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Abstract

Large language models (LLMs) have made impressive progress in natural language
processing. These models rely on proper human instructions (or prompts) to gener-
ate suitable responses. However, the potential of LLMs are not fully harnessed by
commonly-used prompting methods: many human-in-the-loop algorithms employ
ad-hoc procedures for prompt selection; while auto prompt generation approaches
are essentially searching all possible prompts randomly and inefficiently. We pro-
pose Evoke, an automatic prompt refinement framework. In Evoke, there are two
instances of a same LLM: one as a reviewer (LLM-Reviewer), it scores the current
prompt; the other as an author (LLM-Author), it edits the prompt by considering
the edit history and the reviewer’s feedback. Such an author-reviewer feedback
loop ensures that the prompt is refined in each iteration. We further aggregate
a data selection approach to Evoke, where only the hard samples are exposed to
the LLM. The hard samples are more important because the LLM can develop
deeper understanding of the tasks out of them, while the model may already know
how to solve the easier cases. Experimental results show that Evoke significantly
outperforms existing methods across a diverse range of tasks.
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Figure 1: Comparison between hand-crafted
and Evoke prompts. Figure 2: Simplified workflow of Evoke.

1 Introduction

Consider an intriguing trio that at first glance seems unrelated: bumble bees, cell phones, and exciting
news. At a superficial level, their commonality might note their plural forms; however, a more
profound analysis reveals a shared essence: they all “create a buzz.” This comparison sheds light
on the depth and intricacy of human cognitive processes. At the heart of such processes is critical
thinking, the ability to conceptualize, analyze, question, and evaluate ideas and beliefs. As we
transition to the domain of artificial intelligence, it is observed that large language models (LLMs)
have remarkably evolved as general problem solvers, urging us to ponder:

Can LLMs think on their own?

In practice, we observe that existing prompting methods are inadequate in evoking the critical thinking
abilities of LLMs. For example, in Figure 1, we show two prompts for solving a common concept
task. From Figure 1 (left), we see that for the input trio “bumble bees, cell phones, and exciting news”,
the LLM outputs a superficial common concept “plural form” using the hand-crafted prompt. On the
other hand, with the prompt generated by the proposed method, the LLM demonstrates much deeper
understanding about the task , i.e., it generates the correct answer “can cause a buzz” (see Figure 1,
right). These results indicate that the quality of prompts are directly related to the performance of
LLMs. In this work, we focus on prompting methods that enables LLMs to think on their own.

The current prompting methodologies exhibit significant drawbacks. Many prompting methods are ad
hoc because of their human-in-the-loop development paradigm. In such a process, given a target task,
we first draft an initial prompt. Then, we refine the prompt using techniques such as chain-of-thought,
few-shot demonstrations, and coding-style problem descriptions [27, 25, 5] based on the model’s
performance on the target task. We note that in practice, a hand-crafted prompt optimized for one
task rarely translates to satisfactory performance in another task [31]. Therefore, each task becomes a
new expedition, with its own set of trials, errors, and validations. Such an ad hoc human-in-the-loop
development procedure introduces extensive human labor requirements, which significantly hinder
the applicability of LLMs in real-world applications.

Existing works develop algorithms to automatically generate prompts instead of relying on ad hoc
human optimization [17, 6, 32]. However, these methods often lack feedback loops, such that the
refinement procedure essentially performs a random search. For example, in each refinement iteration,
Zhou et al. [32] simply rephrases the prompt into multiple candidates, and then select the candidate
that yields the best performance as the refined prompt. Note that such a procedure fails to learn
from past successes and failures, such that refined prompt does not enrich the original prompt with
additional context.

We propose Evoke, which addresses the aforementioned drawbacks by leveraging an author-reviewer
paradigm. In this paradigm, there are two distinct purposes an LLM can serve: one instance as
an author (LLM-Author) tasked with editing prompts, and another instance as a reviewer (LLM-
Reviewer) tasked with evaluating the quality of the prompts generated by the LLM-Author. Each role
is played independently by separate instances of the same LLM.

Critical thinking is not something you do once with an issue and then drop it. It requires that we
update our knowledge as new information comes in. Daniel Levitin
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The essence of this quote resonates with the feedback loop in the workflow of Evoke, as depicted in
Figure 2. The workflow comprises three steps: First, the LLM-Author edits prompts from previous
iterations, taking into account the past edits and the feedback from the LLM-Reviewer. Second, the
LLM-Reviewer scores the revised prompts from the LLM-Author, and the top-n candidates with
the highest scores are selected for subsequent procedures. The LLM-Reviewer employs a memory
module that stores history edits, prompts and task accuracy of history prompts. Finally, the task
accuracy for each instruction is computed.

