
Under review as a conference paper at ICLR 2021

DUAL GRAPH COMPLEMENTARY NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

As a powerful representation learning method on graph data, graph neural net-
works (GNNs) have shown great popularity in tackling graph analytic problems.
Although many attempts have been made in literatures to find strategies about
extracting better embedding of the target nodes, few of them consider this issue
from a comprehensive perspective. Most of current GNNs usually employ some
single method which can commendably extract a certain kind of feature but some
equally important features are often ignored. In this paper, we develop a novel
dual graph complementary network (DGCN) to learn representation complemen-
tarily. We use two different branches, and inputs of the two branches are the same,
which are composed of structure and feature information. At the same time, there
is also a complementary relationship between the two branches. Beyond that, our
extensive experiments show that DGCN outperforms state-of-the-art methods on
five public benchmark datasets.

1 INTRODUCTION

Although many attempts have been made in literatures to find a better strategy to learn the target
node representation, the feature extraction capabilities of most methods are still far from optimal,
especially when only a small amount of data is labeled. However, in fact, compared with the expen-
sive and laborious acquisition of labeled data, unlabeled data is much easier to obtain. Therefore,
how to learn more useful representations with limited label information is the key direct of repre-
sentation learning study. Methods of this issue, commonly referred to as semi-supervised learning,
which essentially believe that the similar points have similar outputs. Thus, it can properly utilize
the consistency of data to make full use of the rich information of unsupervised data.

In the real world, it is common that we have data with specific topological structures which usually
called graph data. The graph structure is usually expressed as the connection between nodes. By
aggregating the features of neighborhood and performing appropriate linear transformation, graph
neural networks (GNNs) can convert graph data into a low-dimensional, compact, and continuous
feature space. Nevertheless, most of them only care about a single aggregation strategy, which is
counter intuitive: for example, as far as social networks are concerned, the relationship between
people is very complex, while, most of the traditional GNNs only consider the single connection
between nodes and ignore other implicit information.

In this paper, our work focuses on learning node representations by GNNs in a semi-supervised way.
Despite there are already many graph-based semi-supervised learning methods (Kipf & Welling,
2016; Yang et al., 2016; Khan & Blumenstock, 2019), most of them can only find a single rela-
tionship between nodes. As a result, some information in unsupervised data is usually ignored. To
overcome this problem, we develop a novel dual graph complementary network (DGCN) to extract
information from both feature and topology spaces. An intuition of our method is to learn based
on disagreement: network performance is largely related to the quality of the graph, which usually
emphasizes the relevance of an attribute of instances. So, since we don’t know what attributes are
most important, we consider both of them in the model design.

Compared with the traditional GNN-based methods, we perform two different aggregate strategies
which emphasize different attributes in each branch, one from the perspective of node feature, and
the other from the topological structure. Then, to further utilize implicit information, we employ
two networks with different structures to extract embedding from input feature. By doing so, nodes’

1

Under review as a conference paper at ICLR 2021

information can be propagated in different ways. Then, the supervised loss ℓsup and diversity con-
straint ℓdiv are used to guide the training.

We use two different branches to extract common information in topology and feature spaces. By
utilizing disagreements between the two branches, model can gain information that may be ignored
by single branch.

To prove the effectiveness of our method, we conducted experiments on five public benchmark
datasets.

The contributions of our work are summarized as follows:

• We propose a novel dual graph complementary network (DGCN) to fuse complementary
information, which utilizes different graphs to aggregate nodes that are similar in certain
attributes in a complementary way.

• By comparing with algorithms that use non-single graphs, it proves that our complementary
architecture can extract richer information

• Through extensive evaluation on multiple datasets, we demonstrate DGCN effectiveness
over state-of-the-art baselines.

2 RELATED WORK

2.1 SEMI-SUPERVISED LEARNING

Semi-supervised learning is usually aimed at the case of insufficient data labels. X ∈ Rn×d is the
feature of input nodes. Y = [yij] ∈ Rn×k is the label matrix, where k is the class number. yij
means that the i-th node belongs to the j-th class. Then split data points into labeled and unlabeled
points. Accordingly, xL and xU express a feature of labeled and unlabeled instance, respectively.
Moreover, the ground-truth label of the label nodes is available only.

