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ABSTRACT

Latent Diffusion Model (LDM) achieves state-of-the-art performances in image
generation yet raising copyright and privacy concerns. Adversarial attacks on
LDM are then born to protect unauthorized images from being used in LDM-
driven few-shot generation. However, these attacks suffer from moderate per-
formance and excessive computational cost, especially in GPU memory. In this
paper, we propose an effective adversarial attack on LDM that shows superior
performance against state-of-the-art few-shot generation pipeline of LDM, for ex-
ample, LoRA. We implement the attack with memory efficiency by introducing
several mechanisms and decrease the memory cost of the attack to less than 6GB,
which allows individual users to run the attack on a majority of consumer GPUs.
Our proposed attack can be a practical tool for people facing the copyright and
privacy risk brought by LDM to protect themselves.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020) have long held the promise of producing fine-grained content that could resemble real data.
Recently, Latent Diffusion Model (LDM) (Rombach et al., 2022; Podell et al., 2023), a variant of
diffusion models, showcased unprecedented capabilities in image generation tasks. LDM’s prowess
in few-shot generation—generating data with few-shot reference data—has pushed the state-of-the-
art performance forward by a significant margin and sparked a craze for AI-generated art (Meng
et al., 2021; Gal et al., 2022; Ruiz et al., 2023; Roich et al., 2022; Zhang & Agrawala, 2023).

Clean Photoguard AdvDM Anti-DB       ITA       ITA+Data

Figure 1: Comparison of outputs of SDEdit (two top rows) and LoRA (two bottom rows) under
different attacks. The adversarial budget is 4/255.
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Figure 2: Few-shot generation based on adversarial examples outputs low-quality images.

While the opportunities presented by LDM are immense, the implications of its power are a double-
edged sword. Malicious individuals leverage LDM-driven few-shot generation to copy artworks
without authorization (Fan et al., 2023) and create fake not-suitable-for-work photos with personal
figures (Wang et al., 2023b). Such malevolent applications of LDM threaten the sanctity of personal
data and intellectual property.

Recognizing the need, adversarial attacks on LDM were born as countermeasures (Salman et al.,
2023; Liang et al., 2023; Shan et al., 2023; Van Le et al., 2023). These attacks add human-invisible
perturbations to the real image and transfer it to an adversarial example, making it unusable in
LDM-driven few-shot generation. Applications based on these adversarial attacks (Liang & Wu,
2023; Shan et al., 2023) serve as a tool to protect personal images from being used as reference data
for LDM-driven few-shot generation.

However, existing adversarial attacks on LDM suffer from moderate effectiveness. Faced with state-
of-the-art few-shot generation pipelines, for example, LoRA Hu et al. (2021), these attacks cannot
protect the content of images from being learned by LDM and thus taken as reference in malicious
image synthesis. Additionally, their requirements for GPU memory also deter normal people who
have no access to advanced GPUs from using them. For these two reasons, current adversarial
attacks have not yet moved beyond the academic realm to become a practical tool.

In this paper, we improve the adversarial attack on LDM from the aforementioned two aspects. First,
we improve its effectiveness against state-of-the-art LLM-driven few-shot generation methods. We
do this by designing a new targeted objective function for the attack. Furthermore, we introduce
three techniques in memory efficiency in our implementation of the attack to help decrease its GPU
memory cost to less than 6GB. We evaluate our attack and existing adversarial attacks on LDM
with two mainstream LDM-driven few-shot generation methods, SDEdit (Meng et al., 2021) and
LoRA (Hu et al., 2021). Experiments show that our attack outperforms existing adversarial attacks
on LDM in both effectiveness and memory efficiency.

Contributions Our contributions are two-fold. First, we propose a novel adversarial attack on LDM
with visible improvement in effectiveness against both SDEdit and LoRA. Second, we implement
three mechanisms to improve the memory efficiency of our attack, which is transferable to other
attacks. Both contributions focuses on bottlenecks of current adversarial attacks on LDM.

Impact Our attack can serve as a highly usable tool for ordinary people to protect their personal
images, including artworks and portraits, from being used as reference data in malicious image
synthesis supported by LDM-driven few-shot generation. This is a growing public concern because
the popularity of open-sourced LDM, such as Stable Diffusion Rombach et al. (2022), SDXL Podell
et al. (2023), and DeepFloyd IF, and the absence of the regulation to the utility of these models.
Before the society reaches a consensus on the definition of fair use of LDM, adversarial attacks on
LDM should be one of the most important tools for ordinary people to protect themselves against
unpredictable copyright and privacy risks induced by LDM.

2 BACKGROUND

2.1 LATENT DIFFUSION MODEL

LDM (Rombach et al., 2022) learns to generate the data in two stages.

VAE Stage VAE stage uses an encoder E and a decoder D to map the real data x and the latent
variable z0. Both the encoder E and the decoder D are implemented as a conditional Gaussian dis-
tribution centered on the output of a neural network, which takes x and z0 as the input, respectively.
They are trained in the style of VQVAE (Van Den Oord et al., 2017).

q(z0|x) = N (fE(x), σE)

q(x|z0) = N (fD(z0), σD)
(1)
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Note that the variances of these two Gaussian distribution are extremely small. Hence, we omit the
variance and consider the mapping deterministically.

