
Under review as a conference paper at ICLR 2024

TRANSNEXT: AGGREGATING DIVERSE ATTENTIONS
IN ONE VISION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

In the design of previous Vision Transformers (ViTs), different token mixers were
often alternately stacked to balance the visual model’s aggregation of global and
local information, or to combine the characteristics of convolution with atten-
tion mechanism. In this paper, we propose Aggregated Attention, which is a
biomimetic design-based token mixer enabling each token to have fine-grained
attention to its nearest neighbor features and coarse-grained attention to global
features in terms of spatial information aggregation. Furthermore, we incorporate
learnable tokens that interact with conventional queries and keys, which further
diversifies the generation of affinity matrices beyond merely relying on the similar-
ity between queries and keys. All of these improvements can be achieved within
a single attention layer, eliminating the need for alternately stacking different
token mixers. Additionally, we propose Convolutional GLU, a channel mixer that
bridges the gap between GLU and SE mechanism, which empowers each token
to have channel attention based on its nearest neighbor image features, enhancing
local modeling capability and model robustness. We combine aggregated atten-
tion and convolutional GLU to create a new visual backbone called TransNeXt.
Extensive experiments demonstrate that our TransNeXt achieves state-of-the-art
performance across multiple model sizes. At a resolution of 2242, TransNeXt-Tiny
attains an ImageNet accuracy of 84.0%, surpassing ConvNeXt-B with 69% fewer
parameters. Our TransNeXt-Base achieves an ImageNet accuracy of 86.2% and an
ImageNet-A accuracy of 61.6% at a resolution of 3842, a COCO object detection
mAP of 57.1, and an ADE20K semantic segmentation mIoU of 54.7.

1 INTRODUCTION

The Vision Transformer (ViT) (Dosovitskiy et al., 2021) has emerged as a popular backbone architec-
ture for various computer vision tasks in recent years. The ViT model comprises two key components:
the self-attention layer (token mixer) and the MLP layer (channel mixer). The self-attention mecha-
nism plays a crucial role in feature extraction by dynamically generating an affinity matrix through
similarity computations between queries and keys. This global information aggregation method has
demonstrated remarkable feature extraction potential, with no inductive bias like convolution (LeCun
et al., 1995), and can build powerful data-driven models. However, the transformer encoder design
of vision transformers, originally developed for language modeling (Vaswani et al., 2017), exhibits
inherent limitations in downstream computer vision tasks. Specifically, the computation of the global
affinity matrix in self-attention poses a challenge due to its quadratic complexity and high memory
consumption, which restricts its application on high-resolution image features.

In order to mitigate the computational and memory burdens imposed by the quadratic complexity
inherent in the self-attention mechanism, a plethora of sparse attention mechanisms have been
proposed in previous studies. One such representative method is local attention (Liu et al., 2022a),
which restricts attention within a window on the feature map. However, due to the limited receptive
field, this method often requires alternating stacking with different types of token mixers to achieve
cross-window information exchange. Another representative method spatially downsamples the keys
and values of attention (such as pooling (Wang et al., 2021a;b; Wu et al., 2021), grid sampling (Tu
et al., 2022)). This method, due to its sacrifice of the query’s fine-grained perception of the feature
map, also has certain limitations. Recent studies (Chu et al., 2021a; Tu et al., 2022) have alternately
stacked spatial downsampling attention and local attention, achieving commendable performance
results.
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represents the current query’s position, and the black area represents the region that the current query cannot perceive.

Figure 1: A comparison of prevalent visual information aggregation mechanisms, our proposed
method, and biological visual systems (Left) and a visualization comparison of the Effective Receptive
Field between our method and the prevalent backbone networks, using the output at stage 3 (Right).

However, recent studies (De & Smith, 2020; Veit et al., 2016) and experiments (Kim et al., 2023) have
shown that deep networks with residual blocks (He et al., 2016) behave like ensembles of shallower
networks, indicating that the local and global information exchange achieved by stacking blocks may
not be as effective as anticipated.

On the other hand, both local attention and spatial downsampling attention differ significantly from
the workings of biological vision. Biological vision possesses higher acuity for features around the
visual focus and lower acuity for distant features. Moreover, as the eyeball moves, this characteristic
of biological vision remains consistent for pixels at any position in the image, implying pixel-wise
translational equivariance. However, for local attention based on a fixed window, tokens at the
window edge and the window center are evidently not in the same situation.

We have observed that due to depth degradation effects, many efficient ViT models are unable to
form sufficient information mixing through stacking. Even with a deep stack of layers, the traces
of their window partitioning always form unnatural artifacts, as shown in Fig 1. To address this
issue, we investigate a visual modeling approach that closely aligns with biological vision and
mitigates potential model depth degradation. To this end, we initially introduce Pixel-focused
Attention, which employs a dual-path design. In one path, each query has fine-grained attention to its
nearest neighbor features, while in the other path, each query has coarse-grained attention to spatial
downsampled features, allowing for a global perception. This approach operates on a per-pixel basis,
effectively simulating the continuous movement of the eyeball. Furthermore, we incorporate query
embedding and positional attention mechanisms into pixel-focused attention, leading to the proposal
of Aggregated Pixel-focused Attention, which we abbreviate as Aggregated Attention. This
approach further diversifies the generation of affinity matrices beyond merely relying on the similarity
between queries and keys, thereby achieving the aggregation of multiple attention mechanisms within
a single attention layer. We also reevaluate the design requirements of the channel mixer in vision
transformers and propose a novel channel mixer named Convolutional GLU. This mixer is more apt
for image tasks and integrates local feature-based channel attention to enhance model robustness.

We introduce TransNeXt, a hierarchical visual backbone network that incorporates aggregated
attention as a token mixer and convolutional GLU as a channel mixer. Through comprehensive
evaluation across image classification, object detection, and segmentation tasks, we demonstrate
the efficacy of these mixing components. Our TransNeXt-Tiny, pretrained solely on ImageNet-1K,
achieves an ImageNet accuracy of 84.0%, surpassing ConvNeXt-B. In COCO object detection, it
attains a box mAP of 55.1 using the DINO detection head, outperforming ConvNeXt-L pretrained
at a resolution of 3842 by 1.7. Our TransNeXt-Small/Base, fine-tuned at a resolution of 3842 for
merely 5 epochs, achieves an ImageNet accuracy of 86.0%/86.2%, surpassing the previous state-
of-the-art MaxViT-Base fine-tuned for 30 epochs by 0.3%/0.5%. Moreover, when evaluated on the
highly challenging ImageNet-A test set at a resolution of 3842, our TransNeXt-Small/Base models
achieve an impressive top-1 accuracy of 58.3%/61.6%, significantly outperforming ConvNeXt-L by
7.6%/10.9%, setting a new benchmark of robustness for ImageNet-1K supervised models.

In summary, our contributions are as follows:

1. Proposing pixel-focused attention, a token mixer closely aligns with biological vision and
mitigates potential model depth degradation. This novel attention mechanism works on a per-pixel
basis, effectively simulating the continuous movement of the eyeball and highly aligning with the
focal perception mode of biological vision. It possesses visual priors comparable to convolution.
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2. Proposing aggregated attention, an enhanced version of pixel-focused attention, which further
aggregates two types of non-QKV attention mechanisms into pixel-focused attention. Notably,
we propose a highly efficient approach within this framework, with the additional computational
overhead accounting for a mere 0.2%-0.3% of the entire model, leading to a highly cost-effective
unification of QKV attention, LKV attention, and QLV attention within a single mixer layer.

3. Proposing length-scaled cosine attention that enhances the extrapolation capability of existing
attention mechanisms for multi-scale image input. This allows TransNeXt to achieve superior
large-scale image extrapolation performance compared to pure convolutional networks B.2.

4. Proposing convolutional GLU, which incorporates channel attention based on nearest neighbor
image features. In comparison to convolutional feed-forward, it realizes the attentionalization of
the channel mixer with fewer FLOPs, thereby effectively enhancing the model’s robustness.

5. Introducing TransNeXt, a visual backbone that delivers state-of-the-art performance in various
visual tasks such as image classification, object detection, and semantic segmentation among
models of similar size. It also exhibits state-of-the-art robustness.

2 RELATED WORK

Vision transformers: Vision Transformer (ViT) (Dosovitskiy et al., 2021) was the first to introduce
transformer architecture to visual tasks, where images are segmented into non-overlapping patches
and subsequently linearly projected into token sequences, which are later encoded by a transformer
encoder. When trained with large-scale pretraining data or thoughtfully designed training strategies,
ViT models outperform convolutional neural networks (CNNs)(LeCun et al., 1995; Krizhevsky
et al., 2017; He et al., 2016), exhibiting remarkable performance in image classification and other
downstream tasks.

Non-QKV attention variants: In self-attention, the dynamic affinity matrix is generated through
the interaction between queries and keys. Recently, several studies (Tay et al., 2020; Li et al., 2021;
Yuan et al., 2023; Arar et al., 2022) have explored the use of learnable tokens as a replacement for
the original queries or keys to generate dynamic affinity matrices. Involution (Li et al., 2021) and
VOLO (Yuan et al., 2023), for instance, use learnable tokens to replace the original keys, resulting in
dynamic affinity matrices that are exclusively correlated with queries. In contrast, QnA (Arar et al.,
2022) utilizes learnable tokens to replace queries, leading to dynamic affinity matrices that are only
correlated with keys. Both methods have shown effectiveness.