To further enhance the efficacy of Evoke, we propose a data selection strategy. In this strategy, only
the hard samples selected by a selector are exposed to the LLM. The intuition is that the LLM can
develop deeper understanding of the tasks out of the hard samples, while it already knows how to
solve the easier cases. Through extensive experiments (see Figure 10 in the experiments), we see that
retaining the hard samples indeed improves efficacy of Evoke.

We conduct extensive experiments to demonstrate the effectiveness of Evoke. Specifically, on eight
tasks from the Instruction Induction [6] dataset and the Big Bench Instruction Induction [32] dataset,
we show that Evoke significantly outperforms existing automatic prompt engineering approaches.
For example, on the challenging logical fallacy detection task, Evoke achieves a score of over 80,
while all the baseline methods struggle to reach 20. We also show that Evoke can improve LLMs’
robustness against adversarial attacks, and can also handle fine-grained named entity recognition
tasks with exceptional performance. As an example, Evoke achieves significant performance gain on
an adversarially constructed dataset, indicating that the proposed method can improve robustness of
LLMs. Additionally, we provide detailed analysis on the effectiveness of each component of Evoke.

2 Iterative Reviewer-Author Prompt Editing

2.1 Overview

In Evoke, the same LLM plays two different roles: an author (LLM-Author) that is in charge of
editing and refine prompts, and a reviewer (LLM-Reviewer) that is in charge of scoring the refined
prompts. We use two different prompts for the author’s and the reviewer’s task.

Algorithm 1: Evoke
Require: Training set; Initial prompt for the target task (i.e., the one we want to refine).
// Initialization
LLM-Selector: Initialize data scoring instruction.
LLM-Author: Initialize prompt editing instruction.
LLM-Review: Initialize prompt reviewing instruction.
while t ≤ T do

// LLM-Selector
Assign difficulty scores for each data point in the training set.
Select a training subset based on the difficulty level.
// LLM-Author
LLM-Author generates multiple prompts based on the training data and its own memory.
// LLM-Reviewer
LLM-Reviewer scores the quality of each generated prompt from LLM-Author based on its own

memory.
Select top-n prompts based on the generated scores from LLM-Reviewer.
Get task accuracy for all prompts.
// Memory update
Memory of LLM-Author appends (edits, scores).
Memory of LLM-Reviewer appends (edits, prompts, task accuracy).

Return: The prompt with the highest task accuracy.

⋄ LLM-Author edits and generates new prompts based on feedback from LLM-Reviewer.
The prompt for LLM-Author consists of several components: (a) Input for editing: Current task
instruction to be refined and training data; (b) Instruction for editing: “We’ve provided pairs
consisting of inputs, the teacher’s correct answers, and the students’ responses. Please review
the incorrect responses from the students and summarize key points that could be adjusted in
the instruction to enhance student accuracy. Highlight major edits and present the updated task
instruction."; (c) Memory: prior history (edits, scores).
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Figure 3: Prompt Editing for the first 3 steps in Task of Movie Recommendation within Big Bench.

LLM-Author refines the instructions (prompts for the given task) by utilizing the training data and a
memory component. We note that the memory consists of all prior (edit, score) pairs, where the score
comes from LLM-Reviewer. This memory component enables LLM-Author to execute increasingly
effective edits, drawing upon feedback from previous edits.

⋄ LLM-Reviewer scores the quality of prompts generated by LLM-Author. The input prompt
for LLM-Reviewer consists of several components: (a) Input for scoring: problem description
and current instruction from LLM-Author; (b) Instruction for scoring: “Please rate the following
instruction on a scale of 1 to 10, where 10 represents the highest level of clarity in problem description,
execution steps, and a comprehensive explanation of the problem."; (c) Memory: prior (edits,
instructions, task accuracy).

The instructions generated by LLM-Author are forwarded to LLM-Reviewer for evaluation. Based
on the scores generated by LLM-Reviewer, only a subset of high-scoring candidates is selected to
move on to the subsequent iteration. Through this iterative editing process between LLM-Author and
LLM-Reviewer, LLM-Author can refine instructions in each iteration. Details of the algorithm can
be found in Algorithm 1.