Diffusion Stage Diffusion stage perturbs the latent variable z0 with Gaussian noise step by step
in the forward process q(z1:T |z0), generating a series of latent variables z1:T . This process fi-
nally maps z0 to an approximate standard Gaussian noise zT . A reverse process pθ(z0:T ) =
p(zT )

∏
t≤T pθ(zt−1|zt) is built to predict zt−1 from zt. Here, the starting point p(zT ) is a standard

Gaussian distribution, matching zT in the forward process. pθ(zt−1|zt) are parameterized condi-
tional Gaussian distribution given by the following definition:

pθ(zt−1|zt) = N (zt−1;
1
√
αt

(zt(z0, ϵ)−
βt√
1− αt

ϵθ(zt, t)), σtI) (2)

In the remainder, we follow Ho et al. (2020) to define constants αt, αt, βt. Intuitively, ϵθ(zt, t)) is a
noise predictor that extracts Gaussian noise from the perturbed latent variable zt. LDM then exploits
this predicted noise to denoise the zt and finally recover it to z0. The LDM parameter θ is optimized
by minimizing the lower bound of the pθ(z0), which is approximately simplified to the following
training loss:

LLDM = Ez∼q(z),ϵ∼N (0,1),t∥ϵθ(zt, t)− ϵ∥22 (3)

LDM-driven Few-shot Generation LDM shows amazing abilities in few-shot image generation.
Few-shot generation samples images based on a few reference images. These images often share
the same art style or demonstrate the same object. LDM-driven few-shot generation methods Meng
et al. (2021); Gal et al. (2022); Ruiz et al. (2023); Roich et al. (2022); Zhang & Agrawala (2023)
are able to sample images with similar art styles or contents with the reference image successfully.
Most of these methods fine-tune LDM on the reference images with the loss in Equation 3 so that
LDM learns their art styles or contents by learning to predict the noise on latents of these images.
Therefore, the key to fail the LDM-driven few-shot generation is to fail the noise predictor ϵθ(zt, t))
in predicting the noise accurately.

2.2 ADVERSARIAL ATTACKS ON LATENT DIFFUSION MODEL

Adversarial attacks on LDM generate adversarial examples by adding tiny perturbations to clean
images. These adversarial examples resembles clean images visibly but cannot be used as reference
images in LDM-driven few-shot generation, as demonstrated in Figure 2. Early works of this adver-
sarial attack are specific for certain few-shot generation methods. For example, Photoguard (Salman
et al., 2023) focuses on SDEdit (Meng et al., 2021) and AdvDM (Liang et al., 2023) targets for Tex-
tual Inversion (Gal et al., 2022). Generally, existing methods can be categorized into two groups.

Attacking VAE These attacks try to bias the latent variable z0 of the image x. This is done by
minimizing the distance between z0 and the latent variable zT0 of a target image xT . Since they only
involve the encoder and the decoder, we denote them by attacking VAE.

min
δ

D(z0, z
T
0 ), z0 = fE(x+ δ), zT0 = fE(x

T ) (4)

The main efforts of these attacks focus on the cherry-pick of the target image xT and the distance
metric D(·). Photoguard (Salman et al., 2023) picks the l2-norm as D(·). Mist (Liang & Wu, 2023)
introduces a specific target image that improves the visualization performance. DUAW (Ye et al.,
2023) finds that the SSIM between decoded latents is an expressive distance metric.

Attacking UNet UNet (Ronneberger et al., 2015) is adopted by LDM to instantiate the noise pre-
dictor ϵθ(zt, t). This group of adversarial attacks try to fail the noise predictor from accurately
predicting the noise of adversarial latent variables. AdvDM (Liang et al., 2023) does this by max-
imizing the training loss of LDM in Eq 3. Anti-Dreambooth (Van Le et al., 2023) and UDP (Zhao
et al., 2023) roughly follows the objective of AdvDM and introduces the poisoning setup to counter
Dreambooth (Ruiz et al., 2023), a popular few-shot genaration methods. Empirically, attacking
UNet appears to be more powerful than attacking VAE since it considers both UNet and VAE.
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3 IMPROVING TARGETED ATTACK

3.1 TARGETED ATTACKS

General Form of Targeted Objective Functions We focus on attacking UNet since it has stronger
performance than attacking VAE empirically Salman et al. (2023); Liang et al. (2023). Exist-
ing adversarial attacks on UNet Liang et al. (2023); Van Le et al. (2023) maximizes the training
loss of LDM. This objective is exactly to maximize the summation of KL-divergence between
q(zt−1|zt, z0) and pθ(zt−1|zt).

max
δ
LLDM = max

δ
Eq

∑
t>1

DKL(q(zt−1|zt, z0)||pθ(zt−1|zt))

= max
δ

Ez∼q(z),ϵ∼N (0,1),t∥ϵθ(zt, t)− ϵ∥22
(5)

Adversarial attacks can be intuitively explained as maximizing the distance between the model out-
put and the ground truth by adding adversarial perturbations to the model input. The distance serves
as the objective function. A common approach to improve the empirical performance of adversar-
ial attacks is to replace the ground truth in the objective function with a target and minimize the
new objective function (Liu et al., 2016; Carlini & Wagner, 2018; Dong et al., 2018; Qin et al.,
2019). Intuitively, this alternative goal makes the adversarial example similar to the target from the
perspective of the neural network and therefore confuses the network.

Inspired by this idea, the objective function in Equation 5 can be considered as the distance between
the ground truth q(zt−1|zt, z0) and the model output pθ(zt−1|zt). By replacing the ground truth
q(zt−1|zt, z0) with a target, we can introduce an alternative targeted objective function for adversar-
ial attack on LDM. Note that the ground truth here is a distribution rather than a fixed value. Hence,
the target should be a distribution. We denote the target distribution as Tt. The general form of
targeted objection function for adversarial attack on LDM can be then formulated as follows:

min
δ

J = min
δ

Eq

∑
t>1

DKL(Tt||pθ(zt−1|zt)) (6)

Some Trivial Targeted Objective Functions A natural choice to factorize Tt is q(zTt−1|zTt , zT0 ),
because it has the same form with the ground truth distribution. The only difference is the condition
latent variable zT0 = fε(x

T ). xT is a human-chosen target image other than the clean image to be
attacked. This distribution is a determined Gaussian distribution conditioned on zTt Ho et al. (2020)

q(zTt−1|zTt , zT0 ) = N (zTt−1;

√
αt−1βt

1− αt
zT0 +

√
αt(1− αt−1)

1− αt
zTt ,

1− αt−1

1− αt
βt)