The main objective of semi-supervised learning is to extract supervised information from labeled
dataset whilst adequately utilizing data distribution information contained in X . There are four
categories of semi-supervised learning algorithms:

1. Self-training semi-supervised learning (Lee, 2013): It utilizes high-confidence pseudo la-
bels to expand label set. Ideally, it can continuously improve network performance, but is
usually limited by the quality of pseudo labels.

2. Graph-based semi-supervised learning: It propagates information between instances ac-
cording to edges in graph. It’s an inductive learning method, of which the performance
mainly depends on the aggregation algorithm.

3. Low-density separation methods (Joachims, 1999): They assume that the decision hyper-
plane is consistent with the data distribution, so so it should pass through the sparse region
of the data.

4. Pretrain semi-supervised learning: such as autoencoder (Vincent et al., 2008; Rifai et al.,
2011), trains the model based on reconstruction error and then fine tune it using labeled
data.

However, semi-supervised learning tasks prefer to obtain information related to data distribution
rather than all information of samples. In this paper, we mainly focus on the graph-based semi-
supervised learning.

2.2 GRAPH-BASED SEMI-SUPERVISED LEARNING

In addition to features, graph-based semi-supervised learning methods (Kipf & Welling, 2016) rep-
resent the topological edge connection between different instances. For many datasets, graph is
given as a feature. If the features of the dataset do not contain the relationships between different
samples, a graph can also be constructed by measuring the similarity between the features of the
instances (Zhu et al., 2003). Actually, the graph is a measure of whether the instances are closely

2

Under review as a conference paper at ICLR 2021

connected. Then, according to this graph, information exchange between instances can be carried
out, so that the information of unlabeled data can be effectively utilized. Network performance is
largely related to the quality of the graph. When the attributes emphasized in the graph do not match
the expectations of the task objective, misjudgments are often caused. Usually, it is difficult to find-
ing what really matters. The traditional graph-based semi-supervised learning methods usually uses
a single graph for node aggregation, which causes a single attribute to be emphatically considered,
but when this attribute does not match the task goal, it will mislead the training instead.

3 DGCN ARCHITECTURE

In this section, we will present the overall framework of DGCN, see Fig. 1. The main idea of DGCN
is that information exchange under the control of graphs emphasizing different attributes can extract
more abundant features. To this end, we use two branches to extract information from two inputs at
the same time. The node features of these two inputs are the same, the only difference is the graphs
that control the information exchange. In addition, in order to further expand the difference between
branches, we use a diversity loss ℓdiv.

Figure 1: The framework of DGCN network. The original dataset contains the graph and the feature.
First, use the node features in the dataset to construct another graph, then use viewer 1 and viewer
2 to observe the two graphs at the same time, and the latent features are Hgcn

1,l , Hgcn
2,l , Hgat

1,l and
Hgat

2,l respectively. Then, we fuse GCN view and GAT view respectively to obtain Hgcn
c and Hgat

c

respectively through attention operation. The obtained Hgcn
c and Hgat

c are sent to the final attention
layer together with the previous Hgcn

1,l , Hgcn
2,l , Hgat

1,l and Hgat
2,l .

3.1 NOTATION & PROBLEM STATEMENT

Let G = (V, A,X) be an undirected graph. V is the set of nodes on the graph, which is composed
of unlabeled (Vu) and labeled (Vl) nodes with the number of nodes is nu and nl respectively. n =
nl + nu is the number of nodes. A = [aij] ∈ Rn×n is the adjacency matrix. aij = 1 represents that
node i and node j are closely related in an attribute, otherwise, aij = 0.

3.2 BRANCHES

In order to capture different characteristics by the two branches (also called viewer), we use different
network structures for each branch: GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2017).
Given a graph G = (V, A,X), both GCN and GAT intend to extract richer features at a vertex by
aggregating features of vertices from its neighborhood (Li et al., 2019). So the node representation

3

Under review as a conference paper at ICLR 2021

of the l-th layer Hl can be defined by:

Hl = Update(Aggregate(Hl−1,Θ
agg
l),Θupdate

l). (1)

where Θagg
l and Θupdate

l are the learnable weights of aggregation and update functions of the l-th
layer respectively and the initial H0 = X . The aggregation and update functions are the essential
components of GNNs, and obviously the features extracted by different aggregation functions will
have certain differences. Thus, we take advantage of two different networks, GCN and GAT, to
obtain node representation.

