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Abstract. This paper explores the impact of input gradient regularisa-
tion on model interpretability. Although this technique has been known
for some time to improve the generalisation ability of deep neural net-
works, it was only recently highlighted that regularising the input gradi-
ent may also enhance its interpretability as a saliency map. Prior works
have only observed this effect subjectively, however, and a quantitative
evaluation is currently lacking. We aim to fill this gap by quantifying
the influence of gradient regularisation on the quality of gradient-based
saliency maps across multiple metrics and datasets. We find that gradient
regularisation can indeed increase the quality of saliency maps, although
this effect is heavily dependent on the specific dataset and/or model.
This finding implies that subjective observations regarding the quality
of saliency maps are not guaranteed to generalise to different datasets.
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1 Introduction

Deep neural networks have become increasingly popular as a solution for various
tasks, such as natural language processing [4] and computer vision [32]. How-
ever, due to their black box nature, there have been concerns regarding their
interpretability [10]. As complicated non-linear functions, it is often difficult or
impossible to explain why a deep neural network produced a given output and
which factors contributed to it. This is problematic when neural networks are
used to make high-stakes decisions, such as approving bank loans or aiding in
medical diagnosis. It is therefore crucial that we develop techniques to make
neural networks more interpretable.

In this paper, we focus on one specific method known as gradient requlari-
sation. Gradient regularisation was first introduced as a means to increase the
smoothness and generalisation capacity of neural networks by penalising large
input gradients [9]. It has also been used to decrease the susceptibility to ad-
versarial perturbations [12,23]. More recently, it has been discovered that this
method might improve interpretability [25]. However, to the best of our knowl-
edge, no work has been done on quantifying this effect using concrete metrics
across multiple datasets. In this work, we address this gap in the literature.
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Numerous metrics have been proposed to evaluate the interpretability and
quality of saliency maps, which are commonly used to explain machine learn-
ing models. According to Hedstrom et al. [15], these metrics can be roughly
categorised into six classes: faithfulness, robustness, localisation, complexity,
randomisation (sensitivity), and axiomatic metrics. The classes that are most
relevant to our work are faithfulness, robustness and complexity.

To quantify faithfulness, we used an estimate inspired by the approach of
Alvarez-Melis and Jaakkola [2], which verifies whether perturbing the pixels
marked as ‘relevant’ by the saliency map truly impacts the output. Robustness
measures whether the saliency is stable under small perturbations of the input.
The local Lipschitz constant [1] and Max-Sensitivity [31] were used to quantify
this. The fractional entropy of the pixels in the saliency map was used as a
measure of complexity, as suggested by [5]. The impact of gradient regularisation
on these metrics was analysed on five different image datasets using two different
models and two different techniques to generate saliency maps.

To regularise the gradient, we use double backpropagation [9], which analyt-
ically computes the second-order derivative of the loss function with respect to
the input and the model weights. While alternative methods for input gradient
regularisation exist that may offer performance advantages [12], double back-
propagation is the exact method that was also used in [25|, which originally
hypothesised the positive effect of gradient regularisation on the interpretability
of saliency maps.

The authors of [25] have already noticed that gradient-based saliency maps
for a regularised model on MNIST digits seem to be visually more interpretable.
Our quantitative experiments confirm this observation, showing an increased
faithfulness on MNIST for regularised models. However, we find that this im-
provement may not generalise to more complex datasets, as this increase in
faithfulness disappears when testing on datasets like CIFAR-10 and ImageNette.

2 Related work

Double backpropagation was first introduced as a means of regularising the in-
put gradient of a neural network [9]. In double backpropagation, a regularisation
term is added to the loss function which contains the gradient of the original loss
function with respect to the input features. As is the case for other regularisation
techniques [26], double backpropagation has been shown to have a positive ef-
fect on the generalisation of the model when the correct regularisation strength
is used. Despite this advantage, it never gained significant popularity for this
purpose compared to other regularisation techniques such as dropout [29], batch
normalisation [18] and regular {5 regularisation. As such, it is only since relatively
recently that it has gained prominence, as regularising input gradients has been
shown improve robustness to adversarial perturbations [25,12,23]. Furthermore,
Ros and Doshi-Velez [25] suggested that this approach would also improve the
interpretability of the model. Following this reasoning, some others have applied
similar techniques for this purpose [11,22]. However, in these studies, verifica-
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tion relied solely on a single dataset, possibly limiting the generalisability of
their conclusions. In this work, the effects of input gradient regularisation on
the interpretability of saliency maps are investigated across several datasets us-
ing multiple quantifiable metrics for a wide range of regularisation strengths.
Therefore, we are able to draw more objective and generalisable conclusions.