= N (zTt−1;
1
√
αt

(zTt (zT0 , ϵ)− βt√
1− αt

ϵ),
1− αt−1

1− αt
βt) (reparameterization)

(7)

LDM does the parameterization in Equation 2. Combining this parameterization and Equation 7,
the targeted objective function is then determined, where we unify the noise ϵ in the sampling of zt
and zTt , following the idea in Van Le et al. (2023).

min
δ

J = min
δ

Eq

∑
t>1

DKL(q(z
T
t−1|zTt , zT0 )||pθ(zt−1|zt))

= min
δ

EzT
0 ,z0,ϵ,t

1

2σ2
t

√
αt
∥(zt(z0, ϵ)− zTt (zT

0 , ϵ))− βt√
1− αt

(ϵθ(zt(z0, ϵ), t)− ϵ)∥22

= min
δ

EzT
0 ,z0,ϵ,t

1

2σ2
t

∥(z0 − zT
0 )− βt√

αt

√
1− αt

(ϵθ(zt(z0, ϵ), t)− ϵ)∥22
(8)
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Note that Van Le et al. (2023) also introduces a targeted objective function. This objective function
differs from Equation 8 only by removing z0.

Following Van Le et al. (2023), we choose a real image (a portrait) as the target image. However, the
empirical result shows that both this targeted objective function and the one given by Van Le et al.
(2023) fail in successfully attacking LLM-driven few-shot generation under perturbation constraint
4/255. This is also cross-validated by the visualization result in Van Le et al. (2023) that its target
objective is inferior to its untargeted objective. To further investigate the impact of introducing
targets, we visualize the prediction error of U-Net and give explanation in Appendix B.2 and C

3.2 IMPROVING TARGETED ATTACKS

Target Distribution Tt We restart from the general form of the targeted objective function given
by Equation 6. The first question is, what is the form of our target distribution Tt?
We first determine a prior that we still confine the distribution to be Gaussian with a constant vari-
ance, because this makes the KL-divergence in Equation 6 tractable. As a result, we only need to
determine the mean of the target distribution.

As our intention is to ”trick” LDM by inducing it to predict the wrong distribution, the mean of
our target distribution should be very different from that of the conditional distribution pθ(zt−1|zt).
Note that for a trained LDM, the mean of pθ(zt−1|zt) must fit 1√

αt
(zt − βt√

1−αt
ϵ), where ϵ is the

Gaussian noise that predicted by ϵθ(zt, t). An intuitive idea is that for any ϵ, the prediction by
ϵθ(zt, t) collapses to a fixed value. We give highly intuitive and visualized comparison between
different choice of target distributions, showing that fixing a uniform target T does trick Unet to
predict worse.

However, not every fixed value works in attracting ϵθ(zt, t) under the scale constraint of adversarial
perturbation δ. We observe that this objective function introduces semantic of the target image xT

to the output image of SDEdit Meng et al. (2021), a few-shot generation method. The introduced
semantic acts as a very strong visual distortion to the output image. Intuitively, we can also add
the semantic of the target image into the output image of Text-to-Image process by enforcing the
denoising procedure to predict a noise that is close enough to zT0 . Thus, we also set our target latent
to be zT0 = fε(x

T ), where xT is a target image that is very different from natural images. To
conclude, we finally factorize the target distribution by Tt = N ( 1√

αt
(zt − βt√

1−αt
zT0 ), σT ). Here,

zT0 = fε(x
T ) and σT is any constant. Our Improved Targeted Attack (ITA) is finally determined:

min
δ

J = Ez0,ϵ,t∥ϵθ(zt(z0, ϵ), t)− zT0 ∥22 (9)

Additionally, the attack on the VAE Salman et al. (2023); Liang & Wu (2023) can be jointly op-
timized with our targeted objective function. Note that existing attacks on the VAE of LDM also
exploit a target image and minimize the distance between the adversarial example and the target
image in the latent space of the VAE. Let D(·) be the distance metric. We determine a joint targeted
objective function as follows, denoted by ITA+.

min
δ

J = Ez0,ϵ,tα∥z0 − zT0 ∥22 + ∥ϵθ(zt(z0, ϵ), t)− zT0 ∥22 (10)

Figure 3: Target image.

Target Image Target image xT does great impact on the performance
of the targeted objective function. For cherry-picking the target image
xT , we consider two kinds of images: natural images and images with
artificial patterns. The former is used in the targeted Anti-DB (denoted
by Anti-DB-T for short) (Van Le et al., 2023), while the latter is used in
Liang & Wu (2023) as the target image for VAE attack.

We first conduct an experiment to determine which kinds of images we
should use. We use these two kinds of images as the target image in both
Anti-DB-T and ITA (Equation 9). The result visualized in Figure 4 shows
that natural images lead to minor visual effects in the output images of
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Algorithm 1 Improved Targeted Attack (ITA)

1: Input: Image x, LDM θ, learning rates
α, γ, epoch numbers N,M,K, budget ζ,
loss functionLLDM in Equation 3, objective
function J in Equation 9 & Equation 10.

2: Output: Adversarial example x′

3: Initialize x′ ← x.
4: for n from 1 to N do
5: for m from 1 to M do

6: θ ← θ − γ∇θLLDM (x′, θ)
7: end for
8: for k from 1 to K do
9: x′ ← x′ − α∇x′J

10: x′ ← clip(x′, x− ζ, x+ ζ)
11: x′ ← clip(x′, 0, 255)
12: end for
13: end for

attacked few-shot generation methods. By contrast, artificial patterns leave obvious texture on the
output images. We show the detailed discussion in Appendix B.1. As the result, we pick the target
image from Liang & Wu (2023) (See in Figure 3) as our target image.

