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ABSTRACT

Certifiable robustness gives the guarantee that small perturbations around an in-
put to a classifier will not change the prediction. There are two approaches to
provide certifiable robustness to adversarial examples– a) explicitly training clas-
sifiers with small Lipschitz constants, and b) Randomized smoothing, which adds
random noise to the input to create a smooth classifier. We propose SPLITZ, a
practical and novel approach which leverages the synergistic benefits of both the
above ideas into a single framework. Our main idea is to split a classifier into
two halves, constrain the Lipschitz constant of the first half, and smooth the sec-
ond half via randomization. Motivation for SPLITZ comes from the observation
that many standard deep networks exhibit heterogeneity in Lipschitz constants
across layers. SPLITZ can exploit this heterogeneity while inheriting the scalabil-
ity of randomized smoothing. We present a principled approach to train SPLITZ
and provide theoretical analysis to derive certified robustness guarantees. We
present a comprehensive comparison of robustness-accuracy tradeoffs and show
that SPLITZ consistently improves upon existing state-of-the-art approaches on
MNIST, CIFAR-10 and ImageNet datasets. For instance, with ℓ2 norm perturba-
tion budget of ϵ = 1, SPLITZ achieves 61.7% top-1 test accuracy on CIFAR-10
dataset compared to state-of-art top-1 test accuracy 39.8%, a 55.0% improvement
in certified accuracy over various approaches (including, denoising based meth-
ods, ensemble methods, and adversarial smoothing).

1 INTRODUCTION

As deep learning becomes dominant in many important areas, ensuring robustness during test time
becomes increasingly important. Deep neural networks are vulnerable to small perturbations in the
inputs leading neural networks to make wrong decisions (Huang et al., 2021; Salman et al., 2019;
Jeong et al., 2021). Although many works have proposed heuristic defenses for training robust
classifiers, they are often shown to be inadequate against adaptive attacks. Therefore, a growing
literature on certifiable robustness has emerged; where the classifier’s prediction must be provably
robust around any input within a perturbation budget. There are two broad approaches to design
classifiers which are certifiably robust: a) design classifiers which are inherently stable (i.e., smaller
Lipschitz constants) (Gowal et al., 2018; Mirman et al., 2018; Lee et al., 2020). There are a variety
of methods to train classifiers while keeping the Lipschitz constants bounded. The second approach
is b) randomized smoothing (RS) (Cohen et al., 2019; Jeong et al., 2021; Lecuyer et al., 2019); here,
the idea is to smooth the decision of a base classifier by adding noise at the input. The approach
of RS has been generalized in several directions: Salman et al. (Salman et al., 2020) and Carlini
et al. (Carlini et al., 2023) combine denoising mechanisms with smoothed classifiers, Salman et al.
(Salman et al., 2019) combine adversarial training with smoothed classifiers, Zhai et al. (Zhai et al.,
2020) propose a regularization which maximize the approximate certified radius and Horváth et al.
(Horváth et al., 2021) combine ensemble models with smoothed classifiers.
Pros and Cons of Lipschitz constrained training versus RS: Lipschitz constrained training is
often only feasible for smaller neural networks (with few layers) and provides deterministic guar-
antees on certified radius. The main challenge is that accurate estimation of Lipschitz constants
becomes infeasible for larger networks, and upper bounds become loose leading to vacuous bounds
on certified radius. RS on the other hand offers scalability to arbitrarily large networks and provide
closed-form certified robust radius. These guarantees however, are probabilistic in nature and the
smoothing procedure treats the entire classifier as a black box.
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Certified Test Accuracy at ϵ (%)
Method Extra data 1.50 1.75 2.00 2.25 2.50
RS (Cohen et al., 2019) ✗ 67.3 46.2 32.5 19.7 10.9
MACER (Zhai et al., 2020) ✗ 73.0 50.0 36.0 28.0 -
Consistency (Jeong & Shin, 2020) ✗ 82.2 70.5 45.5 37.2 28.0
SmoothMix (Jeong et al., 2021) ✗ 81.8 70.7 44.9 37.1 29.3
DRT (Yang et al., 2021) ✗ 83.3 69.6 48.3 40.3 34.8
SPLITZ (this paper) ✗ 94.5 93.0 91.7 90.1 88.2

Table 1: Comparison of certified test accuracy (%) on MNIST under ℓ2 norm perturbation. Each
entry lists the certified accuracy using numbers taken from respective papers (RS results follow from
previous benchmark papers (Jeong & Shin, 2020; Jeong et al., 2021)).

Figure 1: (a) Lipschitz constants of each affine layer in pretrained models: VGG16 (Simonyan
& Zisserman, 2015), ResNet18 (He et al., 2016), SqueezeNet (Iandola et al., 2016). (b) Local
Lipschitz (upper) bound for three random CIFAR-10 images on VGG16; (c) Percentage analysis of
local Lipschitz (upper) bound in CIFAR-10 test data (additional results in Appendix A).

Overview of SPLITZ and Contributions. In this paper, we propose SPLITZ, which combines and
leverages the synergies offered by both Lipschitz constrained training and randomized smoothing.
The general idea is to split a classifier into two halves: the first half (usually a few layers) is con-
strained to keep a smaller Lipschitz (upper) bound, and the latter half of the network is smoothed
via randomization. Interestingly, this approach yields state-of-the-art results for several datasets. As
shown in Table 1, SPLITZ outperforms state-of-art techniques for every value of ϵ on the MNIST
dataset. For ϵ (ℓ2 norm perturbation size) even as large as 2.5, where the state-of-the-art accuracy is
34.8%, SPLITZ achieves certified accuracy of around 88.2%. In Section 4, we present comprehen-
sive set of results on MNIST, CIFAR-10 and ImageNet datasets. We also provide the comprehensive
theoretical analysis of the certified robustness guarantee of SPLITZ classifier. 1

Intuition behind SPLITZ. The intuition behind SPLITZ comes from the following key observa-
tions: a) Layer-wise Heterogeneity: many modern deep networks exhibit heterogeneity in Lipschitz
constants across layers. Fig 1(a) shows the per-layer Lipschitz constants for three networks (VGG16,
ResNet18 and SqueezeNet). We observe that the values can vary widely across the layers, and quite
often, latter half of the network often shows larger Lipschitz constants. b) Input (local) heterogene-
ity: We show the local Lipschitz (upper) bounds for three randomly sampled images from CIFAR-10
when passed through the first four layers of VGG16; note that the values of local Lipschitz bound
can vary across different inputs (images). The same behavior across the entire CIFAR-10 test dataset
is shown in Fig. 1(c). These observations motivate SPLITZ as follows: smoothing the input directly
may not be the optimal approach as it does not account for this heterogeneity. Instead, by introducing
noise at an intermediate stage of the classifier, the model can become more resilient to perturbations.
This suggests the idea of splitting the classifier. Simultaneously, the first half of the network should
also be “stable”, which motivates constraining the Lipschitz bound of first half of the network.

1All of our codes are provided in the supplementary materials.
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2 PRELIMINARIES ON CERTIFIED ROBUSTNESS
We consider a robust training problem for multi-class supervised classification, where we are given
a dataset of size N , {xi, yi}Ni=1, where xi ∈ Rd denotes the set of features of the ith training sample,
and yi ∈ Y := {1, 2, . . . , C} represents the corresponding true label. We use f to denote a classifier,
which is a mapping f : Rd → Y from input data space to output labels. From the scope of this paper,
our goal is to learn a classifier which satisfies certified robustness, as defined next.
Definition 1. (Certified Robustness) A (randomized) classifier f satisfies (ϵ, α) certified robustness
if for any input x, we have

P(f(x) = f(x′)) ≥ 1− α, ∀x′, such that x′ = x+ δ, ∥ δ ∥p≤ ϵ

where the probability above is computed w.r.t. randomness of the classifier f .
Intuitively, certified robustness requires that for any test input x, the classifier’s decision remains
locally invariant, i.e., for all ∀x′ around x, such that ∥ x′ − x ∥p≤ ϵ, f(x) = f(x′) with a high
probability. Thus, ϵ is referred to as the certified radius, and (1 − α) measures the confidence. We
mainly focus on ℓ2 norm (p = 2) for the scope of this paper.

