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Abstract

Diffusion Transformers (DiTs) have demonstrated strong performance in generative
modeling, particularly in image synthesis, making them a compelling choice for
molecular conformer generation. However, applying DiTs to molecules introduces
novel challenges, such as integrating discrete molecular graph information with
continuous 3D geometry, handling Euclidean symmetries, and designing condition-
ing mechanisms that generalize across molecules of varying sizes and structures.
We propose DiTMC, a framework that adapts DiTs to address these challenges
through a modular architecture that separates the processing of 3D coordinates
from conditioning on atomic connectivity. To this end, we introduce two com-
plementary graph-based conditioning strategies that integrate seamlessly with the
DiT architecture. These are combined with different attention mechanisms, includ-
ing both standard non-equivariant and SO(3)-equivariant formulations, enabling
flexible control over the trade-off between between accuracy and computational
efficiency. Experiments on standard conformer generation benchmarks (GEOM-
QM9, -DRUGS, -XL) demonstrate that DiTMC achieves state-of-the-art precision
and physical validity. Our results highlight how architectural choices and symmetry
priors affect sample quality and efficiency, suggesting promising directions for
large-scale generative modeling of molecular structures.

1 Introduction

A molecule’s conformation (3D atomic arrangement) dictates its physical properties and biological
activity, which is vital for drug discovery and material design. Traditional methods like Molecular
Dynamics and Markov Chain Monte Carlo are computationally expensive because they require
extensive simulation steps to explore the conformational space. In contrast, generative ML models
are more efficient, allowing for direct sampling of high-quality conformations.

Recent years have seen significant progress, enabled by the development of specialized architectures
for the generation of molecules [1–9] and materials [10–12]. This is in contrast to image and
video synthesis, where the more general diffusion transformer (DiT) [13] consistently delivers strong
performance and efficiency across diverse applications [14–17]. Adapting DiTs, which were originally
developed for grid-structured image data, to continuous, irregular molecular geometries poses unique
challenges, which need to be addressed to unlock the potential of this powerful architecture for
molecular conformer generation. Key design questions include how to encode molecular connectivity
and incorporate Euclidean symmetries, such as translational and rotational invariance/equivariance.
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Figure 1: (A) Diffusion transformer for molecular conformer generation (DiTMC), with interchange-
able self-attention blocks and positional embeddings (PEs); we evaluate various combinations as
detailed in the main text. (B) DiTMC predicts a velocity per atom, used to model a probability flow
ODE, which samples from the probability distribution p(x|G), where G is a molecular graph.

In this work, we address these conceptual challenges and propose DiTMC, a new DiT-style archi-
tecture for molecular conformer generation. We introduce novel conditioning strategies based on
molecular graphs, enabling the generation of 3D structures. Our modular architectural design allows
us to systematically investigate the impact of different self-attention mechanisms within the DiT ar-
chitecture on conformer generation quality and efficiency. We conduct a comparative study including
standard (non-equivariant) self-attention with both absolute and relative positional embeddings and
an explicitly SO(3)-equivariant variant. While exact equivariance can positively impact performance,
it also incurs significant computational costs. We find that simpler attention mechanisms are highly
scalable and still perform competitively. Multiple of the tested DiT variants achieve state-of-the-art
(SOTA) precision on established conformer generation benchmarks. Moreover, the molecular struc-
ture ensembles generated by our models align more closely with physical reality, as evidenced by
the high accuracy of physical properties extracted from them. To summarize, our work contains the
following main contributions:

• We propose two complementary conditioning strategies based on trainable conditioning
tokens for (pairs of) atoms extracted from molecular graphs, which are designed to align
with the architectural principles of DiTs. We propose to condition our self-attention formu-
lation on geodesic graph distances extracted from molecular graphs and demonstrate that it
significantly increases performance of our model.

• We investigate the impact of different self-attention mechanisms, including standard (non-
equivariant) and SO(3)-equivariant formulations, on model accuracy and performance. We
find that including symmetries can improve the fidelity of generated samples at the price of
increased computational cost during training and inference.

• Based on our insights, we present a simple, non-equivariant, yet expressive DiT architecture
that achieves state-of-the-art (SOTA) precision and physical validity on established bench-
marks. Its performance improves with model scaling, making it a promising candidate for
large-scale molecular conformer generation.

2 Related Work

Generative Modeling Generative models create diverse, high-quality samples from an unknown data
distribution. They are widely used in image generation [18, 19], text synthesis [20] and the natural
sciences [21–23]. Most recent approaches learn a probabilistic path from a simple prior to the data
distribution, enabling both efficient sampling and likelihood estimation [24–28]. This is achieved by
different modeling paradigms, including flow matching [26] or denoising diffusion [24].

(Diffusion) Transformers Originally introduced for natural language processing [29], transformer
architectures have become SOTA in domains such as computer vision [18], and recently also found
widespread adoption in quantum chemistry, e.g., for protein prediction [30, 31], 3D molecular gener-
ation [32, 33] or molecular dynamics simulations [34–36]. In the context of generative modeling,
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diffusion transformers [13] (DiTs) have emerged as powerful tools incorporating conditioning to-
kens, e.g., to prompt image generation [13] or to design molecules and materials with desirable
properties [37]. This work applies prototypical DiTs to molecular conformer generation.

Molecular Conformer Generation Molecular conformer generation aims to find atomic arrange-
ments (Cartesian coordinates) consistent with a given molecular graph. Numerous ML approaches
have been proposed for sampling conformers, all aiming to improve upon conventional methods.
While early approaches were based on RDKit [38] or variational auto encoders [39–41], more re-
cent advances employ diffusion and flow-based models [42, 43], including E-NFs [9], CGCF [44],
GeoDiff [45], TorsionDiff [46], MCF [47], ET-Flow [32], and DMT [48].

3 Preliminaries

3.1 Molecular Conformers

A molecule can be associated with a graph G = {V, E}, where the nodes V correspond to atoms and
the edges E represent chemical bonds between them. The nodes and edges contain information about
their types, bond orders, and additional structural features such as branches, rings, and stereochemistry.
What is missing is the exact spatial arrangement of the N = |V| atoms as a 3D point cloud x ∈ RN×3

in Euclidean space. Only the relative distances between atoms are relevant, as translating or rotating
the entire point cloud x does not change the identity of the conformer. We frame conformer prediction
as sampling from the conditional probability distribution p(x | G), which will guide the design of our
model architectures (Sec. 4).

3.2 Conditional Flow Matching

Starting from an easy-to-sample base distribution q0 : Rd 7→ R≥0, a generative process creates
samples from a target distribution q1 : Rd 7→ R≥0 [27]. Here, q1 models the molecular conformer
data with d = N × 3. We aim to learn a time-dependent vector field ut(x) : [0, 1]×RN×3 7→ RN×3,
which defines an ordinary differential equation (ODE) whose solution pushes samples x0 ∈ RN×3

from the prior to samples x1 ∈ RN×3 from the data distribution. We describe this transformation in
terms of a stochastic interpolant xt [26, 49, 50]. A noisy sample at time t ∈ [0, 1] is defined as

xt = (1− t) · x0 + t · x1 + σ · ϵ, (1)

where ϵ ∈ RN×3 is drawn from the standard normal distribution N (0, I) and scaled by a constant
σ ∈ R≥0. We remark that t represents progress along this interpolation path, not physical time.
Notably, stochastic interpolants enable transformations between arbitrary distributions and allow us to
assess the performance of the generative process under varying prior distributions q0. This contrasts
with, e.g., score based diffusion methods [24, 51], which typically assume an isotropic Gaussian
prior.

The stochastic interpolant induces a deterministic trajectory of densities pt(x), governed by an ODE
known as the probability flow:

dx = ut(x) dt. (2)
If the vector field ut(x) was tractable to sample, the weights of a neural network (NN) vθ(x, t) :
[0, 1]× Rd 7→ Rd could be optimized directly by minimizing

LFM(θ) = Et∼U(0,1),x∼pt(x)

∣∣∣∣∣∣ut(x)− vθ(x, t)
∣∣∣∣∣∣. (3)

The learned vector field vθ could then be used to generate new samples from the target distribution
by starting from x0 ∼ q0 and integrating the probability flow ODE (Eq. 2), for example, using a
numerical scheme such as Euler’s method, i.e., xt+∆t = xt + vθ(xt, t)∆t for time step ∆t.

However, for arbitrary distributions q0 and q1, the objective in Eq. 3 is computationally intractable [52].
Instead, we consider the expectation over interpolated point pairs from the two distributions. Eq. 1
defines a conditional probability distribution pt(x|x0,x1) = N (x|(1− t) · x0 + t · x1, σ

2), with
conditional vector field ut(x|x0,x1) = x1 − x0 [27]. The ability to directly sample from the
conditional probability via Eq. 1 allows formulating the conditional flow matching (CFM) objective

LCFM(θ) = Et∼U(0,1),x0∼q0,x1∼q1,x∼pt(x|x0,x1)

∣∣∣∣∣∣ut(x|x0,x1)− vθ(x, t)
∣∣∣∣∣∣2. (4)
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As shown in Ref. [26], the gradients of the two losses coincide, ∇θLFM = ∇θLCFM, thereby
recovering the vector field that defines the probability flow ODE in Eq. 2. Following prior work [37,
53], we reparametrize the training objective to predict noise-free data xθ

0 directly. During inference,
we invert the reparametrization to obtain vθ for sampling (see Appendix C).

4 A New Diffusion Transformer for Molecular Conformer Sampling

We now describe the methodological advances of our work. We propose DiTMC, a new DiT-style
architecture for conformer generation by learning a vector field using the loss in Eq. 4. As outlined
in Sec. 3.1, this involves sampling from a conditional probability p(x|G), where G is the molecular
graph representing atomic connectivity. Therefore, we choose our model to be a function vθ(x, t,G),
where the final output is a 3D vector (“velocity”) per atom, which is extracted from a readout layer.
The complete architecture is summarized in Fig. 1A, with training details given in Appendix A.

4.1 Embeddings

We begin by initializing the node features using learnable embeddings e(zi) ∈ RH , where zi ∈
N+ denotes the atomic number of atom i [35]. To encode the current atomic positions R =
{r⃗1, . . . r⃗N | r⃗i ∈ R3} of the latent state xt, we use positional embeddings (PEs). We examine
a representative range of PEs that vary in the number of Euclidean symmetries they respect by
construction, which affects how the latent representations transform under translations and rotations.
Without loss of generality, we assume the positions are centered such that the center of mass vanishes
(see section A.1).