We furthermore investigate how two basic properties of the artificial patterns, impact the effective-
ness of the targeted attack. Here, pattern repetition means the number that the basic pattern, the
word MIST, repeats in the target image. We tune the contrast and pattern repetition of the image in
Figure 3 and produce several different images (shown in Figure 5). We then use these images as the
target images in ITA and compare the output images of LoRA under the attack of ITA. Details of
this experiment are also given in Appendix B.1. The result is visualized in Figure 5, which indicates
that both the contrast and the pattern repetition should not be too low.

To conclude, we recommend to use target images that consist of artifical patterns with sharp edges,
high contrast, and dense patterns, as the target image shown in Figure 3.

Poisoning Attack on LoRA Existing research shows that LDM is vulnerable to poisoning at-
tack Ye et al. (2023); Van Le et al. (2023). We factorize the objective function of the poisoning
attack setup with the targeted objective function given by Equation 9. Concretely, we fine-tune
LDM with the adversarial examples for one step and optimize the adversarial examples with the
trained LDM for one step, alternatively. We use LoRA Hu et al. (2021) with Dreambooth Ruiz et al.
(2023) to fine-tune LDM, since it is the most popular LDM-driven few-shot generation method and
thus our main target. The algorithm of this Improved Targeted Attack (ITA) is given in Algorithm 1.

4 IMPROVING MEMORY EFFICIENCY

We also work on improving the memory efficiency. The memory cost of our attack consists of three
occupies, which store model weights, the computational graph, and optimizer states, respectively.
In the adversarial attack, we only optimize the inputs so the memory used to store optimizer states
is small. We mainly consider to save memory by decreasing the memory to store model weights and
computational graph. Following mechanisms are introduced to our implementation of our attack.

METHOD MEMORY/GB

PHOTOGUARD 6.16
PHOTOGUARD+ 16.79
ADVDM 6.28

ANTI-DB 7.33
ITA&ITA+ 5.77

Table 1: GPU memory cost of
our method and baselines.

xFormers We leverage xFormers (Lefaudeux et al., 2022) to
reduce the memory cost of storing the computational graph.
xFormers is a toolbox that provides memory-efficient com-
putation operators for training and inference of transformer-
based modules. We use their attention operator in the compu-
tation of cross attention layers in UNet.

Gradient Checkpointing Chen et al. (2016) A common tool
of memory-efficient training is Gradient Checkpointing. Gra-
dient Checkpointing separates a neural network into blocks. In
forward-propagation, it only stores the activation. The back-
propagation is done block by block. For each block, it reconstructs the forward computational graph
within the block with the stored activation. Then, it constructs the backward computational graph
within the block and compute the gradient over the activation. This greatly reduces the GPU mem-
ory at the cost of computing time. To balance the memory and time cost, we only apply gradient
checkpointing in the down-block, mid-block, and up-block of the UNet.

We evaluate the GPU memory cost of existing adversarial attacks on LDM and that of our attack.
The setup of these baseline attacks and ours are demonstrated in Section 5.1. Note that PhotoGuard+
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refers to the diffusion attack in Salman et al. (2023)/ The result in Table 1 shows that the GPU
memory cost of our attack outperforms all baseline attacks. One key point is that our GPU memory
cost is lower than 6GB. This means that our attack is able to run on most of the consumer-level
GPUs, which helps popularize the application of adversarial attacks on LDM as a practical tool.

One concern of our memory-efficient attack is about the time cost. We also evaluate the running
time of attacking 20 images with our attack, which is 1739 seconds on one NVIDIA RTX 4090
GPU. This running time is acceptable for users who protect their personal images since the sum of
these images may not be large.

5 EXPERIMENT

Adversarial attacks on LDM aim at preventing unauthorized few-shot generation with LDM. In this
section, we evaluate our proposed method on two state-of-the-art few-shot generation pipelines.

SDEdit (Meng et al., 2021): An image-to-image pipeline that modifies the content of single image.
SDEdit can be used for fake photo creation concerning data privacy.

LoRA (Hu et al., 2021; Ruiz et al., 2023): The state-of-the-art LDM-driven few-shot generation
method that finetunes the LDM with low-ranked adapters on dozens input images. LoRA generates
high-quality images with similar items or styles of the input images. LoRA is the main concern
about unauthorized few-shot artwork copying.

5.1 EXPERIMENTAL SETUPS

SDEdit & Metrics SDEdit generates one output image conditioned on one input withholding the
structural similarity between them. To evaluate the structural similarity, we choose Multi-Scale
SSIM (MS-SSIM) (Wang et al., 2003). In addition, we also want to assess the semantic distor-
tion of the adversarial attacks. Thus, we also adopt CLIP Image-to-Image Similarity (denoted as
CLIP-SIM) as our metric. Successful SDEdit keeps both the structural and semantic similarity high
between the input and output images. Therefore, a strong adversarial attack is expected to have both
these metrics low. Implementation details of SDEdit and two metrics are given in Appendix A.

LoRA & Metrics LoRA generates output images with the same content or in the same style of input
images. LoRA does not guarantee the structural similarity between inputs and outputs. Hence, we
directly assess the image quality of outputs. Our experiment first finetunes LDM with LoRA and
then use the finetuned LDM to generate output images. Finetuning is done on 20 input images with
the same content or style. We then generate 100 output images with the finetuned LDM and assess
their image quality with CLIP-IQA (Wang et al., 2023a). An image with high quality have a low
score of CLIP-IQA. Therefore, a strong adversarial attack should yield a high CLIP-IQA score. The
implementation details of LoRA and CLIP-IQA are discussed in Appendix A.

Resolution The standard resolution for SD1.x is 512, while the one for SD2.x is 768. For cross-
model transferability experiments, we set the resolution of every model to 512, disregarding that the
standard resolution of SD2.1 is 768. The reason for this uniform resolution is to avoid the resizing,
which may introduce distortion to the attacks. However, as LoRA on SD2.1 naturally generate image
of resolution 768, we still test LoRA performance on SD2.1 on resolution 768.