The literature on certified robustness has largely evolved around two distinct techniques: Random-
ized Smoothing and Lipschitz constrained training for Certifiably Robustness. We first briefly sum-
marize and give an overview of these two frameworks, before presenting our proposed approach of
Split Lipschitz Smoothing.

Randomized Smoothing (RS) (Cohen et al., 2019) is a general procedure, which takes an arbitrary
classifier (base classifier) f , and converts it into a ”smooth” version classifier (smooth classifier).
Most importantly, the smooth classifier preserves nice certified robustness property and provides
easily computed closed-form certified radius. Specifically, a general smooth classifier gRS(·) de-
rived from f is given as:

gRS(x) = argmax
c ∈ Y

P
δ∼N (0,σ2I)

(f(x+ δ) = c) (1)

Intuitively, for an input x, g(x) will output the most probable class predicted by the base classifier
f in the neighbourhood of x with a high confidence 1 − α. In the paper (Cohen et al., 2019), they
prove that g(x) is robust against ℓ2 perturbation ball of radius ϵ = σΦ−1(pA) around x, where σ
is the standard deviation of the Gaussian noise, and pA is the probability that the most probable
class predicted by the classifier f is cA. RS is arguably the only certified defense which can scale to
large image classification datasets. Based on RS, a number of studies have been undertaken in this
field: RS was originally proposed to deal with ℓ2 norm bounded perturbations; but was subsequently
extended to other norms using different smoothing distributions, including ℓ0 norm with a discrete
distribution (Lee et al., 2019), ℓ1 norm with a Laplace distribution (Teng et al., 2020), and the ℓ∞
norm with a generalized Gaussian distribution (Zhang et al., 2020). Other generalizations include
combining RS with adversarial training to further improve certified robustness and generalization
performance (Salman et al., 2019) or denoising mechanisms (such as diffusion models) are often
considered in conjunction with RS (Salman et al., 2020; Carlini et al., 2023).

Achieving a large certified radius can be equivalently viewed as learning a classifier with small
Lipschitz constant. The Lipschitz constant is a fundamental factor in numerous studies focused on
training a certifiably robust neural network, which can be defined as follows:
Definition 2. (Global and Local Lipschitz Constant(s)) For a function f : Rd → Y , the Global,
Local, and γ-Local Lipschitz constants (at an input x) are respectively, defined as follows:

(Global Lipschitz constant) Lf = sup
x,y∈dom(f);x̸=y

||f(y)− f(x)||p
||y − x||p

(2)

(Local Lipschitz constant) Lf (x) = sup
y∈dom(f);y ̸=x

||f(y)− f(x)||p
||y − x||p

(3)

(γ-Local Lipschitz constant) L
(γ)
f (x) = sup

y∈B(x,γ);y ̸=x

||f(y)− f(x)||p
||y − x||p

, (4)

where B(x, γ) denotes the ℓp-ball around x of radius γ, i.e., B(x, γ) = {u : ||u− x||p ≤ γ}.
Informally, L(γ)

f (x) captures the stability of the function f in the neighborhood of x, where the
neighborhood is characterized by an ℓp-ball of radius γ.
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Figure 2: Schematic of SPLITZ training framework.

Lipschitz constrained training for Certifiably Robustness A reliable upper bound for the local
Lipschitz constant is essential for the robustness of a classifier. However, computing the exact
value of local Lipschitz constants can be computationally challenging, prompting researchers to
seek approximations, in terms of upper bounds. Thus, a line of works focus on deriving a tighter
local Lipschitz bound e.g.,Zhang et al. (2019); Fazlyab et al. (2019); Jordan & Dimakis (2020).
Another line of works utilize the local Lipschitz bound to obtain better robustness guarantees, e.g.,
Hein & Andriushchenko (2017); Weng et al. (2018). Furthermore, there are several works which aim
to train a certified robust classifier as we briefly summarize next. One approach is to estimate/upper
bound the global Lipschitz constant of the classifier (during each training epoch) and use it to ensure
robustness. For instance, Tsuzuku et al. (2018); Lee et al. (2020); Leino et al. (2021) follow this
general approach. The challenge is that the bounds on global Lipschitz constants can be quite large,
and do not necessarily translate to improve certified robustness. An alternative approach is to use
a local Lipschitz bound (for each individual input x), as in Huang et al. (2021) and then explicitly
minimize the Lipschitz bound during the training process. For simplicity, we refer to the upper
bound of the local Lipschitz constant as the “local Lipschitz constant”.

3 SPLITZ: INFERENCE, CERTIFICATION AND TRAINING

In this Section, we first describe the details of the proposed SPLITZ classifier along with the mo-
tivation as well as key distinctions from prior work. We then present new theoretical results on
certified radius for SPLITZ. Subsequently, we describe the training methodology for SPLITZ as
well as inference and computation of the certified radius. Suppose we are given a base classi-
fier f : Rd → Y which is a composition of K functions. Consider an arbitrary “split” of f as
f(·) = fR(fL(·)) ≜ fR ◦ fL. As an example, if the classifier has K = 2 hidden layers, i.e.,
f(x) = f2(f1(x)), then there are K + 1 = 3 possible compositions/splits: a) fR = I , fL = f2 ◦ f1,
b) fR = f2, fL = f1, and c) fR = f2 ◦ f1, fL = I , where I represents the identity function.

Definition 3. (SPLITZ Classifier) Let f be a base classifier: Rd → Y . Consider an arbitrary split
of f as f(·) = fR(fL(·)). We define the SPLITZ classifier gSPLITZ(·) as follows:

gSPLITZ(x) = argmax
c ∈ Y

P
δ∼N (0,σ2I)

(fR(fL(x) + δ) = c) (5)

The SPLITZ smoothing classifier is illustrated in Fig 2. The basic idea of SPLITZ is two fold: smooth
the right half of the network using randomized smoothing and constrain the Lipschitz constant of
the left half. Specifically, to robustly classify an input x, we add noise to the output of the left half
(equivalently, input to the right half) of the network, i.e., fL(x) and then follow the same strategy as
randomized smoothing thereafter. While RS takes care of smoothing the right half, we would still
like the left half to be as stable as possible. Thus in addition to smoothing, we need to ensure that
the Lipschitz constant of the left half fL of the network is also kept small. We next present our main
theoretical result, which allows us to compute the certified radius for SPLITZ.

Theorem 1. Let us denote L
(γ)
fL

(x) as the γ-local Lipschitz constant of the function fL at x in a
ball of size γ, and RfR(fL(x)) as the certified radius of the function fR at the input fL(x), with
probability at least (1− α). Then, for any input x, with probability 1− α, gSPLITZ(x) has a certified
radius of at least,

RgSPLITZ(x) = max
γ≥0

min

{
RfR(fL(x))

L
(γ)
fL

(x)
, γ

}
(6)

The proof of Theorem 1 is presented in Appendix C. Given an input x, in order to compute the
certified radius for SPLITZ classifier, we need L

(γ)
fL

(x), i.e., the γ-local Lipschitz constant (discussed
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Figure 3: Comparison of certified radius with ℓ2 norm perturbation w.r.t RS (Cohen et al., 2019) and
SPLITZ (ours), when varying levels of Gaussian noise σ ∈ {0.25, 0.5, 1.0}.

in the next Section) and the certified radius of right half of the classifier, i.e., RfR(fL(x)). For
Gaussian noise perturbation in the second half, RfR(fL(x)) is exactly the randomized smoothing
ℓ2 radius (Cohen et al., 2019), given as RfR(fL(x)) = σ

2 (Φ
−1(pA) − Φ−1(pB)), where pA is the

lower bound of the probability that the most probable class cA is returned, pB is upper bound of the
probability that the “runner-up” class cB is returned.