Following Refs. [31, 37], atom-wise absolute Positional Embeddings ( aPE ) are calculated as

paPE
i = MLP(r⃗i) , (5)

where r⃗i ∈ R3 is the Cartesian position of the i-th atom. This kind of PE is neither rotationally nor
translationally invariant, and serves as a baseline without any symmetry constraints.

We use displacements vectors r⃗ij = r⃗i − r⃗j to build pairwise relative Positional Embeddings ( rPE )
as

prPE
ij = MLP(r⃗ij) . (6)

This formulation ensures translational invariance but not rotational invariance.

Adapting ideas from equivariant message passing neural networks like PaiNN [54] or NequIP [55], we
construct SO(3)-equivariant pairwise Euclidean Positional Embeddings ( PE(3) ) as a concatenation
of L+ 1 components

pPE(3)
ij =

L⊕
ℓ=0

ϕℓ(rij) ⊙ Y ℓ(r̂ij) , (7)

where ϕℓ : R 7→ R1×H is a radial filter function, r̂ = r⃗/r, and Y ℓ ∈ R(2ℓ+1)×1 are spherical
harmonics of degree ℓ = 0 . . . L. The element-wise multiplication ‘⊙’ between radial filters and
spherical harmonics is understood to be “broadcasting” along axes with size 1, such that (ϕℓ ⊙Y ℓ) ∈
R(2ℓ+1)×H and (after concatenation) pPE(3)

ij ∈ R(L+1)2×H . Under rotation of the input positions,
these PEs transform equivariantly (see Appendix B.2.3). Moreover, because displacement vectors are
used as inputs, the embeddings are also invariant to translations. As a result, they respect the full set
of Euclidean symmetries relevant to molecular geometry.

4.2 Conditioning

The current time t of the latent state xt is encoded via a two-layer MLP as

ct = MLP(t) . (8)

Atom-wise conditioning tokens are obtained from a GNN inspired by the processor module of the
MeshGraphNet (MGN) framework [56]:

atom-wise: cGi = GNNnode(V, E) , (9)
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where cGi denotes the final node representation for atom i. See Appendix I for details on the GNN.

We define a pair-wise conditioning mechanism inspired by the Graphormer architecture [57]

pair-wise: cGij = MLP (s(i, j)) , (10)

where s(i, j) denotes the graph geodesic (i.e., the shortest path between atoms i and j via edges in
G). This formulation allows conditioning on all atom pairs, even if they are not directly connected.

4.3 DiT Block

The embeddings and conditioning information are processed through multiple DiT blocks. Every pair-
wise information is used during the self-attention update (see Eq. 11, whereas atom-wise information
and the time conditioning signal are injected via adaptive layer norms (see Eq. 12).

Each DiT block transforms the current node features (input tokens)H = {h1, . . . ,hN |hi ∈ RH}
into a set of output tokens H′, which serve as input for the next block. Additional inputs consist
of positional embeddings P (representing the position of nodes in Euclidean space), as well as
conditioning tokens C, such as those encoding time (ct) and graph structure (cG).

The central operation in each DiT block is a self-attention update,

hi = hi + ATT(H,P, CPair)i , (11)

followed by a node-wise Multi-Layer Perceptron (MLP). Here, CPair are special conditioning tokens
acting on pairs of atoms (see Eq. 10). For PE(3) embeddings, we use an SO(3)-equivariant self-
attention mechanism (subsubsection B.2.1) together with an SO(3)-equivariant MLP (Sec. B.4).

Similar to applications of DiTs in image synthesis, adaptive layer norm (AdaLN) and adaptive
scale (AdaScale) [13] are used for conditioning (see Fig. 1A) based on per-atom bias and scaling
parameters,

α1i, β1i, γ1i, α2i, β2i, γ2i = MLP(ct + cGi ) . (12)

5 Experiments

Datasets and Metrics We conduct our experiments on the GEOM dataset [58], comprising QM9
(133,258 small molecules) and AICures (304,466 drug-like molecules). Reference conformers are
generated using CREST [59]. Drug-like molecules exhibit greater structural diversity, including more
rotatable bonds and multiple stereocenters. Data splits are taken from Ref. [60].

We evaluate our models’ ability to generate accurate and diverse conformers using Average Minimum
RMSD (AMR) and Coverage (COV), measuring Recall (ground-truth coverage) and Precision
(generation accuracy). A generated conformer is considered valid if it falls within a specified
RMSD threshold of any reference conformer (δ = 0.5Å for GEOM-QM9 and δ = 0.75Å for
GEOM-DRUGS). Following prior work, we generate 2K conformers per test molecule with K
reference structures. Appendix D.3 provides further details on the calculation of metrics. Following
ET-Flow [32] and GeomMol [60] we also apply chirality correction (see Appendix D.4).

Conditioning Strategies To assess the impact of graph conditioning, we compare three different
conditioning strategies against a baseline without conditioning. As discussed in Sec. E.1, we compare
conditioning solely on atom-wise information (Eq. 9) with an extended scheme that also incorporates
pairwise geodesic graph distances (Eq. 10). We also ablate conditioning on pairwise information
extracted from our conditioning GNN for each edge corresponding to a chemical bond. We find
all variants to be effective, but our proposed combination of geodesic distances and atom-wise
information to perform best (see Appendix Tab. A8). This experiment underlines the importance of
deriving conditioning tokens for all atom pairs, not just those connected by edges in the molecular
graph (i.e. by chemical bonds), which lack global information about the graph structure.

Ablating Self-Attention and Positional Embedding Strategies The modular structure of DiTMC al-
lows efficient exploration of the design space through variations in the PE strategy and associated
attention blocks (see Sec. 4). All DiTMC models differ in the choice of PEs and self-attention
formulation. For the architecture using PE(3), we reduce the number of heads to match the parameter
count across models. Tab. 1 shows results on GEOM-QM9. All DiTMC models produce diverse,
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Table 1: Results on GEOM-QM9 for different generative models (parameter counts in parentheses).
-R indicates Recall, -P indicates Precision. Best results in bold, second best underlined; our models
are marked with an asterisk (∗). Our results are averaged over three random seeds. See Tab. A9 for
results including standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

MCF-B (64M) 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055
DMT-B (55M) 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049
ET-Flow (8.3M) 96.5 100.0 0.073 0.030 94.1 100.0 0.098 0.039

∗DiTMC+aPE-B (9.5M) 96.1 100.0 0.073 0.030 95.4 100.0 0.085 0.037
∗DiTMC+rPE-B (9.6M) 96.3 100.0 0.070 0.027 95.7 100.0 0.080 0.035
∗DiTMC+PE(3)-B (8.6M) 95.7 100.0 0.068 0.021 93.4 100.0 0.089 0.032

Figure 2: Analysis of equivariant (PE(3)) and non-equivariant (aPE, rPE) model formulations. (A)
Mean coverage recall (COV-R) versus threshold δ (root mean square deviation (RMSD) to any
reference conformer). (B) Histogram of the minimal RMSD per generated sample. (C) Loss as a
function of latent time t relative to PE(3) loss.

high quality samples, outperforming the current SOTA in all AMR metrics and COV-P. We use the
harmonic prior of Ref. [61] throughout, which yields improved results (see Appendix Tab. A15), we
use it in all following experiments.

Probing the effect of Euclidean symmetries Our PEs form a hierarchy based on the extent of
Euclidean symmetry incorporated by construction. This enables a systematic evaluation of how
incorporating symmetry affects model behavior. We summarize our findings below.

Equivariance improves the fidelity of samples. We compute COV-R as a function of threshold δ for
different PEs and self-attention blocks (Fig. 2A). SO(3)-equivariant attention with PE(3) outperforms
the other variants at low δ, indicating that many of the generated geometries closely match the
ground-truth structures. This appears as a leftward shift in the distribution of the minimal RMSD
found per generated structure (Fig. 2B) and aligns with the observation that the PE(3) model gives
better AMR-R and AMR-P values (see Tab. 1). To better understand this behavior, we analyze the
loss over time t and find that models with non-equivariant PEs exhibit higher error near the data
distribution (t = 1) (Fig. 2C). The increase in error towards the end of the generation trajectory
results in noisier structures and reduced fidelity.

Equivariance increases the computational cost for models of similar size. The benefit of higher
fidelity comes at increased computational cost. During training, the equivariant PE(3) model is
approximately 3.5 times slower than models using aPE or rPE, while at inference time, the factor is
∼ 3 (see Appendix Tab. A5). All models use the same number of layers and differ only in the number
of heads per layer in order to match the total parameter count.

Drug-like Molecules Finally, we evaluate our architecture on the challenging GEOM-DRUGS
dataset. For our experiments, we define a small base (“B”) and a large (“L”) model variant (see
Appendix B). All DiTMC-L variants achieve SOTA results on GEOM-DRUGS for all precision
metrics (see Tab. 2). Importantly, also the smaller (“B”) models outperform the ETFlow-SS of similar
size, underlining the effectiveness of our proposed approach (see Appendix Tab. A10).
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Table 2: Results on GEOM-DRUGS for different generative models (parameter counts in parentheses).
-R indicates Recall, -P indicates Precision. Best results in bold, second best underlined; our models
are marked with an asterisk (∗). Our results are averaged over three random seeds. See Tab. A10 for
results including standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

MCF-L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
DMT-L (150M) 85.8 92.3 0.375 0.346 67.9 72.5 0.598 0.527
ET-Flow - SS (8.3M) 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442

∗DiTMC+aPE-L (28.2M) 79.2 84.4 0.432 0.386 77.8 85.7 0.470 0.387
∗DiTMC+rPE-L (28.3M) 78.7 84.1 0.438 0.388 78.1 86.4 0.466 0.381
∗DiTMC+PE(3)-L (31.1M) 80.8 85.6 0.415 0.376 76.4 82.6 0.491 0.414

Figure 3: (A) Coverage as function of RMSD threshold δ and (B) average minimum RMSD (AMR)
mean vs. time per conformer for aPE and other SOTA models. Per model markers from left to right
correspond to 5, 10, 20, and 50 sampler steps following Refs. [32, 47]. Note, that the original MCF
paper reports results with two different samplers. Benchmark results (Tab. 2) are obtained with
DDPM sampler (1000 steps) and AMR vs. time results are reported for DDIM sampler (5–50 steps).