Datasets & Backbone Model The experiment is conducted on CelebA-HQ (Karras et al., 2017) and
Wikiart (Saleh & Elgammal, 2015). For CelebA-HQ, we select 100 images and each of 20 photos
comes from an identical person. For Wikiart, we select 100 paintings that each of 20 paintings come
from the same artist. We use Stable Diffusion 1.5 as our backbone model, for it enjoys the most
active community in few-shot generation among all LDM-based generative models. Additionally,
we also investigate the performance of our attack with Stable Diffusion 1.4 and Stable Diffusion 2.1
as backbone models to validate its cross-model transferability.

Baselines We compare our attack with existing open-sourced adversarial attacks on LDM, includ-
ing AdvDM (Liang et al., 2023), PhotoGuard (Salman et al., 2023), and Anti-Dreambooth (Anti-
DB) (Van Le et al., 2023). The diffusion attack in Salman et al. (2023) is denoted by PhotoGuard+.
The implementation of baselines is detailed in Appendix A.
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CELEBA-HQ WIKIART
SDEDIT LORA SDEDIT LORA

MS-SSIM ↓ CLIP-SIM ↓ CLIP-IQA ↑ MS-SSIM ↓ CLIP-SIM ↓ CLIP-IQA ↑
NO ATTACK 0.88 93.38 20.66 0.62 89.77 22.88
ADVDM 0.81 83.41 24.53 0.30 85.29 34.03
PHOTOGUARD 0.86 89.24 27.52 0.62 88.01 37.52
ANTI-DB 0.82 84.12 33.62 0.30 87.25 46.74

ITA 0.73 74.70 31.46 0.23 76.13 40.54
ITA+ 0.69 67.47 35.68 0.29 76.07 48.53

Table 2: Comparision of baseline methods and ours over two few-shot generation pipelines

VICTIM SD1.4 SD1.5 SD2.1

BACKBONE
SDEDIT LORA SDEDIT LORA SDEDIT LORA

MS ↓ CS ↓ CI ↑ MS ↓ CS ↓ CI ↑ MS ↓ CS ↓ CI ↑
NO ATTACK 0.85 91.71 20.32 0.85 91.16 19.22 0.80 79.00 16.78
SD1.4 0.73 77.24 38.13 0.73 77.58 35.98 0.62 60.82 35.45
SD1.5 0.73 77.29 36.65 0.73 77.50 32.11 0.72 60.10 45.05
SD2.1 0.72 76.20 46.08 0.62 76.80 39.08 0.60 59.12 43.89

VICTIM SD1.4 SD1.5 SD2.1

BACKBONE
SDEDIT LORA SDEDIT LORA SDEDIT LORA

MS ↓ CS ↓ CI ↑ MS ↓ CS ↓ CI ↑ MS ↓ CS ↓ CI ↑
NO ATTACK 0.85 91.71 20.32 0.85 91.16 19.22 0.80 79.00 16.78
SD1.4 0.67 66.83 40.69 0.67 66.40 31.53 0.58 56.41 67.96
SD1.5 0.67 66.58 41.16 0.67 66.13 36.05 0.58 57.17 68.50
SD2.1 0.67 66.33 41.80 0.67 57.17 41.96 0.58 57.27 73.59

Table 3: Cross-model transferability of ITA(top) and ITA+(bottom). MS, CS, and CI are our three
metrics, MS-SSIM, CLIP-SIM, and CLIP-IQA, for short, respectively.

Hyperparameters & Implementation Details We tune the iteration number N to be 4. The budget
ζ in all adversarial attacks is set as 4/255, which is a tiny budget acceptable to artists. The finetuning
is done for M = 10 iterations on the learning rate γ = 1× 10−5 with LoRA in Alg 1. Loss weight
η, Step length α and iteration number K of the attack are set to be 1 × 102, 5 × 10−3, and 50,
respectively. All experiments are done on an NVIDIA RTX 4090 GPU.

5.2 OVERALL RESULT

We compare our two proposed attacks, named ITA (Eq 9) and ITA+ (Eq 10), to existing adversarial
attacks on LDM. The overall result of comparison in two LDM-driven few-shot generation methods
are demonstrated in Table 2. Our attack outperforms all baseline methods in decreasing the quality
of output images in few-shot generation methods and generalizes over both SDEdit and LoRA. We
visualize the output image of few-shot generation under our attack in Figure 2 and Appendix D.

5.3 CROSS-MODEL TRANSFERABILITY

Adversarial attacks on LDM are white-box and model-dependent, because their objective functions
are model-dependent. Hence, how these attacks have transferable performance across LDM-based
text-guided image generative models other than the backbone model θ is crucial for their practicality.

We evaluate the cross-model transferability of our attacks on three LDM-based text-guided image
generative models: Stable Diffusion 1.4, Stable Diffusion 1.5, and Stable Diffusion 2.1. Here,
backbone means the model used in generating adversarial examples and victim means the model
used in few-shot generation.

We use 100 images from CelebA-HQ, 20 in each of 5 groups, to generate adversarial examples on
three backbone models and run SDEdit and LoRA with these adversarial examples on three victim
models. Experimental setups stay the same with those stated in Section 5.1, except for adding the
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DEFENSE NO DEFENSE GAUSSIAN JPEG RESIZING SR

PARAMS σ = 4 σ = 8 Q = 20 Q = 70 2X 0.5X

LORA 25.51 17.24 28.39 38.13 29.01 26.10 32.91 39.63
SDEDIT 0.54 0.70 0.64 0.75 0.75 0.79 0.76 0.45

Table 4: Performance under different anti-attack methods. The noise budget is set to 8/255

strength of SDEdit to 0.4 to encourage the variety of the experiments. We post MS-SSIM (MS)
and CLIP-SIM (CS) of the output images of SDEdit and CLIP-IQA of those of LoRA in Table 3.
The result shows that adversarial examples generated by our attack can fail few-shot generation of
LDM-based text-guided image generative models other than the backbone model. Our attack shows
considerate cross-model transferability of our attack 1. Visualizations are given in Appendix B.4

5.4 ITA VS DENOISING-BASED ADVERSARIAL DEFENSE

Denoising-based adversarial defense is the most straight-forward and threatening approach to
counter adversarial attacks on LDM. These defense methods exploit hard-coded or model-based
denoisers to purify the adversarial perturbations, by which they transfer adversarial examples back
to clean images. These defenses can be used by malicious individuals to crack our protection to per-
sonal images and conduct unauthorized few-shot generation with them. Therefore, it is important to
investigate how robust our attack is against denoising-based adversarial defenses.