Remark 1: Optimization over γ We note from Theorem 1 that finding the optimal choice of γ is
crucial. One way is to apply the efficient binary search during the certify process to find the optimal
value of γ. Specifically, we set the initial value of γ and compute the corresponding local Lips-
chitz constant L(γ)

fL
(x) at input x. By comparing the value between γ and RfR(fL(x))/L

(γ)
fL

(x),
we divide the search space into two halves at each iteration to narrow down the search space un-
til γ∗ = RfR(fL(x))/L

(γ∗)
fL

(x). Another way is to do a one-step search. Specifically, we first

approximate the local Lipschitz constant L̃(γ)
fL

(x) at x by averaging local Lipschitz constants of in-

ference data given the inference γ. We then set γ′ = RfR(fL(x))/L̃
(γ)
fL

(x) and re-calculate the

local Lipschitz constant L̃(γ′)
fL

(x) according to γ′. Finally, we compute the approximate optimal

γ∗ = RfR(fL(x))/L̃
(γ′)
fL

(x). Overall, we show the certification process in detail in Algorithm 1.

Remark 2: Split Optimization In Theorem 1, we presented our result for an arbitrary split of the
classifier. In principle, we can also optimize over how we split the classifier. If the base classifier is a
composition of K functions and the left part of the classifier fL(s) contains s layers and fR contains
(K − s) layers, then we can find the optimal split s∗ by varying s from 0, 1, 2, . . . ,K. We can
observe that selecting s = 0 corresponds to conventional randomized smoothing whereas s = K
corresponds to label smoothing. In our experiments (see Section 4), we find that it is sufficient to
split after a few layers (e.g., split the classifier after the s = 1st layer, fL = f1) and this alone
suffices to outperform the state-of-art methods (Salman et al., 2019; Cohen et al., 2019; Jeong &
Shin, 2020; Jeong et al., 2021) on the CIFAR-10 dataset, where we show the comparison of certified
radius (RS vs SPLITZ) in Fig 3. Similar behavior can also be observed on other image datasets such
as ImageNet and MNIST. We further discuss the impact of different splitting strategies in Section 4.

Training Methodology for SPLITZ In this Section, we present the details on training the SPLITZ
classifier. The key to ensuring the certified robustness of the SPLITZ classifier is to keep the local
Lipschitz constant of the left half of the classifier fL small while smoothing the right half of the
classifier fR. Let us denote wL, wR as the training parameters of fL and fR, respectively. We
propose the following training loss function:

min
wL,wR

1− λ

N

N∑
i=1

Eδ[Loss(fwR

R (fwL

L (xi) + δ), yi)] +
λ

N

N∑
i=1

max(θ, L(γ)

f
wL
L

(xi)), (7)

where λ ∈ [0, 1] is a hyperparameter controlling the tradeoff between the accuracy and robustness,
θ is a learnable parameter to optimize the local Lipschitz constant, and Loss(·) is the loss func-
tion (e.g., cross entropy loss). Following the literature on randomized smoothing, we replace the
expectation operators with their empirical estimates, and our loss function becomes:

min
wL,wR

1− λ

N

N∑
i=1

(
1

Q

Q∑
q=1

Loss(fwR

R (fwL

L (xi) + δq), yi)

)
︸ ︷︷ ︸

”Smoothing” loss forfR

+
λ

N

N∑
i=1

max(θ, L(γ)

f
wL
L

(xi))︸ ︷︷ ︸
Lipschitz regularization forfL

. (8)
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As illustrated in Eq 8, we first input the image xi to the left part of the classifier fL(xi) and then add
noise δq , which forms the noisy samples fL(xi) + δq . We then feed noisy samples to the right part
of the classifier fR(fL(xi) + δq) and obtain the corresponding prediction. Given the true label yi,
the loss (e.g., cross entropy) w.r.t xi can be computed. At the same time, the local Lipschitz constant
of the left part of the classifier needs to be minimized. To this end, we propose a regularization term
to the loss function, which controls the local Lipschitz constant of fL. In addition, we do not want
the value of the local Lipschitz constant to become too small during the training process, which
may lead to a poor accuracy. Therefore, we set a learnable Lipschitz constant threshold θ for local
Lipschitz constant of fL, and use max(θ, L(γ)

fL
(xi)) as the regularization term.

Algorithm 1 SPLITZ Inference & Certification
1: Sample n0 number of noise and augment

fL(x): fL(x) + δ1, . . . , fL(x) + δn0

2: Predict the top class from outputs of fR: cA
← fR(fL(x) + δ1),. . . ,fR(fL(x) + δn0

)
3: Sample n number of noise and augment

fL(x): fL(x) + δ1, . . . , fL(x) + δn
4: Approximate the lower confidence bound of

the probability of the top class: pA ←
fR(fL(x) + δ1),. . . ,fR(fL(x) + δn)

5: if pA > 0.5 then
6: Compute the certified radius of fR:

RfR(fL(x))← σΦ−1(pA)
7: Search the optimal γ and calculate the cor-

responding local Lipschitz bound (Eq. 9).
8: Compute the overall certified radius at x

(Theorem 1).
9: Return prediction cA and robust radius

RgSPLITZ
(x)

10: else
11: Return Abstain
12: end if

Computing the Local Lipschitz bound: We
note that both SPLITZ training as well as in-
ference/certification require the computation of
the local Lipschitz constant of the left half of
the network, i.e., fL. The simplest approach
would be to use a bound on the global Lipschitz
constant of fL. For example, if fL is composed
of s layers, with each layer being a combina-
tion of an affine operation followed by ReLU
nonlinearity, then the following simple bound
could be used:

L
(γ)
fL

(x) ≤ ||Ws||2 × ||Ws−1||2 . . . ||W1||2,

where Ws is the weight matrix of layer s
and ||Ws||2 denotes the corresponding spectral
norm. However, this bound, while easy to com-
pute turns out to be quite loose. More impor-
tantly, it does not depend on the specific input x
as well as the parameter γ. Fortunately, bound-
ing the local Lipschitz constant of a classifier is
an important and a well studied problem. There
are plenty of mechanisms to estimate the lo-
cal Lipschitz bound of fL. In principle, our
SPLITZ classifier is compatible with these lo-
cal Lipschitz bound estimation algorithms. From the scope of this paper, we use the methodology
proposed in (Huang et al., 2021) which leads to much tighter bounds on the local Lipschitz constant
and maintain the specificity on the input x. Specifically, we apply the clipped version of activation
layers (e.g. ReLU) to constrain each affine layer’s output and obtain the corresponding upper bound
(UB) and the lower bound (LB) for each affine layer, where the classifier is given an input x around
a γ ball. We use an indicator function Iv to represent index of the rows or columns in the weight
matrices of each affine layer, which within the range from LB to UB. By multiplying each affine
layer’s weight matrix and each clipped activation layer’ indicator matrix, the tighter local Lipschtz
constant can be obtained. Assume fL network contains s-affine-layer neural network and each affine
layer is followed by a clipped version of the activation layer, (upper bound of) the local Lipschitz
constant L of fL around the input x is:

L
(γ)
fL

(x) ≤∥WsI
v
s−1 ∥2 × ∥ Ivs−1Ws−1I

v
s−2 ∥2 · · · ∥ Iv1W1 ∥2, (9)

where Ws is the weight matrix of layer s.

