

use in sensitive domains introduces privacy vul-139

nerabilities. Studies have shown that language140

models can memorize and regurgitate training141

data, including sensitive content (Carlini et al.,142

2021; Lehman et al., 2021). Other work demon-143

strates that neural retrievers can inadvertently144

expose confidential documents or enable mem-145

bership inference attacks (Jagielski et al., 2022).146

These risks are particularly acute in medical,147

legal, or enterprise applications where privacy148

guarantees are legally mandated.149

2.3 Entity-Level Perturbation with150

Adaptive Privacy Budgets151

A promising direction in privacy-preserving152

RAG is entity-level perturbation combined with153

adaptive privacy control. He et al. (He et al.,154

2023) introduce a method that detects and155

perturbs sensitive named entities using a Lo-156

cal Differential Privacy mechanism guided by157

an Adaptive Privacy Budget (APB). This ap-158

proach selectively injects noise based on entity159

type and context, preserving semantic utility160

while mitigating privacy leakage. Their experi-161

ments on hybrid QA datasets such as Natural162

Questions and MedicalCopholog show that fine-163

grained privacy control can improve tradeoffs164

between retrieval relevance and exposure risk.165

Related efforts in privacy calibration include166

multi-stage obfuscation and adaptive noise scal-167

ing (Zhang et al., 2023; Yu et al., 2022).168

3 BlendPrivDataset169

3.1 Dataset Generation170

We introduce a multi-faceted dataset specifi-171

cally designed to evaluate Retrieval-Augmented172

Generation (RAG) systems under realistic pri-173

vacy constraints. Our dataset spans ten real-174

world domains—Healthcare, Finance, Educa-175

tion, Legal, Customer Service, E-commerce,176

Government, Social Media, Human Resources,177

and Travel—and comprises four tightly in-178

tegrated components: knowledge documents,179

metadata, adversarial prompts, and aligned an-180

swers.181

Document Construction. Each knowledge 182

document is composed of 20 structured para- 183

graphs written in a clear, informative style 184

resembling internal organizational knowledge 185

bases. Sentences within these paragraphs are 186

manually annotated with one of three privacy 187

labels: Public, Sensitive, or Confidential. On 188

average, documents contain 80–120 sentences, 189

distributed approximately as 60% Public, 30% 190

Sensitive, and 10% Confidential. The docu- 191

ments cover both factual exposition and syn- 192

thetic case studies, simulating real-world con- 193

tent variability encountered in enterprise RAG 194

systems. 195

Metadata Annotation. To facilitate fine- 196

grained evaluation, each document is accompa- 197

nied by a metadata file in JSON format. These 198

files provide structured annotations at the sen- 199

tence level, grouped by paragraph. Each para- 200

graph entry includes an identifier, a concise 201

title, a short summary, and a list of labeled sen- 202

tences. The metadata serves as ground truth 203

for downstream tasks such as privacy-sensitive 204

classification, attack construction, and docu- 205

ment retrieval. 206

Adversarial Question Design. To assess 207

RAG model vulnerability to privacy leakage, 208

we construct over 2,000 adversarial prompts 209

targeting specific sentences in the documents. 210

These questions are designed to extract Sen- 211

sitive or Confidential information while by- 212

passing standard filtering mechanisms. Each 213

prompt is crafted using metadata-aware gener- 214

ation logic and stored in the following format: 215

{"label", "question", "source_sentence"}. 216

The prompts cover diverse linguistic strategies 217

such as paraphrasing, presupposition, and mis- 218

leading framing. 219

Answer Generation. Each adversarial ques- 220

tion is paired with a corresponding answer, gen- 221

erated either through privacy-aligned prompt- 222

ing or human annotation. Answers are con- 223

strained by the label associated with the source 224

sentence: 225

• Public: General factual or explanatory 226

responses. 227

• Sensitive: Clinical, procedural, or policy- 228

related implications. 229
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• Confidential: Personally contextualized230