To illustrate the effectiveness of Evoke, first three edits from the Movie Recommendation task in Big
Bench are presented in Figure 3. To start with, the prompt contains the basic task instruction. Next,
it extracts key factors considered in movie recommendation, such as the genre of each movie, the
distance between the given movies and the movies the user has watched before, and the popularity
of the movies. In the final step, a well-explained example is presented with a detailed explanation
following aforementioned factors. In summary, Evoke successfully concludes the key components of
movie recommendation, and curates a demonstration with detailed explanation.

2.2 Data Selection via LLM-Selector

In practice, we find that not all samples are equally important to model performance (see Figure 10).
In particular, we find that even without prompt refinement, the LLM already knows how to solve
some “easier” cases. Therefore, we only use “hard” samples in each refinement iteration. Specifically,
we assign a third role besides an author a reviewer to the LLM: a data selector.

The LLM-Selector evaluates the difficulty level (on a scale of 1 to 10) of each data point by assessing,
based on the current task instruction, how challenging it is to derive the correct answer from the
input. The input prompt for LLM-Selector consists of several components: (a) Input for evaluating
difficulty level: current instruction and input-output pair; (b) Instruction for evaluating difficulty
level: “As an experienced teacher with insight into the various levels of difficulty of exam questions,
please rate the following question on a scale of 1 to 10, considering factors such as conceptual
understanding, application of knowledge, problem-solving skills, time required, clarity of language,
and accessibility, where 1 denotes extremely easy and 10 denotes extremely difficult.".

3 Experiments

We conduct extensive experiments to demonstrate the effectiveness of Evoke. We show that for any
given task, the prompts generated by Evoke include clear definitions and well-structured task execution
steps. Moreover, these prompts feature demonstrations accompanied by detailed explanations. In all
experiments, we utilize the Azure OpenAI API service (GPT-4) for the involved LLMs.
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3.1 Main Results

Datasets. We perform a comprehensive evaluation on eight tasks from Instruction Induction [6] and
Big Bench Instruction Induction (BBII) [32], details of task descriptions can be found in Appendix.

These tasks covers a wide range of natural language understanding, reasoning and inference tasks.
For each task, we divide the dataset randomly into two sets, 60% of the data is allocated for training
(prompt refinement) and the remaining 40% is for testing (prompt evaluation).

Baselines. We compare our methods against two baselines: human curated prompts (Human) from
Honovich et al. [6]; Suzgun et al. [20] and automatic prompt engineer (APE) proposed in [32]. APE
first deduces an initial prompt from input-output pairs, and subsequently employs LLMs to refine and
generate new prompt candidates. However, prompts are simply paraphrased during the refinement
process of APE, which largely resembles random searching in the space of all possible prompts.

Figure 4: Results on eight tasks from the Instruction Induction
and the Big Bench Instruction Induction datasets.

Figure 5: Results on clean and
adversarially attacked SST2 and
QQP datasets.

Table 1: Prompt generated by Evoke for logical fallacy detection.
Prompt from Evoke Breakdown

In this task, you are required to identify both informal and formal logical
fallacies in the provided input statements. Your response should be a binary
value: return 1 if the query is logically valid (i.e., free from any logical
fallacies), and return 0 if the query is logically invalid (i.e., contains at least
one logical fallacy).

Introduction and
objective

A logical fallacy refers to an error in reasoning. Informal fallacies are often
content-dependent, such as appealing to irrelevant authority or making hasty
generalizations. Formal fallacies, on the other hand, are structural errors in
reasoning that occur regardless of the content.

Definition of logical
fallacy

It is crucial to consider the structure and the substance of the argument, evalu-
ating whether the conclusions follow logically from the premises, and whether
the premises and assumptions are factual and valid. Be cautious not to let
personal beliefs interfere with your analysis.

Evaluation criteria

For each given pair, compare the input statement against the principles of
logical reasoning, to determine whether it contains a logical fallacy or not.
Ensure your answer reflects the presence or absence of logical fallacies, thus
determining the logical validity or invalidity of the statement.

Task steps

Here are some common examples of logical fallacies:
- Ad Hominem: {details}
- Appeal to Nature: {details}
- Hasty Generalization: {details}
- Post Hoc: {details}
- False Cause: {details}

Common examples of
logical fallacy

Main Results. Figure 4 demonstrates experimental results, in which accuracy is averaged over three
runs. We observe that Evoke outperforms all the baselines in all eight tasks. For example, on the
challenging logical fallacy detection task from BBII, performance of Evoke is more than 80, while
performance of both APE and Human are below 20. This is because Evoke is adept at conceptualizing
the core definition of a task, decomposing a complex task into smaller subtasks, and curating relevant
demonstrations accompanied by detailed explanations. To demonstrate the power of Evoke, we show
the generated prompt for logical fallacy detection in Table 1. We see that the prompt begins with a
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clear task introduction and objective, followed by a fine-grained definition of logical fallacy. It then
articulates the criteria for evaluation and the task steps to follow. Lastly, it provides a list of common
logical fallacies, each accompanied by a detailed description. A well-structured prompt for epistemic
reasoning is presented in Table 2 in Appendix C.