3 Methods

In this section, we discuss the methods used in our work in more detail. We begin
with a description of the experimental setup, datasets, and training procedure.
Next we give an overview of the various metrics we used to quantify the quality
of saliency maps.

3.1 Experimental Setup

All models were regularised using input gradient regularisation, similar to the
approach described in [25]. The total loss function used is defined as follows:

L(y,9) = H(y,9) + o |V H(y, D)

Here, H(y, 9) is the cross-entropy between the model outputs y and the labels
7, a > 0 is a predetermined regularisation coefficient, V represents the gradient
with respect to the input and |.||? is the square of the fy-norm. Similar to
{9 regularisation, this loss function will primarily penalise large gradients. To
assess the effect of the regularisation strength on the interpretability, models
were trained for a wide range of o values. Next, different metrics were used to
assess the quality of saliency maps as a function of «.

ResNet18 [14] models were trained using the CIFAR-10 [20] and Imagenette
[17] datasets. LeNet-5 [21] was evaluated on the MNIST digits [8], Fashion-
MNIST [30], and Kuzushiji-MNIST (KMNIST) datasets [6]. The Fashion-MNIST,
KMNIST and MNIST datasets are very similar in the sense that all three con-
tain 10 classes that are divided over 60000 28x28 grayscale images. The ‘320 px’
version of Imagenette was used and the images were centre-cropped so that the
resulting size is 320x320 pixels. Every dataset employed includes a pre-specified
separation between training and testing sets.

For the MNIST, Fashion-MNIST, and KMNIST datasets, the data was nor-
malised to the range [-1, 1]. In the case of CIFAR-10 and Imagenette, the data
was normalised to the range [0, 1].

For models trained on the MNIST, Fashion-MNIST, and KMNIST datasets,
training was performed over 25 epochs with a learning rate of 0.001. Models
trained on CIFAR-10 and Imagenette underwent 50 epochs with a learning rate
of 0.0001.

The Adam optimiser [19] was used for all tests. For all datasets except Im-
agenette, 50 models were trained with logarithmically spaced a values between
102 and 10'°. An exception was made for Imagenette as the accuracy ‘tipping
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point’ is not clearly visible in the aforementioned range. Instead, 27 models were
trained with logarithmically spaced « values between 1 x 102 and 1.29 x 10'3.

For every metric, the implementation provided by Quantus 0.5.3 [15] was
used, while PyTorch [3] served as the underlying framework for the experiments.
The metrics are evaluated on a batch of 128 samples for every trained model.

Two methods were used to create the saliency maps. The first method, cal-
culating the input gradient, is the most simple one. Even though other methods
exist that show better performance, it is often used for comparison as done in
[11,25]. The second method used is DeepLIFT [27], which is a popular method
to generate saliency maps [7].

3.2 Metrics

The metrics we used to quantify the quality of saliency map explanations can
be divided into three categories, based on the specific aspect of the saliency map
that they measure: faithfulness, robustness or complexity.

Faithfulness The metric used to evaluate the faithfulness of the saliency map
was the Faithfulness Estimate (FE) used by [2]. This metric is designed to verify
whether features that are marked as relevant by the saliency map truly affect
the prediction score to a greater extent. The FE of a saliency map is computed
by perturbing each feature individually, and recording the effect on the model
output. More concretely, this effect is the difference between the confidence score
for the correct class before and after perturbation of the feature. Finally, the
correlation between this effect and the importance of the pixels according to the
saliency map is calculated. In our case, the perturbation is computed for each
feature as follows:
T = 11;_12" T+ [max o; = 2

where z; and z are respectively the original and updated values of the i-th
feature in the image, and n is the total number of features. We denote the
original image as x, and the version of x where the i-th feature is perturbed in
this way as x(¥). The effect of the perturbation on the i-th feature of an image
x is then defined as:

dii=f (x7) = F(x)

where f(x) is the confidence score of the model f for image x. Denoting the
function that generates the attribution map for a given image x as a(x), we
compute the FE for an image x and attribution map a := a(x) as the Pearson
correlation coefficient between the effects (d; | 1 < i < n) and attribution values
(a; |1 <i<n).