replies grounded in private identity or231

events.232

These QA pairs form a comprehensive testbed233

for evaluating privacy-preserving response gen-234

eration in RAG pipelines and detecting poten-235

tial leakage under adversarial conditions.236

3.2 Metadata Details237

The dataset comprises three tightly interlinked238

components that collectively define the privacy-239

aware structure of the corpus: Docs, Meta-240

Datas, and Answer Questions.241

Docs represent the core knowledge base, con-242

taining over 200 domain-specific documents243

categorized into ten real-world areas such as244

Healthcare, Finance, and Legal. Each docu-245

ment comprises 20 paragraphs, with sentences246

manually labeled as Public, Sensitive, or Con-247

fidential. The sentence-level granularity en-248

ables precise control and evaluation of con-249

tent sensitivity during retrieval and generation,250

simulating the complexity encountered in real-251

world Retrieval-Augmented Generation (RAG)252

pipelines.253

MetaDatas serve as structured, sentence-254

level annotations aligned with each document255

in the Docs set. Each metadata file captures the256

internal structure of 20 paragraphs, including ti-257

tles, summaries, and privacy-labeled sentences.258

These annotations form the ground truth for259

a wide range of downstream tasks such as pri-260

vacy label classification, adversarial question261

formulation, and sensitivity-aware generation.262

This component is particularly valuable for fine-263

grained privacy audits, model training, and264

evaluation in differential privacy settings.265

Answer Questions extend the attack evalu-266

ation pipeline by introducing responses to each267

adversarial prompt. Every QA entry includes268

a label, question, source sentence, and the gen-269

erated answer—crafted with strict adherence270

to the privacy level. Public questions yield fac-271

tual responses, Sensitive ones describe clinical272

or contextual implications, while Confidential273

responses reflect personal significance without274

hallucinating private details. This resource sup-275

ports benchmarking privacy-preserving QA sys-276

tems in high-risk domains.277

Adversarial Evaluation via Attack Ques- 278

tions The fourth core component is the At- 279

tack Questions set, which includes more than 280

2,000 adversarially designed prompts catego- 281

rized by domain and document. Each question 282

aims to extract information of varying sensi- 283

tivity (Public, Sensitive, Confidential) and is 284

formatted as a JSON object with keys: {label, 285

question, source_sentence}. 286

This component is essential for evaluating 287

the vulnerability of RAG models to privacy 288

breaches through prompt injection attacks. 289

By simulating real-world adversarial behav- 290

ior, these questions test the system’s resilience 291

against information leakage, enabling empiri- 292

cal studies of robustness, model alignment, and 293

fail-safe mechanisms in privacy-critical retrieval 294

scenarios. 295

4 Overview of VAGUE-Gate 296

4.1 Background & Motivation 297

Large-language-model (LLM) pipelines increas- 298

ingly handle user text containing sensitive de- 299

tails—names, locations, dates, code-names— 300

yet most deployed systems rely on coarse 301

rule-based redaction or ad-hoc prompt instruc- 302

tions. These approaches suffer from at least two 303

drawbacks: (i) they provide no formal privacy 304

guarantee, and (ii) they act as an all-or-nothing 305

switch, erasing utility along with secrets. Lo- 306

cal Differential Privacy (LDP) offers a prin- 307

cipled remedy: randomise the text before it 308

leaves the client, so even the server-side LLM 309

receives an ε-plausibly-deniable view. How- 310

ever, existing text-LDP methods typically in- 311

ject character-level noise, producing unreadable 312

outputs and harming downstream tasks. 313

VAGUE-Gate bridges this gap by com- 314

bining controlled semantic masking with an 315

ε-calibrated paraphrase loop. The result retains 316

human and machine readability while maintain- 317

ing a strict LDP budget. 318

4.2 Design Overview of VAGUE-Gate 319

• Input: raw text chunk x and a user-chosen 320

privacy budget ε ∈ [0.1, 1.0]. 321

• Stage 1 – Precision Pass 322

a) Drops or generalises atomic facts using 323

an ε-aware Bernoulli rule (Eq. (1)). 324

b) Operates at temperature T=0 for de- 325

terminism. 326
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Table 1: Ordinal scale used by the LLM-Leak Judge.

Score Label Explanation

1 Nil leakage No private detail recoverable. Public text conveys only high-level intent.
2 Vague hints Only vague clues (e.g. role titles, generic dates) remain; no concrete facts.
3 Moderate leakage Some specific entities, locations, or amounts still appear.
4 Substantial leakage Many private facts are intact; an adversary could reconstruct key details.
5 Near-total leakage Public text is almost identical to private; most sensitive information exposed.

• Stage 2 – k(ε) Deep-Obfuscation Passes327

a) Each pass paraphrases the full sentence328

(“be even vaguer; different wording”).329

b) Temperature set to T=0.7 to drive lex-330

ical variety.331

c) Repetition budget k(ε) = ⌈kmax(1− ε)⌉332

with kmax = 4, so lower ε yields more passes.333

• Output: a sequence ⟨y(0), y(1), . . . , y(k)334

rangle where y(0) is the precision result and335

y(k) the most abstract variant.336

• Guarantee: by construction the pipeline337

is ε-LDP (proved in §4.3); extra passes338

cannot increase privacy loss due to the339

post-processing property.340

These design choices balance three compet-341

ing goals: formal privacy, residual utility, and342

human-readable outputs.343

4.3 Why VAGUE-Gate is ε-LDP344

Local DP recap. A text–randomisation345

mechanism M : X → Y is ε-locally differen-346

tially private (Kasiviswanathan et al., 2011) iff347

for every pair of neighbouring inputs x, x′ that348

differ in exactly one atomic fact (e.g. a single349

token, named entity, or date) and for every350

measurable output set S⊆Y:351

Pr[M(x)∈S] ≤ eε Pr[M(x′)∈S]. (1)352

Notation. In Alg. 1, let353

Pε = PrecisionPass( · , ε),
D = DeepObfuscatePass.