3.2 Towards Adversarial Robustness

Despite their superior performance, LLMs are not robust to adversarial attacks [23]. For example,
when asking GPT-4 whether “pretty” is a positive word, the model can output the correct answer.
However, if we ask whether “prettye”, a clear typo of “pretty”, is a positive word, the LLM outputs an
opposite answer. We show that Evoke can generate prompts which alert the LLM in paying attention
to potential typos, and thus can improve model robustness.

Datasets. We adopt two datasets: SST-2 [19] is a sentiment classification task, where we need to
decide whether a movie review is positive or negative; and QQP [22] is a task where we need to
determine whether two sentences are paraphrases of each other.

To evaluate whether Evoke can improve LLMs’ robustness, we add typos to the datasets. Specifically,
we perform character-level adversarial attacks for each sample. In the attack, we change at most
one character in each word, and we change at most 4 words in each sentence [9]. In this way, the
constructed adversarial texts are human-interpretable and simulate real typos. As an example, one
sample from SST-2 is “that’s pure pr hype”, and its corresponding adversarial (corrupted) sample
after the attack is “tha’cs pure pr hyp”. We evaluate performance of different prompting methods on
the corrupted samples.

Baselines. Besides APE and Evoke, we evaluate another model: RobEnc [9], which is a widely-used
rule-based defense approach. RobEnc works as a clustering denoiser to cluster and denoise potentially
corrupted inputs into an encoding, and then the denoised encoding is fed to the subsequent model
(e.g., GPT-4) for inference. RobEnc learns rule-based word cluster for denoising: for example, if the
word “hallo” is clustered around the word “hello”, then all the “hallo” in the input will be converted
to “hello”.

Figure 6: Prompts from APE and Evoke on adversarial attacked SST-2 task

Results. Figure 5
summarizes exper-
imental results, in
which accuracy is av-
eraged over three runs
and RobEnc is only
applied to the attacked
data. We observe that
Evoke significantly
outperforms all the
baselines in all the tasks. The performance gain is more significant for adversarially constructed
datasets, e.g., Adversarial-SST2 and Adversarial-QQP. To understand this, we show the prompts
generated by APE and Evoke in Figure 6. We see that although the prompt from APE provides a clear
instruction regarding the given task and acknowledges the existence of typos, it does not provide
clear guidelines on how to address the typo. On the other hand, the prompt from Evoke provides
detailed explanations and actionable suggestions about defending against typos.

Figure 7: Results of APE and Evoke on
an in-house multi-lingual NER dataset. Figure 8: Prompt from Evoke on the NER task.
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3.3 Towards Fine-Grained Tasks: Named Entity Recognition

Tasks in Figure 4 and Figure 5 are all sentence-level classification tasks, e.g., deciding whether a
sentence is of positive or negative sentiment. In this section, we investigate whether Evoke can handle
more fine-grained tasks, such as token-level named entity recognition [16, 33].

We collect multi-lingual in-house query data from a search engine, and for each token in the query,
our goal is to assign the token to a pre-defined class (e.g., brand, location).

We illustrate results of Evoke on the fine-grained NER task in Figure 7. We see that Evoke significantly
outperforms APE on all the languages. We further show the prompt generated by Evoke in Figure 8.
From the prompt, we see that Evoke is able to automatically generate examples and explanations
about the task.