In order to assess whether the FE metric is actually increasing with a, we
compute the p-values of the Spearman correlation test between the a values
and the corresponding FE scores. The p-values are calculated using a two-sided
permutation test with 9999 samples, with a conservative correction to account
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for sampling uncertainty [24]. Note that the accuracy of the model starts de-
creasing past a certain value for a. At this point, the model can be considered
over-regularised. We exclude these over-regularised models from the p-value cal-
culation by choosing a threshold value ¢, for each dataset and excluding all
models with o > t,. This threshold is defined as the minimal value such that
to > leb and the accuracy of the model with a = t,, is lower than 80% of the
mean accuracy of all models with o < 1e5.

Robustness The first metric used to evaluate the robustness of the saliency
maps was the local Lipschitz constant (also used as a robustness metric in [1]).
Models with a lower score are more robust to input perturbations [16]. In this
work, the Quantus implementation [15] of this metric was used:

up a9 — a0
S S T

Where B is a batch of 200 random input samples, a(x) is the function that
generates the attribution map based on the input x and € ~ A/(0,0.1) is Gaussian
noise centred around 0 and a standard deviation of 0.1 sampled for every pixel.
Note that, as previously mentioned, for every trained model, this formula is
evaluated 128 times, and the average is taken.

An additional robustness measure we used in our experiments is Max-Sensitivity
[31]. It is defined by the following formula:

max [[a(x+ ¢) — a(x)|

This value is estimated by sampling the noise € uniformly in the range [—0.2,0.2].
Thus, in this case, the norm for ||e|| is the Lo, norm and r = 0.2. The norm for
|la(x 4 €) — a(x)|| was chosen to be the ¢5 norm. As done in [31], the sensitivity
was normalised to allow for comparison. In our case, the sensitivity was divided
by the ¢ norm of the original saliency map a(x). A batch of 128 samples was
used to estimate the average max-sensitivity for a trained model and 200 noise
samples were used to estimate the maximum in the max-sensitivity definition.

Complexity We describe an explanation as having low complexity if it high-
lights only a small fraction of the features as being important. This is quantified
using the approach described in [5]. We first define a probability distribution
based on the contributions of each of the input features:

|ai

P@l) = =————
Z1§j§n |a;]

If this probability distribution resembles a uniform distribution, then the expla-
nation is complex. This can be quantified using the entropy of the distribution,
where a lower entropy value corresponds to a less complex saliency map:
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— Y P>i)InP(i)

1<i<n

This result is averaged over a batch of 128 input samples.

4 Results

In this section, we discuss the results obtained in our experiments. We focus on
the results on the MNIST, CIFAR-10 and Imagenette datasets, and using the
input gradient to generate saliency maps. Results for the Fashion-MNIST and
Kuzushiji-MNIST were very similar to those for MNIST (see Appendix A), and
can be retrieved and reproduced from our code repository,® as well as the results
obtained using DeepLIFT. We also include visual examples demonstrating the
effects of gradient regularisation on saliency maps in Appendix B.

We begin by inspecting the effect of double backpropagation on the test
accuracy of the model. The results can be viewed in Figure 1. For each dataset,
we observe a clear cut-off point where the model is over-regularised and accuracy
drops dramatically. Explanations that were generated for models past this cut-
off point are therefore considered irrelevant, as the model itself for which the
explanation was generated does not generalise.

In Figure 2, the FE for different values of o can be seen for MNIST, CIFAR-
10 and Imagenette. The error bars represent the 95% confidence interval of the
average FE score computed on a batch of 128 samples. To objectively quantify
the effect of double backpropagation on the FE score, we compute the Pearson
correlation between the logarithmically spaced a-values and the resulting FE
score for each dataset. The resulting correlations and p-values are reported in
the corresponding figure captions.