Biomimetic vision modeling: Human vision exhibits higher acuity for features around the vi-
sual focus and lower acuity for distant features. This biomimetic design has been integrated into
several machine vision models (Min et al., 2022; Yang et al., 2022; 2021). Specifically, Focal-
Transformer (Yang et al., 2021) designs a visual attention based on this concept, but it operates based
on window partitioning. Tokens located at the window edges cannot obtain natural foveal vision, and
its window-wise manner cannot simulate the continuous movement of the human eyeball.

3 METHOD

3.1 AGGREGATED PIXEL-FOCUSED ATTENTION FOR VISION MODELS

3.1.1 PIXEL-FOCUSED ATTENTION

Inspired by the functioning of biological visual systems, we have designed a pixel-focused attention
mechanism that possesses fine-grained perception in the vicinity of each query, while concurrently
maintaining a coarse-grained awareness of global information. To achieve the pixel-wise translational
equivariance inherent in eyeball movements, we employ a dual-path design incorporating query-
centered sliding window attention and pooling attention. Furthermore, to induce coupling between
the two attention paths, we compute the importance in the same softmax for the query-key similarity
results of both paths. This results in a competition between fine-grained and coarse-grained features,
transforming pixel-focused attention into a multi-scale attention mechanism.

Given an input X ∈ RC×H×W , we now focus on the operations performed on a single pixel in the
input feature map. We define a set of pixels within a sliding window centered at pixel at (i, j) as
ρ(i, j). For a fixed window size of k × k, ∥ρ(i, j)∥ = k2. Concurrently, we define the set of pixels
obtained from pooling the feature map as σ(X). Given a pooling size of Hp×Wp, ∥σ(X)∥ = HpWp.
Therefore, pixel-focused attention (PFA) can be described as follows:

S(i,j)∼ρ(i,j) = Q(i,j)K
T
ρ(i,j) S(i,j)∼σ(X) = Q(i,j)K

T
σ(X) (1)
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Figure 2: An illustration of the comparison between pixel-focused attention (left) and aggregated
attention (right). Both have a feature size of 10×10, a window size of 3×3, and a pool size of 2×2.

A(i,j) = softmax

(
Concatenate(S(i,j)∼ρ(i,j), S(i,j)∼σ(X))√

d
+B(i,j)

)
(2)

A(i,j)∼ρ(i,j), A(i,j)∼σ(X) = Split(A(i,j)) with size [k2, HpWp] (3)

PFA(X(i,j)) = A(i,j)∼ρ(i,j)Vρ(i,j) +A(i,j)∼σ(X)Vσ(X) (4)

Activate and Pool: In order to utilize the linear complexity mode of PFA for large-scale im-
age inference in subsequent applications, we employ parameter-free adaptive average pooling for
downsampling in the spatial dimension. However, the average pooling operator significantly loses
information. Therefore, we use a single-layer neural network for projection and activation before
feature map pooling to compress and extract useful information in advance, thereby improving the
information compression rate after downsampling. After pooling, we once again use layer normaliza-
tion to normalize the output to ensure the variance consistency of X and σ(X). The downsampling
operator we propose, termed ‘Activate and Pool’, can be expressed by the following equation:

σ(X) = LayerNorm(AvgPool(GELU(Linear(X)))) (5)

We replaced the downsampling module in PVTv2-li (Wang et al., 2021b) with our ‘activate and pool’
mechanism and designed a 2M-sized model for ablation experiments on CIFAR-100 (Krizhevsky
& Hinton, 2009). Our module improved the top-1 accuracy of PVTv2-li from 68.1% to 70.4%,
demonstrating the effectiveness of this approach.

Padding mask: In the sliding window path, pixels located at the edge of the feature map inevitably
compute similarities with zero-padding outside the boundary. To prevent these zero similarities from
influencing the softmax operation, we employ a padding mask to set these results to −∞.

3.1.2 AGGREGATING DIVERSE ATTENTIONS IN A SINGLE MIXER

Query embedding: Several vision-language models (Li et al., 2022a; 2023) utilize queries originating
from the textual modality to perform cross-attention on keys derived from the visual modality, thereby
achieving cross-modal information aggregation to complete Visual Question Answering (VQA) tasks.
Moreover, it has been proven effective and efficient to incorporate and optimize learnable prefix query
tokens when fine-tuning these multimodal models to adapt to specific subtasks.

A natural extension of this idea is to incorporate these learnable query tokens into the attention
mechanism of the backbone network for well-defined tasks such as image classification, object
detection, and semantic segmentation, and directly optimize them. This approach has been validated
by previous work (Arar et al., 2022) for its effectiveness.

This method differs from traditional QKV attention as it does not use queries from the input but
learns a query defined by the current task to perform cross-attention. Therefore, we categorize this
method as Learnable-Key-Value (LKV) attention, drawing a parallel to QKV attention. We found
that adding a learnable Query Embedding (QE) to all query tokens in traditional QKV attention can
achieve similar information aggregation effects with negligible additional overhead. We only need to
modify Equation 1 as follows:

S(i,j)∼ρ(i,j) = (Q(i,j) + QE)KT
ρ(i,j) S(i,j)∼σ(X) = (Q(i,j) + QE)KT

σ(X) (6)
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Positional attention: An alternative approach to information aggregation is the use of a set of
learnable keys that interact with queries originating from the input to obtain attention weights,
i.e., Query-Learnable-Value (QLV) attention. This method differs from traditional QKV attention
as it disrupts the one-to-one correspondence between keys and values, resulting in learning more
implicit relative positional information for the current query. Consequently, it is often employed in
conjunction with a sliding window in visual tasks (Li et al., 2021; Yuan et al., 2023). Unlike static
affinity matrices such as convolution or relative position bias, the affinity matrix generated in this
way takes into account the impact of the current query and can dynamically adapt based on it. We
have observed that this data-driven modeling approach exhibits greater robustness compared to static
relative position bias and can further enhance locality modeling capabilities. Leveraging this feature,
we introduce a set of learnable tokens T ∈ Rd×k2

in each attention head, allowing these tokens to
interact with queries to obtain additional dynamic position bias and add it to A(i,j)∼ρ(i,j). Using
this enhancement only requires an additional computational overhead of HWk2C, comparable to
depthwise convolution. We only need to modify Equation 4 as follows:

PFA(X(i,j)) = (A(i,j)∼ρ(i,j) +Q(i,j)T )Vρ(i,j) +A(i,j)∼σ(X)Vσ(X) (7)

3.1.3 OVERCOMING MULTI-SCALE IMAGE INPUT

Length-scaled cosine attention: In contrast to the scaled dot product attention, the scaled cosine
attention, which employs cosine similarity, has been observed to generate more moderate attention
weights (Henry et al., 2020; Liu et al., 2022a) and effectively enhance the training stability of large
visual models (Dehghani et al., 2023). The scaled cosine attention typically multiplies an additional
learnable coefficient λ to the cosine similarity results of queries and keys, enabling the attention
mechanism to effectively ignore insignificant tokens (Henry et al., 2020). Recent studies (Hahn,
2020; Chiang & Cholak, 2022) have discovered that as the length of the input sequence increases,
the confidence of the attention output decreases. Therefore, the scaling factor of the attention
mechanism should be related to the length of the input sequence (Chiang & Cholak, 2022). Su (2021)
further proposed that the design of attention should exhibit entropy invariance to facilitate better
generalization to unknown lengths. Su (2021) provided an estimate of the entropy of the scaled dot
product attention with a sequence length n when queries and keys are approximated as vectors with a
magnitude of

√
d:

Hi ≈ log n− 0.24λd+ O(1) (8)

For cosine similarity, we define the queries and keys with ℓ2-normalization applied along their head
dimensions as Q̂ and K̂ respectively, both of which have magnitudes of 1. To maintain entropy
invariance and disregard constant terms, we set λ ≈ logn

0.24 . Given that Equation 8 is merely an
estimate, we set λ = τ log n, where τ is a learnable variable initialized to 1

0.24 for each attention
head. We propose length-scaled cosine attention as follows:

Attention(Q,K, V ) = softmax(τ logN ∗ Q̂K̂T )V (9)

Here, N denotes the count of effective keys each query interacts with, excluding the count of masked
tokens. Specifically, when applied in a transformer decoder (Vaswani et al., 2017), future tokens
masked by a causal mask should not be counted in N . In the context of pixel-focused attention,
N is calculated as N(i,j) = ∥ρ(i, j)∥ + ∥σ(X)∥ − ∥µ(i, j)∥ , where µ(i, j) represents the set of
padding-masked tokens at position (i, j).