Accuracy vs. RMSD Threshold We analyse the coverage versus RMSD threshold δ for the aPE models
(Fig. 3A). For small thresholds aPE-B and aPE-L outperform all other methods for coverage recall
and precision. For large thresholds (ρ ≥ 0.4Å) MCF-L starts to outperform aPE models in terms of
coverage recall. For coverage precision, aPE-B and aPE-L perform better than all other methods for
all thresholds. In particular for smaller thresholds, we see a strong benefit due to model scaling. We
find similar results for rPE and PE(3) (see Appendix Fig. A10 and Fig. A11).

Pareto-Front We investigate the Pareto front of accuracy and computational efficiency, by plotting
accuracy against wall-clock time per sample (see Fig. 3B and Appendix Sec. D.5). As measure for
accuracy we consider the average minimum RMSD (AMR), since it is independent of the RMSD
threshold. For precision, aPE models shift the whole Pareto front, yielding higher accuracy at lower
computational cost. Even higher accuracies (at the cost of compute time) can be obtained by scaling
the aPE model. For recall, aPE shifts the Pareto front for little compute times, but most accurate
results at increased cost are obtained by MCF-L. Similar results are obtained for rPE (Fig. A13), but
benefits for PE(3) are limited due to high computational cost of equivariant operations (Fig. A14).

Ensemble properties. To complement RMSD-based geometric evaluation with a chemically mean-
ingful assessment, we report the median absolute error (MAE) of ensemble properties between
generated and reference conformers. The RMSD metric can penalize conformers that differ due to
rotations or atom reordering, but are otherwise chemically equivalent. For our analysis we follow the
protocol of MCF [47] and ET-Flow [32] (see Appendix E.2) and compare energy E, dipole moment µ,
HOMO-LUMO gap ∆ϵ, and minimum energy Emin. Our aPE-L model predicts ensemble properties
more accurately than all baselines, highlighting the physical validity of our generated structures (see
Tab. 3). In particular, MCF-L, which shows better performance for recall metrics, is outperformed by
a large margin (up to a factor of 4 for energy).
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Table 3: Median absolute error of ensemble prop-
erties between generated and reference conformers
for GEOM-DRUGS. E, ∆ϵ, Emin are in kcal/mol,
and µ is in debye. Best results in bold, second best
underlined; our models are marked with an aster-
isk (∗). Results for MCF, ET-Flow, and ours are
averaged over three random seeds. See Tab. A11
for results including standard deviations.

Method E ↓ µ ↓ ∆ϵ ↓ Emin ↓
OMEGA 0.68 0.66 0.68 0.69
Torsional Diff. 0.22 0.35 0.54 0.13
MCF-L 0.68 0.28 0.63 0.04
ET-Flow 0.18 0.18 0.35 0.02

∗DiTMC+aPE-B 0.17 0.16 0.27 0.01
∗DiTMC+aPE-L 0.16 0.14 0.27 0.01

Table 4: Out-of-distribution generalization re-
sults on GEOM-XL for models trained on
GEOM-DRUGS reporting median RMSD in Å.
Best results in bold, second best underlined; our
models with an asterisk (∗). Our results are aver-
aged over three random seeds. See Tab. A13 for
results including standard deviations.

Method AMR-R ↓ AMR-P ↓
102 molecules

MCF - L 1.60 2.43
∗DiTMC+aPE-B 1.60 2.49
∗DiTMC+aPE-L 1.51 2.30

77 molecules
MCF - L 1.51 2.26
∗DiTMC+aPE-B 1.47 2.24
∗DiTMC+aPE-L 1.28 2.14

Generalization performance. We assess the generalization of our model to larger and unseen
molecules using the GEOM-XL dataset [46]. It comprises 102 molecules of size N > 100 atoms,
whereas the molecules in the training data contain only N = 44 atoms on average. Following
MCF [47] we report the generalization performance for all 102 molecules and a subset of 77
molecules. Our models perform on par or better to the previously best-performing method MCF-
L while using only a fraction of the parameters (see Tab. 4). Other baselines (like ET-Flow) are
outperformed by a larger margin (see Appendix Tab. A13).

6 Summary and Limitations

We propose a framework for molecular conformer generation that incorporates conditioning strategies
tailored to the architectural design principles of DiTs. This modular framework enables a rigorous
exploration of different positional embedding and self-attention strategies, allowing us to identify
scalable generative architectures that perform competitively with prior methods on standard bench-
marks. Our models achieve SOTA results on GEOM-QM9 and GEOM-DRUGS, excelling in both
precision and physical validity. Through ablation studies, we assess the impact of incorporating
Euclidean symmetries into DiTs. While such symmetries improve performance, they also increase
computational cost. Notably, simpler non-equivariant variants remain highly effective. These findings
allow us to develop an efficient, accurate, and scalable DiT architecture suitable for large-scale
conformer generation. Nonetheless, some limitations persist. Our evaluation is currently restricted
to small and medium-sized molecules, with larger, more flexible compounds left for future work.
Moreover, the training process depends on high-quality ground-truth conformers, which may be
unavailable in some cases. Finally, while our analysis advances understanding of equivariance within
DiT-based generative models, drawing broader conclusions would require further study.
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A Training

Algorithm 1 describes the computation of the training loss for our flow matching objective. We start
by sampling from the prior x0 ∼ p0(x), from the data x1 ∼ p1(x), and from a Gaussian distribution
ϵ ∼ N(x; 0, I). The interpolant is then constructed as

xt = (1− t) · x0 + t · x1 + σ · ϵ , (A13)

where σ ∈ R>0 is a non-zero noise scaling parameter.

Instead of predicting the conditional vector field ut(x|x0,x1) directly, we choose to reparametrize
the network such that it predicts the clean sample x1. Similar to Ref. [53], we add a weighting term
1/(1 − t)2 to encourage the model to accurately capture fine details close to the data distribution.
This gives raise to the following loss function

L =
1

(1− t)2
∥xθ

1(xt, t,G)− x1∥2 , (A14)

where t ∈ (0, 1) denotes the point of time in the interpolant xt ∈ RN×3, x1 ∈ RN×3 is the
clean geometry and G = (V, E) denotes the molecular graph. The full algorithm is summarized in
Algorithm 1.

Geometry Alignment Given a set of vectors U = {u⃗1, . . . , u⃗N | u⃗i ∈ R3} associated with a point
cloud x ∈ RN×3 we define a centering operation for the i-th row

Center(x)i = u⃗i −
1

N

N∑
j=1

u⃗j , (A15)

which removes global drift in x. Given two point clouds xA ∈ RN×3 and xB ∈ RN×3 with positions
RA = {r⃗1A . . . , r⃗NA} andRB = {r⃗1B . . . , r⃗NB}, we define a rotational alignment operation

RotationAlign(xA,xB)i = RoptxiA, (A16)

where Ropt ∈ R3×3 is the optimal rotation matrix, minimizing the root mean square deviation
(RMSD) between the positions of point clouds A and B. Here, we employ the Kabsch-Algorithm.
For full geometry alignment “GeometryAlign(xA,xB)”, we do the following

xA ← Center(xA) (A17)
xB ← Center(xB) (A18)

xA ← RotationAlign(xA,xB) (A19)

In words, the operations from above first center both point clouds at the origin and then align them as
much as possible via a rotation. This procedure also minimizes the path length of a linear interpolation
between the point clouds A and B.

Algorithm 1 Conditional Flow Matching Training Loss
Require: Graph G, target x1, noise level σ, Model xθ

1

1: x0 ∼ p0, ϵ ∼ N (0, I), t ∼ U(0, 1), R ∼ SO(3)
2: x0,x1 ← GeometryAlign(x0,x1) ▷ This centers x0 and x1 and rotation-aligns x0 to x1.
3: ϵ← Center(ϵ)
4: xt ← (1− t)x0 + tx1 + σϵ
5: xt ← ApplyRotation(R,xt)
6: x1 ← ApplyRotation(R,x1)
7: x̂1 ← xθ

1(xt, t,G)
8: x̂1 ← Center(x̂1)

9: return 1
(1−t)2 ∥x̂1 − x1∥2
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Data Augmentation One can construct an SE(3)-invariant density by learning an SO(3)-
equivariant vector field on centered SE(3) (see section A.1). However, only DiTMC with PE(3) is
SO(3)-equivariant, whereas aPE and rPE violate SO(3)-equivariance. Therefore, we learn equiv-
ariance approximately during training, using data augmentation. Specifically, we randomly sample
rotation matrices R (orthogonal matrices with determinant +1) and apply them as

ApplyRotation(R,x)i = Rr⃗i, (A20)
where r⃗i denotes the positions of the i-th atom, i.e., the i-th row in the point cloud x ∈ RN×3.

Noise Scaling Parameter We ablated the noise scaling parameter σ for both GEOM QM9 and
drugs experiments, comparing a larger value of 0.5 and a smaller value of 0.05. We set the σ
parameter to the value that empirically worked best for each dataset: 0.05 for Geom QM9 and 0.5 for
GEOM drugs.

Optimizer and Hyperparameters We use the AdamW optimizer (weight decay 0.01) with initial
learning rate of µ0 = 10−5. It is increased up to µmax via a linear learning rate warmup up over the
first 1% of training steps. Afterwards, it is decreased to µmin via a cosine decay schedule. We use
µmax = 3 × 10−4 and µmin = 0 for GEOM-QM9 and µmax = 1 × 10−4 and µmin = 1 × 10−5 for
GEOM-DRUGS. We use a batch size of 128 for all data sets and models. All models on QM9 are
trained for 250 epochs in total. For GEOM-DRUGS we determine the maximal number of epochs
from the epochs the larger model “L” can perform within a fixed compute budget of 9 days. Thus, we
train the PE(3) variants for 10 epochs and the aPE variants for 50 epochs. Fig. A4 shows the number
of gradient steps per day that can be performed with the different DiTMC variants.

A.1 From SE(3) to SO(3) Invariance

The target data distribution of molecular conformers p1(x) is SE(3)-invariant, i.e. it does not change
under translations and rotations of the input. Following Ref. [62], one can define an SE(3)-invariant
measure on SE(3)N by keeping the center of mass fixed at zero, which can be achieved via the
centering operation from Eq. A15. This defines a subgroup SE(3)N0 , called centered SE(3). It
can then be shown, that one can define an SE(3)-invariant measure on SE(3)N0 by constructing an
SO(3)-invariant (rotationally invariant) measure on SE(3)N0 .