The node features output by the l-th GCN layer can be expressed as:

Hl = σ
((

D̃− 1
2 (A+ I)D̃− 1

2

)
Hl−1Wl

)
. (2)

where I ∈ Rn×n indicates the identity matrix, A+ I means adding self-loop in the graph, D̃ is the
diagonal degree matrix of A+ I , and σ(·) is the activation function.

It can be seen from equation 2 that GCN aggregates neighbor features by weighting the value of
symmetric normalized laplacian.

Next, we introduce the algorithm GAT that uses the attention mechanism to calculate the neighbor
weight. Through a learnable coefficient a, GAT can assign learnable weights to each neighbor of
the node. For node i, the weight αij between it and its neighbor node j can be expressed as:

αij =
exp

(
LeakyReLU

(
a⊤[Whi∥Whj]

))
∑

k∈Ni
exp

(
LeakyReLU

(
a⊤[Whi∥Whk]

)) . (3)

where ·⊤ is the transposition operation and ∥ represents concatenation. Then the forward propaga-
tion process of node v in l-th layer can be represented as:

hl,i = ∥Mm=1σ

∑
j∈Ni

αm
l,ijW

m
l hl−1,j

 . (4)

where, hl,i is the embeding of node i in the l-th layer. M is the number of independent attention
mechanisms. σ is activation function of GAT. αm

ij is the normalized attention coefficients computed
by the m-th attention mechanism , see equation 3. As can be seen from equation 4, the weights
GAT assigns to a node’s neighbors are learnable. Thus we can assign adaptive weights to different
neighbors.

Although these two methods are based on the existence of connection between points as the premise
of aggregation. Both the GCN and GAT models we use have their own advantages and disadvan-
tages. The former considers the relationship between nodes (probability conduction matrix), but
can’t learn neighbor weights dynamically. Although the latter can assign dynamic weights to neigh-
bors, it ignores the influence of degree attribute of node on aggregation. Therefore, using these two
branches, we can extract more complementary features from the input.

3.3 FORWARD PROPAGATION

In this subsection, we introduce the input used by the network and the specific forward propagation
strategy. In order to consider different attributes when aggregating, we use different graphs for
training, but adopt the same features. In this paper, the datasets used in our experiment are graph-
structured which have two characteristics, one is the feature of the instance itself, which is not
affected by other instances, and the other reflects the relationship with other instances.

For example, dataset ACM (Wang et al., 2019) which extracted from ACM dataset contains 3025
papers. It has two properties: one is a bag-of-words that indicates whether the keyword exists,
and the other indicates which papers are written by the same author.Obviously, if we only base
whether the paper is written by the same author as the basis for aggregation, we will inevitably

4

Under review as a conference paper at ICLR 2021

ignore the situation where the same author has written different types of papers and the same type of
papers belong to different authors, thus mistakenly aggregate articles of different categories together.
Therefore, we also construct a graph based on another attribute of the dataset: bag-of-words, so that
information can be transferred between instances with similar keywords. In order to measure the
similarity of instances’ features, we find the cosine similarity between the features of all instances:

sij =
xi · xj

|xi| |xj |
. (5)

where sij denotes the cosine similarity between the feature xi of node i and the feature xj of node
j ∈ V .

Notice that j ̸= i. For node i , we choose the t largest sij and let the corresponding j as the
neighbors of i. Then if j is the neighbor of node i, obviously i is the neighbor of node j too.
As above-mentioned, we can get a new graph constructed from features. We use A1 and A2 to
represent the inherent graph structure of the data and the graph constructed according to the feature,
respectively.

Therefor, by inputting A1 and A2 for each branch, we can get four different outputs. according to
equation 2 and equation 4 the forward propagation of DGCN can be represented as:

Hgcn
v,l = σ

((
D̃

− 1
2

n (Av + I)D̃
− 1

2
n

)
Hgcn

v,l−1Θv,l

)
. (6)

hgat
v,l,i = ∥Mm=1σ

∑
j∈Ni

αm
l,i,jW

m
v,lh

gat
v,l−1,j

 . (7)

where, v = 1 represents that the graph is A1, while v = 2 corresponding to A2. σ and σ are the
activation function. αk

v,i,j is the normalized attention coefficients. Θv,l and W k
v,l are the weights

of linear transformations. For the GAT branch, hgat
n,l,i means the representation of node i in the l-th

layer with the input graph is Av . Similarly, Hgcn
v,l corresponds to the l-layer embedding matrix of

the GCN branch when the input graph is Av.