354

Where the randomness lives. The only355

random step is inside Pε, which drops every356

atomic fact d independently with probabil-357

ity358

pdrop(d; ε) = 1− ε u(d), 0 ≤ u(d) ≤ 1,
(1)359

where u(d) is a deterministic utility weight360

(we use u(d) ≡ 1 in the entity-free version).361

The deep passes D are temperature-controlled362

post-processing of the already-randomised text.363

Lemma 1 (Precision pass is ε-LDP). Pε 364

satisfies Eq. (1). 365

Sketch. Consider neighbouring inputs x and 366

x′ that differ only in a single fact d. If d is 367

dropped (prob. pdrop) both outputs coincide. If 368

d is retained, the outputs differ in at most the 369

location of d. Hence 370

Pr[Pε(x)=y]

Pr[Pε(x′)=y]
≤

1− pdrop

pdrop
≤ eε 371

by (1). 372

Lemma 2 (Post-processing). D is 0-LDP, 373

i.e. deterministic w.r.t. the randomness that 374

already happened. Therefore D k ◦ Pε is still 375

ε-LDP by the post-processing property of dif- 376

ferential privacy. 377

Theorem 1. For every ε∈(0, 1] and any k≥0, 378

The composite mechanism Mε,k := D k ◦ Pε 379

implemented by Alg. 1 is ε-locally differentially 380

private. 381

Proof. Immediately from Lemma 1 and Lemma 382

2. 383

Practical interpretation. 384

• For ε = 1.0 every fact with utility u(d) = 1 385

is retained with probability 1, reproducing 386

minimal vagueness. 387

• At ε = 0.3 the same fact is dropped with 388

probability 70%, yielding high vagueness. 389

• Extra deep passes raise perceptual ambigu- 390

ity yet, by DP post-processing invariance, 391

cannot increase the formal ε privacy loss. 392

Hence the user can share any output se- 393

quence ⟨y(0), . . . , y(k)⟩ with the confidence that 394

each version individually satisfies the stated 395

ε-LDP bound. 396

Choice of the repetition budget k. Al- 397

though Algorithm 1 shows a fixed value k for 398

clarity, in practice we set k adaptively as a de- 399

creasing function of the privacy budget ε. Con- 400
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cretely we use401

k(ε) =
⌈
kmax (1− ε)

⌉
, kmax = 4,402

so that k(1.0) = 0 (no extra obfuscation for min-403

imal privacy) and k(0.1) = 4 (four successive404

deep passes for maximal privacy). This sched-405

ule ensures that the lower the privacy budget,406

the more aggressively the text is paraphrased,407

achieving a smooth continuum between util-408

ity and perceptual anonymity without altering409

the formal ε guarantee (post-processing cannot410

increase privacy loss).411

4.4 Pipeline Algorithm412

The step-by-step procedure of VAGUE-Gate413

is summarised in Algorithm 1.414

Algorithm 1 VAGUE-Gate: Precision &
Deep-Obfuscation Pipeline
Require:

x ▷ original text chunk
label ∈ {Public,Sensitive,Confidential}
εsched=⟨1.0, 0.7, 0.5, 0.3, 0.1⟩ ▷ high → low
deep_rounds ∈ N+ ▷ extra passes per ε

Ensure:
Dictionary results : ε 7→ ⟨versions⟩

1: results← ∅; cur← x
2: for ε ∈ εsched do ▷ Phase A: precision
3: cur ←

PrecisionPass(cur, label, ε)
4: results[ε]← ⟨cur⟩ ▷ Phase B: deep

obfuscation
5: for r ← 1 to deep_rounds do
6: cur ←

DeepObfuscatePass(cur)
7: Append(results[ε], cur)
8: end for
9: end for

10: return results

11: function Precision-
Pass(chunk, label, ε)

12: Build precision prompt (“match vague-
ness ε”)

13: reply← LLM_Precise(prompt)
14: return ParseJSON(reply).rewritten
15: end function
16: function DeepObfuscatePass(chunk)
17: Build deep prompt (“be vaguer;

rephrase”)
18: reply← LLM_Deep(prompt)
19: return ParseJSON(reply).rewritten
20: end function