On MNIST, we see a notable improvement in FE score with increasing o,
which is in accordance with the observations made visually in [25]. Once the
model becomes over-regularised, FE drops again. However, this effect is much
less visible on CIFAR-10 and Imagenette, suggesting that the effect on MNIST
might not generalise to other, more complex datasets.

As noted in previous research [23,25,12], neural networks trained with input
gradient regularisation tend to be more robust to adversarial perturbations. In
Figure 3, we see that input gradient regularisation indeed results in a measur-
able improvement on the local Lipschitz constant and Max-Sensitivity of the
explanations, although the magnitude of the effect again varies across datasets.

Finally, we investigate the complexity of explanations for increasing values
of a. The results are shown in Figure 4. In contrast with the previous metrics,
the effect of input gradient regularisation on the complexity does not seem to
follow a clear trend. A slight decrease in complexity can generally be observed
when using ResNet, although this decrease is not visible when using LeNet.

Additional results on a wider variety of datasets and models can be found in
Appendix A.

3 https://github.com/saeyslab/gradient-regularisation-interpretability
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Fig.1: Test set accuracy for varying values of a. Each dot corresponds to a
separately trained model.

5 Conclusion

We have been able to quantitatively confirm the observation that input gradient
regularisation improves the faithfulness of saliency maps on the MNIST dataset.
However, we show that this effect does not seem to generalise to more complex
datasets such as CIFAR-10 and ImageNette. Additionally, when focusing on
different aspects of the quality of saliency, such as robustness and complexity,
our results show that the effect of gradient regularisation is dependent on the
specific dataset and/or model. Again, the effect seems to be strongly dependent
on the dataset in question. We conclude that subjective observations regarding
the quality of saliency maps are not guaranteed to generalise to different datasets.

We hypothesise that the differences in results between datasets can be at-
tributed to differences in input dimensionality. The Faithfulness metric, for ex-
ample, perturbs each pixel individually. However, with increasing image res-
olution, a single pixel naturally has a diminishing influence on model outputs.
Hence, the Faithfulness estimate is susceptible to a curse of dimensionality where
increasing resolution causes the metric to be dominated by noise. Alternatively,
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Fig. 2: Faithfulness Estimate for different datasets and varying values of «. Each
dot corresponds to a separately trained model. The error bars represent the 95%
confidence interval of the Faithfulness Estimate computed on 128 images. For
each dataset, p and p are the Pearson correlation and corresponding p-value
between « and the Faithfulness Estimate.

previous work has exhibited a similar problem for input gradients, which tend
to become increasingly noisy in high-dimensional settings [13,28]. This suggests
that pixel-based saliency mapping may itself be an inherently more difficult prob-
lem in high-dimensional settings. However, more research is needed to clarify the
precise mechanisms underlying our observations.

We argue that the quality of saliency maps should be quantified on a case-by-
case basis, by computing the metrics of interest on the specific dataset and model
of interest. Although we have shown that the influence of gradient regularisation
on the quality of saliency maps depends on the specific combination of model
and dataset, further research can be done to investigate which components of a
given use case are most influential on this effect.
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A Additional data

De Moor et al.

To avoid clutter, the major part of the supporting data is not shown in the main
report. We provide a more comprehensive view here. This includes additional
datasets such as Fashion-MNIST and KMNIST, as well as alternative model-
datasets combinations like MNIST using ResNet18. For all combinations, we re-
port results using both gradient saliency maps and DeepLift. Overall, the choice
between gradient saliency maps and DeepLift does not appear to significantly
affect the observed trends across datasets and models. The main discussion fo-
cuses on a subset of the results for clarity. However, it is consistent with the
broader set of data presented here, as the analysis used all results.