As a consequence, it is then sufficient to learn an SO(3)-equivariant vector field on the space of
centered input positions (see also Ref. [63]). This is achieved by centering x0, x1 and z for the
calculation of the interpolant. Moreover, the neural network output (predicted velocities) and the clean
target x1 must be centered to have zero center of mass. We discuss the implications for sampling in
section C.

A.2 Compute and Training Times

Tab. A5 compares training and inference time for our models (see also Fig. 3A for a visual comparison).
Despite having a similar parameter count, the equivariant PE(3)-B model is approximately 3.5 times
slower than models using aPE or rPE, while at inference time, the factor is ∼ 3. The effect is even
more pronounced for our large models, where the equivariant model is almost 5 times slower during
training compared to its non-equivariant counterpart with a similar number of parameters. Even our
large non-equivariant model is significantly faster to train and sample from than the equivariant base
model with far fewer parameters.

All our models on GEOM QM9 are trained for 250 epochs, which requires 2 days of training on Nvidia
H100 GPU for aPE and rPE models and almost 4 days for PE(3). Due to compute constraints, our
non-equivariant (DiTMC+aPE) models are trained for 50 epochs on GEOM drugs. The equivariant
models are trained for 10 epochs on GEOM drugs resulting in a similar compute budget for training
in terms of GPU hours. Our maximal compute budget per model is 9 days on a single Nvidia H100
GPU.

B Architecture Details

Tab. A5 shows the architectural details for our base and large model variants. Tab. A6 contains details
about the MLPs we use throughout our architecture. We first describe the building blocks of our
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non-equivariant DiTMC implementation and then its equivariant counterpart. Both architectures rely
on conditioning tokens C, for the time ct ∈ RH , per-node cGi ∈ RH , and per atom-pair cGij ∈ RH .
See main text section 4.2 for more details. Following Ref. [13], we use adaptive layer norm (AdaLN)
and adaptive scale (AdaScale) to include per-node conditioning based on time t and molecular graph
information. To that end, we construct conditioning tokens

ci = ct + cGi . (A21)

B.1 Non Equivariant DiT

In the non-equivariant DiTMC formulations with aPE and rPE, we have the following set of tokens
H = {h1, . . . ,hN |hi ∈ RH}.

B.1.1 Self-Attention Operation

For ease of notation, we only describe self-attention with a single head, but employ multi-head
attention [29] with nheads heads in our experiments. All self-attention blocks rely on query, key and
value vectors, which are obtained from the input tokensH = {h1, . . . ,hN | hi ∈ RH} as

q = W qh̃ , k = W kh̃ , v = W vh̃ , (A22)

where W q,W k,W v ∈ RH×H are trainable weight matrices and h̃ is either identical to h or
combines it with a PE (see below). We define a slightly modified similarity kernel

sim(q,k,u) = exp

(
q⊺ · (k ⊙ u)√

H

)
, (A23)

Table A5: Architectural details for different PE strategies on GEOM-QM9 and GEOM-DRUGS.
Times are measured on GEOM-QM9 with batch size 128 on a single Nvidia H100 GPU. T means
number of transformer layers, nheads number of heads, dhead number of features per head in the
attention update, and TMGN number of layers for the conditioning mesh graph net. Thus, total
feature dimension is given as H = nheads · dhead.

Model T nheads dhead TMGN H Train [ms] Infer [ms]

DiTMC+aPE-B (9.5M) 6 8 32 2 256 19.2 8.1
DiTMC+rPE-B (9.6M) 6 8 32 2 256 19.7 8.3
DiTMC+PE(3)-B (8.6M) 6 6 32 2 192 70.0 25.9

DiTMC+aPE-L (28.2M) 8 12 32 3 384 32.7 9.5
DiTMC+rPE-L (28.3M) 8 12 32 3 384 33.5 10.1
DiTMC+PE(3)-L (31.1M) 8 10 32 3 320 151.6 41.8

Table A6: Architecture details for MLPs used in the model. The feature dimension is given as
H = nheads · dhead where nhead is the number of heads and dhead is the number of features per head.
The use of gated GELU ensures equivariance (see section Sec. B.4).

Name Layers Hidden Dim Out Dim Activation Input
DiT Block 2 4H H GELU Tokens

SO(3) DiT Block 2 4H H
gated

GELU Tokens

Time and Atom Cond. 1 – 6H SiLU ct + cGi
Bond pair 2 H H SiLU cGij

Time embedding 2 H H SiLU t ∈ [0, 1]
Shortest-hop embedding 2 H H SiLU Hop distance
aPE embedding 2 H H SiLU Abs. ositions r⃗i
rPE embedding 2 H H SiLU Rel. positions r⃗ij
GNN embedding 2 H H SiLU Node/edge features
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where u ∈ RH is used to inject additional information, e.g., conditioning signals and/or positional
embeddings, and ‘⊙’ denotes element-wise multiplication.

For absolute and relative PEs, we slightly modify standard self-attention to allow injecting pair-wise
information into the values in addition to using our modified similarity kernel:

ATT(H)i =
∑N

j=1 sim(qi,kj ,uij) · (vj ⊙ uij)∑N
j=1 sim(qi,kj ,uij)

. (A24)

Queries, keys, and values are obtained with Eq. A22 from different (position-encoded) tokens h̃i

depending on the chosen PEs; further, the injected pair-wise information uij differs:

h̃i =

{
hi + paPE

i for absolute PEs ,
hi for relative PEs ,

and uij =

{
cGij for absolute PEs ,
cGij + prPE

ij for relative PEs .
(A25)

Here cGij ∈ RH are pair-wise graph conditioning tokens (see Eq. 10) and paPE
i ∈ RH and prPE

ij ∈ RH

are the absolute and relative PEs described above (see Eqs. 5 and 6).

B.1.2 Adaptive Layer Normalization and Adaptive Scale

In the standard, non-equivariant setting, we can follow the standard approach of other DiT architec-
tures. We define adaptive layer norm as

AdaLN(h,α,β) = LN(h)⊙ (1 +α) + β, (A26)

where LN is a standard layer normalization without trainable scale and bias, and “⊙” denotes
entry-wise product.

Adaptive Scale is defined as
AdaScale(h,γ) = h⊙ γ. (A27)

In each DiTMC block, we calculate

α1i,β1i,γ1i,α2i,β2i,γ2i = W
(
SiLU(ci)

)
, (A28)

where W ∈ R6H×H and the output is split into six equally sized vectors
α1i,β1i,γ1i,α2i,β2i,γ2i ∈ RH . The weight matrix W is initialized to all zeros, such
that “AdaLN” behaves like identity at initialization. “AdaScale” damps all input tokens to zero at
initialization such that the whole DiT block behaves like the identity function at initialization.

B.1.3 Readout

Given final tokens h after performing updates via T DiTMC blocks, we use a readout layer to predict
the atomic positions of the clean data sample x1. As in the DiTMC blocks, we employ adaptive LN
and therefore calculate

αi,βi = W
(
SiLU(ci)

)
, (A29)

with weight matrix W ∈ R2H×H initialized to all zeros and αi,βi ∈ RH and do

hi ← AdaLN(hi,αi,βi) ,

x̂i ←W readouthi ,

where W readout ∈ R3×H is a trainable weight matrix. Thus, we predict a three-dimensional vector
per-atom.

B.2 SO(3) Equivariant DiT

Following the notation in Ref. [64], we denote SO(3)-equivariant tokens as H =

{h1, . . . ,hN |R(L+1)2×H}, where L denotes the maximal degree of the spherical harmonics. We
denote the features corresponding to the ℓ-th degree as h(ℓ)

i ∈ R(2ℓ+1)×H , where the (2ℓ+ 1) entries
corresponds to the orders m = −ℓ, . . . ,+ℓ per degree ℓ. We refer the reader to Ref. [64] for an
in-depth introduction into equivariant features. For all our experiments we use maximal degree of
L = 1.
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B.2.1 Self-Attention Operation

Our equivariant version of self-attention uses the same transformations for queries, keys and values
like the non-equivariant counterpart, as well as the modified similarity kernel (subsubsection B.2.1).
However, to preserve all Euclidean symmetries throughout the network, every token must transform
equivariantly. One way to achieve this is by separating out the rotational degrees of freedom, encoding
them with irreducible representations of the rotation group SO(3). This introduces a “degree-axis” of
size (L+ 1)2, which encodes angular components of increasing order. The maximum degree L is
chosen to ensure high fidelity at a reasonable computational cost. For example, setting L = 1 restricts
the representation to scalars and vectors, as used in models like PaiNN [54] or TorchMDNet [34]. An
SO(3)-equivariant formulation of self-attention is then given as

ATTSO(3)(H)i =
∑N

j=1 sim(qi,kj ,uij) · (ûij ⊗ vj)∑N
j=1 sim(qi,kj ,uij)

, (A30)

where equivariant queries, keys and values can be calculated similarly to Eq. A22 and ‘⊗’ denotes a
Clebsch-Gordan (CG) tensor product contraction [64]. The dot-product in the similarity measure is
taken along both feature and degree axes, such that the overall update preserves equivariance (see
Appendix for details). Tokens and scaling vectors are calculated as

h̃i = hi , uij = ϕ(rij)⊙ cGij , ûij = pPE(3)
ij ⊙ cGij , (A31)

where ϕ(rij) ∈ R(L+1)2×H is a radial filter, and the element-wise products with the pair-wise
conditioning tokens cGij ∈ R1×H are broadcast along the degree axis. Importantly, the 2ℓ + 1
subcomponents of the radial filter for degree ℓ are obtained by repeating per-degree filter functions
ϕℓ(rij) ∈ R1×H along the degree axis to preserve equivariance (see also Eq. 7).

B.2.2 Adaptive Layer Normalization and Adaptive Scale

In the SO(3)-equivariant case, we define adapted version of AdaLN and AdaScale, preserving
equivariance. Our equivariant formulation of AdaLN is given as

EquivAdaLN(h,α,β) =

{
LN(h(ℓ))⊙ (1 +α(0)) + β for ℓ = 0,

EquivLN(h(ℓ))⊙ (1 +α(ℓ)) for ℓ > 0,
(A32)

where EquivLN is the equivariant formulation of layer normalization following Ref. [36] without
trainable per-degree scales and LN is standard layer normalization without trainable scale and bias.
Scaling vectors α(ℓ) ∈ R1×H are defined per degree ℓ, such that input scaling vectors are tensors
α ∈ R(L+1)×H . Bias vectors are only defined for the invariant (ℓ = 0) component of the tokens, since
adding a non-zero bias to components with ℓ > 0 would lead to a non-equivariant operation (the bias
does not transform under rotations). The element wise multiplication between (1 +α(ℓ)) ∈ R1×H

and tokens h(ℓ) ∈ R(2ℓ+1)×H is “broadcasted” along the degree-axis. For L = 0, Eq. A32 reduces to
the standard adaptive layer normalization.