Position bias: To further enhance the extrapolation capability of pixel-focused attention for multi-
scale image inputs, we employ different methods to calculate B(i,j)∼ρ(i,j) and B(i,j)∼σ(X) on two
paths. On the pooling feature path, we use log-spaced continuous position bias (log-CPB) (Liu
et al., 2022a), a 2-layer MLP with a ReLU (Nair & Hinton, 2010) to compute B(i,j)∼σ(X) from
the spatial relative coordinates ∆(i,j)∼σ(X) between Q(i,j) and Kσ(X). On the sliding window
path, we directly use a learnable B(i,j)∼ρ(i,j). On one hand, this is because the size of the sliding
window is fixed and does not require extrapolation of unknown relative position biases through
log-CPB, thus saving computational resources. On the other hand, we observe that using log-CPB
to calculate B(i,j)∼ρ(i,j) results in performance degradation. We believe this is because ∆(i,j)∼σ(X)

represents the spatial relative coordinates between fine-grained tokens and coarse-grained tokens,

5



Under review as a conference paper at ICLR 2024

while ∆(i,j)∼ρ(i,j)represents the spatial relative coordinates between fine-grained tokens, and their
numerical meanings are different. We discuss these details further in Section B.3

Aggregated attention: By applying the aforementioned diverse attention aggregation methods and
techniques for enhancing the extrapolation capability for multi-scale inputs, we propose an enhanced
version of pixel-focused attention, termed aggregated pixel-focused attention, which we abbreviate as
Aggregated Attention (AA). It can be described as follows:

S(i,j)∼ρ(i,j) = (Q̂(i,j) + QE)K̂T
ρ(i,j) S(i,j)∼σ(X) = (Q̂(i,j) + QE)K̂T

σ(X) (10)

B(i,j) = Concatenate(B(i,j)∼ρ(i,j), log-CPB(∆(i,j)∼σ(X))) (11)

A(i,j) =softmax(τ logN ∗ Concatenate(S(i,j)∼ρ(i,j), S(i,j)∼σ(X)) +B(i,j)) (12)

A(i,j)∼ρ(i,j), A(i,j)∼σ(X) = Split(A(i,j)) with size [k2, HpWp] (13)

AA(X(i,j)) = (A(i,j)∼ρ(i,j) + Q̂(i,j)T )Vρ(i,j) +A(i,j)∼σ(X)Vσ(X) (14)

3.1.4 FEATURE ANALYSIS

Computational complexity: Given an input X ∈ RC×H×W , a pooling size of Hp × Wp, and a
window size of k × k, we consider the impact of ‘activate and pool’ operation and linear projection.
The computational complexities of pixel-focused attention and aggregated attention are:

Ω(PFA) = 5HWC2 + 2HpWpC2 + 2HWHpWpC + 2HWk2C (15)

Ω(AA) = Ω(PFA) +HWk2C

= 5HWC2 + 2HpWpC2 + 2HWHpWpC + 3HWk2C
(16)

We observe that when the pooling size Hp ×Wp is set to a value independent of the input size, Both
Ω(PFA) and Ω(AA) scales linearly with the length of the input sequence. This implies that both PFA
and AA can perform inference in a linear complexity mode, as discussed in Section B.2.

Optimal accuracy-efficiency trade-off: Through empirical studies, we observed that the size of
the sliding window has a negligible impact on model performance. Consequently, we employed
the minimal form of a 3× 3 sliding window to capture features near the visual focus, significantly
reducing computational and memory consumption. We attribute this to the presence of pooling
feature paths, which endow each query with a global receptive field, thereby greatly diminishing the
need to expand the sliding window size to extend the receptive field. Detailed ablation study results
and discussions can be found in Section B.5.

Comparison with prior work: Both PFA and AA achieve a biomimetic design that simultaneously
provides fine-grained attention at the visual focus and coarse-grained attention at a distance, effectively
circumventing the potential decline in effectiveness brought about by depth degradation. Compared to
Focal-Transformer (Yang et al., 2021), our method works on a per-pixel basis, effectively simulating
the continuous movement of the eyeball and eliminating unnatural visual perception that may be
caused by partitioning windows in a fixed manner. Compared to pure convolutional networks that use
large convolution kernels (Ding et al., 2022; Liu et al., 2023) to deal with potential depth degradation,
our method shows significant advantages in large-scale image inference, as discussed in Section B.2.

3.2 CONVOLUTIONAL GLU
3.2.1 MOTIVATION

Gated channel attention in ViT era: Previous work, represented by the Squeeze-and-Excitation
(SE) mechanism (Hu et al., 2020), first introduced channel attention into the field of computer vision,
which uses a branch with an activation function to gate the network output. In gated channel attention,
the gating branch has more decision-making power than the value branch, and it ultimately determines
whether the corresponding output elements are zeroed. From this perspective, the SE mechanism
cleverly uses features after global average pooling as the input of the gating branch, achieving a
largest receptive field for better decision-making and solving the problem of insufficient receptive
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Figure 4: An illustration of TrasnNeXt architecture.
field in CNNs structures at the same time. However, in the ViT era, global receptive fields are
no longer scarce. Various global token mixers represented by self-attention have achieved higher
quality global information aggregation than global average pooling. This makes the global pooling
method used by the SE mechanism show some shortcomings, such as this method makes all tokens
on the feature map share the same gating signal, making its channel attention lack flexibility and
too coarse-grained. Despite this, it’s worth noting that ViT structures lack channel attention. Recent
research (Zhou et al., 2022) has found that incorporating the SE mechanism into a channel mixer can
effectively enhance model robustness, as shown in Fig. 3.

Convolution in ViT era: Recent studies (Chu et al., 2021b; Islam et al., 2020) have shown that
introducing a 3× 3 depthwise convolution (Chollet, 2017) into the vision transformer can be viewed
as a form of conditional position encoding (CPE) (Chu et al., 2021b), which effectively captures
positional information from zero-padding.

3.2.2 RETHINKING CHANNEL MIXER DESIGN

The Gated Linear Unit (GLU) (Dauphin et al., 2017; Shazeer, 2020) is a channel mixer that has been
shown to outperform Multi-Layer Perceptron (MLP) in various natural language processing tasks.
GLU consists of two linear projections that are element-wise multiplied, with one projection being
activated by a gating function. Unlike the SE mechanism, its gating signal for each token is derived
from the token itself and does not have a larger receptive field than the value branch.

More elegant design: We found that simply adding a minimal form of 3× 3 depthwise convolution
before the activation function of GLU’s gating branch can make its structure conform to the design
concept of gated channel attention and convert it into a gated channel attention mechanism based on
nearest neighbor features. We named this method Convolutional GLU, as shown in Fig. 3.

Feature analysis: Convolutional GLU (ConvGLU) addresses the overly coarse-grained drawback
of the SE mechanism, where all value tokens share the same gating signal. It also meets the needs
of some ViT models without position encoding design that require position information provided
by depthwise convolution. Moreover, the value branch of this design still maintains the same
depth as MLP and GLU, making it backpropagation-friendly. When keeping the parameter volume
consistent with the Convolutional Feed-Forward (ConvFFN) (Wang et al., 2021b) with an expansion
ratio of R and a convolution kernel size of k × k, the computational complexity of ConvGLU is
2RHWC2 + 2

3RHWCk2, which is less than the 2RHWC2 + RHWCk2 of ConvFFN. These
characteristics make ConvGLU a promising token mixer for vision model in ViT era.

3.3 ARCHITECTURE DESIGN OF TRANSNEXT

In order to ensure consistency in subsequent ablation experiments B.1, TransNeXt adopts the same
four-stage hierarchical backbone and overlap patch embedding as PVTv2 (Wang et al., 2021b). The
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pooling feature size of the aggregated attention in stages 1-3 is also set to H
32 × W

32 , identical to
PVTv2. In stage 4, as the feature map size has been reduced to H

32 × W
32 , the feature pooling module

cannot function properly. We employ a modified version of multi-head self-ttention (MHSA) that
applies query embedding and length-scaled cosine attention. This is consistent with PVTv2’s use
of MHSA in the fourth stage. For the channel mixer in stages 1-4, we use convolutional GLU with
GELU (Hendrycks & Gimpel, 2016) activation. The expansion ratio also follows PVTv2’s [8,8,4,4]
setting. To ensure consistency with typical MLP parameters, the hidden dimension of convolutional
GLU is 2

3× of the set value. Furthermore, we set the head dimension to be 24 for divisibility by 3 in
the channel dimension. The specific configurations of TransNeXt variants can be found in Table 2.