Summary of SPLITZ Training Methodology Overall, our training procedure is presented in Al-
gorithm 2 (See Appendix B). During the process of computing local Lipschitz constant of fL, for
each iteration, we feed the input to the classifier fL and calculate the LB and UB of outputs of each
affine layer in fL given the input x within a γ ball. We then can calculate the indicator matrix Iv and
compute the spectral norm of the reduced weight matrix ∥ IvsWsI

v
s ∥ for each layer s in fL using

power iteration. By multiplying the reduced weight matrix of each affine layer in fL, we are able to
arrive at the local Lipschitz constant of fL. Secondly, we smooth the right half of the neural network
fR by sampling from Gaussian noise with zero mean and adding it to the output of fL. Then we
feed the noisy samples fL(x) + δ to fR and obtain the corresponding loss. Next, we minimize the
overall loss and backward the parameters to optimize the overall network f . Finally, we certify the
base classifier f to obtain the Lipschitz smoothing classifier gSPLITZ as shown in Algorithm 1.
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4 EVALUATION

In this section, we evaluate the SPLITZ classifier on three datasets, MNIST(LeCun et al., 1998),
CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015), where we demon-
strate that our proposed approach consistently surpasses other state-of-the-art methods. For all
datasets, we report the approximate certified test accuracy and certified radius of smoothed classi-
fiers over test datasets (full test datasets in MNIST and CIFAR-10 datasets and a subsample of 1,000
test data in ImageNet dataset). Same as previous works, we vary the noise level σ ∈ {0.25, 0.5, 1.0}
for the smoothed models and certified the same noise level σ during the inference time. To ensure a
fair comparison with previous studies, we provide the highest reported results from each paper for
the corresponding three levels of noise magnitudes. To improve certified robustness, we utilize the
tighter local Lipschitz bound introduced in (Huang et al., 2021). For three datasets, we use the same
model as previous works (Cohen et al., 2019; Carlini et al., 2023; Jeong et al., 2021; Jeong & Shin,
2020) (LeNet for MNIST, ResNet110 for CIFAR-10, ResNet50 for ImageNet). All the baseline
mechanisms and more experimental details are described in Appendix E.

Evaluation metric Our evaluation metric to measure the certified robustness of the smooth clas-
sifier is based on the standard metric proposed in (Cohen et al., 2019): the approximate certified
test accuracy, which can be estimated by the fraction of the test dataset which CERTIFY classifies
are correctly classified and at the same time corresponding radius are larger than radius ϵ without
abstaining. Another alternative metric is to measure the average certified radius (ACR) considered
by (Zhai et al., 2020),which are provided in Appendix E. We show that SPLITZ consistently outper-
forms other mechanisms w.r.t ACR. For all experiments, we applied the ℓ2 norm input perturbation.

SPLITZ Methodology For all three datasets, we split the classifier after 1st affine layer where the
left half of the classifier contains one convolution layer followed by the clipped ReLU layer (See
Appendix D). For the ImageNet dataset, the only difference is that we remove the BatchNorm layer
after the 1st affine layer and we replace the ReLU layer with the clipped ReLU layer in the first
half of the network, which helps us obtain a tighter local Lipschitz bound of the first half of the
classifier. The rest of the classifier is the same as original models (LeNet for MNIST, ResNet110 for
CIFAR-10, ResNet50 for ImageNet).

Dataset Configuration For the MNIST, CIFAR-10 and ImageNet dataset(s), we draw N = 105, 105

and 104 respectively noise samples to certify the smoothing model following (Cohen et al., 2019;
Carlini et al., 2023; Jeong et al., 2021). We set the Lipschitz threshold (See Sec 3) as θ = 0.5, 0.5
and 0.4 respectively. For local Lipschitz constrained training, we set tradeoff parameter λ (See Sec
3) evenly decrease from 0.7−0.3, 1−0.7 and 0.9−0.6 respectively. We use one Nvidia P100 GPU
to train the SPLITZ model with batch size 512, 256 and 128 respectively. We apply Adam Optimizer
for three datasets. For the MNIST dataset, we train 150 epochs and set the initial learning rate as 0.1.
The learning rate is decayed (multiplied by 0.1) by 0.01 at every 30 epochs (30th, 60th...). For the
CIFAR-10 dataset, we train 400 epochs for the ResNet110 and set the initial learning rate as 0.001
and final learning rate as 10−6. The learning rate starts to evenly decay at each epoch from epoch
200. For the ImageNet dataset, we train 200 epochs for the ResNet50 and set the initial learning rate
as 0.01. The learning rate starts to decay at each 40 epochs. We report our training and certifying
time, along with more experimental details in Appendix E.

4.1 MAIN RESULTS

Results on MNIST As showed in Table 1, we can observe that SPLITZ outperforms other state-
of-art approaches in almost every value of ϵ. Impressively, we find that the SPLITZ classifier has
a significant improvement when the value of ϵ is large. For instance, when ϵ = 2.50, SPLITZ
classifier achieves 88.2% compared to state-of-art top-1 test accuracy 34.8% certified test accuracy
on the MNIST dataset. Moreover, when we increase ϵ from 1.50 to 2.50, RS drops from 67.3% to
10.9% decreasing 56.4% test accuracy. SPLITZ, however, maintains higher certified test accuracy
from 94.5% to 88.2% decreasing only 6.3% test accuracy.

Results on CIFAR10 As shown in Table 2 and Fig 3, our method outperforms the state-of-art ap-
proaches for every value of ϵ on CIFAR-10 dataset. Interestingly, we find that the split Lipschitz
training has a significant improvement when the value of ϵ is large. For instance, when ϵ = 1.0, the
model achieves 61.7% top-1 test accuracy on CIFAR-10 dataset compared to state-of-art top-1 test
accuracy 39.8%, an 61.7% improvement over the prior works. One hypothesis is that minimizing the
Lipscitz bound of f1 (L ≤ 1) is able to boost the certified radius of the model. Intuitively, more sam-
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Certified accuracy at ϵ (%)
Method Extra data 0.25 0.5 0.75 1.0
PixelDP (Lecuyer et al., 2019) ✗ 22.0 2.0 0.0 0.0
RS (Cohen et al., 2019) ✗ 61.0 43.0 32.0 22.0
SmoothAdv (Salman et al., 2019) ✗ 67.4 57.6 47.8 38.3
SmoothAdv (Salman et al., 2019) ✓ 74.9 63.4 51.9 39.6
MACER (Zhai et al., 2020) ✗ 71.0 59.0 46.0 38.0
Consistency (Jeong & Shin, 2020) ✗ 68.8 58.1 48.5 37.8
SmoothMix (Jeong et al., 2021) ✗ 67.9 57.9 47.7 37.2
Boosting (Horváth et al., 2021) ✗ 70.6 60.4 52.4 38.8
DRT (Yang et al., 2021) ✗ 70.4 60.2 50.5 39.8
ACES (Horváth et al., 2022) ✗ 69.0 57.2 47.0 37.8
DDS (Carlini et al., 2023) ✓ 76.7 63.0 45.3 32.1
DDS (finetuning) (Carlini et al., 2023) ✓ 79.3 65.5 48.7 35.5
SPLITZ (ours) ✗ 81.2 75.8 69.4 61.7

Table 2: Comparison of the approximate certified test accuracy (%) on CIFAR-10 under ℓ2 norm
perturbation. Extra data indicates whether their models incorporate other datasets in their models.
Each entry lists the certified accuracy using numbers taken from respective papers. We set our values
bold face when the value outperforms the best among the comparison methods.

Certified accuracy at ϵ (%)
Method Extra data 0.5 1 1.5 2.0 3.0
PixelDP (Lecuyer et al., 2019) ✗ 16.0 0.0 0.0 0.0 0.0
RS (Cohen et al., 2019) ✗ 49.0 37.0 29.0 19.0 12.0
SmoothAdv (Salman et al., 2019) ✗ 56.0 43.0 37.0 27.0 20.0
MACER (Zhai et al., 2020) ✗ 57.0 43.0 31.0 25.0 14.0
Consistency (Jeong & Shin, 2020) ✗ 50.0 44.0 34.0 24.0 17.0
SmoothMix (Jeong et al., 2021) ✗ 50.0 43.0 38.0 26.0 20.0
Boosting (Horváth et al., 2021) ✗ 57.0 44.6 38.4 28.6 21.2
DRT (Yang et al., 2021) ✗ 46.8 44.4 39.8 30.4 23.2
ACES (Horváth et al., 2022) ✗ 54.0 42.2 35.6 25.6 19.8
DDS (Carlini et al., 2023) ✓ 71.1 54.3 38.1 29.5 13.1
SPLITZ (ours) ✗ 58.4 46.2 38.2 31.6 20.2

Table 3: Comparison of the approximate certified test accuracy (%) on ImageNet under ℓ2 norm
perturbation. We set our values bold face when the value outperforms the best among the comparison
methods. Bold face with underline means that SPLITZ outperforms state-of-art methods except DDS
(Carlini et al., 2023) with extra data. The columns and rows have the same meaning as in Table 2.
ples are correctly classified while corresponding radius are larger than given ϵ. In addition, we can
observe the similar trend as MNIST dataset. SPLITZ maintains higher certified test accuracy (from
81.2% to 61.7%) when we increase ϵ from 0.25 to 1.00 compared to other state-of-art mechanisms.