Equivariant adaptive scale is defined as

EquivAdaScale(h,γ) = h(ℓ) ⊙ γ(ℓ). (A33)

As for “EquivAdaLN”, we define a separate γ(ℓ) ∈ R1×H per degree ℓ, such that γ ∈ R(L+1)×H .
Again, the element wise product is “broadcasted” along the degree-axis. Since no bias is involved,
the invariant and equivariant parts in h can be treated equally.

Within each SO(3)-equivariant DiTMC block, we calculate

α1i,β1i,γ1i,α2i,β2i,γ2i = W
(
SiLU(ci)

)
, (A34)

where α1i,α2i,γ1i,γ2i ∈ R(L+1)×H and β1i,β2i ∈ RH . Thus, the weight matrix is given as
W ∈ R(4(L+1)+2)×H and initialized to all zeros, such that “EquivAdaLN” behaves like identity at
initialization and “EquivAdaScale” returns zeros. Thus, also the SO(3)-equivariant DiTMC block
behaves like the identity function at initialization.
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B.2.3 Equivariant positional embeddings

Given a set of transformations that act on a vector space A as Sg : A 7→ A to which we associate an
abstract group G, a function f : A 7→ B is said to be equivariant w.r.t. G if

f(Sgx) = Tgf(x) , (A35)

where Tg : B 7→ B is an equivalent transformation on the output space. Thus, in order to say that f is
equivariant, it must hold that under transformation of the input, the output transforms “in the same
way”.

Let us now recall our definition for the equivariant positional embeddings for a single degree ℓ

p
PE(3),(ℓ)
ij (r⃗ij) = ϕℓ(||r⃗ij ||) ⊙ Y ℓ(r̂ij) , (A36)

where ϕℓ : R 7→ R1×H is a radial filter function, r̂ = r⃗/r, and Y ℓ ∈ R(2ℓ+1)×1 are spherical
harmonics of degree ℓ = 0 . . . L. The element-wise multiplication ‘⊙’ between radial filters and
spherical harmonics is understood to be “broadcasting” along axes with size 1, such that (ϕℓ ⊙Y ℓ) ∈
R(2ℓ+1)×H . We have also made the dependence of PE(3) on the pairwise displacement vector
r⃗ij = r⃗i − r⃗j explicit.

Lets not consider a single feature channel c in PE(3), which is given as

p
PE(3),(ℓ)
ijc (r⃗ij) = ϕℓc(||r⃗ij ||) ⊙ Y ℓ(r̂ij) . (A37)

Rotating the input positions in Eq. A37 leads to

p
PE(3),(ℓ)
ijc (Rr⃗ij) = ϕℓc(||Rr⃗ij ||) ⊙ Y ℓ(Rr̂ij) (A38)

= ϕℓc(||r⃗ij ||) ⊙D(ℓ)(R)Y ℓ(r̂ij), (A39)

= D(ℓ)(R)p
PE(3),(ℓ)
ijc (r⃗ij) (A40)

where D(ℓ) ∈ R(2ℓ+1)×(2ℓ+1) are the Wigner-D matrices for degree ℓ and R ∈ R3×3 is a rotation ma-
trix. According to Eq. A35 and Eq. A40, each channel transforms equivariant and thus pPE(3),(ℓ)

ij (r⃗ij)
is also equivariant.

The concatenation of different degrees ℓ up to some maximal degree L as given in the main body of
the text

pPE(3)
ij (r⃗ij) =

L⊕
ℓ=0

ϕℓ(rij) ⊙ Y ℓ(r̂ij) , (A41)

transforms under rotation as

pPE(3)
ij (Rr⃗ij) = D(R)pPE(3)

ij (r⃗ij) (A42)

with D(R) =
⊕L

ℓ=0 D
(ℓ)(R) ∈ R(L+1)2×(L+1)2 being a block-diagonal matrix with the Wigner-D

matrices of degree D(ℓ)(R) ∈ R(2ℓ+1)×(2ℓ+1) along the diagonal. Therefore, according to Eq. A35
the proposed positional embeddings pPE(3)

ij are SO(3)-equivariant.

B.3 Invariance of the Dot-Product

In the self-attention update, the dot-product between query and key is computed as along the degree
and the feature axis. Under rotation, the equivariant features behave as

h(Rr⃗) = D(R)h(r⃗), (A43)

where D(R) is the concatenation of Wigner-D matrices from above. The inner product along the
degree axis for two features h and g behaves under rotation as

g(Rr⃗)T · h(Rr⃗) = g(r⃗)T D(R)TD(R)︸ ︷︷ ︸
=Id

h(r⃗) = g(r⃗)T · h(r⃗), (A44)

where we made use of the fact that the Wigner-D matrices are orthogonal matrices. Thus, the
dot-product along the degree-axis is invariant and therefore taking the dot-product along the degree
and then along the feature axis is also invariant.
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B.3.1 Readout

Given final equivariant features hi ∈ R(L+1)2×H we use a readout layer to predict the atomic
positions of the clean data sample x1. We employ our equivariant formulation of adaptive layer
normalization and calculate

αi,βi = W
(
SiLU(ci)

)
, (A45)

with weight matrix W ∈ R2H(L+1)×H initialized to all zeros and αi,βi ∈ RH(L+1). We then do,

hi ← EquivAdaLN(hi,αi,βi) ,

yi ←W readouth
(ℓ=1)
i ,

where W readout ∈ R1×H is a trainable weight vector that is applied along the feature axis in h. Since
h
(ℓ=1)
i ∈ R3×H this produces per-atom vectors ŷi ∈ R3. As hi are rotationally equivariant so is

ŷi ∈ R3.

B.4 Equivariant MLP

Standard MLPs do not preserve the equivariance of the tokens. However, it is possible to define
an equivariant formulation for dense layers and so-called gated non-linearities which preserve
equivariance. We use them to build equivariant MLPs for the node-wise refinement after the self-
attention calculation. See e.g. Ref. [64] for more details.

C Sampling

For sampling, we use a simple Euler scheme with 50 steps to sample from the associated ordinary
differential equation (ODE) as described in Algorithm 2. Since during training we predict the clean
sample x1, we re-parametrize the velocity required for the integration as

vθ
t (xt, t,G) =

xθ
1(xt, t,G)− xt

1− t
, (A46)

where xθ
1(xt, t,G) is the original output of DiTMC.

To ensure SE(3) invariance of the probability path from an (approximately) SO(3)-equivariant
velocity predictor, we center the prior x0 ∼ p0(x) as well as the prediction of DiTMC in each ODE
step.

Algorithm 2 ODE Sampling
Require: Model xθ

1, Graph G, steps N > 0

1: tn ← n/N for n ∈ {0, . . . , N}
2: x0 ∼ pprior(x) ▷ Sample prior.
3: x0 ← Center(x0)
4: for n← 0 to N − 1 do
5: ∆t← tn+1 − tn ▷ Compute step size.
6: x̂1 ← xθ

1(xtn , tn,G)
7: x̂1 ← Center(x̂1)
8: v ← (x̂1 − xtn)/(1− tn)
9: xtn+1 ← xtn +∆t · v ▷ Euler step.

10: end for

11: return x1
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D Implementation details

D.1 Data Preprocessing

For both GEOM-QM9 and GEOM-DRUGS, we use the first 30 conformers for each molecule with
the lowest energies, i.e., highest Boltzmann weights. We use the train/test/val split from Geomol [60],
using the same 1000 molecules for testing.

D.2 Input Featurization

Tab. A7 defines the features we use for each atom or bond. Each feature is one-hot encoded before
being passed to the network.

Table A7: Atomic and bond features included in DiT-MC. All features are one-hot encoded.

Atom features Options
Chirality TETRAHEDRAL_CW, TETRAHEDRAL_CCW, UNSPECIFIED, OTHER
Number of hydrogens 0, 1, 2, 3, 4
Number of radical electrons 0, 1, 2, 3, 4
Atom type (QM9) H, C, N, O, F
Atom type (DRUGS) H, Li, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, V, Cr, Mn, Cu,

Zn, Ga, Ge, As, Se, Br, Ag, In, Sb, I, Gd, Pt, Au, Hg, Bi
Aromaticity true, false
Degree 0, 1, 2, 3, 4, other
Hybridization sp, sp2, sp3, sp3d, sp3d2, other
Implicit valence 0, 1, 2, 3, 4, other
Formal charge -5, -4, ..., 5, other
Presence in ring of size x x = 3, 4, 5, 6, 7, 8, other
Number of rings atom is in 0, 1, 2, 3, other

Bond features Options
Bond type single, double, triple, aromatic

D.3 Evaluation Metrics

During evaluation, we follow the same procedure as described in Refs. [32, 46, 47, 60]. The root-
mean-square deviation (RMSD) metric measures the average distance between atoms of a generated
conformer with respect to its reference, while taking into account all possible symmetries. For
L = 2K let {Ĉl}l∈{1,...,L} and {Ck}k∈{1,...,K} be the sets of generated conformers and reference
conformers respectively. The Average Minimum RMSD (AMR) and Coverage (COV) metrics for
both Recall (R) and Precision (P) are defined as follows, where δ > 0 is the coverage threshold:

COV-R(C, Ĉ, δ) :=
1

K

∣∣∣{k ∈ {1, . . . ,K} | ∃l∈{1,...,L}RMSD(Ĉl, Ck) < δ
}∣∣∣ (A47)

COV-P(C, Ĉ, δ) :=
1

L

∣∣∣{l ∈ {1, . . . , L} | ∃k∈{1,...,K}RMSD(Ĉl, Ck) < δ
}∣∣∣ (A48)

AMR-R(C, Ĉ) :=
1

K

∑
k∈{1,...,K}

min
l∈{1,...,L}

RMSD(Ĉl, Ck) (A49)

AMR-P(C, Ĉ) :=
1

L

∑
l∈{1,...,L}

min
k∈{1,...,K}

RMSD(Ĉl, Ck) (A50)
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Figure A4: Number of gradient steps vs. wall time for PE(3) and aPE on the GEOM-DRUGS dataset
measured on Nvidia H100 GPU with batch size 128.