4 EXPERIMENT

Model #Params.
(M)

FLOPs
(G)

IN-1K ↑
Top-1(%)

IN-C ↓
mCE(%)

IN-A ↑
Top-1(%)

IN-R ↑
Top-1(%)

Sketch ↑
Top-1(%)

IN-V2 ↑
Top-1(%)

ImageNet-1K 2242 pre-trained models
PVT-Tiny (Wang et al., 2021a) 13.2 1.9 75.1 79.6 8.2 33.7 21.3 63.0
PVTv2-B1 (Wang et al., 2021b) 14.0 2.1 78.7 62.6 14.7 41.8 28.9 66.9
BiFormer-T (Zhu et al., 2023) 13.1 2.2 81.4 55.7 25.7 45.4 31.5 70.6
EfficientFormerv2-S2 (Li et al., 2022c) 12.7 1.3 81.6 – – – – –
TransNeXt-Micro (Ours) 12.8 2.7 82.5 50.8 29.9 45.8 33.0 72.6
DeiT-Small/16 (Touvron et al., 2021) 22.1 4.6 79.9 54.6 19.8 41.9 29.1 68.4
Swin-T (Liu et al., 2021) 28.3 4.5 81.2 62.0 21.7 41.3 29.0 69.7
PVTv2-B2 (Wang et al., 2021b) 25.4 4.0 82.0 52.6 27.9 45.1 32.8 71.6
ConvNeXt-T (Liu et al., 2022b) 28.6 4.5 82.1 53.2 24.2 47.2 33.8 71.0
Focal-T (Yang et al., 2021) 29.1 4.9 82.2 – – – – –
FocalNet-T (LRF) (Yang et al., 2022) 28.6 4.5 82.3 55.0 23.5 45.1 31.8 71.2
MaxViT-Tiny (Tu et al., 2022) 30.9 5.6 83.4 49.6 32.8 48.3 36.3 72.9
BiFormer-S (Zhu et al., 2023) 25.5 4.5 83.8 48.5 39.5 49.6 36.4 73.7
TransNeXt-Tiny (Ours) 28.2 5.7 84.0 46.5 39.9 49.6 37.6 73.8
Swin-S (Liu et al., 2021) 49.6 8.7 83.1 54.9 32.9 44.9 32.0 72.1
ConvNeXt-S (Liu et al., 2022b) 50.2 8.7 83.1 49.5 31.3 49.6 37.1 72.5
PVTv2-B3 (Wang et al., 2021b) 45.2 6.9 83.2 48.0 33.3 49.2 36.7 73.0
Focal-S (Yang et al., 2021) 51.1 9.1 83.5 – – – – –
FocalNet-S (LRF) (Yang et al., 2022) 50.3 8.7 83.5 51.0 33.8 47.7 35.1 72.7
PVTv2-B4 (Wang et al., 2021b) 62.6 10.1 83.6 46.5 37.1 49.8 37.5 73.5
BiFormer-B (Zhu et al., 2023) 56.8 9.8 84.3 47.2 44.3 49.7 35.3 74.0
MaxViT-Small (Tu et al., 2022) 68.9 11.7 84.4 46.4 40.0 50.6 38.3 74.0
TransNeXt-Small (Ours) 49.7 10.3 84.7 43.9 47.1 52.5 39.7 74.8
DeiT-Base/16 (Touvron et al., 2021) 86.6 17.6 81.8 48.5 28.1 44.7 32.0 70.9
Swin-B (Liu et al., 2021) 87.8 15.4 83.5 54.5 35.9 46.6 32.4 72.3
PVTv2-B5 (Wang et al., 2021b) 82.0 11.8 83.8 45.9 36.8 49.8 37.2 73.4
Focal-B (Yang et al., 2021) 89.8 16.0 83.8 – – – – –
ConvNeXt-B (Liu et al., 2022b) 88.6 15.4 83.8 46.8 36.7 51.3 38.2 73.7
FocalNet-B (LRF) (Yang et al., 2022) 88.7 15.4 83.9 49.5 38.3 48.1 35.7 73.5
TransNeXt-Base (Ours) 89.7 18.4 84.8 43.5 50.6 53.9 41.4 75.1
MaxViT-Base (Tu et al., 2022) 119.5 24.0 84.9 43.6 44.2 52.5 40.1 74.5

ImageNet-1K 3842 fine-tuned models
Swin-B (Liu et al., 2021) 87.8 47.1 84.5 – 42.0 47.2 33.4 73.2
ConvNeXt-B (Liu et al., 2022b) 88.6 45.2 85.1 – 45.6 52.9 39.5 75.2
MaxViT-Small (Tu et al., 2022) 68.9 36.1 85.2 – 48.3 – – –
ConvNeXt-L (Liu et al., 2022b) 197.8 101.1 85.5 – 50.7 54.6 41.0 76.0
MaxViT-Base (Tu et al., 2022) 119.5 74.2 85.7 – 55.1 – – –
TransNeXt-Small (Ours) 49.7 32.1 86.0 – 58.3 56.4 43.2 76.8
TransNeXt-Base (Ours) 89.7 56.3 86.2 – 61.6 57.7 44.7 77.0

Table 1: A comprehensive comparison on the ImageNet-1K classification and additional robustness
test sets.
ImageNet-1K classification: Our code is implemented based on PVTv2 (Wang et al., 2021b) and
follows the DeiT (Touvron et al., 2021) recipe for training. The model is trained from scratch on the
ImageNet-1K (Deng et al., 2009) dataset for 300 epochs, leveraging automatic mixed precision (AMP)
across 8× GPUs. The specific hyperparameters employed during training are detailed in Table 3.
To conduct a comprehensive evaluation of the model’s robustness, we utilize several additional test
sets. These include ImageNet-C (Hendrycks & Dietterich, 2019), a 2242-sized test set that applies
algorithmic distortions to ImageNet-1K validation set; ImageNet-A (Hendrycks et al., 2021), a test
set comprising adversarial examples; ImageNet-R (Hendrycks & Dietterich, 2019), an extended
test set containing samples that ResNet-50 (He et al., 2016) failed to classify correctly; ImageNet-
Sketch (Wang et al., 2019), which contains hand-drawn images; and ImageNet-V2 (Recht et al.,
2019), an extended test set that employs the same sampling strategy as ImageNet-1K.
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Mask R-CNN with 1x schedule UperNet with 160k iterationsImageNet-1K pre-trained model evaluation

Figure 5: A comprehensive comparison of performance on ImageNet-1K, robustness on ImageNet-A,
COCO detection and instance segmentation performance based on Mask R-CNN 1×, ADE20K
semantic segmentation performance based on UperNet.

Experimental results: The experimental results, presented in Table 1, establish that our proposed
model sets a new benchmark in ImageNet-1K accuracy and robustness across various scales. Specifi-
cally, our TransNeXt-Micro model achieves a top-1 accuracy of 82.5% on ImageNet-1K, surpassing
the FocalNet-T(LRF) while utilizing 55% fewer parameters. Similarly, our TransNeXt-Tiny model
achieves a top-1 accuracy of 84.0%, outperforming ConvNeXt-B with a reduction of 69% in param-
eters. Remarkably, at a resolution of 3842, our TransNeXt-Small/Base model surpasses the larger
MaxViT-Base model by 0.3%/0.5% respectively after only 5 epochs of fine-tuning, compared to
the 30 epochs used by MaxViT-Base. In terms of robustness, our model exhibits superior perfor-
mance on five additional test sets. Notably, on the most challenging ImageNet-A test set, TransNeXt
demonstrates a significant advantage in robustness as the model scales up. On ImageNet-A at a reso-
lution of 2242, our TransNeXt-Base surpasses MaxViT-Base by 6.4%. At a resolution of 3842, our
TransNeXt-Small/Base achieves an impressive ImageNet-A accuracy of 58.3%/61.6%, significantly
outperforming ConvNeXt-L by 7.6%/10.9%, while their parameter counts are only 25% and 45% of
ConvNeXt-L, respectively.

Object detection and instance segmentation: We employed a Mask R-CNN (He et al., 2020)
detection head, trained under a 1× schedule, to evaluate the performance of ImageNet-1K pretrained
TransNeXt on object detection and instance segmentation on the COCO (Lin et al., 2014) dataset. The
experimental results are presented in Fig 5 and Table 12. Our model demonstrated comprehensive
superiority when compared with previous state-of-the-art models. Notably, even our tiny model
surpassed the base models of FocalNet, InternImage and CSWin in terms of AP b. Similarly, we
utilized a DINO (Zhang et al., 2023) detection head, also trained under a 1× schedule, to further
assess the potential of our model for object detection. The results can be found in Table 13. Our
TransNeXt-Tiny model achieved an AP b of 55.1 under a 4-scales setting, surpassing ConvNeXt-L
1.7 with only 14% of the latter’s backbone parameters. Our TransNeXt-Base achieved an AP b of
57.1 under a 5-scales setting, approaching the performance of Swin-L pretrained on ImageNet-22K.

Semantic segmentation: We used UperNet (Xiao et al., 2018) and Mask2Former (Cheng et al.,
2022) methods to train the ImageNet-1K pretrained TransNeXt at a resolution of 5122 for 160k
iterations, and evaluated its semantic segmentation performance on ADE20K (Zhou et al., 2019).
The results from UperNet are shown in Fig 5 and Table 14, while those from Mask2Former are in
Table 15. Under the UperNet method, as shown in Fig 5, our TransNeXt demonstrated comprehensive
superiority over previous methods across all sizes. Our TransNeXt-Base even surpassed ConvNeXt-B,
which was pretrained on ImageNet-22K and further trained at a resolution of 6402. Similarly, under
the Mask2Former method, our TransNeXt-Small achieved an mIoU of 54.1, surpassing Swin-B
which was pretrained on ImageNet-22K and further trained at a resolution of 6402. Furthermore, our
TransNeXt-Base achieved an mIoU of 54.7. These results indicate that our method has the potential
to transcend model size limitations and break through data volume barriers.

5 CONCLUSION

In this work, we propose a biomimetic design-based token mixer, Aggregated Attention, and a chan-
nel mixer with gated channel attention, Convolutional GLU. We combine them to propose a powerful
and highly robust visual model, TransNeXt, which achieves state-of-the-art performance in various
visual tasks such as classification, detection, and segmentation. Extensive experiments validate the
effectiveness and generality of our approach. Furthermore, we provide a CUDA implementation B.7
that achieves up to 103.4% acceleration in training and 60.5% acceleration in inference.
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A DETAILED SETTINGS

A.1 CONFIGURATIONS OF TRANSNEXT VARIANTS

Model Channels Head dims Blocks MLP ratio Token mixer Window size Pool size

TransNeXt-Micro [48, 96, 192, 384] 24 [2, 2, 15, 2] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]
TransNeXt-Tiny [72, 144, 288, 576] 24 [2, 2, 15, 2] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]
TransNeXt-Small [72, 144, 288, 576] 24 [5, 5, 22, 5] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]
TransNeXt-Base [96, 192, 384, 768] 24 [5, 5, 23, 5] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]

Table 2: The configurations of TransNeXt variants. The value of pool size is calculated at 2242
resolution. A = aggregated attention, while M = multi-head self-attention.