Results on ImageNet We show the comparison of different certified robustness techniques on Im-
ageNet dataset in Table 3. We observe similar trends to MNIST and CIFAR10 datasets, where
SPLITZ is effective on certified robustness with a wide range of image datasets. It’s noteworthy that
SPLITZ outperforms other state-of-art mechanisms except DDS (Carlini et al., 2023), which uses
denoising diffusion models with extra data. Moreover, SPLITZ consistently achieves better ACR
(average certified radius) than other mechanisms on the ImageNet dataset as shown in Appendix E.

4.2 ABLATION STUDY

We also conduct an ablation study to explore the effects of hyperparameters in our proposed method
on CIFAR-10 and MNIST datasets. We will explain the effect of global (local) Lipschitz bound,
effect of input perturbation δ and effect of learnable Lipschitz threshold parameter θ.

Impact of splitting location As mentioned in Section 3, our SPLITZ classifier can be optimized
over different split ways, where we conduct the experiments and show our results in Table 4. For
example, when ϵ = 2, splitting after the 1st, or 2nd, or 3rd layer result in certified accuracy of
91.7%, 74.7% and 1.3% respectively. These results indicate that splitting the neural network early
achieves better performance. Intuitively, splitting the neural network early helps the model minimize
the local Lipschitz bound, which improves the certified robustness leading to a higher certified test
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Certified Test Accuracy at ϵ (%)
Location of Splitting 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
1st affine layer 97.4 96.9 96.2 95.4 94.5 93.0 91.7 90.1 88.2
2nd affine layer 94.5 92.9 90.7 87.8 84.3 79.9 74.7 68.2 60.3
3rd affine layer 92.6 87.7 80.5 67.2 32.3 7.8 1.3 0.0 0.0

Table 4: Comparison of certified test accuracy of SPLITZ with Gaussian noise σ = 0.5 for varying
the splitting layer on MNIST dataset with LeNet.

Figure 4: Comparison of certified test accuracy of SPLITZ with Gaussian noise σ = 0.25 for (a)
global vs local Lipschitz bound (γ), (b) varying the local Lipschitz threshold θ ∈ {0.3, 0.5, 0.7}.

accuracy given the same ϵ. As the splitting becomes ”deeper”, estimating the local Lipshitz constant
also becomes harder, which implies that a looser bound leads to smaller certified radius.

Effect of global (local) Lipschitz constant of the first half of the classifier As shown in Fig 4
(a), we investigate the effect of (upper bound of) the Lipschitz constant of left half of the classifier
on certified test accuracy. Interestingly, we can observe that tighter Lipschitz bound gives better
certified accuracy given the same radius. Furthermore, using a bound on the local Lipschitz constant
to compute the certified accuracy is always better than using the global Lipschitz constant. This is
also clearly evident from the result of Theorem 1.

Certified Test Accuracy at ϵ (%)
γ 0.00 0.25 0.50 0.75 1.00 1.25
0.05 85.6 81.2 75.8 69.4 61.7 53.2
0.10 85.7 81.3 75.2 68.5 61.2 52.4
0.20 85.3 80.5 75.2 69.0 61.6 54.2

Table 5: Comparison of certified test accu-
racy of SPLITZ with Gaussian noise σ =
0.25 for varying γ (the size of the ball
around input x) on CIFAR-10 dataset.

Effect of θ (Lipschitz threshold) As shown in Fig
4(b), we analyze the effect of the training thresh-
old θ (See Eq 8). For smaller values of ϵ, SPLITZ
with higher Lipschitz constant achieves better perfor-
mances. Conversely, SPLITZ with a smaller Lipschitz
constant can boost certified radius, which obtains a rel-
ative higher certified test accuracy when ϵ is larger.
This ablation study further validate that the key of our
SPLITZ classifier is to maintain a relative small Lips-
chitz constant for the left half of the classifier.

Effect of γ (size of radius around input x) According to above results, constraining the local
Lipschitz constant achieves better performance. To further explore the benefit of local Lipschitz
constrained training, it is necessary to explore the indicator matrix Iv in Eq 9, which depends on the
size of the ball around the input (i.e., the hyperparameter γ). In Table 5, we show how varying γ
impacts the certified test accuracy for different values of ϵ. We observe that smaller values of γ lead
to higher certified accuracy for all values of ϵ.

5 DISCUSSION AND CONCLUSION
In this paper, we presented SPLITZ, a novel and practical certified defense mechanism, where we
constrained the local Lipschitz bound of the left half of the classifier and smoothed the right half
of the classifier with noise. Furthermore, we provide the comprehensive theoretical analysis of the
certified robustness guarantee of SPLITZ. We showed results on several benchmark datasets and
obtained significant improvements over state-of-art methods for MNIST, CIFAR-10 and close to
state-of-the-art for ImageNet. We believe that combining the core idea of SPLITZ with other recent
techniques, such as denoising diffusion models, adversarial re-training etc., can be a fruitful next
step to further improve certified robustness.
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Figure 5: Lipschitz Constants of each affine layer in pretrained models:(a) 4C3F model (there are 4
convolution layers and 3 fully- connected layers in the neural network. ) (Huang et al., 2021) , (b)
Alexnet model (Krizhevsky et al., 2012), (c) ResNet34 model (He et al., 2016). We can observe the
similar trends that right half of the model usually contain a larger Lipschitz constant, while the left
half of the model preserves a relatively smaller Lipschitz constant.

Figure 6: (a) Local Lipschitz bound for three random CIFAR-10 images on Alexnet, (b) Percentage
analysis of local Lipschitz bound in CIFAR-10 test data.

A ADDITIONAL LIPSCHITZ BOUND RESULTS

In this Section, we provide additional Lipschitz constants results in the prevalent neural networks in
Fig 5. We can observe the similar trends as previous that the right half of the neural network is more
unstable than the right half of the neural network. As shown in Fig 6 (a), we notice considerable
variation in the values of local Lipschitz constants across different input images, a trend that is
consistent throughout the entire CIFAR-10 test dataset as depicted in Fig 6 (b). These findings lead
us to reconsider the efficacy of directly smoothing the input. Such an approach doesn’t cater to the
observed heterogeneity. Alternatively, injecting noise at an intermediary step within the classifier
can make the model more robust to disturbances

B COMPARISON AND EXTENSION OF SPLITZ

Comparison to (Lecuyer et al., 2019) Different from (Lecuyer et al., 2019), which estimates the
sensitivity of the first half of the network and apply differential privacy mechanisms to preserve the
certified robustness, we minimize the Lipschitz constant while applying the randomized smoothing
to improve the certified robustness. We prove the certified robustness by the property of Lipschitz
constant and randomized smoothing, and we derive the closed-form certified radius. We illustrate
the schematic of our SPLITZ mechanism in Fig 2. Moreover, we show the training algorithm in
Algorithm 2
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Algorithm 2 SPLITZ Training
Input: Training set D = {xi, yi}Ni=1; noise level σ, training steps T , Lipschitz threshold θ, training
input perturbation γ

1: for t = 0, . . . , T − 1 do
2: Compute local Lipschitz constant of fL: L(fL, x, γ)← cal local Lip(fL, x, γ) .
3: Sample noise δ and add it to outputs of fL to obtain noise samples: fL(x) + δ
4: Feed the noise samples to fR network to get the corresponding predictions: fR(fL(x) + δ)
5: Set the local Lipschitz threshold θ and minimize the loss function in Eq. 8.
6: end for