4 Conclusion

We propose Evoke, an author-reviewer framework for automatic prompt engineering. In Evoke, the
same LLM serves two roles: as a reviewer it scores the quality of the prompt; and as an author it refines
the prompt, taking the feedback of the reviewer into account. We further propose a data selection
strategy, where we only expose the hard samples to the model. With elaborate analysis (Appendix B),
we conclude that LLM-Reviewer can judge the quality of prompts; LLM-Author iteratively improves
prompt generation; and the effectiveness of LLM-Selector. Extensive experiments show that Evoke
outperforms existing automatic prompt engineering approaches.
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Appendix

A Related Work

Large Language Models Recently, LLMs have shown emergent abilities—capabilities to perform
tasks they weren’t explicitly trained for [25, 26, 1]. This includes common sense question answering,
code generation, and cross-domain problem solving, enriching their utility across unforeseen domains
[2, 15, 21, 8, 4]. Subsequently, adapting LLMs to specific problems has drawn attention, and several
methods have been proposed: Reinforcement Learning from Human Feedback (RLHF [13]), efficient
fine-tuning [7, 3], and prompt engineering [28], among others. Each method has its pros and cons. For
instance, RLHF can significantly improve performance but may require extensive human annotations.
Efficient fine-tuning, on the other hand, can be less resource-intensive but might fall short in achieving
the desired level of task-specific optimization. Prompt engineering, while innovative, may require a
well-crafted prompt to effectively guide the model towards accurate outputs.

In-Context Learning and Prompt Engineering In-Context Learning (ICL) refers to the ability of
LLMs to learn a new task from a small set of examples presented within the context (the prompt)
at inference time, without updating any parameters [25]. This paradigm has significantly improved
the capabilities of LLMs across various tasks. Many studies have explored the reasons behind such
improvements, examining aspects like Bayesian optimization and the difficulty of demonstrations
[29, 12, 11, 30].

Prompt engineering plays a pivotal role in facilitating ICL. It entails the design of prompts that arm
the LLM with the essential information needed to learn and adeptly perform the new task. Each
prompt essentially sets the stage for the LLM, enclosing the task’s requirements and guiding the
model towards producing the desired output. By carefully crafting prompts, it is possible to leverage
the inherent capability of LLMs, enabling them to tackle a wide range of tasks even with limited or no
prior explicit training on those tasks. Recently, methods such as Chain-of-Thought (CoT), Zero-CoT,
Self-Consistency, Program-Aided, and Few-Shot Prompting have been demonstrated to be effective
[27, 10, 24, 5, 14].

Figure 9: Correlation between LLM-
Reviewer scores and task accuracy.

Automatic Prompt Engineering The existing method-
ologies for automating discrete prompt optimization have
their roots in instruction induction, as discussed by [6]. It
was discovered that LLMs can generate natural language
instructions based on a small number of input-output pair
examples. Building on this, [32] proposed a new algorithm
for the automatic generation and selection of instructions
for LLMs. The algorithm, named Automatic Prompt Engi-
neer (APE), is capable of generating prompts that achieve
human-level performance across a diverse range of NLP
tasks. Work has also been done on automating prompt
generation for specific domains like code generation, as
discussed in [18].

B Analysis

LLM-Reviewer can judge the quality of prompts. Re-
call that in Evoke, LLM-Reviewer scores all the prompts generated by LLM-Author. We empirically
show that the scores can reflect the quality of the generated prompts. To examine the effectiveness of
these scores, we illustrate the relationship between the scores and the task accuracy in Figure 9. In the
experiments, we consider two tasks: Adversarial-SST2 and Common-Concept. From the results, we
see that the scores can indeed reflect the final task accuracy. For example, for Common-Concept, we
see that the task accuracy is about 5% when the prompt score is 6, and the task accuracy increases to
about 17% when the prompt score increases to 7. A similar trend is also revealed on the Adversarial-
SST2 task. We see that when the score is 7.5, the final task accuracy barely reaches 75%. And when
the score increases to 8, the task accuracy increases to 85%.
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Figure 10: Task accuracy over the num-
ber of iteration steps.

LLM-Author iteratively improves prompt generation.
In Evoke, because LLM-Author takes the feedback from
LLM-Reviewer into consideration, it can iteratively im-
prove the generated prompt. We demonstrate this in Fig-
ure 10 (the left-most orange bars). From the results, we see
that indeed the final task accuracy continues to increases
when we increase the number of iteration steps. For exam-
ple, on Adversarial-SST2, with one refinement iteration,
the final task accuracy is about 75%. When we increase
the number of refinement iterations to 3, we see that task
accuracy significantly increases to above 90%.

Effectiveness of LLM-Selector. Recall that in Evoke,
we only consider the “hard” samples in each iteration.
We demonstrate the effectiveness of such a strategy in
Figure 10. We consider three settings: Hard is the strategy
that we adopt in Evoke; Random is when we randomly
select samples instead of selecting based on a score; and Easy is when we select the easy samples
instead of the hard ones. From the results, we see that on both Common-Concept and Adversarial
SST-2, Easy yields the worst performance, indicating that the hard samples are more helpful than
the easy ones. Moreover, we observe that performance of Random is worse than Hard (i.e., Evoke),
further implying the effectiveness of the proposed data selection strategy.