D.4 Chirality Correction

Given the four 3D coordinates around a chirality center denoted as p1,p2,p3,p4 ∈ R3 with
pi = (xi, yi, zi) for i = 1, 2, 3, 4, we can compute the volume V of the tetrahedron as follows

V (p1,p2,p3,p4) = det


 1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4


 = (p1−p4) · ((p2−p4)× (p3−p4)) (A51)

Following GeomMol [60] and ET-Flow [32] we can then compare the orientation of the volume
given by sign(V ) with the local chirality label produced by RDKit, which corresponds to a certain
orientation as well (CW = +1 and CCW = -1) [65]. If the orientation of the volume differs from the
RDKit label, we correct the chirality of the conformer by reflecting its positions against the z-axis.

D.5 Time vs. Efficiency Analysis

For all models, we generate conformers using 5, 10, 20 and 50 sampling steps on a single A100
GPU with a batch size of 128, following Refs. [32, 47]. The wall-clock time per generated sample
is obtained by measuring the average time per batch and dividing by the batch size. As done in the
original paper, we adopt DDIM sampling for MCF-S, MCF-B and MCF-L.

E Additional Experimental Results

E.1 Conditioning ablation

To evaluate the effectiveness of various graph conditioning strategies in DiTMC , we compare the
performance of different conditioning methods against a baseline model without any conditioning. In
addition to conditioning strategies discussed in Sec. 4.2, we note that our conditioning GNN also
produces edge-level representations, which can be used to define pair-wise conditioning tokens:

bond-pair: cGij =

{
GNNedge(V, E) ∀(i, j) ∈ E
c̄G ∀(i, j) ̸∈ E . (A52)

These tokens only capture interactions between bonded atoms, i.e., when (i, j) ∈ E . Conditioning
tokens for non-bonded pairs are set to a learnable vector c̄G . Self-attention still operates on all atom
pairs (i, j), even if they are not connected by a chemical bond.

Specifically, we ablate the following conditioning strategies:

• node only conditioning using only atom-wise conditioning cGi (Eq. 9).

• node & all-pair conditioning using both atom-wise conditioning cGi (Eq. 9) and pair-wise
conditioning on geodesic graph distances cGij (eq:pair-conditioning-tokens-all).
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• node & bond-pair conditioning using both atom-wise conditioning cGi (Eq. 9) and pair-
wise conditioning cGij derived from edge-level representations of the conditioning GNN as
discussed above.

As reported in Tab. A8, all conditioning variants significantly reduce the Average Minimum RMSD
(AMR) for both recall (AMR-R) and precision (AMR-P) across the aPE and PE(3) settings, compared
to the unconditioned baseline.

Notably, the “node & all-pair” strategy achieves the best overall performance, with the lowest AMR
values. These results highlight the strength of the all-pair conditioning strategy, which leverages
graph geodesics to incorporate information from all atom pairs, rather than restricting conditioning
to directly connected nodes or bonded pairs. This comprehensive approach captures more global
structural information, thereby improving both precision and recall. See Appendix K for a more
in-depth analysis.

Table A8: Ablation of conditioning strategies in DiTMC (in brackets) with absolute PE and PE(3)
on GEOM-QM9. -R indicates Recall, -P indicates Precision. Best results in bold. Our results are
averaged over three random seeds with standard deviation reported below.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

DiTMC+aPE-B
(no conditioning)

68.6
±1.0

91.7
±2.1

0.405
±0.005

0.325
±0.004

36.8
±0.5

36.4
±2.2

0.729
±0.006

0.703
±0.007

DiTMC+PE(3)-B
(no conditioning)

71.5
±0.5

99.0
±1.4

0.358
±0.003

0.266
±0.005

40.4
±0.2

42.2
±0.4

0.683
±0.003

0.653
±0.005

DiTMC+aPE-B
(node only)

96.3
±0.0

100.0
±0.0

0.079
±0.000

0.037
±0.000

93.2
±0.2

100.0
±0.0

0.112
±0.001

0.051
±0.000

DiTMC+PE(3)-B
(node only)

95.5
±0.4

100.0
±0.0

0.074
±0.003

0.026
±0.001

91.1
±0.4

100.0
±0.0

0.114
±0.003

0.041
±0.001

DiTMC+aPE-B
(node & bond-pair)

96.5
±0.1

100.0
±0.0

0.077
±0.001

0.035
±0.001

95.3
±0.2

100.0
±0.0

0.092
±0.001

0.046
±0.002

DiTMC+PE(3)-B
(node & bond-pair)

96.1
±0.3

100.0
±0.0

0.068
±0.001

0.022
±0.001

93.6
±0.2

100.0
±0.0

0.091
±0.003

0.035
±0.001

DiTMC+aPE-B
(node & all-pair)

96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

DiTMC+PE(3)-B
(node & all-pair)

95.7
±0.3

100.0
±0.0

0.068
±0.002

0.021
±0.001

93.4
±0.2

100.0
±0.0

0.089
±0.002

0.032
±0.001

E.2 Ensemble Properties

While RMSD-based metrics offer a geometric perspective on the quality of the generated conformers,
they do not assess the chemical fidelity. To address this, we evaluate the median averaged errors
of different ensemble properties between the generated and ground truth conformers. We adopt
the property prediction task setup from MCF [47] and ET-Flow [32], where we draw a subset of
100 randomly sampled molecules from the test set of GEOM-DRUGS and generate min(2K, 32)
conformers for a molecule with K ground truth conformers. Afterwards we relax the conformers
using GFN2-xTB [66] and compare the Boltzmann-weighted properties of the generated and ground
truth ensembles. More specifically, we employ xTB [66] to calculate the energy E, the dipole moment
µ, the HOMO-LUMO gap ∆ϵ and the minimum energy Emin. We repeat this procedure for three
subsets each sampled with a different random seed and report the averaged median absolute error and
standard deviation of the different ensemble properties in Table A11.
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Table A9: Results on GEOM-QM9 for different generative models (number of parameters in paren-
theses). -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined.
Our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

GeoMol (0.3M) 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
GeoDiff (1.6M) 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510
Tors. Diff. (1.6M) 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195
MCF-B (64M) 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055
DMT-B (55M) 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049
ET-Flow (8.3M) 96.5 100.0 0.073 0.030 94.1 100.0 0.098 0.039

∗DiTMC+aPE-B (9.5M) 96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

∗DiTMC+rPE-B (9.6M)
96.3
±0.0

100.0
±0.0

0.070
±0.001

0.027
±0.000

95.7
±0.1

100.0
±0.0

0.080
±0.000

0.035
±0.000

∗DiTMC+PE(3)-B (8.6M) 95.7
±0.3

100.0
±0.0

0.068
±0.002

0.021
±0.001

93.4
±0.2

100.0
±0.0

0.089
±0.002

0.032
±0.001

Table A10: Results on GEOM-DRUGS for different generative models (number of parameters in
parentheses). -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined.
Our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

GeoMol (0.3M) 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff (1.6M) 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Tors. Diff. (1.6M) 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
MCF-L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
DMT-L (150M) 85.8 92.3 0.375 0.346 67.9 72.5 0.598 0.527
ET-Flow - SS (8.3M) 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442

∗DiTMC+aPE-B (9.5M) 79.9
±0.1

85.4
±0.3

0.434
±0.002

0.389
±0.002

76.5
±0.1

83.6
±0.3

0.500
±0.002

0.423
±0.004

∗DiTMC+rPE-B (9.6M) 79.3
±0.1

84.6
±0.2

0.444
±0.002

0.400
±0.002

77.2
±0.1

84.6
±0.2

0.492
±0.001

0.414
±0.002

∗DiTMC+PE(3)-B (8.6M) 80.8
±0.1

85.6
±0.5

0.427
±0.001

0.396
±0.001

75.3
±0.1

82.0
±0.2

0.515
±0.000

0.437
±0.003

∗DiTMC+aPE-L (28.2M) 79.2
±0.1

84.4
±0.2

0.432
±0.003

0.386
±0.003

77.8
±0.1

85.7
±0.5

0.470
±0.001

0.387
±0.003

∗DiTMC+rPE-L (28.3M) 78.7
±0.1

84.1
±0.4

0.438
±0.002

0.388
±0.005

78.1
±0.1

86.4
±0.3

0.466
±0.001

0.381
±0.003

∗DiTMC+PE(3)-L (31.1M) 80.8
±0.3

85.6
±0.1

0.415
±0.003

0.376
±0.001

76.4
±0.2

82.6
±0.3

0.491
±0.002

0.414
±0.004
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Table A11: Median absolute error of ensemble properties between generated and reference conformers.
Best results in bold, second best underlined. Our models are marked with an asterisk “∗”. Results for
MCF, ET-Flow, and ours are averaged over three random seeds.

Method E [kcal/mol] ↓ µ [D] ↓ ∆ϵ [kcal/mol] ↓ Emin [kcal/mol] ↓
OMEGA 0.68 0.66 0.68 0.69
GeoDiff 0.31 0.35 0.89 0.39
GeoMol 0.42 0.34 0.59 0.40
Torsional Diff. 0.22 0.35 0.54 0.13

MCF
0.68
±0.06

0.28
±0.05

0.63
±0.05

0.04
±0.00

ET-Flow
0.18
±0.01

0.18
±0.01

0.35
±0.06

0.02
±0.00

∗DiTMC+aPE-B
0.17
±0.00

0.16
±0.01

0.27
±0.01

0.01
±0.00

∗DiTMC+aPE-L
0.16
±0.02

0.14
±0.03

0.27
±0.01

0.01
±0.00

∗DiTMC+rPE-B
0.16
±0.03

0.16
±0.03

0.29
±0.02

0.02
±0.00

∗DiTMC+rPE-L
0.16
±0.01

0.15
±0.02

0.28
±0.06

0.01
±0.00

∗DiTMC+PE(3)-B 0.18
±0.01

0.18
±0.01

0.27
±0.03

0.02
±0.00

∗DiTMC+PE(3)-L
0.17
±0.01

0.14
±0.01

0.25
±0.01

0.01
±0.00

E.3 Generalization Results on GEOM-QM9

Additionally, we want to assess how well our proposed model architecture generalizes to unseen
molecules. Here we evaluate our models trained on GEOM-DRUGS on the GEOM-QM9 dataset.
We report the generalization performance in Table A12.