We conduct an experiment on one 20-image group of the adversarial examples generated by ITA
and ITA+ from CelebA-HQ. We use several denoising-based adversarial defense methods to de-
noise the adversarial perturbations on the example and then apply SDEdit and LoRA on these pu-
rified adversarial examples. The experimental setup follows the setup in Section 5.1 except for the
adversarial perturbation constraint, which is set to be 8/255, twice of the original constraint. This
is still a small constraint compared to the setup of existing adversarial attacks, such as 16/255 in
PhotoGuard (Salman et al., 2023) and Anti-DB (Van Le et al., 2023). For the defense methods,
we use Gaussian (Zantedeschi et al., 2017), JPEG (Das et al., 2018), Resizing (Xie et al., 2017),
SR (Mustafa et al., 2019). For hyperparameters, Gaussian adds Gaussian noise of standard variance
4 and 8 to the adversarial example. We try two JPEG compression qualities, 20 and 70. For Resizing
we have two setups, 2x up-scaling + recovering (denoted by 2x) and 0.5x down-scaling + recovering
(denoted by 0.5x). All interpolation in resizing is bicubic.

The result is demonstrated in Table 4. We also visualize the output images in Appendix B.5. It
shows that ITA and ITA+ still have strong impact on the output image quality of LDM-driven few-
shot generation after processing by denoising-based adversarial defense. The CLIPIQA score of
most cases even increase after the adversarial defense. A possible reason for the increase may be
the image quality degradation introduced by the defense. The diffusion model is then affected by
the degradation and produce lower quality outputs. The visualization in B.5 supports this point of
view. Considering this effect, malicious infringers may not conduct multiple times of denoising.
Hence, we believe that our adversarial attack has enough robustness to denoising-based adversarial
defense. A noteworthy point is that ITA/ITA+ stay extra robust for resizing and high-quality JPEG
compressing, which are two most common denoising methods. We believe the robustness enable
ITA/ITA+ into real-world application of protecting copyrighted contents. For real-world usage, we
also evaluate ITA under black-box settings. Details are given in Appendix B.3.

6 CONCLUSION

This paper proposes Improved Targeted Attack (ITA), a novel method of adversarial attack on LDM.
ITA benefits from an improved targeted objective function and outperforms existing adversarial at-
tacks in countering state-of-the-art LDM-based few-shot generation methods. Additionally, several
mechanisms are introduced to decrease the GPU memory cost of ITA to lower than 6GB, making it
available to run on most personal computers. ITA can serve as a practial tool for people exposed to
the risk of copyright and privacy raised by LDM-based few-shot generation to protect themselves.

1We use 512 as the uniform resolution. The result of SD2.1 may be different under the resolution 768 (See
Appendix B.4)
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A IMPLEMENTATION AND EXPERIMENTAL DETAILS

LoRA For the evaluation, we finetune LDM with on CelebA-HQ dataset using the prompt a photo
of a sks person, which was first used in the paper of Anti-Dreambooth (Van Le et al., 2023). This
is because CelebA-HQ consists of portraints of certain people. Similarly, we use the prompt a
painting of sks style on the WikiArt dataset, because WikiArt consists of paintings by certain artists.
The number of finetuning epochs is set to be 1000 which ensures LoRA on clean images achieves
considerate performance.

SDEdit The strength of SDEdit is set to be 0.3, which makes sense because a higher strength modi-
fies the input image too much and a lower one keeps too many details of the input image. We use a
null prompt to avoid the effect of prompts in the generation.

Metrics For MS-SSIM, we use the default setting in the implementation 2. CLIP-SIM computes
the cosine similarity between the input images and the output images in the semantic space of
CLIP (Radford et al., 2021) and is given by the following definition:

CLIP-SIM(X,Y ) = cos(Eclip(X), Eclip(Y )) (11)
where Eclip is the vision encoder of the CLIP Radford et al. (2021) model. CLIP-IQA is a non-
reference image quality assessment metric that computes the text-image similarity between the im-
age and some positive & negative prompts. In the official implementation 3, the author exploits
prompts such as Good image, Bad image, and Sharp image. An image with high quality is expected
to have high text-image similarity with positive prompts and low text-image similarity with negative
prompts. In our experiments, we use the positive prompt A good photo of a sks person and the
negative prompt A bad photo of a sks person for CelebA-HQ and the positive prompt A good photo
of a sks painting and the negative prompt A bad photo of a sks painting for WikiArt. Since we want
to measure how poor the output image quality is, we use the text-image similarity between output
images and the negative prompt. A strong adversarial attack results in low quality of output images
and a high similarity between output images and the negative prompt.

            Target                      Anti-DB-T                         ITA           

Figure 4: Comparison to a trivial targeted attack
(Anti-DB-T) and trivial target images.

Baselines We use the official implementa-
tion of Photoguard 4, AdvDM 5, and Anti-
Dreambooth 6 in our experiments. For Photo-
guard, we follow the default setup in the offi-
cial Python notebook file 7, except for tuning
the adversarial budget to 4/255. For AdvDM,
we also follow the default setup in the official
implementation. For Anti-Dreambooth, we
directly use the official implementation ex-
cept for transferring it to LoRA. The default
setup sets 10 steps of training LoRA and 10
steps of PGD attacks in every epoch. How-
ever, the default epochs of Anti-Dreambooth
is too time-consuming. Therefore, we tune
the total epochs of one single attack to be 4,
which is a fair comparison for our method.