For these four embeddings, we first use the attention mechanism to combine the embeddings gener-
ated by different graphs of the same branch:

Hgcn
c = att(Hgcn

1,l ∥H
gcn
2,l). (8)

Hgat
c = att(Hgat

1,l ∥H
gat
2,l). (9)

Then, we apply the attention mechanism again to combine Hgcn
1,l , Hgcn

2,l , Hgat
1,l , Hgat

2,l , Hgcn
c and Hgat

c .
Through these two attention operations, we can dynamically assign weights to different embedding
to find attributes that better match the task goal.

3.4 LOSS FUNCTIONS OF DGCN

The objective function of DGCN consists of two parts: the supervised loss ℓsup and the diversity
loss ℓdiv.

3.4.1 SUPERVISED LOSS

Given a graph G = (V, A,X), as V = Vl∪Vu, the corresponding label of Vl is Yl. In order to utilize
the supervision information, we use the cross-entropy loss function to guide the training:

ℓsup = −
∑
i∈Vl

k∑
j=1

yij ln pij . (10)

5

Under review as a conference paper at ICLR 2021

where yij is the ground-truth label of node i and pij is the model predicted label. k is the number of
classes.

3.4.2 DIVERSITY LOSS

In order to further expand the differences between branches and capture richer node features, we
use Ldiv to add a diversity constraint on Hgcn

c and Hgat
c . First, we use L2-normalization to nor-

malize Hgcn
c and Hgat

c output by the attention module. The normalized results are Ĥgcn and Ĥgat

respectively. Using the above results, we can capture the similarity of node embedding:

Ŝ = Ĥgcn
c (Ĥgat

c)⊤ (11)

Then, the diversity loss can be defined by:

ℓdiv =

∑n
i=1

∑n
j=1 ŝi,j

n2
(12)

where n is the number of nodes. Through this diversity constraint, we can expand the difference
between the branches to learn complementary features. Therefore, our final optimization object can
be expressed as:

ℓtotal = (1− γ)ℓsup + γℓdiv (13)
where γ is parameter of the disparity constraint terms. Using this objective function, we can optimize
the proposed model through back propagation and learn the node embedding for classification.

Table 1: Statistics of the datasets. Refer Section 4.1 for more details.

Datasets Nodes Edges Classes Features Training |Vl|
|V| Test

ACM 3025 13128 3 1870 60/120/180 0.020/0.040/0.060 1000
UAI2010 3067 28311 19 4973 380/760/1140 0.124/0.248/0.372 1000
Citeseer 3327 4732 6 3703 120/240/360 0.036/0.072/0.108 1000

BlogCatalog 5196 171743 6 8189 120/240/360 0.023/0.046/0.069 1000
Flickr 7575 239738 9 12047 180/360/540 0.024/0.048/0.071 1000

4 EXPERIMENT

4.1 DATASETS

For evaluating the effectiveness of DGCN, we evaluate on several semi-supervised classification
benchmarks. Following the experimental setup of Wang et al. (2020), we evaluate on five datasets.

• ACM (Wang et al., 2019): This dataset is extracted from the ACM dataset, where the nodes
represent the papers, the edges represent that the connected two papers belong to the same
author, and the feature is the word bag representation of paper’s keywords.

• UAI2010 (Wang et al., 2018): This dataset has 3067 nodes and 19 classes.
• Citeseer (Kipf & Welling, 2016): In the CiteSeer dataset, papers are divided into six cate-

gories, containing a total of 3312 papers, which record citation information between papers.
And the feature is the word bag representation of the paper.

• BlogCatalog (Meng et al., 2019): This is a network of social relationships from the Blog-
Catalog websitewhere the nodes are bloggers and edges are their social relationships. Node
attributes are the short descriptions of users’ blogs provided by users. The labels represent
the topic categories provided by the authors which can be divided into 6 classes.

• Flickr (Meng et al., 2019): This network is built from profile and relation data of users in
Flickr. We treat each user as a node, relationships between two user as an edge.The labels
represent the interest groups of the users.

The detailed descriptions of the datasets used here are shown in Table 1.