E.4 Generalization Results on GEOM-XL

We also study how well our proposed model architecture generalizes to unseen molecules with a large
number of atoms. For this we adopt the GEOM-XL dataset containing a total of 102 molecules with
more than 100 atoms presented in [46]. We report the generalization performance in Table A13.

F Additional Ablations

F.1 Index Positional Encoding (iPE)

Tab. A14 compares a variant including index positional encoding (iPE) from classic transformer
architectures with our base model using aPE on QM9. Specifically, we use the node index and encode
it via sinusoidal encodings into the tokensH before the first DiTMC block, similar to embedding the
absolute positions via aPE. Since the graphs are generated from SMILES strings via rdkit and rdkit
has to some extend a canonical ordering, this information can be used by the transformer architecture.
However, index positional encoding breaks permutation equivariance (as we show in Tab. A14).
This might be undesirable as permutation equivariance is one of the fundamental symmetries when
learning on graphs. Since the ordering of atoms in a SMILES string is not uniquely defined, the
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Table A12: Out-of-distribution generalization results on GEOM-QM9 for models trained on GEOM-
DRUGS. -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined.
Our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

ET-Flow 86.7 100.0 0.218 0.160 68.7 75.3 0.369 0.317

∗DiTMC+aPE-B
84.3
±0.5

100.0
±0.0

0.209
±0.004

0.134
±0.003

69.4
±0.7

84.4
±3.2

0.329
±0.004

0.250
±0.008

∗DiTMC+aPE-L
80.6
±0.5

100.0
±0.0

0.199
±0.004

0.115
±0.004

68.8
±0.2

86.2
±2.0

0.329
±0.002

0.224
±0.007

∗DiTMC+rPE-B
82.3
±0.2

100.0
±0.0

0.217
±0.002

0.138
±0.002

69.6
±0.4

85.7
±1.3

0.327
±0.004

0.238
±0.008

∗DiTMC+rPE-L
80.5
±0.4

100.0
±0.0

0.215
±0.002

0.127
±0.002

68.9
±0.5

85.2
±2.7

0.327
±0.004

0.228
±0.012

∗DiTMC+PE(3)-B 84.8
±0.3

100.0
±0.0

0.205
±0.003

0.130
±0.005

69.1
±0.1

81.41
±2.9

0.329
±0.004

0.254
±0.015

∗DiTMC+PE(3)-L
85.1
±0.2

100.0
±0.0

0.195
±0.004

0.115
±0.003

69.5
±0.6

82.4
±2.3

0.319
±0.05

0.245
±0.009

trained network depends on the used framework for parsing the SMILES string or even a particular
software version. We use rdkit (version 2024.9.5) for parsing SMILES strings to graphs.

Nevertheless, our model using iPE can effectively exploit the information contained in atom indices
assigned by rdkit. A version of our base aPE model without atom-pair conditioning but iPE achieves
comparable performance to our model using geodesic distances as atom-pair conditioning (pairwise
conditioning). As our pairwise conditioning strategy is similarly or more effective than iPE but
additionally preserves permutation equivariance, it should be preferred over iPE and we don’t use
iPE in any of our other experiments.

F.2 Gaussian vs. Harmonic Prior

As shown in Tab. A15, using the harmonic prior improves all metrics slightly for our models on
GEOM-QM9. Using the harmonic prior however doesn’t seem to be a crucial ingredient for the
success of our method, as differences between Gaussian and Harmonic prior appear diminishing. As
the results in Tab. A15 verify, our method can also be used with a simple Gaussian prior effectively.
For larger molecular graphs the expensive eigendecomposition required for the Harmonic prior could
therefore be avoided, which helps scaling our approach more easily.

G Analysis of training loss as a function of latent time

In this section, we provide details for the analysis in Fig. 2C in the main part of the paper. We
investigate the effect of the PEs and self-attention formulations on the accuracy of the model. We
therefore take pre-trained models on GEOM-QM9 and compute the training loss (as detailed in 1)
averaged over 1000 samples drawn randomly from the GEOM-QM9 validation set. We compute
the loss for 30 logarithmically spaced values of ti = 1− 10xi , where xi ∈ [−1.8, 0] with uniform
spacing. We skip the stochastic term in the loss as is done while sampling from the ODE.

As detailed in Fig. A6, we observe empirically that equivariance leads to a decreased loss close to
the data distribution after training. This explains why our equivariant model more often succeeds to
produce samples with increased fidelity, as depicted in figure Fig. 2B.
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Figure A5: Misclassified exampled for SMILES classification experiment. We randomly pick 3
examples, which are misclassified by a classification head without any GNN layers. We show that
GNN layers are essential for correct classification of isomers.

We further note, that absolute loss values for models trained with all our PE strategies decrease as
latent time increases (see Fig. A6). This is expected, as conditional vector fields for each data sample
will start to interact more strongly moving away from the data distribution. Our weighted loss (see
Appendix A) effectively penalizes errors close to the data distribution during training and helps with
keeping the error low in this important regime.

H SMILES Classification Experiment via Conditioning GNN

A critical requirement of our DiTMC approach is the ability to disentangle distinct SMILES rep-
resentations through conditioning. We investigate whether our proposed conditioning strategy is
capable of learning the necessary information to distinguish between different SMILES strings for
the generation of matching molecular conformers.

As a proxy evaluation task, we assess whether the conditioning network alone can function as a
classifier of SMILES strings. To this end, we construct two training datasets: a toy dataset comprising
three specific SMILES strings of a hydroxyl group moving along a carbon chain (C(O)CCCCCCCC,
CC(O)CCCCCCC, CCC(O)CCCCCC), and a larger set consisting of 1000 randomly sampled SMILES
strings drawn from the GEOM-QM9 validation set. Each SMILES string becomes a seperate class,
so for each class there is exactly one example in the training data. The classification task is performed
on the graph representations of the molecules, employing the same feature set and GNN architecture
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Figure A6: Loss as a function of time comparing different PE strategies. Results averaged over
1000 samples randomly drawn from the GEOM QM9 validation set. Left: loss relative to PE(3) as
a baseline. In the important regime close to the data distribution, the model PE(3) has lower loss,
yielding higher sample fidelity. Right: absolute loss values for all PEs. The loss decreases close to
the data distribution for all models.

utilized in our conditioning graph neural network (Sec. 4.2, appendix D.2) plus a simple classification
head.

We train models with a batch size of 3 for 5000 epochs (toy dataset) and batch size of 64 over
250 epochs (GEOM-QM9 subset). We report classification accuracy on the training sets directly
to evaluate the model’s discriminative capacity. Furthermore, we explore whether conditioning
weights obtained from an end-to-end trained model retain discriminatory power by freezing them and
attaching a linear classification head.

Our results, as shown in Tab. A16, reveal that a simple linear classifier lacking message-passing
capabilities fails to distinguish certain SMILES strings. Overall, our results indicate that a simple
two-layer GNN effectively captures the necessary conditioning information through end-to-end
training. Fig. A5 shows that without GNN layers, isomers will be misclassified.

I Architecture Details for Conditioning GNN

To transform SMILES representations to per-token conditioning information, we use a GNN that
directly operates on the bond graph induced by the SMILES string. Our model processes molecular
graphs by first embedding node and edge features, initially represented as one-hot vectors (a full
list of features is provided in Tab. A7). These features are projected into a shared latent space using
two-layer multilayer perceptrons (MLPs). For message passing, we employ a graph neural network
architecture inspired by the processor described in the MeshGraphNet (MGN) framework [56].

The GNN maintains and updates both node and edge representations across multiple layers. Each
message passing block consists of two main steps: first, the edge representations are updated based
on the current edge representations and the representations of the connected nodes:

e′ij ← fe(eij ,vi,vj) (A53)

where eij and vi denote the input edge and node representations, and e′ij are the updated edge repre-
sentations. The learnable function fe is implemented as a two-layer MLP. Next, node representations
vi are updated to v′

i using aggregated messages from neighboring edges:
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v′
i ← fv

vi,
∑
j

e′ij

 (A54)

where fv is also a two-layer MLP, and the summation is over all edges ending at node i.

The final output of the described GNN is a set of node embeddings per atom, and a set of edge
embeddings per bond. Those serve as atom-wise or bond-pair conditioning inputs to the DiT
transformer, as detailed in Sec. 4.2 and Sec. E.1.

J Autoguidance

We apply autoguidance, a recent technique for enhancing generative models by leveraging the outputs
of a weaker model to guide sampling from a stronger one [67]. Originally proposed in the context of
image diffusion, autoguidance works by introducing a degraded model with parameters θ̂ trained on
the same data and conditioning as the main model with parameters θ, but with additional constraints
such as reduced capacity, increased noise or fewer gradient steps. During generation, the predicted
vector field vθ(x, t) is guided using the vector field predicted by vθ̂(x, t), where the discrepancy
between the two models serves as a corrective signal. Intuitively, this nudges the generation process
towards higher-quality samples by amplifying the difference between a less accurate and a more
accurate model.

In our molecular conformer generation setup, we choose the parameters after training for 5 epochs
without applying exponential moving average (EMA) for θ̂. We then use the difference in predicted
vector fields from to bias the conformer generation trajectory. Following Ref. [68], we apply
autoguidance only in the guidance interval t ∈ [0, tmax] and additionally ablate tmax as the upper
bound of the guidance interval. It becomes straightforward to adapt Algorithm 2 to reflect these
changes during sampling as a drop-in repacement for the predicted vector field. The guided velocity
(for t ∈ [0, tmax]) is computed as vη(x, t) = ηvθ(x, t) + (1− η)vθ̂(x, t), where η is the guidance
strength.

Fig. A7 shows that autoguidance yields enhanced fidelity of generated conformations, as indicated
by improvements in precision metrics, but might negatively impact diversity (recall). Increasing
guidance strength improves precision (COV-P, AMR-P) but may reduce recall (COV-R, AMR-R).
A similar trend can be observed for the guidance interval, where increased tmax leads to stronger
effects of autoguidance. This effectively establishes a trade-off between precision and recall that can
be tuned post-hoc after training with minimal effort.