C Main Results Supplementary

Table 2: Prompt generated by Evoke for epistemic reasoning.
Prompt from Evoke Breakdown

In this task, your goal is to determine whether the statement in the “Hypothesis"
logically follows from the statement in the “Premise." This is known as entail-
ment. If the “Hypothesis" statement is a logical consequence of the “Premise"
statement, then it is an entailment. If it is not, then it is a non-entailment.

Introduction and
objective

-Make sure to carefully consider the relations and assumptions mentioned in
both the “Premise" and the “Hypothesis" statements.
-The entailment does not depend on the truth of the statements, but rather
whether the logic in the “Hypothesis" follows from the “Premise".
-Pay close attention to the wording and structure of the sentences to analyze
whether one entails the other.

Guidelines

Examples:
Entailment
Premise: The sun rises in the east.
Hypothesis: The sun rises.
Explanation: The Hypothesis is a simplified version of the Premise and does
not introduce any new information or contradictions, hence it’s an entailment.
Non-entailment
Premise: Sarah believes that all cats are black.
Hypothesis: All cats are black. Explanation: Even though the Hypothesis is
expressed in the Premise, it’s tied to Sarah’s belief and not presented as a fact,
hence it’s a non-entailment.

Examples

Now, review the provided pairs of statements. Determine if the Hypothesis
logically follows from the Premise and respond with either entailment or non-
entailment.

Task Execution

D Task Descriptions

orthography starts with: Extract the words starting with a given letter from the input sentence.

common concept: Find a common characteristic for the given objects.

rhymes: Write a word that rhymes with the input word.
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movie recommendation: Recommend movies similar to the given list of movies.

logical fallacy detection: Detect informal and formal logical fallacies.

presuppositions as nli: Determine whether the first sentence entails or contradicts the second.

winowhy: Evaluate the reasoning in answering Winograd Schema Challenge questions.

epistemic reasoning: Determine whether one sentence entails the next.

E Instruction Induction

In Evoke, we use the author-reviewer framework to modify a task-specific prompt. In the experiments,
we use an off-the-shelf algorithm to generate the initial task-specific prompt. Table 3 demonstrates
examples of using instruction induction [6] for prompt initialization.

Table 3: Three examples of instruction inferred from input-output pairs
Input Output Inferred Instruction
Departure Arrival Get antonym
I am Mike Ich ben Mike Translate to German
Build Built Get passive voice of the given verb

F Prompts of LLM Roles in Evoke

F.1 LLM-Reviewer

Prompt for LLM-Reviewer
As an experienced teacher, you are well-versed in discerning effective instruction that guides students
toward correct answers. Please rate the following instruction on a scale of 1 to 10, where 10 represents
the highest level of clarity in problem description, execution steps, and a comprehensive explanation
of the problem.
The task at hand is titled: {description}
History that may help you: {memory}
The instruction to be rated is as follows: {instruction}
Kindly provide your rating below.

F.2 LLM-Author

Prompt for LLM-Author
Task Instruction: {instruction}
We’ve provided pairs consisting of inputs, the teacher’s correct answers, and the students’ responses.
Please review the incorrect responses from the students and summarize key points that could be
adjusted in the instruction to enhance student accuracy.
Pairs: {pairs}
History that may help you: {memory}
To improve the outcome, please revise the task instruction. Highlight major edits and present the
updated task instruction.
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F.3 LLM-Selector

Prompt for LLM-Selector
As an experienced teacher with insight into the various levels of difficulty of exam questions, please
rate the following question on a scale of 1 to 10, considering factors such as conceptual understanding,
application of knowledge, problem-solving skills, time required, clarity of language, and accessibility,
where 1 denotes extremely easy and 10 denotes extremely difficult.
Task instruction: {instruction}
Input: {input}
Correct answer: {answer}
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G Generated Instructions

We include generated instructions from all tasks below.

G.1 Orthography Starts With

Prompt from Evoke
Given an input sentence and a specified letter, identify the word or words starting with the given letter.
If there are two or more words in a sequence starting with the specified letter, include all of them as a
single answer. Ensure to present the word or group of words.
Here are the steps to follow:
-Read the provided input sentence carefully.
-Identify the word or words that start with the specified letter.
-If there are consecutive words starting with the specified letter, group them together as one entity.
-For example, if the input is "I prefer eating apples." and the specified letter is [e], your answer should
be eating.