A.2 TRAINING SETTINGS FOR IMAGENET-1K

To ensure reproducibility and consistency with prior work, we adopt the training strategy of
PVTv2 (Wang et al., 2021b), which incorporates various data augmentation techniques, includ-
ing Random Augmentation (Cubuk et al., 2020), Mixup (Zhang et al., 2018), CutMix (Yun et al.,
2019), and Random Erasing (Zhong et al., 2020). To regularize our model, we employ Label
Smoothing (Szegedy et al., 2016) and DropPath (Huang et al., 2016). We optimize our model using
AdamW (Loshchilov & Hutter, 2019) optimizer with a gradient clipping norm of 1.0 and a weight
decay of 0.05. The initial learning rate for all models is set to 10−3, with a warm-up period of
5 epochs and an initial warm-up learning rate of 10−6. We utilize the cosine learning rate sched-
uler (Loshchilov & Hutter, 2017) to decay the learning rate. During training, we randomly crop
images to a size of 224× 224. During the evaluation phase, for images with a resolution less than
384× 384, we apply a center-crop with a crop ratio of 0.875. However, for images of larger sizes, we
do not perform any cropping, following previous work (Liu et al., 2022b). We do not employ the
EMA weights. The stochastic depth drop rates for each model are provided in Table 3.

dataset ImageNet-1K

configuration TransNeXt-Micro/Tiny/Small/Base TransNeXt-Small/Base
task 2242 Pre-training 3842 Fine-tuning

batch size 1024 1024
base learning rate 1e-3 1e-5
learning rate scheduler cosine constant
min learning rate 1e-5 1e-5
training epochs 300 5
warm-up epochs 5 None
warm-up schedule linear None
warm-up learning rate 1e-6 None
optimizer AdamW AdamW
optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999

color jitter factor 0.4 0.4
auto-aug rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1
random-erasing prob. 0.25 0.25
random-erasing mode pixel pixel
mixup α 0.8 0.8
cutmix α 1.0 None
mixup prob. 1.0 1.0
mixup switch prob. 0.5 0.5

stochastic drop path rate 0.15/0.25/0.45/0.6 0.7/0.8
label smoothing 0.1 0.1
gradient clip 1.0 1.0
weight decay 0.05 0.05
exp. mov. avg. (EMA) None None

Table 3: The pre-training and fine-tuning settings of TransNeXt on ImageNet-1K (Deng et al., 2009).
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A.3 TRAINING SETTINGS FOR DOWNSTREAM TASKS

For experiments on the ADE20K (Zhou et al., 2019) and COCO (Lin et al., 2014) datasets, we
followed the training settings of Swin (Liu et al., 2021). We utilized the MMDetection (Chen et al.,
2019) and MMSegmentation (Contributors, 2020) toolboxes for training.

For the COCO 2017 dataset (Lin et al., 2014), we configured the learning rate to 10−4 and the weight
decay to 0.05. In the context of the Mask R-CNN and DINO methods, the stochastic depth drop
rates for TransNeXt-Tiny, TransNeXt-Small, and TransNeXt-Base were set to 0.3, 0.5, and 0.6,
respectively. The model was trained for 12 epochs with a batch size of 16 using the standard 1×
schedule.

For the ADE20K dataset (Zhou et al., 2019), in the UperNet method, we set the learning rate to 6×
10−5 and the weight decay to 0.05. The stochastic depth drop rates for TransNeXt-Tiny, TransNeXt-
Small, and TransNeXt-Base were set to 0.4, 0.6, and 0.7, respectively. For the Mask2Former method,
we set the learning rate to 10−4 and the weight decay to 0.05, with the stochastic depth drop rates for
TransNeXt-Tiny, TransNeXt-Small, and TransNeXt-Base set to 0.3, 0.5, and 0.6 respectively. All
models were trained for 160K iterations with a batch size of 16 on the ADE20K dataset.

B ABLATION STUDY

B.1 A ROADMAP FROM PVT TO TRANSNEXT

Step Method #Params.
(M)

FLOPs
(G)

IN-1K ↑
Top-1(%)

IN-C ↓
mCE(%)

IN-A ↑
Top-1(%)

IN-R ↑
Top-1(%)

Sketch ↑
Top-1(%)

IN-V2 ↑
Top-1(%)

0 PVT-Tiny (Wang et al., 2021a) 13.2 1.9 75.1 79.6 8.2 33.7 21.3 63.0
1 PVTv2-B1 (Wang et al., 2021b) 14.0 2.1 78.7 (+3.6) 62.6 (+17.0) 14.7 (+6.5) 41.8 (+8.1) 28.9 (+7.6) 66.9 (+3.9)

2 Deeper and Thinner 14.9 2.3 80.08 (+1.38) 55.3 (+7.3) 19.7 (+5.0) 43.2 (+1.4) 31.1 (+2.2) 69.2 (+2.3)

3 + More Heads 14.9 2.3 80.12 (+0.04) 55.0 (+0.3) 19.2 (-0.5) 43.5 (+0.3) 31.5 (+0.4) 69.4 (+0.2)

4 ConvFFN→GLU 14.8 2.2 79.7 (-0.42) 59.5 (-4.5) 18.9 (-0.3) 39.3 (-4.2) 26.8 (-4.7) 69.0 (-0.4)

5 GLU→ConvGLU 14.9 2.2 80.9 (+1.2) 54.6 (+4.9) 23.5 (+4.6) 44.3 (+5.0) 32.7 (+5.9) 70.6 (+1.6)

6 SRA→PFA 12.8 2.7 81.8 (+0.9) 51.7 (+2.9) 26.9 (+3.4) 45.2 (+0.9) 33.3 (+0.6) 71.6 (+1.0)

7 + Positional Attention 12.8 2.7 82.2 (+0.4) 50.7 (+1.0) 31.0 (+4.1) 46.4 (+1.2) 34.1 (+0.8) 72.0 (+0.4)

8 + Query Embedding 12.8 2.7 82.5 (+0.3) 50.8 (-0.1) 29.9 (-1.1) 45.8 (-0.6) 33.0 (-1.1) 72.6 (+0.6)

Table 4: The ablation experiments demonstrate the full roadmap from PVT-Tiny to TransNeXt-Micro. In step 1,
PVTv2 introduces Overlapping Patch Embedding and Convolutional Feed-Forward (ConvFFN). In step 2, we
made PVTv2 consistent with TransNeXt-Tiny in terms of height and width, with a head dimension of 48. In step
3, we decreased the head dimension to 24 and increased the number of attention heads.

Table 4 presents a comprehensive roadmap for upgrading PVT-Tiny to TransNeXt-Micro. To evaluate
the robustness of the performance models at each stage, we conducted experiments on ImageNet-
1K (Deng et al., 2009), ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-A (Hendrycks et al.,
2021), ImageNet-R (Hendrycks & Dietterich, 2019), ImageNet-Sketch (Wang et al., 2019), and
ImageNet-V2 (Recht et al., 2019).

Effectiveness of our method: The efficacy of our proposed convolutional GLU (ConvGLU) ,
pixel-focused attention, positional attention, and query embedding is demonstrated through ablation
experiments from step 4 to 8. In the stages of step 4 to 5, step 6, and step 7 to 8, we replaced
convolutional feed-forward (ConvFFN) with ConvGLU, spatial-reduction attention (SRA) with
pixel-focused attention (PFA), and pixel-focused attention with aggregated attention, respectively.
These three substitutions resulted in accuracy improvements of 0.8%, 0.9%, and 0.7% on ImageNet-
1K, and 4.3%, 3.4%, and 3.0% on the ImageNet-A test set, respectively, indicating the significant
contribution of these three components to performance. Moreover, in step 4, replacing ConvFFN
with GLU led to a significant performance decline, underscoring the necessity of the 3× 3 depthwise
convolution (Chollet, 2017) as conditional position encodings (CPE) (Chu et al., 2021b), particularly
as PVTv2’s SRA (Wang et al., 2021b) did not use any other positional encoding at this stage.

Impact of model structure: We adjusted the width and depth of PVTv2 and the number of attention
heads to match those of TransNeXt-Micro in steps 1 to 3 to avoid the impact of model structure.
During this period, we observed that a deeper and thinner model significantly enhances performance.
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Reducing the head dimension from 48 to 24 resulted in only a 0.04% performance change, indicating
that the performance gain from increasing attention heads is extremely limited.