B ABLATION STUDIES

B.1 DIFFERENT TARGET IMAGES

We conduct several experiments to validate
our observation in how to select the target im-
age xT in Section 3.2.

2https://github.com/VainF/pytorch-msssim
3https://github.com/IceClear/CLIP-IQA
4https://github.com/MadryLab/photoguard
5https://github.com/mist-project/mist
6https://github.com/VinAIResearch/Anti-DreamBooth
7https://github.com/MadryLab/photoguard/
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First, we pick two natural images, one from CelebA-HQ and the other from WikiArt, as our target
image in ITA. Additionally, we try the Anti-DB-T Van Le et al. (2023) with these two target im-
ages to distinguish the difference between normal targeted attack and ITA. Following the setup in
Section 5.1, we apply Anti-DB-T and ITA to LoRA. The output images of LoRA are visualized in
Figure 4. As shown in the figure, only using ITA and a proper target image can achieve satisfying
results. This indicates that both our optimizing goal and our choice of target is the key to a
successful attack. What is also noteworthy is that when using natural images(person and paintings)
as target, ITA still introduces the structural pattern in the output image, while Anti-DB-T shows
none. This also illustrate the superiority of our methods.

Second, we investigate how the pattern of the target image impacts the attack performance. The
result is visualized in Figure 5. When the pattern gets denser, the performance of the attack increases,
but starts to decrease when the pattern is too dense. The increase is fairly understandable, as a denser
pattern contains more semantic contents, which are introduced to the output images. We attribute
the decrease to the modeling ability of diffusion model. That is, the diffusion model is not capable of
modeling images of such intense semantic. Thus, the target latent cannot represents the semantic of
the original target image. Therefore, the targeted method fails. As for the contrast, the performance
of the attack increases as the pattern’s contrast goes higher. The increase is under expectation as
high contrast should give more semantic distortion.

Figure 5: Target images with different pattern repetition and contrast results in different effects.

Target

Output

Target

Output

B.2 U-NET PREDICTION ERROR UNDER DIFFERENT TARGETS

ADVDM ANTI-DB

ANTI-DB-T ITA

Table 5: Prediction error of U-Net
under different attacks.

As the final output of Text-to-Image process is a composition
of several U-Net predictions, visualizing the U-Net prediction
error should be an intuitive way to understand how different
targets affects the Text-to-Image process. In general, we want
the prediction error to be consistent under different timesteps.
Thus the error can be accumulated through the denoising pro-
cess and add distortion to the final output. We define U-Net
prediction error as U-Net prediction difference between a clean
sample and its corresponding adversarial one, under the same
timestep t and the same noise ϵ. For targeted methods, we
select our ITA method and targeted version of Anti-DB. The
targeted image is Figure 3. We also select two un-targeted
method: AdvDM and Anti-DB for comparison between tar-
geted and un-targeted methods. We calculate the U-Net pre-
diction error on a dataset of 20 image from CelebA-HQ.
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Intuitively, the difference of targeted Anti-DB and our ITA
method would be more significant in larger timesteps, where
the noise is taking the dominance. Thus, we randomly sample
t ∈ [0.9T, T ), and repeat the sampling for 100 times for every image in the dataset. Then we take the
mean of the U-Net prediction error as our final results. The results are shown in Table 5. From the
results we can clearly see the difference between distinct methods. First, all prediction errors from
targeted methods show a strong semantic meaning of the target image, while those from un-targeted
methods show none, which may explain why targeted methods outperform un-targeted ones. Sec-
ond, the errors from all other methods are visibly stronger than targeted Anti-DB(illustrated by the
contrast and lightness of the visualization), which may be the reason of the inferiority of targeted
Anti-DB.

B.3 BLACK-BOX EVALUATION IN LORA TRAINING

ORIGINAL UNKNOWN KEYWORD

UNKNOWN KEYWORDS UNKNOWN PROMPT

Table 6: LoRA output images with different
prompts under the attack of ITA.

Black-box Prompts In real life usage, the attacker
could have no knowledge about the prompt the ma-
licious user is using for training LoRA. Thus in
this section we give a black-box setting where the
prompts in ITA and the prompts in actual training are
different. We select a 20-image group from CelebA-
HQ and use ITA to produce adversarial examples un-
der noise budget 4/255 and prompt ”a photo of a
sks person”. We then train LoRA with four different
prompts (the prompt for class data prior is changed
correspondingly) that represents four levels of black-
box settings. We list these four levels from white box
to black box.

Original: ”a photo of a sks person”

Unknown keyword: ”a photo of a pkp person”

Unknown keywords: ”a photo of a pkp woman”

Unknown prompt: ”an image of a pkp woman”

We then perform Text-to-Image on the finetuned
model using the prompts separately. The experiment
setup are still the same as Section 5.1. Visualization
results are in Table 6. The result shows a degradation in the strength of attack when facing unknown
keywords. However, when facing unknown class name(from ”person” to ”woman”) or in unknown
prompt settings, there is no further visible degradation. Meanwhile, there still exists strong visual
distortion under all three scenarios.

Figure 6: Black-box case of ITA pro-
vided by an anonymous artist. LoRA is
used for few-shot generation. The at-
tack setup stays the same as the setup in
Section 5.1.

Black-box Case from Users We also display a com-
plete black-box case in Figure 6 from a community
member, where we have no knowledge of the setup of
LoRA training, including the model, the prompts and
all other hyper-parameters. Our ITA method still owns
a relatively strong visual result, which indicates ITA’s
capability for the real-world application.

B.4 CROSS-MODEL TRANSFERABILITY

We visualize the output images of different victim mod-
els under ITA by different backbone models in Table 7.
As shown in the table, our method shows a strong con-
sistency among different models. An exception is that
when using SD2.1 as the victim model, it tends to fail
in LoRA training(not learning the right person) instead of learning the strong semantic distortion
from the target image. However, the model does learn the right person when no attack is conducted.
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VICTIM SD1.4 SD1.5 SD2.1

BACKBONE SDEDIT LORA SDEDIT LORA SDEDIT LORA

NO ATTACK

SD1.4

SD1.5

SD2.1

Table 7: Visualization of cross-model transferability of ITA.