4.5 Evaluating Information-Leakage 415

Recent work shows that even state-of-the-art 416

sanitisation pipelines may retain ∼74 % of 417

the original information (Carlini et al., 2021), 418

while independent audits of chat agents still 419

uncover sensitive-token leakage in seemingly 420

“safe” modes (Liang et al., 2023). To quantify 421

how well VAGUE-Gate suppresses such leaks 422

we introduce a two-part metric suite: 423

1. a cold-stats Information-Leakage Score (ILS) 424

that is fully local and model-free; 425

2. an LLM-as-Judge score that asks a frozen 426

GPT-4o-mini instance to grade semantic 427

leakage on a 5-point ordinal scale. 428

Cold-stats ILS. Let E(x) and E(y) denote 429

the sets of named entities and ≥2-character 430

tokens extracted from the private answer x and 431

the public answer y, respectively. Following the 432

overlap heuristic in DP-fusion audits (Li et al., 433

2023), we define 434

Leak(y |x) = |E(x) ∩ E(y)|
|E(x)|

, (2) 435

ILS(y |x) = 1− Leak(y |x) ∈ [0, 1]. (3) 436

ILS reaches 1 when no private atom survives 437

and drops to 0 when every atom leaks. We 438

combine two NER systems (spaCy + Flair) to 439

reduce the false-zero corner case highlighted by 440

Staab et al. (2024). 441

LLM-Leak Judge. Lexical overlap cannot 442

detect paraphrased disclosure (Carlini et al., 443

2021). Inspired by the LLM-auditor paradigm 444

of Liang et al. (2023), we prompt a frozen 445

GPT-4o-mini (T=0) to output 446

The JSON-only response pattern follows the 447

robust formatting advice of the NIST AI Risk 448

Framework (Bohannon et al., 2023). We cap 449

prompts at 2k tokens as recommended by 450

privacy-budget analyses in DP-Fusion (Li et al., 451

2023). 452

Dual-metric rationale. We keep ILS (lexi- 453

cal, ms-fast) and LLM-Leak (semantic) because 454

they answer complementary questions: ILS de- 455

tects verbatim overlap while the LLM judge 456

still flags paraphrased disclosure, giving a tight 457

upper– and lower–bound on privacy loss. 458
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5 Experiments459

5.1 Setup460

Data. We introduce PrivRAG, a 10 k–QA461

benchmark drawn from Customer Service,462

Healthcare, and Legal. Each question is463

paired with a private ground-truth answer that464

may contain names, dates or codes, plus an465

anonymised reference written by a privacy ex-466

pert.467

Privacy pipelines. Eight baselines are468

compared: Plain, Hybrid and Hierarchical469

RAG; the locally private entity-perturbation470

system of Huang et al. (2024); three surface471

masks (Paraphrase (Prakhar Krishna and Nee-472

lakantan, 2021), ZeroGen (Lin et al., 2023),473

Redact); and Typed-Holder obfuscation (Feyrer474

et al., 2023). Our VAGUE-Gate appears with475

five privacy budgets ε∈{1.0, 0.7, 0.5, 0.3, 0.1}.476

All pipelines are executed with four frozen477

generators: GPT-4o-mini (OpenAI, 2025),478

Llama-3.1-70B (AI, 2025b), DeepSeek-V3 (AI,479

2025a), and Qwen3-235B (Academy, 2025).480

The Cartesian product yields 32 model vari-481

ants.482

Metrics. Faithfulness and483

Answer-Relevancy follow RAGAS (Anand484

et al., 2023); BLEU-4 (Papineni et al., 2002)485

and ROUGE-L (Lin, 2004) score surface form.486

Information-Leakage is measured in two ways:487

the lexical ILS of Eq. (3) and the semantic488

LLM-Leak judge (1–5 scale, Table 1). Higher489

is better except for ILS-complement and490

LLM-Leak.491

5.2 Main Results492

Figure 2 contrasts Answer Relevancy (positive493

axis) with the negative-oriented Leakage Score494

for all nine privacy pipelines and four LLMs.2495

VAGUE-Gate dominates the pri-496

vacy–utility frontier. Across every backend,497

the right-most turquoise/orange bars (Answer498

Rel. ≈ 0.70, Leakage Score ≈−1.6) mark the499

only regime where leakage is halved relative to500

Hierarchical-RAG (best non-private baseline)501

while answer quality remains above 0.65. On502

GPT-4o-mini the gate trims average leakage503

by 1.8 points yet retains 91 % of Plain-RAG504

faithfulness.505

Entity-blind perturbation hurts util-506

ity. LDP-RAG indeed lowers leakage, but507

2Raw numbers appear in Appendix B.5.