Function cal local Lip(fL, x, γ)
1: Compute the UBk and LBk for each layer k in fL(x) given the perturbation γ around input x
2: Compute the indicator matrix Ivk for each layer k
3: Compute the local Lipschitz constant L(γ)

fL
(x) (Eq. 9)

Return L
(γ)
fL

(x)

Compatibility of SPLITZ with other defenses In addition, we claim that the SPLITZ mechanism
is also compatible with other RS based certified robust techniques, such as adversarial smoothing
(Salman et al., 2019), mixsmoothing (Jeong et al., 2021) or denoising diffusion models (Carlini
et al., 2023). As an example, (Carlini et al., 2023) propose a denosing mechanism using a diffusion
model, which achieves the state-of-the-art. Our SPLITZ classifier contains two parts, left part is
constrained by a small local Lipschitz constant while right part is smoothed by noise, which is
same as a randomized smoothing based mechanism. Thus, our model can easily add a diffusion
denoising model after the noise layer (after fL(x) + δ) and then feed the denoised samples into
the fR. Similarly, for adversarial smoothing or mixsmoothing, SPLITZ is adaptable to feed either
adversarial examples (fL(x′)+ δ) or mixup samples (fL(x̃)+ δ) respectively to the right half of the
classifier fR.

C PROOF OF THE THEOREM 1

Theorem 1. Let us denote L
(γ)
fL

(x) as the γ-local Lipschitz constant of the function fL at x in a
ball of size γ, and RfR(fL(x)) as the certified radius of the function fR at the input fL(x), with
probability at least (1− α). Then, for any input x, with probability 1− α, gSPLITZ(x) has a certified
radius of at least,

RgSPLITZ(x) = max
γ≥0

min

{
RfR(fL(x))

L
(γ)
fL

(x)
, γ

}
(10)

Proof. Let us consider an input x to SPLITZ classifier gSPLITZ(·) and define the following function

g̃(u) ≜ argmax
c∈Y

Pδ(fR(u+ δ) = c). (11)

We first note from Definition 3 that gSPLITZ(x) can be written as gSPLITZ(x) = g̃(fL(x)), where the
function g̃ is the smoothed version of fR. We are given that the smooth version g̃ has a certified
radius of Rg̃(u) ≜ RfR(u) with probability at least 1−α. This is equivalent to the statement that for
all u′ such that ||u− u′||p ≤ RfR(u), we have g̃(u) = g̃(u′). We are also given L

(γ)
fL

(x), the γ-local
Lipschitz constant of the function fL at x in a ball of size γ. This implies that for all ||x−x′||p ≤ γ,

||fL(x)− fL(x
′)||p ≤ L

(γ)
fL

(x)||x− x′||p (12)

Now, setting u = fL(x) and u′ = fL(x
′), we obtain

||u− u′||p = ||fL(x)− fL(x
′)||p ≤ L

(γ)
fL

(x)||x− x′||p. (13)
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Now observe that ensuring gSPLITZ(x) = gSPLITZ(x
′) is equivalent to ensuring g̃(fL(x)) =

g̃(fL(x
′)), which in turn is equivalent to g̃(u) = g̃(u′). Thus, if we ensure that

L
(γ)
fL

(x)||x− x′||p ≤ RfR(fL(x))↔ ||x− x′||p ≤
RfR(fL(x))

L
(γ)
fL

(x)
(14)

then gSPLITZ(x) = gSPLITZ(x
′). However, we also note that ||x − x′||p ≤ γ, therefore the

certified radius is given by min(RfR(fL(x))/L
(γ)
fL

(x), γ). We finally note that the choice of γ (size
of the ball) was arbitrary, and we can pick the optimum choice that yields the largest radius. This
leads to the final expression for certified radius for SPLITZ:

RgSPLITZ(x) = max
γ≥0

min

{
RfR(fL(x))

L
(γ)
fL

(x)
, γ

}
(15)

and completes the proof of the Theorem.

D LIPSCHITZ CONSTRAINED TRAINING

From the scope of this paper, we utilize the local Lipschitz contrained training for the left half of
the classifier introduced in (Huang et al., 2021). We focus on l2 norm denoted as ∥ · ∥. Now we
consider a neural network f containing L affine layers (parameterized by w) each followed by a
clipped version ReLUθ, which is defined as follows:

ReLUθ(x) =


0, if x ≤ 0

x, if 0 < x < θ

θ, if x ≥ θ

(16)

The neural network maps input x to output f(x) using the following architecture:

z1 = x; zl(x) = ReLUθ(Wlx), zL+1 = WLzL (17)

We define the perturbation around the input x as:

x′ = x+ ϵ, ∥ ϵ ∥≤ δ, δ ≥ 0 (18)

By adding perturbation around input x within a δ ball, z(x′) can be bounded element-wise as LB ≤
z(x′) ≤ UB, where LB and UB can obtain by bound propagation methods (Gowal et al., 2018; Lee
et al., 2020). We then define the diagonal matrix Iv to represent the entries where ReLUθ’s outputs
are varying:

Iv(i, i) =

{
1, if UBi > 0 and LBi < θ

0, otherwise
(19)

Next, the output of the ReLUθ Dv can be defined as follows:

Dv(i, i) =

{
1(ReLUθ(zil ) > 0), if Iv(i, i) = 1

0, otherwise
(20)

where 1 denote the indicator function. Then the local Lipschitz bound at input x is:

Llocal(x, f) ≤∥WLI
v
L−1 ∥∥ IvL−1WL−1I

v
L−2 ∥ · · · ∥ Iv1W1 ∥ (21)

As stated in (Huang et al., 2021), it straight forward to prove v
L−1WL−1I

v
L−2 ∥≤∥ WL−1 ∥ using

the property of eigenvalues. We briefly prove it following from Huang et al. (2021).

Proof. Let W ′ = [W I]T , The singular value of W ′ is defined as the square roots of the eigenvalues
of W ′T W ′. We know the following

W ′TW ′ = WTW + IT I ≥WTW. (22)

Therefore, we get the following result:

∥W ′ ∥≥∥W ∥ (23)

We complete the proof.
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Next, we will give a toy example to further illustrate the idea of local Lipschitz bound.

A toy example Here we provide a similar toy example as mentioned in (Huang et al., 2021). Con-
sider a 2-layer neural network with ReLUθ activation layer:

x→ Linear1(W 1)→ ReLUθ → Linear2(W 2)→ y (24)

where x ∈ R3 and y ∈ R and W l denotes the weight matrix for layer l. Moreover the threshold
θ = 1.

Given the input [1,-1,0] with ℓ2 perturbation 0.1. Assume the weight matrices are:

W 1 =

[
2 0 0
0 2 0
0 0 1

]
,W 2 = [1, 1, 1] (25)

Thus, we have the following:

Input [1,−1, 0]→

[
[0.9 1.1]
[−1.1 −0.9]
[−0.1 0.1]

]
×

[
2 0 0
0 2 0
0 0 1

]
→

[
[1.8 2.2]
[−2.2 −1.8]
[−0.1 0.1]

]
(26)

According to the above upper bound (UB) and lower bound (LB), we obtain the IV function as
follows:

I1V =

[
0 0 0
0 0 0
0 0 1

]
(27)

Overall, we have the local Lipschitz bound as follows:

Llocal(x, f) ≤∥W 2I1V ∥∥ I1V W 1 ∥= 1 (28)

For the global Lipschitz bound, we have the following:

Lglobal ≤∥W 2 ∥∥W 1 ∥= 4 (29)

Overall, we can find that the local Lipschiz bound is much tighter than the global Lipschitz bound.

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional results for the three datasets, e.g., MNIST, CIFAR-10, Ima-
geNet. We first provide the details of three datasets. Next, we illustrate the baselines used in our
paper. Note that we report the numbers (certified test accuracy, average certified radius) from re-
spective papers. In the main results part, we report our certified test accuracy for each value of noise
σ. Furthermore, we provide additional ablation study results to further investigate the performance
of the SPLITZ classifier.