Figure A7: Autoguidance performance on GEOM-QM9 using our DiTMC+aPE-B model. We
evaluate the effect of autoguidance on conformer generation quality across various guidance intervals
(tmax) on the x-axes, and guidance strength (η) as different colors. Dashed black lines indicate
performance without guidance.
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K Analysis of Sampling Trajectories
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Figure A8: Comparison of molecular generation with node-only versus node- and pair-wise condi-
tioning on GEOM-QM9. Each row shows a prior sample, sampling trajectories, and final generated
structure for both models; pairwise conditioning preserves bonds from the conditioning graph G.

Fig. A8 compares the generative performance of DiTMC models trained on the GEOM-QM9 dataset
under two different conditioning strategies: (1) node-only conditioning and (2) node plus pairwise
conditioning. Each row in the figure corresponds to one example molecule selected from the test set.
The molecules are chosen to maximize the root mean squared deviation (RMSD) between the final
generated structures of the two models. This selection highlights cases where the differences between
the conditioning schemes are most pronounced.

Within each row, we display a sequence of images: the initial prior sample, followed by the interme-
diate trajectory of the ODE sampling process over 50 sampling steps for the node-only conditioned
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model, and the resulting final structure (with predicted bonds rendered in yellow). This sequence is
repeated for the node- and pair-wise conditioned model, allowing a side-by-side visual comparison of
the generation dynamics and final outputs.

The results reveal a consistent pattern: models trained with node-only conditioning fail to preserve
bonding patterns from the conditioning graph G. This manifests as bond stretching or atom permuta-
tion in the final structure. In contrast, the model, that is conditioned on pairwise geodesic distances,
produces geometries that adhere more closely to expected chemical structure and the given bonds.
We note that if atoms are simply permuted by the model using only node conditioning, the generated
structure might still be valid in terms of the combination of generated 3D positions and atom types.
The degraded performance of node conditioning versus node and pair-conditioning can therefore in
part be explained by the used RMSD and Coverage metrics, which are not invariant to permutations
of atoms.

Our findings still underscore the importance of incorporating both node-level and pairwise features in
molecular generative models, in particular when agreement with the given conditioning on a bond
graph is essential.

L Visualization

Fig. A15, Fig. A16, and Fig. A17 provide a visual comparison of conformers generated by MCF, ET-
Flow, and DiTMC against the corresponding ground-truth reference conformers for the GEOM-QM9,
GEOM-DRUGS and GEOM-XL datasets, respectively. For each dataset, we randomly select six
reference conformers from the test split and generate conformers using each method. Finally, we
apply rotation alignment of the generated conformers with their corresponding reference conformer.

M Code and Data Availability

The code and data to reproduce the main results of this paper, can be downloaded from here:
https://doi.org/10.5281/zenodo.15489212.

31

https://doi.org/10.5281/zenodo.15489212


Figure A9: Coverage mean and median for recall and precision of DiTMC-aPE on GEOM-DRUGS.
Vertical dashed line denotes the commonly employed ρ = 0.75 RMSD threshold.
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Table A13: Out-of-distribution generalization results on GEOM-XL for models trained on GEOM-
DRUGS. -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined.
Our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method AMR-R [Å] ↓ AMR-P [Å] ↓ # mols

Mean Median Mean Median

GeoDiff 2.92 2.62 3.35 3.15 -
GeoMol 2.47 2.39 3.30 3.14 -
Tor. Diff. 2.05 1.86 2.94 2.78 -
MCF - S 2.22 1.97 3.17 2.81 102
MCF - B 2.01 1.70 3.03 2.64 102
MCF - L 1.97 1.60 2.94 2.43 102
ET-Flow 2.31 1.93 3.31 2.84 102

∗DiTMC+aPE-B
1.96
±0.00

1.60
±0.03

2.90
±0.00

2.48
±0.03 102

∗DiTMC+aPE-L
1.88
±0.01

1.51
±0.02

2.81
±0.00

2.30
±0.02 102

∗DiTMC+rPE-B
1.97
±0.01

1.61
±0.01

2.86
±0.00

2.33
±0.01 102

∗DiTMC+rPE-L
1.96
±0.02

1.61
±0.02

2.82
±0.00

2.42
±0.02 102

∗DiTMC+PE(3)-B 1.98
±0.01

1.67
±0.02

3.03
±0.00

2.60
±0.01 102

∗DiTMC+PE(3)-L 1.85
±0.02

1.58
±0.03

2.93
±0.00

2.53
±0.03 102

Tor. Diff. 1.93 1.86 2.84 2.71 77
MCF - S 2.02 1.87 2.9 2.69 77
MCF - B 1.71 1.61 2.69 2.44 77
MCF - L 1.64 1.51 2.57 2.26 77
ET-Flow 2.00 1.80 2.96 2.63 75

∗DiTMC+aPE-B
1.68
±0.00

1.47
±0.02

2.59
±0.00

2.24
±0.01 77

∗DiTMC+aPE-L
1.56
±0.01

1.28
±0.01

2.47
±0.00

2.14
±0.01 77

∗DiTMC+rPE-B
1.69
±0.01

1.41
±0.03

2.52
±0.00

2.11
±0.00 77

∗DiTMC+rPE-L
1.66
±0.03

1.37
±0.01

2.47
±0.00

2.18
±0.02 77

∗DiTMC+PE(3)-B 1.73
±0.01

1.55
±0.01

2.71
±0.00

2.35
±0.01 77

∗DiTMC+PE(3)-L
1.57
±0.01

1.46
±0.01

2.60
±0.00

2.27
±0.02 77
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Table A14: Ablating index positional encoding (iPE) on QM9 for different conditioning strategies
(in brackets). To show the effect of atom permutations, we include results with randomly permuted
atom indices (perm.). -R indicates Recall, -P indicates Precision. Best results in bold. Our results
are averaged over three random seeds with standard deviation reported below.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

DiTMC+aPE-B
(node only)

96.3
±0.0

100.0
±0.0

0.079
±0.000

0.037
±0.000

93.2
±0.2

100.0
±0.0

0.112
±0.001

0.051
±0.000

DiTMC+aPE-B
(node only), perm.

96.3
±0.0

100.0
±0.0

0.079
±0.000

0.037
±0.000

93.2
±0.2

100.0
±0.0

0.112
±0.001

0.051
±0.000

DiTMC+aPE+iPE-B
(node only)

96.6
±0.4

100.0
±0.0

0.079
±0.002

0.037
±0.001

95.5
±0.1

100.0
±0.0

0.093
±0.001

0.046
±0.001

DiTMC+aPE+iPE-B
(node only), perm.

82.3
±1.1

100.0
±0.0

0.229
±0.008

0.108
±0.005

60.0
±0.9

61.8
±1.4

0.493
±0.008

0.416
±0.011

DiTMC+aPE-B
(node & pairwise)

96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

DiTMC+aPE-B
(node & pairwise), perm.

96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

Table A15: Ablation of PE strategies and Gaussian (G) and Harmonic (H) prior. We report mean
coverage (COV) at a threshold of 0.5Å, and mean average minimum RMSD (AMR) for Recall -R
and Precision -P. Best results in bold. All results are averaged over three random seeds.

PE strategy COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
G H G H G H G H

DiTMC+aPE 96.2 96.1 0.074 0.073 95.2 95.4 0.087 0.085
DiTMC+rPE 96.0 96.3 0.073 0.070 95.2 95.7 0.084 0.080
DiTMC+PE(3) 95.7 95.7 0.069 0.068 93.5 93.4 0.090 0.089

Table A16: We measure the discriminative power of our conditioning graph network on a training
set of 1000 randomly sampled SMILES strings from the Geom QM9 validation set, as well as a toy
dataset of 3 different SMILES strings. We investigate the required number of message passing layers,
as well as using pre-trained weights from an end-to-end trained model.

GNN layers Weight init Trainable Accuracy (Geom QM9) Accuracy (Toy Data)

0 random trainable 0.887 0.333
1 random trainable 0.999 0.666
2 random trainable 1.000 1.000
2 random frozen 0.980 1.000
2 pre-trained frozen 1.000 1.000
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Figure A10: Coverage mean and median for recall and precision of DiTMC-rPE on GEOM-DRUGS.
Vertical dashed line denotes the commonly employed ρ = 0.75 RMSD threshold.

35



Figure A11: Coverage mean and median for recall and precision of DiTMC-PE(3) on GEOM-
DRUGS. Vertical dashed line denotes the commonly employed ρ = 0.75 RMSD threshold.
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Figure A12: Average minimum RMSD (AMR) for precision (“-P”) and recall (“-R”) plotted against
the time per generated conformer. For each model, markers from left to right correspond to an
increasing number of sampling steps during generation. Here, we follow Refs. [32, 47] and use 5, 10,
20, and 50 sampler steps.
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Figure A13: Average minimum RMSD (AMR) for precision (“-P”) and recall (“-R”) plotted against
the time per generated conformer. For each model, markers from left to right correspond to an
increasing number of sampling steps during generation. Here, we follow Refs. [32, 47] and use 5, 10,
20, and 50 sampler steps.
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Figure A14: Average minimum RMSD (AMR) for precision (“-P”) and recall (“-R”) plotted against
the time per generated conformer. For each model, markers from left to right correspond to an
increasing number of sampling steps during generation. Here, we follow Refs. [32, 47] and use 5, 10,
20, and 50 sampler steps.
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MCF ET-Flow ReferenceDiTMC (ours)

Figure A15: Comparison of conformers generated by MCF, ET-Flow, and DiTMC against ground-
truth reference conformers from GEOM-QM9. The generated conformers are rotationally aligned
with their corresponding reference conformer to facilitate comparison. From left to right: generated
conformers from MCF, ET-Flow, DiTMC, and the corresponding ground-truth reference conformers.
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MCF ET-Flow ReferenceDiTMC (ours)

Figure A16: Comparison of conformers generated by MCF, ET-Flow, and DiTMC against ground-
truth reference conformers from GEOM-DRUGS. The generated conformers are rotationally aligned
with their corresponding reference conformer to facilitate comparison. From left to right: generated
conformers from MCF, ET-Flow, DiTMC, and the corresponding ground-truth reference conformers.
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MCF ET-Flow ReferenceDiTMC (ours)

Figure A17: Comparison of conformers generated by MCF, ET-Flow, and DiTMC against ground-
truth reference conformers from GEOM-XL. The generated conformers are rotationally aligned with
their corresponding reference conformer to facilitate comparison. From left to right: generated
conformers from MCF, ET-Flow, DiTMC, and the corresponding ground-truth reference conformers.
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