DEFENSE NO DEFENSE GAUSSIAN JPEG RESIZING SR

PARAMS σ = 4 σ = 8 Q = 20 Q = 70 2X 0.5X

LORA

SDEDIT

Table 8: Performance under different anti-attack methods. The noise budget is set to 8/255

Also, the SDEdit process is extra strong when victim is SD2.1. We attribute this phenomena to the
resolution mismatch. SD2.1 is trained to receive images of resolution 768, while we actually fed it
with images of resolution 512. This may leads to different behaviour of SD2.1. Also, the resolution
mismatch between SD1.x and SD2.x may be the main reason for the performance degradation when
using SD1.x as victim and SD2.1 as backbone.

B.5 ITA VS DENOISING-BASED ADVERSARIAL DEFENSE

Table 8 visualizes the output images of SDEdit and LoRA referring to the adversarial examples
which are processed by different denoising-based adversarial defense methods. For both method,
they still have strong performance under most of the cases except for Gaussian Noise(σ = 8) and
JPEG compression (quality= 20). However, in the exception cases, the defense has added visible
degradation to the image, which also heavily affect both LoRA and SDEdit process. For example,
LoRA learns to produce images comprised of small squares due to a hard compression of quality 20.
And SDEdit produces images of visible Gaussian noise when adding Gaussian noise of σ = 8 as
defense. It’s noteworthy that both ITA and ITA+ seems to be strengthened after SR defense, which
is an intriguing phenomena.
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C DISCUSSION: WHY IS TARGETED ATTACK BETTER?

Liang et al. (2023) yields theoretical proof that maximizing the training loss of LDM (Equation 5)
leads to optimal attack that makes the adversarial examples out-of-distribution. However, untargeted
attacks Liang et al. (2023); Van Le et al. (2023) that adopt this objective are inferior to our targeted
attack in decreasing the output image quality of LDM-based few-shot generation (See visualization
in Figure 2). One natural question is, why the optimal untargeted attack is beaten by targeted attacks?

This question may be answered by the misalignment between human vision and generative mod-
els in determining what the worst example should be like. Generative models are trained only to
meet human’s preference of good examples. An image with chaotic texture is undoubtedly a bad
example for human vision. From Appendix B.2 where prediction error of U-Net is visualized, we
can see the prediction error triggered by ANTI-DB is actually slightly stronger than ITA(illustrated
by the lightness). However, the error caused by ITA shows more dense patterns (illustrated by the
contrast) and achieve better result in human eyes. That is, ANTI-DB actually finds a better adver-
sarial examples under the judgment from a diffusion model, while ITA finds a sub-optimal example.
But in human (or other perception metrics) judgements, the sub-optimal example actually has worse
visual results. This observation provides an intuitive explanation of the misalignment.

D VISUALIZATION

In this section, we visualize the comparison result between our proposed methods, ITA and ITA+,
and baseline methods.

D.1 ADVERSARIAL EXAMPLES

Figure 7 demonstrates adversarial examples generated by our adversarial attack, which resembles a
real image since the adversarial budget ζ = 4/255 is quite small.

D.2 PERFORMANCE AGAINST SDEDIT

Figure 8 visualizes the output images of SDEdit under different adversarial attacks. All adversarial
attacks are budgeted by ζ = 4/255. Two proposed methods add obvious noise to the output image,
compared to no attack and three baseline methods, Photoguard, AdvDM, and Anti-DB. Furthermore,
we notice that ITA adds chaotic texture to the image and that ITA+ erases some contents of the image.

D.3 PERFORMANCE AGAINST LORA

Figure 9, 10, 11, and 12 show the output images of LoRA under different adversarial attacks. All
adversarial attacks are budgeted by ζ = 4/255. Compared to the output image of no attack, three
baseline methods add noise of different levels to the output image, among which Anti-DB is the
strongest. This is natural because Anti-DB is specific for countering LDM-based few-shot genera-
tion methods. However, details of the training data can be still recovered by LoRA under the attack
of baseline methods. By contrast, our two proposed methods outperform these baseline methods by
destroying the details of the output image. ITA adds texture with sharp edges to the output image,
making it completely unusable. ITA+ severely blurs and zigzags the output image. We also notice
that the diversity of the output image decreases under the joint optimization attack.
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Figure 7: Adversarial examples on LDM generated by our proposed method with the adversarial
perturbation budget ζ = 4/255. The perturbation is quite small and almost human-invisible, making
the adversarial examples resemble real examples.
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Clean Photoguard AdvDM Anti-DB       ITA+       ITA

Figure 8: Output images of SDEdit under different adversarial attacks. With the same perturbation
budget, our attacks better interfere the image quality compared to three baseline methods. Specifi-
cally, ITA adds chaotic texture to the image. ITA erases some contents of the image.
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Clean Photoguard AdvDM Anti-DB       ITA+       ITA

Figure 9: Output images of LoRA under different adversarial attacks. Two proposed methods out-
perform baseline methods. ITA adds texture with sharp edges to the output image. ITA+ severely
blurs and zigzags the output image, decreasing the diversity of output images as well.
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Clean Photoguard AdvDM Anti-DB       ITA+       ITA

Figure 10: Output images of LoRA under different adversarial attacks. ITA and ITA+ outperform
baseline methods. (Cond.)
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Clean Photoguard AdvDM Anti-DB       ITA+       ITA

Figure 11: Output images of LoRA under different adversarial attacks. ITA and ITA+ outperform
baseline methods. (Cond.)
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Figure 12: Output images of LoRA under different adversarial attacks. ITA and ITA+ outperform
baseline methods. (Cond.)
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