E.1 TRAINING DETAILS

For all value of σ, we keep the value of training σ and testing σ to be the same. We apply the noise
samples n0 = 100 to predict the most probably class cA and denote α = 0.001 as the confidence
during the certifying process. Furthermore, we use n = 100, 000, n = 100, 000, n = 10, 000 to cal-
culate the lower bound of the probability pA for the MNIST. CIFAR-10 and ImageNet respectively.
Moreover, to maintain a relatively small local Lipschitz constant of left half of the SPLITZ classifier,
we set the threshold of clipped ReLU (see Sec D) as 1 for all three datasets. For estimating the local
Lipschitz constant of the left half of the classifier, the power iteration is 5, 2, 2 during the training
for MNIST, CIFAR-10 and ImageNet respectively following from (Huang et al., 2021).
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Training
Datasets Architecture # of GPUs Training per epoch (s) Certifying per image (s)
MNIST LeNet 1 15.1 1.0

CIFAR-10 ResNet110 1 59.5 50.7
ImageNet ResNet50 1 4810.5 83.1

Table 6: SPLITZ training time and certifying time across three datasets (MNIST using LeNet,
CIFAR-10 using ResNet 110 and ImageNet using ResNet 50).

E.2 DETAILS OF DATASETS

MNIST dataset (LeCun et al., 1998) contains handwritten digits usually used for image classification
problems. The dataset is comprised of a total of 70,000 images, with 60,000 images in the training
set and 10,000 in the test set. The dataset has 10 classes and is in grayscale format. We pre-process
the MNIST dataset using normalization.

CIFAR-10 (Krizhevsky et al., 2009) dataset consists of 60,000 RGB images distributed across 10
categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each category
is represented by 6,000 images. The dataset is divided into a training set with 50,000 images and
a test set containing 10,000 images. We employ the conventional data augmentation techniques of
random horizontal flipping and random translation by up to 4 pixels, consistent with methods used
in other baseline studies (Carlini et al., 2023; Cohen et al., 2019; Jeong et al., 2021). Additionally,
we normalize each image on a pixel-by-pixel basis.

ImageNet (Russakovsky et al., 2015) dataset contains over 1.2 million training images and 50,000
validation images, labeled to 1,000 classes. For the purpose of data augmentation, we apply random
cropping at a 224x224 resolution along with random resizing and horizontal flips to the training
images. During testing, however, we execute a 224x224 center crop after resizing the images to a
256x256 size.

E.3 BASELINE MECHANISMS

We compare our method with various existing techniques proposed for robust training of smoothed
classifiers, as listed below: (a) PixelDP (Lecuyer et al., 2019): cerified robust training with differ-
ential privacy mechanism; (b) RS (Cohen et al., 2019): standard randomized smoothing with the
classifier trained with Gaussian augmentation; (c) SmoothAdv (Salman et al., 2019): adversarial
training combined with randomized smoothing; (d) MACER (Zhai et al., 2020): a regularization
approach which maximizes the approximate certified radius; (e) Consistency (Jeong & Shin, 2020):
a KL-divergence based regularization that minimizes the variance of smoothed classifiers f(x+ δ)
across δ; (f) SmoothMix (Jeong et al., 2021): training on convex combinations of samples and cor-
responding adversarial on smoothed classifier; (g) Boosting (Horváth et al., 2021): a soft-ensemble
scheme on smooth training; (h) DRT (Yang et al., 2021): a lightweight regularized training on ro-
bust ensemble ML models; (i) ACES (Horváth et al., 2022): a selection-mechanism combined with
a smoothed classifier; (j) DDS (Carlini et al., 2023): a denoised diffusion mechanism combined with
a smoothed classifier.

E.4 TRAINING AND CERTIFYING TIME

Our SPLITZ model needs to vary the value of γ (the size of the ball around input x) during the
training epoch. Thus, we may need relatively more time to obtain the optimal model. To solve this,
we apply the early stop mechanism to obtain the better optimized model during the training process.
At the same time, we decay our learning rates during the training process. We use one Nvidia P100
GPU to train our SPLITZ model and report our training time (certifying time) for each one epoch
(one image) in the Table 6.
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σ Methods MNIST CIFAR-10 ImageNet

0.25

RS∗ 0.911 0.424 -
SmoothAdv∗ 0.932 0.544 -

MACER 0.918 0.556 -
Consistency 0.928 0.552 -
SmoothMix 0.933 0.548 -

SPLITZ 1.664 1.025 -

0.50

RS∗ 1.553 0.525 0.733
SmoothAdv∗ 1.687 0.684 0.825

MACER 1.583 0.726 0.831
Consistency 1.697 0.726 0.822
SmoothMix 1.694 0.737 0.846

SPLITZ 3.412 1.562 0.974

1.00

RS∗ 1.620 0.542 0.875
SmoothAdv 1.779 0.660 1.040

MACER 1.520 0.792 1.008
Consistency 1.819 0.816 0.982
SmoothMix 1.823 0.773 1.047

SPLITZ 2.886 1.970 1.320

Table 7: Comparison of average certified radius (ACR) across three different datasets (MNIST,
CIFAR-10, ImageNet). We can observe that for three datasets, SPLITZ consistently achieves better
results compared to other state-of-art mechanisms. * is reported by (Jeong & Shin, 2020; Jeong
et al., 2021)

E.5 RESULTS ON ACR

In this section, we investigate the performance of SPLITZ using average certified radius (ACR),
where we measure the correct samples’ average certified radius over the test datasets (MNIST,
CIFAR-10 and ImageNet). As shown in Table 7, we provide the comprehensive comparison re-
sults of average certified radius (ACR) compared to other certified robust techniques. Our SPLITZ
consistently outperforms others, where the ACR of SPLITZ is almost twice that of others’ certified
radius on MNIST dataset. For instance, when σ = 0.5, the ACR of SPLITZ is 3.412, where the
state-of-the-art is 1.697.

E.6 MAIN RESULTS

E.6.1 MNIST RESULTS

For the results of MNIST dataset as shown in Table 8, we observe that our SPLITZ classifier con-
sistently obtains better test certified accuracy while we have a large value of ϵ (e.g., especially when
ϵ is larger than 1.5). Moreover, we found that when noise level is 0.5, our model achieves best re-
sults. The interesting phenomenon observed by us is that SPLITZ model with noise 0.5 maintains a
relatively small local Lipschitz bound for the left half of the classifier (average L

(γ)
fL

is 0.49). While

SPLITZ model with noise 0.25 obtain a relatively larger local Lipschitz bound, where average L
(γ)
fL

is 0.52. We believe that this is the main reason that our SPLITZ model with noise 0.5 achieves better
results.

Another phenomenon we observed is that when the noise level becomes larger, our SPLITZ model
can be sensitive to noise, which may need to search different layers (See Remark 2) to obtain the
better results. For instance, our SPLITZ model can barely learn the information from noisy samples
while splitting after the 1st affine layer when σ = 1. Thus, by searching the splitting location among
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Certified Test Accuracy at ϵ (%)
σ Methods 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

RS∗ 99.2 98.5 96.7 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER 99.0 99.0 97.0 95.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Consistency 99.5 98.9 98.0 96.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix 99.5 99.0 98.2 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DRT 99.5 98.6 97.6 96.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SPLITZ 98.2 97.7 97.0 96.2 95.2 94.0 92.3 49.9 0.0 0.0 0.0

0.50

RS∗ 99.2 98.3 96.8 94.3 89.7 81.9 67.3 43.6 0.0 0.0 0.0
MACER 99.0 98.0 96.0 94.0 90.0 83.0 73.0 50.0 0.0 0.0 0.0

Consistency 99.2 98.6 97.6 95.9 93.0 87.8 78.5 60.5 0.0 0.0 0.0
SmoothMix 99.0 98.4 97.4 95.7 93.0 88.5 81.8 70.7 0.0 0.0 0.0

DRT 99.2 98.6 97.4 95.6 93.3 88.5 81.2 68.6 0.0 0.0 0.0
SPLITZ 98.3 97.9 97.4 96.9 96.2 95.4 94.5 93.0 91.7 90.1 88.2

1.00

RS∗ 96.3 94.4 91.4 86.8 79.8 70.9 59.4 46.2 32.5 19.7 10.9
MACER 89.0 85.0 79.0 75.0 69.0 61.0 54.0 45.0 36.0 28.0 -

Consistency 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3
SmoothMix 95.5 93.5 90.5 86.2 80.6 73.4 64.3 54.5 44.9 37.1 29.3

DRT 96.0 94.1 90.2 86.6 80.7 73.2 63.7 54.3 46.7 40.3 34.7
SPLITZ 93.7 92.3 90.6 88.4 85.8 83.1 80.0 76.7 72.7 68.4 63.2

Table 8: Comparison of certified test accuracy of SPLITZ with Gaussian noise σ = [0.25, 0.5, 1] on
MNIST dataset. * is reported by (Jeong & Shin, 2020; Jeong et al., 2021).