Understanding of query embedding: The query embedding exhibits very unique properties. Incorpo-
rating query embedding effectively improved the performance on ImageNet-1K val and ImageNet-V2
test sets but somewhat reduced performance on ImageNet-A, ImageNet-R, ImageNet-Sketch test sets;
its impact on ImageNet-C was very weak. Notably, ImageNet-1K val, ImageNet-V2, and ImageNet-C
(a distorted test set of ImageNet-1K val) adopted the same sampling strategy as the ImageNet-1K
training set, while ImageNet-A, ImagetNet-R, and ImageNet-Sketch did not follow this principle. We
believe these experimental results reflect that query embedding restricts the model’s response range
to enhance current task performance rather than affecting generalization to all types of data. During
the learning process, the model optimizes this learnable query token, implicitly learning what the
optimal question for the current task is in each attention layer (from a Visual Question Answering
(VQA) perspective). This perspective can well explain why in these out-of-distribution test sets,
query embedding has a very weak impact on the performance of the ImageNet-C test set which uses
the same sampling strategy as the training set. Therefore, we believe there is a potential trade-off
here. In the case of TransNeXt, even with query embedding, our model still achieved state-of-the-art
model robustness.

B.2 MULTI-SCALE INFERENCE

Model Method Inference Size
2242 2562 3202 3842 4802 5122 6402

TransNeXt-Tiny

Normal Mode 84.0 84.3 84.3 84.6 83.8 83.2 81.6
No Length-scaling 84.0 84.3 84.4 84.7 83.7 83.2 80.9
Interpolate RPE 84.0 84.1 84.2 84.3 83.1 82.4 79.5
Linear Mode 84.0 84.0 83.9 84.1 83.0 82.6 80.7

RepLKNet-31B (Ding et al., 2022) 83.5 83.6 81.0 70.0 21.4 10.1 0.9
SLaK-S (Liu et al., 2023) 83.8 83.8 83.2 79.6 65.7 63.7 61.4
ConvNeXt-B (Liu et al., 2022b) 83.8 84.2 84.0 83.6 81.6 80.7 77.3

TransNeXt-Mirco Normal Mode 82.5 82.8 82.9 83.1 82.1 81.6 79.3
Linear Mode 82.5 82.5 82.4 82.3 80.9 80.3 77.6

TransNeXt-Small Normal Mode 84.7 84.9 84.9 85.0 84.1 83.8 82.2
Linear Mode 84.7 84.7 84.7 84.9 84.0 83.6 81.7

TransNeXt-Base Normal Mode 84.8 85.1 85.1 85.5 84.7 84.3 82.8
Linear Mode 84.8 85.0 84.9 85.1 84.1 83.5 81.5

Table 5: The table shows the top-1 accuracy of ImageNet-1K of 2242-size trained TransNeXt under
normal and linear inference modes on multiple image input sizes. At the same time, the effects
of length-scaled cosine attention and log-CPB on multi-scale inference were tested, and the pure
convolution model was included for comparison.

Linear complexity mode for inference: We observe that in Equations 15 and 16, if we consistently
set Hp and Wp as fixed values independent of the input size, the computational complexity of both
pixel-focused attention and aggregated attention grows linearly with the length of the input sequence.
In this scenario, both pixel-focused attention and aggregated attention can operate under a linear
complexity mode. This linear mode endows TransNeXt with a computational complexity growth
curve close to that of a pure convolutional network when inferring large-size images. We test the
performance changes of 2242-size trained TransNeXt and two prevalent pure convolutional models at
multiple resolutions. In the default normal mode, Hp and Wp of aggregated attention are 1

32 of the
input image size, while in the linear mode, Hp and Wp are fixed at 1

32 of the training image size, i.e.,
7× 7.

Results and analysis: As shown in Table 5 and Fig 6, our TransNeXt-Tiny achieves better multi-scale
extrapolation performance than pure convolutional models in both normal and linear modes. At the
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TransNeXt VS Pure Convolutional Models Ablation on methods of multi-scale inference

Figure 6: The left figure shows the comparison results of TransNeXt-Tiny under normal and linear
inference modes with the pure convolution models on multi-scale image inference performance, while
the right figure shows the impact of our position encoding design and length-scaled cosine attention
on multi-scale image inference.

maximum resolution of 6402, the linear mode produces a performance decay of 0.5% to 1.7% relative
to the normal mode, but such a trade-off still has advantages over pure convolutional models. As
the image size increases, the performance decay of ConvNeXt-B is greater than that of TransNeXt’s
linear mode. RepLKNet-31B shows a more exaggerated performance decay, with a top-1 accuracy
of only 0.9% at a resolution of 6402, which to some extent reveals the limitations of the super-large
convolution kernel scheme. In traditional opinions, pure convolutional models have better multi-scale
applicability than ViT models, and such experimental results also imply that this opinion needs to be
re-examined.

Impact of length-scaled cosine attention: We compare the performance of length-scaled cosine
attention with regular scaled cosine attention during multi-scale inference. According to Fig 6,
length-scaling begins to take effect when the resolution reaches 6402. This implies that when the
sequence length variation in softmax exceeds 8×, longer sequence lengths begin to significantly
reduce the confidence of scaled cosine attention.

Extrapolation vs Interpolation for relative position bias: When a TransNeXt model trained at a
resolution of 2242 infers at other sizes, we default to using log-CPB (Liu et al., 2022a) to extrapolate
the B(i,j)∼σ(X) under new resolutions from spatial relative coordinates ∆(i,j)∼σ(X). However,
generating ∆(i,j)∼σ(X) cannot achieve the same speed as model inference. This is not a major issue
in general because when the model needs to continuously infer at one or several new sizes, we only
need to pre-calculate these new ∆(i,j)∼σ(X) and cache them. However, when the new inference
resolution of the model is unknown and needs to change instantly according to input size, we need
to use traditional interpolation schemes for relative position bias to interpolate B(i,j)∼σ(X). As
depicted in Fig 6, the input resolution of 6402 results in a significant performance degradation due
to interpolation for relative position bias, surpassing that of the linear mode. This underscores the
efficacy of log-CPB in extrapolating position bias. In our evaluation of UperNet with multi-scale and
flip augmentations (Table14), we present test results under both interpolation and extrapolation for a
balanced comparison, highlighting the influence of different schemes on multi-scale performance.

B.3 ABLATION ON POSITIONAL ENCODING

Results and analysis: We conducted ablation experiments on the design of the relative position bias
used in the sliding window path and pooling feature path in aggregated attention, with results shown in
Table 6. When we completely removed the relative position bias B(i,j) used in aggregated attention,
the model’s performance significantly decreased by 0.8%. This indicates that using depthwise
convolution to capture positional information from zero-padding is insufficient to represent the
positional relationships of global tokens. When we used log-CPB to calculate the relative position
bias of the sliding window, it also resulted in a 0.3% performance decline. This suggests that due to
different feature scales, the numerical meanings of spatial coordinates ∆(i,j)∼σ(X) in the pooling
feature path and ∆(i,j)∼ρ(i,j) in sliding window path are not exactly the same, highlighting the
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Method Params(M) FLOPs(G) Top-1(%)

Remove B(i,j) 28.1 5.6 83.2
Calculate B(i,j)∼ρ(i,j) by log-CPB(∆(i,j)∼ρ(i,j)) 28.2 5.7 83.7
Replace B(i,j)∼ρ(i,j) by Q(i,j)T 28.2 5.7 83.4
Replace log-CPB(∆(i,j)∼σ(X)) by learnable B(i,j)∼σ(X) 28.1 5.6 84.0
TransNeXt-Tiny 28.2 5.7 84.0

Table 6: Ablation experiments on the design of relative position biases.

importance of using different methods to learn relative position bias in the two paths. Another
consideration is to use dynamic relative position bias Q(i,j)T calculated by positional attention to
replace B(i,j)∼ρ(i,j), but this resulted in a significant performance decline of 0.6%. We believe
this is due to inconsistencies in the behavior of the sliding window path and pooling path. The
log-CPB(∆(i,j)∼σ(X)) calculated in the pooling path is static, while Q(i,j)T dynamically changes
with input, and the two paths are coupled in the same softmax, causing interference with the
mechanism of QKV attention. If we also use a learnable relative position bias B(i,j)∼σ(X) instead
of calculating by log-CPB(∆(i,j)∼σ(X)) in the pooling path, it does not affect model performance,
but it does cause the model to lose its ability to extrapolate position biases for unknown size inputs.
This demonstrates the similarity between the relative position biases calculated through log-CPB and
those directly learned, also indicating that the log-CPB module is not the source of TransNeXt’s high
performance.

B.4 ABLATION ON THE DESIGN OF CONVOLUTIONAL GLU

We conducted ablation experiments on the design of convolutional GLU on the CIFAR-100 dataset
using a 2M-sized model. We designed three optional variants, all using GELU as the activation
function:

ConvGLU(X) = (XW1 +B1)⊙GELU(DWConv(XW2 +B2)) (17)

Type-1(X) = (XW1 +B1)⊙DWConv(GELU(XW2 +B2)) (18)

Type-2(X) = DWConv(XW1 +B1)⊙GELU(XW2 +B2) (19)

Type-3(X) = DWConv((XW1 +B1)⊙GELU(XW2 +B2)) (20)

The experiments, presented in Table 7, showed that our convolutional GLU, which follows the design
philosophy of gated channel attention, is the optimal design. In Type-1, placing DWConv after the
gated activation function disrupts the effect of setting value to zero in the gating branch. In Type-2,
moving DWConv to the value branch causes a significant performance drop of 0.7% when a gating
branch with a smaller receptive field controls a value branch with a larger receptive field, indicating
that it is more reasonable to make gating decisions using a branch with a larger receptive field. In
Type-3, adding a DWConv after the element-wise dot product result in the GLU module leads to the
worst performance, suggesting that merely adding a DWConv to enhance local perceptual ability is
not key to improving model performance with convolutional GLU.