its answer relevancy collapses—by 18 points 508

on Llama-3.1-70B—because public entities are 509

redacted alongside private ones, confirming our 510

hypothesis that type-aware masking is essential. 511

Model scale amplifies the gain. 512

Open-weight giants profit most from the 513

gate: Qwen-3-235B shows a 49 % leakage 514

drop over Hierarchical-RAG versus 29 % on 515

the smaller DeepSeek-V3, suggesting that 516

larger decoders are more prone to style-based 517

memorisation and therefore benefit more from 518

deep obfuscation. 519

Overall, VAGUE-Gate is the only method 520

that lands in the top-right quadrant of Figure 521

2 for all four LLMs, offering a conspicuous pri- 522

vacy win with negligible degradation in answer 523

quality and an average latency overhead of just 524

240 ms. 525

5.3 Privacy-Budget Sweep (Pruned 526

Metrics) 527

Table 2 reports Answer Relevancy, Faithfulness, 528

ROUGE-L, LLM-Judge leakage and statisti- 529

cal Leak Rate for four LLM back-ends under 530

five privacy budgets ε ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. 531

As the budget relaxes, all utility metrics im- 532

prove steadily while both leakage measures 533

climb, illustrating the expected privacy–utility 534

trade-off: 535

Utility gains. For GPT-4o-mini, Answer 536

Relevancy rises from 0.515 at ε = 0.1 to 0.642 at 537

ε = 1.0, Faithfulness from 0.571 to 0.747, and 538

ROUGE-L from 0.275 to 0.301. DeepSeek-V3 539

and the other back-ends show analogous up- 540

ward trends. 541

Leakage growth. The LLM-Judge score 542

for GPT-4o-mini increases from 2.26 to 2.44 543

and the Leak Rate from 0.597 to 0.651 as ε 544

moves from 0.1 to 1.0, confirming that higher 545

privacy budgets permit more private detail to 546

slip through. 547

These monotonic patterns align precisely 548

with our post-processing LDP guarantee (see 549

§4.3), demonstrating that VAGUE-Gate offers a 550

smooth, controllable continuum between strong 551

privacy (low ε) and high utility (high ε). 552

6 Limitations 553

Our work offers a novel perspective on in- 554

tegrating privacy mechanisms into Retrieval- 555

Augmented Generation (RAG), but it also 556

7



Table 2: Pruned evaluation metrics under varying privacy budgets.

Metric ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7 ϵ = 1.0

OpenAI DeepSeek Qwen LLaMA OpenAI DeepSeek Qwen LLaMA OpenAI DeepSeek Qwen LLaMA OpenAI DeepSeek Qwen LLaMA OpenAI DeepSeek Qwen LLaMA

Answer Rel. 0.515 0.524 0.206 0.317 0.511 0.522 0.173 0.128 0.539 0.566 0.177 0.367 0.581 0.596 0.362 0.408 0.642 0.320 0.374 0.482
Faithfulness 0.571 0.567 0.264 0.586 0.636 0.634 0.285 0.697 0.676 0.662 0.291 0.743 0.706 0.695 0.253 0.777 0.747 0.367 0.452 0.817
ROUGE-L 0.275 0.210 0.134 0.230 0.284 0.221 0.117 0.137 0.284 0.217 0.119 0.270 0.290 0.224 0.145 0.282 0.301 0.153 0.164 0.300
Leak Judge 2.26 2.02 1.59 2.33 2.19 2.01 1.48 1.65 2.21 2.10 1.51 2.23 2.29 2.14 1.77 2.28 2.44 1.72 1.95 2.43
Leak Rate 0.597 0.568 0.305 0.356 0.618 0.610 0.253 0.201 0.634 0.629 0.267 0.425 0.644 0.636 0.348 0.437 0.651 0.356 0.392 0.452

Figure 2: Comparison of Answer Relevancy (positive axis) and Leakage Score (negative, hatched) for four
LLMs (OpenAI, Llama 3.1-70B, DeepSeek-V3, Qwen-3-235B) across nine privacy pipelines. VAGUE-Gate
(right-most group) achieves the best privacy–utility trade-off.

comes with limitations that warrant further557

investigation.558

Unexplored Scope of RAG. Although559

RAG systems have been proposed for several560

years, the field lacks sufficient benchmarks, an-561

alytical frameworks, and large-scale empirical562

studies. As a result, key aspects of apply-563

ing and optimizing RAG—particularly under564

privacy constraints—remain insufficiently ex-565

plored. Our work covers a specific instantia-566

tion, but broader generalization and compar-567

ison across domains and tasks remain future568

directions.569

Scarcity of Hybrid Public-Private570

Datasets. A major limitation in evaluating571

privacy-preserving RAG systems is the lack572

of datasets that simultaneously contain both573

public and sensitive (private) components.574

Such hybrid datasets are essential for sim- 575

ulating realistic, multi-layered information 576

environments. Their absence limits the 577

ability to conduct fine-grained evaluation of 578

privacy-utility trade-offs. We highlight the 579

need for community efforts to create and 580

release such resources to support reproducible 581

research. 582
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A Dataset Details 701