Certified Test Accuracy at ϵ (%)
σ Methods 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.25

RS∗ 75.0 60.0 43.0 26.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv∗ 74.0 67.0 57.0 47.0 0.0 0.0 0.0 0.0 0.0 0.0

MACER 81.0 71.0 59.0 43.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 77.8 68.8 58.1 48.5 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix 77.1 67.9 57.9 47.7 0.0 0.0 0.0 0.0 0.0 0.0

Boosting 83.4 70.6 60.4 52.4 0.0 0.0 0.0 0.0 0.0 0.0
DRT 81.5 70.4 60.2 50.5 0.0 0.0 0.0 0.0 0.0 0.0

SPLITZ 85.6 81.2 75.8 69.4 61.7 53.2 41.4 0.0 0.0 0.0

0.5

RS∗ 65.0 54.0 41.0 32.0 23.0 15.0 9.0 4.0 0.0 0.0
SmoothAdv∗ 50.0 46.0 44.0 40.0 38.0 33.0 29.0 23.0 0.0 0.0

MACER 66.0 60.0 53.0 46.0 38.0 29.0 19.0 12.0 0.0 0.0
Consistency 64.3 57.5 50.6 43.2 37.8 33.9 29.9 25.2 0.0 0.0
SmoothMix 65.0 56.7 49.5 43.3 37.2 31.7 25.7 19.8 0.0 0.0

Boosting 69.0 60.4 49.8 44.8 38.8 34.4 30.4 25.0 0.0 0.0
DRT 69.7 61.2 50.9 44.4 39.8 36.0 30.4 24.1 0.0 0.0

SPLITZ 78.2 75.1 71.2 66.8 62.4 58.2 53.7 49.1 44.9 40.2

1

RS∗ 47.0 39.0 34.0 28.0 21.0 17.0 14.0 8.0 5.0 3.0
SmoothAdv∗ 45.0 41.0 38.0 35.0 32.0 28.0 25.0 22.0 19.0 17.0

MACER 45.0 41.0 38.0 35.0 32.0 29.0 25.0 22.0 18.0 16.0
Consistency 48.1 43.9 39.3 34.7 30.0 27.6 24.7 22.0 19.5 17.3
SmoothMix 47.1 42.5 37.5 33.8 30.2 26.7 23.4 20.2 17.2 14.7

Boosting 49.6 44.0 38.2 35.6 32.6 29.2 25.8 22.0 19.8 16.2
DRT 50.4 44.4 40.8 37.0 34.2 30.1 26.8 23.9 20.3 -

SPLITZ 66.5 63.7 60.9 57.6 54.7 51.7 48.5 45.3 42.5 39.6

Table 9: Comparison of certified test accuracy of SPLITZ with Gaussian noise σ = [0.25, 0.5, 1] on
CIFAR-10 dataset. * is reported by (Zhai et al., 2020). In this table, we only report the mechanisms,
which provides the certified accuracy respectively for noise σ ∈ {0.25, 0.5, 1}.

different layers, we split after the 2nd affine layers and obtain the corresponding better results in
Table 8.
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Certified Test Accuracy at ϵ (%)
σ Methods 0.00 0.50 1.00 1.50 2.00 2.50 3.00

0.5

RS∗ 57.0 46.0 37.0 29.0 0.0 0.0 0.0
SmoothAdv∗ 54.0 49.0 43.0 37.0 0.0 0.0 0.0

MACER 64.0 53.0 43.0 31.0 0.0 0.0 0.0
Consistency 55.0 50.0 44.0 34.0 0.0 0.0 0.0
SmoothMix 55.0 50.0 43.0 38.0 0.0 0.0 0.0

Boosting 58.6 52.0 44.6 38.4 0.0 0.0 0.0
SPLITZ 65.2 58.4 46.2 33.4 22.6 0.0 0.0

1

RS∗ 44.0 38.0 33.0 26.0 19.0 15.0 12.0
SmoothAdv∗ 40.0 37.0 34.0 30.0 27.0 25.0 20.0

MACER 48.0 43.0 36.0 30.0 25.0 18.0 14.0
Consistency 41.0 37.0 32.0 28.0 24.0 21.0 17.0
SmoothMix 40.0 37.0 34.0 30.0 26.0 24.0 20.0

Boosting 45.0 41.0 37.2 34.0 28.6 24.6 21.2
SPLITZ 57.4 52.8 45.2 38.2 31.6 26.6 20.2

Table 10: Comparison of certified test accuracy of SPLITZ with Gaussian noise σ = [0.5, 1] on
ImageNet dataset. Similar as above, we only report the mechanisms, which provides the certified
accuracy respectively for noise σ ∈ {0.5, 1}.

E.6.2 CIFAR-10 RESULTS

As shown in Table 9, our method outperforms the state-of-art approaches in every value of ϵ on
CIFAR-10 dataset. In addition, we find that the SPLITZ has a significant improvement when the
value of ϵ is large. For instance, when ϵ = 1.0, the model achieves 61.7% top-1 test accuracy on
CIFAR-10 dataset compared to state-of-art top-1 test accuracy 39.8%, an 55.0% improvement over
the prior works. SPLITZ maintains higher certified test accuracy (from 81.2% to 61.7%) when we
increase ϵ from 0.25 to 1.00 compared to other state-of-art mechanisms (e.g. RS drops from 61.0%
to 22.0 %).

E.6.3 IMAGENET RESULTS

As shown in Table 10, our method outperforms the state-of-art approaches in most of the time
on ImageNet dataset. Since the key of SPLITZ is that we need to maintain relatively small local
Lipschitz bound for our left half of the classifier. Compared to MNIST and CIFAR-10, ImageNet
is a harder dataset with a more complex model architecture, which makes local Lipschitz bound for
our left half of the classifier looser and hard to minimize during the training process, which provides
space to improve our model.
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E.7 ADDITIONAL ABLATION STUDY

We provide additional results while varying the training threshold θ (See Sec 3 for more details)
on CIFAR-10 dataset as shown in Fig 7 and Table 11. This experiment further proves that with
a smaller local Lipschitz constant of left half of the classifier, our SPLITZ classifier can boost the
certified test accuracy when ϵ is larger. Conversely, when local Lipschitz bound of left half of the
classifier is larger, we have higher certified test accuracy for smaller ϵ as shown in Fig 7.

Figure 7: Varying the local Lipschitz threshold θ ∈ {0.3, 0.5, 0.7} during the training process.

Certified Test Accuracy at ϵ (%)
Training Threshold θ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.3 80.6 76.3 70.9 65.7 59.7 53.5 46.9 40.5 33.8
0.5 85.6 81.2 75.8 69.4 61.7 53.2 41.4 0.0 0.0
0.7 87.3 82.9 76.5 68.5 58.9 0.0 0.0 0.0 0.0

Table 11: Comparison of certified test accuracy of SPLITZ with Gaussian noise σ = 0.25 for varying
the local Lipschitz constant training threshold θ on CIFAR-10 dataset.
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