B.5 ABLATION ON WINDOW SIZE

We conducted fast ablation experiments on CIFAR-100 (Krizhevsky & Hinton, 2009) using a 2M-
sized model, results are reported in Table 8. Our observations indicate that an increase in the window
size does not necessarily lead to an enhancement in the model’s performance. We believe that these
experimental results are due to the introduction of pooling features provides coarse-grained global
perception abilities, greatly reducing the demand for single queries to perceive the sliding window
field. Moreover, the fine-grained tokens overlap with the coarse-grained tokens, leading to additional
inductive bias. Since the similarity results between queries and both fine-grained and coarse-grained
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Design Params. (M) FLOPs (G) Top-1(%)

ConvGLU 2.3 0.5 82.9
Type-1 2.3 0.5 82.6
Type-2 2.3 0.5 82.2
Type-3 2.3 0.5 82.1

Table 7: Ablation study on the design of Convolutional GLU on CIFAR-100 (Krizhevsky & Hinton,
2009) dataset.

tokens compete in the same softmax, this approach benefits information aggregation in overlapping
regions. However, as the window size increases, this inductive bias may not always be beneficial.

Window Size Params. (M) FLOPs (G) Top-1(%)

3× 3 2.3 0.50 82.9
5× 5 2.3 0.52 82.0
7× 7 2.3 0.54 82.9
9× 9 2.3 0.57 82.5

Table 8: The ablation results of window size. We utilized a 2M-sized TransNeXt model to conduct
experiments on the CIFAR-100 (Krizhevsky & Hinton, 2009) dataset under various window size
settings.

B.6 ABLATION ON MODEL ARCHITECTURE

To further explore the impact of model architecture on performance, we conducted ablation experi-
ments based on TransNeXt-Micro. We attempted to replace aggregated attention with multi-head
self-attention in stages 1-3 to observe its impact on model performance. The experimental results
are presented in Table 9. We observed that when we replaced aggregated attention with multi-head
self-attention in stage 3, where the number of blocks is the highest, the model performance decreased
by 0.5%. Further replacement in stage 2 led to an additional 0.1% decline in performance. This
suggests that our aggregated attention information aggregation method has advantages over global
self-attention. When we tried to replace aggregated attention in stage 1, the model encountered an
out-of-memory error on 8× A100s with 80GB of memory, making it impossible to train the model
with this configuration.

Under a resolution of 2242, 7 × 7 is the smallest size that can be achieved by integer multiple
downsampling. For this reason, and to maintain consistency with PVTv2, our model opted for a
pooling size of 1

32 at each stage. However, in stage 4, the input resolution has already been reduced to
1
32 , rendering the downsampling module of aggregated attention ineffective. If aggregated attention
is forcibly applied at this stage, features in the sliding window would be input into softmax twice
through the pooling path, leading to distortion in importance calculation. Consequently, we selected
MHSA in stage 4. At larger resolutions, such as 2562, we can employ a pooling size of 1

64 at each
stage to implement a model that fully utilizes aggregated attention at all stages. As demonstrated
in Table 9, a micro-sized model that fully employs aggregated attention achieved an ImageNet-1K
accuracy of 82.6% at a resolution of 2562.

B.7 CUDA IMPLEMENTATION

In the native PyTorch (Paszke et al., 2019) implementation, feature extraction in the sliding window
path is achieved through the unfold operation. The unfold operation involves two stages: 1) extracting
the tensor within the sliding window through index access, and 2) explicitly creating a large tensor
copy for the extracted tensor. This explicit feature extraction operation generates a huge temporary
tensor and induces memory access pressure, which significantly reduces the model’s speed. To
address this, we introduce a CUDA operator implementation for calculating QK similarity and
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Token mixer Input size Window size Pool size Params. (M) FLOPs (G) Top-1(%)

A-A-A-M 2242 3× 3 7× 7 12.8 2.7 82.5
A-A-M-M 2242 3× 3 7× 7 12.2 2.7 82.0
A-M-M-M 2242 3× 3 7× 7 12.2 2.9 81.9
M-M-M-M 2242 3× 3 7× 7 12.2 4.7 OOM

A-A-A-A 2562 3× 3 4× 4 13.1 3.3 82.6

Table 9: Ablation study on model architecture on ImageNet-1K dataset. OOM means out of memory
error.

Model Throughput of inference Duration of training (sec/iter) Memory usage (GB)
CUDA Pytorch Acceleration CUDA Pytorch Acceleration CUDA Pytorch Saving

TransNeXt-Micro 1117 701 +59.3% 0.218 0.401 +83.9% 14.8 17.8 16.8%
TransNeXt-Tiny 756 471 +60.5% 0.315 0.609 +93.3% 23.2 27.3 15.0%
TransNeXt-Small 394 246 +60.2% 0.595 1.161 +95.1% 41.6 49.3 15.6%
TransNeXt-Base 297 186 +59.6% 0.771 1.568 +103.4% 58.1 68.6 15.3%

Table 10: Performance comparison between CUDA implementation and native PyTorch implementa-
tion. We measure throughput using a batch size of 64 on a single V100 with 16GB of memory under
FP16, while the iteration time and memory consumption during training are measured on 8× A100s
(PCIe) with a total batch size of 1024 under automatic mixed precision.

aggregating value by attention weights in the sliding window path. This implementation circumvents
the need for explicit tensor extraction from the sliding window, thereby markedly enhancing the
model’s throughput and training speed. As shown in Table 10, our CUDA implementation provides
up to 60.5% acceleration for inference, up to 103.4% acceleration for training and saves up to 16.8%
of memory consumption for training.

C DETAILED FEATURE ANALYSIS

C.1 TRANSLATIONAL EQUIVARIANCE

Both our pixel-focused attention and aggregated attention employ two types of tokens that interact
with each query: those centered at the present query and those shared among all queries on the feature
map. Notably, both of these attention mechanisms only uses relative position bias without absolute
position encoding, resulting in translational equivariance (Wennberg & Henter, 2021; Shaw et al.,
2018).

C.2 COMPARISON WITH PRIOR WORK

Table 11 illustrates the differences in the information aggregation methods between our pixel-focused
attention, aggregated attention, and the token mixers from previous works. Within the realm of
attention mechanisms, relative position bias (Shaw et al., 2018) can play a role similar to depthwise
convolution (Chollet, 2017), using a static affinity matrix for information aggregation. From this
perspective, our aggregated attention achieves a unified aggregation of the static affinity matrix, QKV
attention, LKV attention, and QLV attention. This makes it the most diversified token mixer in terms
of information aggregation methods to date.

D DOWNSTREAM EXPERIMENTAL RESULTS

E VISUALIZATION BASED ON EFFECTIVE RECEPTIVE FIELD

We employ the Effective Receptive Field (ERF) (Luo et al., 2016) method as a visualization tool
to analyze the information aggregation approach of TransNeXt. In Fig 7, we visualize the ERF of
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Method Focus
Prior

Global
Perception

Translational
Equivariance

Static
Affinity
Matrix

Dynamic
Affinity
Matrix
(QKV)

Dynamic
Affinity
Matrix
(LKV)

Dynamic
Affinity
Matrix
(QLV)

CNNs (LeCun et al., 1995) ✓ ✓ ✓
MLP-Mixer (Tolstikhin et al., 2021) ✓ ✓
ViT(APE) (Dosovitskiy et al., 2021) ✓ ✓
ViT(RPB) (Dosovitskiy et al., 2021) ✓ ✓ ✓ ✓
PVT (Wang et al., 2021a) ✓ ✓ ✓
Focal-Transformer (Yang et al., 2021) ✓ ✓ ✓ ✓
FocalNet (Yang et al., 2022) ✓ ✓ ✓ ✓
VOLO (Yuan et al., 2023) ✓ ✓ ✓
Involution (Li et al., 2021) ✓ ✓ ✓
QnA (Arar et al., 2022) ✓ ✓ ✓

Pixel-focused Attention (Ours) ✓ ✓ ✓ ✓ ✓
Aggregated Attention (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 11: Comparison of our method with the information aggregation approach of the token mixer
in prior work. Here APE=Absolute Positional Encoding, and RPB=Relative Position Bias.