6

Under review as a conference paper at ICLR 2021

Table 2: Experiments results (%) on the node classification task. L/C means the number of labeled
nodes per class

Datasets L/C 20 40 60
Metrics ACC F1 ACC F1 ACC F1

ACM

DeepWalk 62.69 62.11 63.00 61.88 67.03 66.99
LINE 41.28 40.12 45.83 45.79 50.41 49.92
GCN 87.80 87.82 89.06 89.00 90.54 90.49

kNN-GCN 78.52 78.14 81.66 81.53 82.00 81.95
GAT 87.36 87.44 88.60 88.55 90.40 90.39

DEMO-Net 84.48 84.16 85.70 84.83 86.55 84.05
MixHop 81.08 81.40 82.34 81.13 83.09 82.24

AM-GCN 90.40 90.43 90.76 90.66 91.42 91.36
DGCN 91.10 91.07 91.40 91.35 91.90 91.90

UAI2010

DeepWalk 42.02 32.93 51.26 46.01 54.37 44.43
LINE 43.47 37.01 45.37 39.62 51.05 43.76
GCN 49.88 32.86 51.80 33.80 54.40 34.12

kNN-GCN 66.06 52.43 68.74 54.45 71.64 54.78
GAT 56.92 39.61 63.74 45.08 68.44 48.97

DEMO-Net 23.45 16.82 30.29 26.36 34.11 29.05
MixHop 61.56 49.19 65.05 53.86 67.66 56.31

AM-GCN 70.10 55.61 73.14 64.88 74.40 65.99
DGCN 72.50 58.57 75.80 65.89 78.00 70.19

Citeseer

DeepWalk 43.47 38.09 45.15 43.18 48.86 48.01
LINE 32.71 31.75 33.32 32.42 35.39 34.37
GCN 70.30 67.50 73.10 69.70 74.48 71.24

kNN-GCN 61.35 58.86 61.54 59.33 62.38 60.07
GAT 72.50 68.14 73.04 69.58 74.76 71.60

DEMO-Net 69.50 67.84 70.44 66.97 71.86 68.22
MixHop 71.40 66.96 71.48 67.40 72.16 69.31

AM-GCN 73.10 68.42 74.70 69.81 75.56 70.92
DGCN 74.60 69.46 75.30 71.14 76.90 72.97

BlogCatalog

DeepWalk 38.67 34.96 50.80 48.61 55.02 53.56
LINE 58.75 57.75 61.12 60.72 64.53 63.81
GCN 69.84 68.73 71.28 70.71 72.66 71.80

kNN-GCN 75.49 72.53 80.84 80.16 82.46 81.90
GAT 64.08 63.38 67.40 66.39 69.95 69.08

DEMO-Net 54.19 52.79 63.47 63.09 76.81 76.73
MixHop 65.46 64.89 71.66 70.84 77.44 76.38

AM-GCN 81.98 81.36 84.94 84.32 87.30 86.94
DGCN 88.70 88.31 90.30 90.02 92.00 91.69

Flickr

DeepWalk 24.33 21.33 28.79 26.90 30.10 27.28
LINE 33.25 31.19 37.67 37.12 38.54 37.77
GCN 41.42 39.95 45.48 43.27 47.96 46.58

kNN-GCN 69.28 70.33 75.08 75.40 77.94 77.97
GAT 38.52 37.00 38.44 36.94 38.96 37.35

DEMO-Net 34.89 33.53 46.57 45.23 57.30 56.49
MixHop 39.56 40.13 55.19 56.25 64.96 65.73

AM-GCN 75.26 74.63 80.06 79.36 82.10 81.81
DGCN 74.6 72.47 81.1 83.4 81.06 83.18

7

Under review as a conference paper at ICLR 2021

4.2 BASELINES

We compare with some state-of-art baselines to verfify the effectiveness of the proposed DGCN.

• DeepWalk (Perozzi et al., 2014) is a random walk based network embedding method, learn-
ing feature by treating truncated random walks in a graph as the equivalent of sentences.

• LINE (Tang et al., 2015) is a large-scale embedding method that retains both the local
network structure and the global network structure.

• GCN (Kipf & Welling, 2016) is a variant of convolutional neural networks which aggre-
gates information of nodes to get node characteristics.

• kNN-GCN. The network structure of kNN-GCN is the same as that of GCN. But the graph
we use here is the aforementioned A2, see Section 3.3.

• GAT (Veličković et al., 2017) is a graph attention based method which can assign different
weights to nodes during aggregation.