G.2 Common Concept

Prompt from Evoke
Given a list, find the commonality between the inputs. The commonality should be a meaningful
characteristic, property, or relation that applies to all the inputs, not just a superficial or coincidental
feature.
For example, can be used for repairs is a valid commonality for [’sewing’, ’wrenches’, ’glue’,
’surgery’], but tools or skills for joining is too broad and vague, and contain the letter e is too trivial
and irrelevant.

G.3 Rhymes

Prompt from Evoke
For this task, you are required to find a word that rhymes with the given word. The word you provide
should not be the same as the given word, and should be a real, correctly spelled word from the
English language. A rhyming word is defined as a word that has the last syllable sounding identical
to the last syllable of the given word. For example, if the given word is "hat", a word that rhymes
with it is "cat".
Here are the steps to complete this task:
1. Read the given word carefully.
2. Think of a word that has the same ending sound as the given word.
3. Ensure that the word you thought of is a real word, is spelled correctly, and is not the same as the
given word.
4. Write down the rhyming word next to the given word.
Now, please proceed with finding a word that rhymes with each of the following words.
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G.4 Movie Recommendation

Prompt from Evoke
Given user’s interest in movies he watched previously: ‘watched‘. Now given four different movies
from A to D, please recommend one that might be the most interest of the user.
To help you make a good recommendation, consider the following factors:
- The genre, theme, and tone of the movies. For example, if the user likes comedy, action, or drama.
- The similarity or difference between the movies and the ones the user watched before. For example,
if the movies are part of a series, a remake, or a spin-off.
- The popularity, ratings, and reviews of the movies. For example, if the movies are critically
acclaimed, award-winning, or have a large fan base.
Use these factors to compare and contrast the movies and explain why you think one of them is the
best choice for the user. Do not just pick a movie based on your personal preference or guesswork.
Example: If the user watched The Godfather, The Godfather Part II, and Goodfellas, and the options
are A) The Departed, B) Scarface, C) The Irishman, and D) Casino, a possible answer is: A
The Departed is a crime thriller that has a similar genre, theme, and tone to the movies the user
watched before. It is also a remake of a Hong Kong film called Infernal Affairs, which adds a twist to
the familiar story of undercover agents and mobsters. The Departed is a highly popular and acclaimed
movie that won four Oscars, including Best Picture and Best Director. It has a star-studded cast that
includes Leonardo DiCaprio, Matt Damon, Jack Nicholson, and Mark Wahlberg. The user might
enjoy the suspense, the plot twists, and the performances of the actors in this movie. Therefore, I
recommend The Departed as the best option for the user.

G.5 Logical Fallacy Detection

Prompt from Evoke
In this task, you are required to identify both informal and formal logical fallacies in the provided
input statements. Your response should be a binary value: return 1 if the query is logically valid
(i.e., free from any logical fallacies), and return 0 if the query is logically invalid (i.e., contains
at least one logical fallacy). A logical fallacy refers to an error in reasoning. Informal fallacies
are often content-dependent, such as appealing to irrelevant authority or making hasty generaliza-
tions. Formal fallacies, on the other hand, are structural errors in reasoning that occur regardless
of the content. It is crucial to consider the structure and the substance of the argument, evaluat-
ing whether the conclusions follow logically from the premises, and whether the premises and
assumptions are factual and valid. Be cautious not to let personal beliefs interfere with your analysis.
For each given pair, compare the input statement against the principles of logical reasoning, to
determine whether it contains a logical fallacy or not. Ensure your answer reflects the presence
or absence of logical fallacies, thus determining the logical validity or invalidity of the statement.
Here are some common examples of logical fallacies:
- Ad Hominem: Attacking the character of a person making an argument rather than the argument
itself.
- Appeal to Nature: Claiming something is good because it’s natural, or bad because it’s unnatural.
- Hasty Generalization: Making a broad claim based on a small or unrepresentative sample size.
- Post Hoc: Assuming that because one event followed another, the first event caused the second
event.
- False Cause: Assuming a false or misleading cause-and-effect relationship.
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G.6 Presuppositions as NLI