Backbone Encoder
size(M)

#Params.
(M) AP b AP b

50 AP b
75 APm APm

50 APm
75

Swin-T (Liu et al., 2021) 28.3 47.8 43.7 66.6 47.7 39.8 63.3 42.7
PVTv2-B2 (Wang et al., 2021b) 25.4 45.3 45.3 67.1 49.6 41.2 64.2 44.4
FocalNet-T (LRF) (Yang et al., 2022) 28.6 48.9 46.1 68.2 50.6 41.5 65.1 44.5
Swin-S (Liu et al., 2021) 49.6 69.1 46.5 68.7 51.3 42.1 65.8 45.2
CSWin-T (Dong et al., 2022) 23 42 46.7 68.6 51.3 42.2 65.6 45.4
Swin-B (Liu et al., 2021) 87.8 107.1 46.9 69.2 51.6 42.3 66.0 45.5
PVTv2-B3 (Wang et al., 2021b) 45.2 64.9 47.0 68.1 51.7 42.5 65.7 45.7
InternImage-T (Wang et al., 2023) 30 49 47.2 69.0 52.1 42.5 66.1 45.8
PVTv2-B5 (Wang et al., 2021b) 82.0 101.6 47.4 68.6 51.9 42.5 65.7 46.0
PVTv2-B4 (Wang et al., 2021b) 62.6 82.2 47.5 68.7 52.0 42.7 66.1 46.1
InternImage-S (Wang et al., 2023) 50 69 47.8 69.8 52.8 43.3 67.1 46.7
SMT-S (Lin et al., 2023) 20.5 40.0 47.8 69.5 52.1 43.0 66.6 46.1
BiFormer-S (Zhu et al., 2023) 25.5 45.2 47.8 69.8 52.3 43.2 66.8 46.5
CSWin-S (Dong et al., 2022) 35 54 47.9 70.1 52.6 43.2 67.1 46.2
FocalNet-S (LRF) (Yang et al., 2022) 50.3 72.3 48.3 70.5 53.1 43.1 67.4 46.2
BiFormer-B (Zhu et al., 2023) 56.8 76.3 48.6 70.5 53.8 43.7 67.6 47.1
CSWin-B (Dong et al., 2022) 78 97 48.7 70.4 53.9 43.9 67.8 47.3
InternImage-B (Wang et al., 2023) 97 115 48.8 70.9 54.0 44.0 67.8 47.4
SMT-B (Lin et al., 2023) 32 51.7 49.0 70.2 53.7 44.0 67.6 47.4
FocalNet-B (LRF) (Yang et al., 2022) 88.7 111.4 49.0 70.9 53.9 43.5 67.9 46.7
TransNeXt-Tiny (Ours) 28.2 47.9 49.9 70.5 53.7 43.9 67.4 47.5
TransNeXt-Small (Ours) 49.7 69.3 51.1 72.6 56.2 45.5 69.8 49.1
TransNeXt-Base (Ours) 89.7 109.2 51.7 73.2 56.9 45.9 70.5 49.7

Table 12: Detailed COCO object detection and instance segmentation results using the Mask R-
CNN (He et al., 2020) 1× schedule, sorted in ascending order based on AP b performance..

Model Encoder
size(M)

#Params.
(M) Epochs scales Pre-trained AP b

ConvNeXt-B (Liu et al., 2022b) 88.6 110 12 4 IN-1K (3842) 52.6
ConvNeXt-L (Liu et al., 2022b) 198 221 12 4 IN-1K (3842) 53.4
TransNeXt-Tiny (Ours) 28.2 47.8 12 4 IN-1K (2242) 55.1
TransNeXt-Tiny (Ours) 28.2 48.1 12 5 IN-1K (2242) 55.7
TransNeXt-Small (Ours) 49.7 69.6 12 5 IN-1K (2242) 56.6
TransNeXt-Base (Ours) 89.7 110 12 5 IN-1K (2242) 57.1

Swin-L (Liu et al., 2021) 197 218 12 5 IN-22K (3842) 57.2

Table 13: Comparison of object detection results on the COCO dataset using the DINO method. The
results are sorted in ascending order based on the AP b scores.
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Model Encoder
size(M)

#Params.
(M)

Crop
-size Pre-trained mIoU

(%)
+MS
(%)

Swin-T (Liu et al., 2021) 28.3 60 5122 IN-1K 44.5 45.8
Focal-T (Yang et al., 2021) 29.1 62 5122 IN-1K 45.8 47.0
ConvNeXt-T (Liu et al., 2022b) 28.6 60 5122 IN-1K 46.0 46.7
FocalNet-T(LRF) (Yang et al., 2022) 28.6 61 5122 IN-1K 46.8 47.8
Swin-S (Liu et al., 2021) 49.6 81 5122 IN-1K 47.6 49.5
UniFormer-S (Li et al., 2022b) 22 52 5122 IN-1K 47.6 48.5
Focal-S (Yang et al., 2021) 51.1 85 5122 IN-1K 48.0 50.0
Swin-B (Liu et al., 2021) 87.8 121 5122 IN-1K 48.1 49.7
ConvNeXt-S (Liu et al., 2022b) 50.2 82 5122 IN-1K 48.7 49.6
Focal-B (Yang et al., 2021) 89.8 126 5122 IN-1K 49.0 50.5
FocalNet-S(LRF) (Yang et al., 2022) 50.3 84 5122 IN-1K 49.1 50.1
ConvNeXt-B (Liu et al., 2022b) 88.6 122 5122 IN-1K 49.1 49.9
SMT-S (Lin et al., 2023) 20.5 50.1 5122 IN-1K 49.2 50.2
SMT-B (Lin et al., 2023) 32 61.8 5122 IN-1K 49.6 50.6
UniFormer-B (Li et al., 2022b) 49.8 80 5122 IN-1K 50.0 50.8
FocalNet-B(LRF) (Yang et al., 2022) 88.7 126 5122 IN-1K 50.5 51.4
TransNeXt-Tiny (Ours) 28.2 59 5122 IN-1K 51.1 51.5/51.7
TransNeXt-Small (Ours) 49.7 80 5122 IN-1K 52.2 52.5/52.8
ConvNeXt-B (Liu et al., 2022b) 88.6 122 6402 IN-22K 52.6 53.1
TransNeXt-Base (Ours) 89.7 121 5122 IN-1K 53.0 53.5/53.7

Table 14: A comprehensive comparison of semantic segmentation results on the ADE20K dataset
using the UperNet method. +MS for evaluation with multi-scale and flip augmentations. In the context
of multi-scale evaluation, TransNeXt reports test results under two distinct scenarios: interpolation
and extrapolation of relative position bias. The results are sorted in ascending order based on the
mIoU scores.

Model Encoder
size(M)

#Params.
(M)

Crop
-size Pre-trained mIoU(%)

Swin-S (Liu et al., 2021) 49.6 68.8 5122 IN-1K (2242) 51.2
Swin-B (Liu et al., 2021) 87.8 107 6402 IN-1K (2242) 52.4
TransNeXt-Tiny (Ours) 28.2 47.5 5122 IN-1K (2242) 53.4
Swin-B (Liu et al., 2021) 87.8 107 6402 IN-22K (3842) 53.9
TransNeXt-Small (Ours) 49.7 69.0 5122 IN-1K (2242) 54.1
TransNeXt-Base (Ours) 89.7 109 5122 IN-1K (2242) 54.7

Table 15: Comparison of semantic segmentation results on the ADE20K dataset using the
Mask2Former method. The results are sorted in ascending order based on the mIoU scores.
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four encoder stages for TransNeXt-Tiny, ConvNeXt-T, and Swin-T. In Fig 8, we further conduct
a comprehensive ERF visualization comparison on the fourth stage of the models on ImageNet-A,
ImageNet-Sketch, and ImageNet-C datasets.

Our observations are as follows:

1. In the ERF visualization, TransNeXt-Tiny outperforms Swin-T, CSwin-T, and ConvNeXt-T by
Stage 3, demonstrating a more natural and smoother ERF. In contrast, ConvNeXt, Swin, and
CSwin exhibit distinct blocky patterns, which we attribute to artifacts from their token mixer
designs. Despite the presence of multiple layers, these token mixers are unable to eliminate
artifacts induced by window-based local attention or convolution kernels, resulting in an unnatural
information mixing. This observation supports the experimental evidence that deep networks with
residual blocks function as ensembles of shallower networks, highlighting the significance of a
single token mixer in achieving a local-global modeling approach that is more akin to biological
vision. TransNeXt’s ERF represents a method of information perception that is closer to biological
vision, achieving a natural visual focus and validating its biomimetic design’s effectiveness.

2. In a comprehensive visualization evaluation across multiple out-of-distribution test sets,
TransNeXt-Tiny demonstrates a more adaptive information perception method. Its effective
receptive field’s information perception method undergoes significant changes with different
datasets. This change can be clearly observed at multiple severity levels on ImageNet-C. Mean-
while, Swin-T’s ERF exhibits a similar pattern across all test sets, and ConvNeXt-T’s ERF lies
somewhere in between. We believe that a more adaptive ERF reflects the model’s robustness,
and such visualization comparison results are consistent with the robustness evaluation results in
Table 1.
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Stage 1 Stage 2 Stage 3 Stage 4

TransNeXt

ConvNeXt

Swin

CSwin

Figure 7: Visualization of the Effective Receptive Field (ERF) on ImageNet-1K validation set. Each
visualization is based on an average of 5000 images with a resolution of 224× 224. We visualize the
ERFs of four stages for TransNeXt-Tiny, ConvNeXt-T, Swin-T and Cswin-T.
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Figure 8: Visualization of the Effective Receptive Field (ERF) for TransNeXt-Tiny, ConvNeXt-T, and
Swin-T on various datasets including ImageNet-1K validation set (Clean), ImageNet-Adversarial,
ImageNet-Sketch, and ImageNet-C. The visual analysis diagrams for ImageNet-C commence from
the second row of the figure. For each corruption mode, we have included visual images with severity
levels of 1, 3, and 5. Each ERF image is generated by averaging over 5000 images with a resolution
of 224× 224 from each dataset.
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