• DEMO-Net (Wu et al., 2019) assumes that nodes with the same degree value will share the
same graph convolution, and the feature aggregation is expressed as a multi-task learning
problem according to the degree value of the node.

• MixHop (Abu-El-Haija et al., 2019) can learn the neighbor mixture relationship by repeat-
edly mixing the feature representations of neighbors at various distances.

• AM-GCN (Wang et al., 2020) extracts embeddings from node features, topological struc-
tures and their combinations, and uses the attention mechanism to learn the adaptive im-
portance weights of embeddings

4.3 RESULTS

We train the DGCN network described in Section 3 on five public datasets and evaluate the prediction
accuracy on a test set of 1,000 labeled examples, and experiments on all datasets are optimized using
Adam optimizer. The model adopts GCN and GAT branches with a layer number of 2, and the
quantitative analysis results can be seen in Table 2.

• It can be seen from the Table 2 that DGCN can exceed the baseline in most of the accuracy
rates of all datasets, which proves the effectiveness of our method. On most datasets,
the performance of DGCN is better than AM-GCN using two graphs and GCN, kNN-
GCN, GAT using one graph, which fully proves that DGCN can capture more information
that meets the task objectives.In addition, by comparing with AM-GCN, which also uses
different graphs for learning, our DGCN can learn better node embeddings through its
complementary learning mechanism.

• The main difference between GCN and KNN-GCN is that the structure graph and cosine
graph are used respectively. For a dataset, a graph that is more relevant to its classification
goal(Nodes connected by edges are more likely to belong to the same class) will perform
better. As we can see, on UAI2010, BlogCatelog and Flickr kNN-GCN seem to be signif-
icantly better than GCN, but the other two datasets are opposite. This means that on the
UAI2010, BlogCatelog and Flickr cosine graph is closer to the classification target than
structure graph.

5 CONCLUSION

In this paper, aiming at the problem of semi-supervised graph node classification, we proposes a
novel dual graph complementary network (DGCN), which can utilize graphs that emphasize the
different attributes of the input to guide the aggregation process. In addition, in order to further
capture richer information, we use two different branches to perform feature learning separately.
At the same time, the disparity constraint is used between the two branches to further expand the
difference. However, just using the diversity loss may retain too much unnecessary redundant infor-
mation, which will interfere with the really important information. Therefore, our future work will
try to emphasize the common attributes in the embedding while expanding the differences between

8

Under review as a conference paper at ICLR 2021

branches. The extensive experiments on several datasets further demonstrate the effectiveness of our
DGCN algorithm.

In the future, we will further study the correlation measurement of graphs and training objectives
and further enrich our model with them.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. arXiv preprint arXiv:1905.00067, 2019.

Thorsten Joachims. Transductive inference for text classification using support vector machines. In
Icml, volume 99, pp. 200–209, 1999.

Muhammad Raza Khan and Joshua E Blumenstock. Multi-gcn: Graph convolutional networks for
multi-view networks, with applications to global poverty. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 606–613, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in representation learning, ICML, volume 3, 2013.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In Proceedings of the IEEE International Conference on Computer Vision, pp. 9267–9276,
2019.

Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. Co-embedding attributed
networks. In Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, pp. 393–401, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Y. Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. 01 2011.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Pascal Vincent, Hugo Larochelle, Y. Bengio, and Pierre-Antoine Manzagol. Extracting and compos-
ing robust features with denoising autoencoders. pp. 1096–1103, 01 2008. doi: 10.1145/1390156.
1390294.

Wenjun Wang, Xiao Liu, Pengfei Jiao, Xue Chen, and Di Jin. A unified weakly supervised frame-
work for community detection and semantic matching. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 218–230. Springer, 2018.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The World Wide Web Conference, pp. 2022–2032, 2019.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-
channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1243–1253, 2020.

9

Under review as a conference paper at ICLR 2021

Jun Wu, Jingrui He, and Jiejun Xu. Net: Degree-specific graph neural networks for node and graph
classification. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 406–415, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. volume 3, pp. 912–919, 01 2003.

10

	Introduction
	Related Work
	Semi-supervised learning
	Graph-based Semi-Supervised Learning

	DGCN architecture
	Notation & problem statement
	Branches
	Forward propagation
	Loss Functions of DGCN
	Supervised loss
	Diversity loss

	Experiment
	Datasets
	Baselines
	Results

	 conclusion