Prompt from Evoke
Determine whether the first sentence entails, contradicts, or is neutral to the second sentence. The
term "entailment" means that the information in the first sentence logically supports or leads to the
conclusion presented in the second sentence. The term "contradiction" means that the information
in the first sentence logically opposes or disproves the information in the second sentence. The
term "neutral" implies that the information in the first sentence neither supports nor opposes the
information in the second sentence; they are unrelated or the relation between them is ambiguous.
It’s important to focus on the factual information provided rather than assumptions or external
knowledge. Make sure to carefully read both sentences and analyze their logical relation based only
on the given text.
Entailment: The information in the first sentence supports the conclusion in the second sentence.
Contradiction: The information in the first sentence opposes or disproves the information in the
second sentence.
Neutral: The information in the first sentence neither supports nor opposes the information in the
second sentence, or the relation between them is ambiguous.
For each pair, please provide the correct judgment between entailment, contradiction, and neutral,
based only on the provided text. Please avoid assumptions and focus solely on the text provided.

G.7 Winowhy

Prompt from Evoke
In the given text, you are required to evaluate the reasoning provided concerning the identification of
the antecedent of a pronoun in a sentence. The antecedent is the noun that the pronoun is referring to.
Carefully examine the reasoning to determine if it accurately identifies the antecedent based solely
on the information presented within the sentence itself. Here are the steps you should follow: Read
the sentence and the reasoning provided thoroughly.
-Assess whether the reasoning accurately identifies the antecedent of the pronoun based solely on the
provided text. Avoid making assumptions or using external knowledge.
-If the reasoning correctly identifies the antecedent of the pronoun, based on the information given in
the sentence.
-If the reasoning fails to accurately identify the antecedent of the pronoun or relies on assumptions or
external information.
Remember,
Your evaluation should strictly be based on the information provided in the text.
Your goal is to assess the accuracy of the reasoning in identifying the antecedent of the pronoun.
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G.8 Epistemic Reasoning

Prompt from Evoke
In this task, your goal is to determine whether the statement in the "Hypothesis" logically follows
from the statement in the "Premise." This is known as entailment. If the "Hypothesis" statement is
a logical consequence of the "Premise" statement, then it is an entailment. If it is not, then it is a
non-entailment.
-Make sure to carefully consider the relations and assumptions mentioned in both the "Premise" and
the "Hypothesis" statements.
-The entailment does not depend on the truth of the statements, but rather whether the logic in the
"Hypothesis" follows from the "Premise".
-Pay close attention to the wording and structure of the sentences to analyze whether one entails the
other.
Examples:
Entailment
Premise: The sun rises in the east. Hypothesis: The sun rises.
Explanation: The Hypothesis is a simplified version of the Premise and does not introduce any new
information or contradictions, hence it’s an entailment.
Non-entailment
Premise: Sarah believes that all cats are black.
Hypothesis: All cats are black. Explanation: Even though the Hypothesis is expressed in the Premise,
it’s tied to Sarah’s belief and not presented as a fact, hence it’s a non-entailment.
Now, review the provided pairs of statements. Determine if the Hypothesis logically follows from the
Premise and respond with either entailment or non-entailment.
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G.9 Adversarial SST2

Prompt from Evoke
Now given a user query, please do a sentiment analysis where 0 represents negative sentiment and 1
represents positive sentiment. Please note that the input may contain typos. These are not intentional
and do not reflect the user’s actual sentiment. You should try to correct the typos or infer the intended
meaning from the context before assigning a sentiment score. For example, ‘to merely badv trather
than painfzully awfl‘ could be corrected to ‘to merely bad rather than painfully awful‘ and scored
as 0. Similarly, ‘l comelling mobion‘ could be corrected to ‘a compelling motion‘ and scored as 1.
Sentiment analysis.

G.10 Adversarial QQP

Prompt from Evoke
You will be given a pair of questions and asked to determine whether they are paraphrases of each
other. Paraphrases are questions that have the same meaning or ask about the same information, even
if they use different words or structures. Please answer with a binary value of 1 if the questions
are paraphrases, or 0 if they are not. Please pay close attention to typos, spelling, grammar, and
punctuation before answering, as they may affect the meaning of the questions. If you are not sure
whether the questions are paraphrases or not, you can use some strategies to help you decide, such as:
- Compare the keywords and topics of the questions. Do they match or relate to each other? -
Rewrite one question in a different way and see if it still conveys the same message as the other
question. - Think about the context and purpose of the questions. Are they asking for the same type
of information or response?
For example, the questions What is the capital of France? and Which city is the seat of the French
government? are paraphrases, because they both ask about the same fact and can be answered with
the same word (Paris). However, the questions How do you play the guitar? and What are some
guitar chords? are not paraphrases, because they ask for different kinds of information and have
different levels of specificity.
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