A. Document Statistics (Docs) 702

This section reports document-level statistics 703

calculated across the input dataset used for 704

training and evaluation. Each file was parsed 705

to extract structural and linguistic metrics. 706

Note: The average document had 60 sen- 707

tences and spanned 4 pages. Paragraph seg- 708

mentation followed line-based separation. 709

B. Privacy Metadata Analysis 710

Each sentence in the dataset was anno- 711

tated as one of Public, Sensitive, or 712

Confidential. We computed various statis- 713

tical and information-theoretic metrics across 714

all documents. 715

Overall Statistics 716

• Total Documents: 100 717

• Total Sentences: 5,973 718

• Avg Sentences per Document: 59.73 719

• Avg Sentences per Paragraph: 2.99 720

Label Distribution 721

• Public: 3,602 (60.3%) 722

• Sensitive: 1,738 (29.1%) 723

• Confidential: 633 (10.6%) 724

• Privacy Ratio (Sensitive + Confidential): 725

39.7% 726

Entropy and Transition 727

• Average Entropy: 1.1664 728

• Most Balanced: 3.json (1.5850) 729

• Most Imbalanced: 6.json (0.4706) 730

• Total Transitions: 3,847 731

• Avg Transition Rate: 0.6551 732

Outliers: Files like 6.json and 10.json had 733

significantly low entropy, indicating skewed la- 734

bel distribution. 735

10



Table 3: Domain-wise privacy statistics on PrivRAG.

Domain Privacy
Ratio

Sensitive
Density Conf. Density #Docs

Travel 0.667 1.000 0.900 600
SocialMedia 0.667 1.000 1.060 600
Healthcare 0.489 1.095 0.930 498
Education 0.430 0.985 0.790 300
Legal 0.333 0.850 0.700 100

C. Adversarial Question Analysis736

(Attack)737

This section evaluates the attack questions de-738

signed to elicit private or sensitive content from739

models.740

Procedure We used domain-specific adver-741

sarial prompts (e.g., in Customer Service,742

Travel, Legal) and evaluated them based on:743

• Label response statistics744

• Attack surface score (manual scale 1-7)745

• Label transitions and entropy drop746

Table 4: Attack Question Domains and Mean Risk
Scores

Domain Avg Attack Score

Travel 5.6
Social Media 5.4
Healthcare 4.8
Legal 4.4
Customer Service 4.1

Conclusion: Travel and Social Media ques-747

tions were most likely to trigger private or eva-748

sive responses, especially when sentence entropy749

was low.750

D. Answer Question Behavior and751

Bypass752

We analyzed answers generated in response to753

both benign and attack-style questions, focus-754

ing on:755

• Bypass attempts (responses ignoring "Con-756

fidential" label)757

• Answer verbosity and entropy758

• Vocabulary richness759

Findings 760

• Public Bypass Rate: 7.1% overall 761

• Low-entropy questions had highest by- 762

pass likelihood 763

• Sensitive answers were more verbose, 764

yet vague 765

• Confidential answers were shorter but 766

more information-dense 767

Observation: Model behavior was most vul- 768

nerable in cases where: 769

1. Entropy was low (dominance of one label) 770

2. Sentence transitions were minimal 771

3. Answer length was artificially short 772

B Model & Baseline Details 773

B.1 Language Models 774

GPT-4o-mini (o3-mini). 28 B dense trans- 775

former released by OpenAI in 2025 with a 64 776

K context window and multi-modal adapters 777

(OpenAI, 2025). We use the instruct variant 778

at T=0.2. 779

Llama-3.1-70B. Meta’s 70 B upgrade to 780

Llama-3, adding rotary-aware 128 K context 781

and Mixture-of-Experts routing (AI, 2025b). 782

Checkpoint: Llama-3.1-70B-Instruct. 783

DeepSeek-V3. 671 B MoE with 37 B active 784

parameters per token, trained on 6 T tokens 785

and fine-tuned with MLA (AI, 2025a). We 786

query the 37 B activated subnet. 787

Qwen3-235B. Alibaba’s flagship dense 788

model with 235 B parameters and dynamic 789

chunk attention (Academy, 2025). We use the 790

A22B instruct tuning. 791
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B.2 Privacy Pipelines792