A.1 Accuracy

In this subsection the accuracy of all trained models is shown.
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A.2 Faithfulness
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A.3 Robustness
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A.4 Complexity
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Fig. 12: Entropy for different datasets and varying values of a. Each dot cor-
responds to a separately trained model. The error bars represent the 95% con-
fidence interval of the entropy computed on 128 images. Saliency maps were
calculated using DeepLift.
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B Visual results

This appendix presents a visual comparison of saliency maps produced by models
trained with different levels of regularisation. Even though it may not be possible
to objectively determine improvement in saliency maps without using concrete
metrics, it does seem that saliency maps on MNIST, KMNIST and Fashion-
MNIST (visible in Figures 14, 16, 17) appear more visually pleasing when the
input gradient of the trained model was regularised. This observation is consis-
tent with findings from [25]. However, we refrain from drawing the same conclu-
sion for CIFAR-10 (Figure 18) and Imagenette (Figure 19), as the effect seems
to appear less obvious in these cases, and it is difficult to assess such differences
based on visual inspection. Interesting to note is that, on MNIST, even non-
sensical models seem to show readable numbers when trained using a very high
gradient regularisation. An example of this is Figure 15, which shows saliency
maps generated on MNIST digits for a model trained on Fashion-MNIST.

1.000000e-+02 model thinks 7 - seven 1.151395¢-+07 model thinks 7 - seven

1

(a) First sample produced (b) Saliency sample of  (c) Saliency sample of

by an unshuffled dat- MNIST when o = 100. MNIST when v = 1.15€7.
aloader on the test set of
MNIST.

1.000000e+10 model thinks 7 - seven

(d)  Saliency  sample
of MNIST when o =
1.00e10.

Fig. 14: DeepLIFT saliency evaluation on MNIST data using LeNet.
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(a) Sample of MNIST, the
corresponding  Fashion-
MNIST class is Sneaker.
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1.151395¢+07 model thinks Bag

1.000000e +02 model thinks Sandal
e ]

(b) Saliency sample of  (c) Saliency sample of
MNIST when a = 100. MNIST when o = 1.15e7.

1.000000e+10 model thinks Ankle boot

(d)  Saliency  sample
of MNIST when o =
1.00e10.

Fig. 15: DeepLIFT saliency evaluation on MNIST data using LeNet trained on

Fashion-MNIST.

(a) First sample produced
by an unshuffled dat-
aloader on the test set of
KMNIST.

1.000000e+02 model thinks su

1.151395¢-+07 model thinks su

(b) Saliency sample of  (c) Saliency sample of
KMNIST when a = 100. KMNIST when o =
1.15e7.

1.000000e+10 model thinks ha

(d) Saliency sample of
KMNIST when o =
1.00e10.

Fig.16: DeepLIFT saliency evaluation on KMNIST data using LeNet.
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(a) First sample produced
by an unshuffled dat-
aloader on the test set of
Fashion-MNIST.

1.000000¢-+02 model thinks Ankle boot

(b) Saliency sample of
Fashion-MNIST when o
= 100.

1.000000¢+10 model thinks Ankle boot

(d) Saliency sample of
Fashion-MNIST when o
= 1.00e10.

1.151395¢+07 model thinks Ankle boot

(c) Saliency sample of
Fashion-MNIST when «
= 1.15€T7.

Fig.17: DeepLIFT saliency evaluation on Fashion-MNIST data using LeNet.

(a) First sample produced
by an unshuffled dat-
aloader on the test set of
CIFAR-10.

1.000000e+02 model thinks cat
om

(b) Saliency sample of
CIFAR-10 when a = 100.

1.000000e-+10 model thinks deer

5 0

(d) Saliency sample of
CIFAR-10 when o =
1.00e10.

1.151395e+07 model thinks cat

PR

(¢) Saliency sample of
CIFAR-10 when o =
1.15e7.

Fig. 18: DeepLIFT saliency evaluation on CIFAR-10 data using ResNet.
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(tench’, Tinca tinca')

o s w0 10 200 250 %0

(a) First sample produced
by an unshuffled dat-
aloader on the test set of
Imagenette.

De Moor et al.

1,000000e+03 model thinks (tench. Tinca tinca')

o s w0 10 20 250 30

(b) Saliency sample of Im-
agenette when o = 1000.

© w0 10 20 20 %0

(d) Saliency sample of
Imagenette when o =
1.29¢e13.

1.000000e+10 model thinks ('chain saw'. ‘chainsaw)

o 0 150 200 250 ;00

(c) Saliency sample of Im-
agenette when o = 1.00e7.

Fig. 19: DeepLIFT saliency evaluation on Imagenette data using ResNet.
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