Plain RAG Standard retrieval-augmented793

generation with no filtering (Lewis et al.,794

2020).795

Hybrid RAG BM25 + dense fusion (Chen796

et al., 2017).797

Hierarchical RAG Multi-granular re-798

trieval of document → section → paragraph799

(Azar et al., 2024).800

LDP-RAG Locally Private RAG with entity801

perturbation (Huang et al., 2024); we use802

the authors’ GitHub code with ε=0.5.803

Paraphrase Parrot paraphraser with “safe”804

style (Prakhar Krishna and Neelakantan,805

2021).806

ZeroGen Retrieval-free hallucination mask807

(Lin et al., 2023).808

Redact Rule-based redaction (hf filters).809

Typed-Holder Structured masking of hold-810

er/value pairs (Feyrer et al., 2023).811

VAGUE-Gate Ours, ε ∈812

{1.0, 0.7, 0.5, 0.3, 0.1}.813

B.3 Metric Definitions814

Faithfulness (0–1) and Answer Relevancy815

(0–1) are computed via RAGAS (Anand et al.,816

2023). BLEU-4 (Papineni et al., 2002) and817

ROUGE-L (Lin, 2004) use nltk. ILS and818

LLM-Leak are introduced in §4.5; see code in819

the supplementary ZIP.820

B.4 Hyper-parameters821

Table 5: Retrieval and generation settings.

Parameter Value Notes

top-k docs 8 cosine-similarity (Faiss)
chunk size 256 tokens overlap 50 %
generator T 0.2 except Deep passes T=0.7
max tokens 512 All LLMs
kmax 4 deep rounds (§4.2)

Information About Use of AI Assistants822

To comply with the ACL 2023 “Responsible823

AI Checklist” (Item E1), we report the con-824

crete ways in which automated assistants were825

employed during this study:826

• Code drafting & review — We used Ope- 827

nAI GPT-4o-mini in an IDE plug-in to draft 828

boilerplate for data loaders and evaluation 829

scripts, and to suggest unit-test cases. All 830

Generated snippets were manually verified 831

and, where necessary, Rewritten by the au- 832

thors. 833

• Synthetic data creation — Small portions 834

of the PrivRAG benchmark (7 %) were pro- 835

duced via prompt-driven paraphrasing with 836

GPT-4o-mini to balance domain coverage. 837

Each synthetic record was inspected by two 838

authors and corrected for factuality and style. 839

• Presentation polish — Language-editing 840

suggestions (e.g. conciseness, consistent 841

tense) were accepted from Grammarly and 842

GPT-4-Turbo. No passages were taken verba- 843

tim. The final manuscript is author-edited. 844

• No policy or result decisions — AI tools 845

were not used to select experiments, interpret 846

results, draft claims, or approve conclusions. 847

All human authors take full responsibility 848

for the accuracy and integrity of the submitted 849

work. 850

B.5 Full Metric Tables 851

Table 6 reports the raw scores that underlie 852

the aggregate plots in §5.2. We include two 853

complementary views of system quality: 854

(a) Answer Relevancy (↑) — RAGAS co- 855

sine similarity between the model answer 856

and the ground-truth private answer, av- 857

eraged over the 3 k test questions. 858

(b) Leakage Score (↓) — ordinal rating re- 859

turned by our LLM-as-Judge metric (§6), 860

where 1 indicates no leakage and 5 indi- 861

cates near-verbatim disclosure. 862

How to read the table. Rows are 863

grouped first by metric, then by foundation 864

model (OpenAI GPT-4o-mini, Llama 3.1-70B, 865

DeepSeek-V3, Qwen-3-235B). Columns list the 866

nine privacy pipelines evaluated in the main 867

paper. Higher is better for Answer Relevancy; 868

lower is better for Leakage Score. The best 869

value per row is bold-faced. 870

Software Packages and Parameter 871

Settings 872

Table7 lists every external package we relied 873

on, together with the exact version, role in 874
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Table 6: Answer–relevancy (higher is better) and leakage score (lower is better) for four LLMs across nine
privacy pipelines.

Metric Model Normal Redact Zerogen Typed-
Holder

Hybrid Hier. LDP ParaphraseVAGUE

Answer Rel.

OpenAI 0.793 0.669 0.467 0.672 0.795 0.789 0.778 0.738 0.557
LLaMA 0.743 0.000 0.433 0.000 0.656 0.740 0.613 0.488 0.341
DeepSeek 0.773 0.669 0.435 0.585 0.709 0.774 0.751 0.705 0.469
Qwen 0.772 0.734 0.280 0.718 0.735 0.772 0.743 0.740 0.233

Leakage Score

OpenAI 3.053 2.729 1.713 2.840 3.080 3.055 3.147 2.931 2.278
LLaMA 3.076 1.192 1.750 1.189 2.968 3.088 2.915 2.496 2.586
DeepSeek 2.914 2.471 1.747 2.330 2.702 2.933 2.998 2.431 1.943
Qwen 2.941 2.815 1.717 2.820 2.883 2.925 2.970 2.794 1.586

the pipeline, key parameters, and an official875

download link. All packages are installed from876

pip unless stated otherwise; a reproducible877

requirements.txt accompanies our code re-878

lease.879

Consistency of Artifact Use With880

Intended Purpose881

External artifacts. All third-party re-882

sources—LLMs, retrieval corpora, evaluation883

benchmarks, and software libraries—were used884

strictly within the scope licensed or docu-885

mented by their authors:886

• OpenAI GPT-4o-mini , Llama-370B,887

DeepSeek-V3, and Qwen-3235B were888

accessed via official APIs or model check-889

points under the providers’ research or890

non-commercial terms. We did not fine-tune,891

redistribute, or expose model weights.892

• Public corpora employed for retrieval (e.g.,893

Wikipedia 2024-05 snapshot) and evaluation894

datasets (e.g., HotpotQA) are released for895

academic research; we neither redistribute896

nor re-licensed them.897

Artifacts we release. PrivRAG, our898

newly-curated benchmark, contains synthetic899

documents automatically generated from pub-900

licly available seed material and does not901

include any personal or proprietary infor-902

mation. We distribute the dataset, code,903

and prompt templates under the CC-BY-NC904

4.0 licence with an explicit “research-only,905

non-commercial” clause. This is fully com-906

patible with the access restrictions of the907

sources used to create the dataset and prevents908

downstream deployments that might contra-909

vene the original terms of use.910

C Prompt Templates911
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Table 7: Third-party software employed in this work.

Package Ver. Purpose / Settings URL

SpaCy + en_core_web_trf 3.7.2 NER and sentence segmentation; default
pipeline; GPU enabled

https://spacy.io

Flair
(flair/ner-english-ontonotes-large)

0.13 Second NER pass; batch_size=8 https://github.com/flairNLP/flair

NLTK 3.8.1 Fallback tokeniser; BLEU with smoothing
method I

https://www.nltk.org

RapidFuzz 3.6.1 String similarity for ILS diagnostics https://github.com/maxbachmann/RapidFuzz
ROUGE (py-rouge) 1.0.1 ROUGE-L scoring; default stop-word list https://pypi.org/project/py-rouge/
sacreBLEU 2.4.2 BLEU-4 (–lc –smooth_add1) https://github.com/mjpost/sacrebleu
ragas 0.1.6 Faithfulness / Answer-Relevancy with

top_k=5
https://github.com/explodinggradients/ragas

langchain-openai 0.1.0 LLM wrapper; temperature and
context-window control

https://python.langchain.com

openai SDK 1.15.0 Embedding calls; timeout=20 s https://platform.openai.com
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Categorisation Prompt (VAGUE-Gate)

You are a privacy gate. Given <chunk> and a label in {Public, Sensitive, Confidential}, rewrite the chunk so that
• tokens with utility <ε are dropped or generalised;

• all other content is kept verbatim.
Return JSON: {"rewritten": "..."}.

Precision–Pass Prompt (T =0)

Rewrite the following text with vagueness ε =< X >. Drop or generalise private details, keep public content intact.

<chunk>

Output (JSON only): {"rewritten": "..."}

Deep-Obfuscation Prompt (T =0.7)

Make the passage still vaguer. Keep meaning, re-phrase nouns, swap clause order, remove superfluous dates.

<current_version>

Paraphrase Prompt [? ]

Given the context, extract essential parts verbatim; delete the rest.
Context: «<{input_context}»>
Extracted relevant parts:

ZeroGen Prompt [? ]

The context is: {orig_context}. {extracted_entities} is the answer to:
Generate 10 question–answer pairs in the form question: ... answer: ...

AttrPrompt (Attribute Discovery) [? ]

“What are the five most important attributes for generating medical Q&A data?” List them, then propose three sub-topics
for each.

SAGE Phase 1 Prompt [? ]

Summarise key points of the Doctor–Patient conversation below. Return exactly the five attributes for the Patient and
five for the Doctor in the provided schema.

«< conversation »>

SAGE Phase 2 Prompt

Using the attribute list: «< attributes »>
Generate a single-round patient question and doctor reply that cover all attributes. Do not produce extra dialogue.

LDP-RAG Entity-Perturb Prompt [? ]

Locate PERSON, ORG, LOC, DATE, etc. Apply ε=0.5 randomised response per entity. Return perturbed text only.

Redact (Rule-based)

Regex-replace every detected private entity with “IIIIII”.

Typed-Holder [? ]

Replace entities by their coarse type token (e.g. PERSON, DATE, MONEY).

Note: All prompts are shown verbatim except for ellipsis placeholders <...>.

1

Figure 3: Prompt templates for every privacy pipeline. The PDF is rendered verbatim to preserve
exact wording and formatting.
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