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Abstract

Joint entity and relation extraction (JERE) are
highly susceptible to weak-generalization due
to low-quality text on various natural language
processing (NLP) tasks. Data augmentation
is a common approach to enhance text qual-
ity. However, traditional data augmentation
methods tend to compromise intrinsic textual
logic, making it challenging to design effective
augmentation techniques. In this paper, we pro-
pose anovel paradigm called Structured Seman-
tic Data Augmentation (SSDAU) that that pre-
serves the structured semantics of augmented
text. SSDAU applies context-awareness to en-
code semantic entities in the text, then designs
a Tarjan algorithm to complete the neighbor-
hood semantic analysis of related entity, and
finally completes the data augmentation by en-
tity reconstruction of neighboring text with a
structured semantic model. We compare differ-
ent baselines under different JERE scenarios
and evaluate the performance and efficiency of
SSDAU. The results demonstrate that SSDAU
can generate high-quality data, which greatly
improves the performance of the JERE model
and outperforms the state of the art.

1 Introduction

Joint entity and relation extraction (JERE) have
been widely used for representation learning on
text due to their superior performance in vari-
ous applications such as information retrieval (Lin
et al., 2020), question answering (Abdelaziz et al.,
2021) and text summarization systems (Zhong
et al., 2020), etc. JERE have been proven effective
by achieving impressive performance for diverse
datasets such as search engine, media networks,
linguistics, and knowledge graphs. However, the
performance of JERE models are influenced by the
amount and quality of dataset used in the training
process. Researchers usually address this issue
through data augmentation. Data augmentation can
be used to increase the diversity of data by introduc-

ing small perturbations. This technique is widely
applied in various fields that require improving
the generalization ability of models. For instance,
MixUp generates augmented data by mixing la-
beled data with low-entropy, high-quality unlabeled
data (Cheng et al., 2020). Back-translation (Xie
et al., 2020) achieves data augmentation by produc-
ing repetitive sentences. LLMs generate coherent
text content directionally by learning patterns in
the representations of text (Zhou et al., 2022).

However, these approaches still pose some chal-
lenges. First, data augmentation generally injects
slight noise into the text, thus increasing the direc-
tion of variation in the data, but this also reduces
the correctness of the generated text. Especially in
the JERE tasks, this is a severe problem. Since en-
tity relations comprise entities, the introduction of
external noise may weaken the entity relevance of
the augmented text (Kambhatla et al., 2022), conse-
quently reducing the accuracy of JERE models in
the extraction process. Moreover, traditional data
augmentation methods may disturb the semantic
logic of the text that affect the semantic structure of
the text leading to overlapping relationships. And
LLMs are susceptible to fixed paradigms leading to
the existence of semantic cascades in the generated
sentences. Such issues can lead to the emergence of
problems such as security risks in the target model
(Liu et al., 2020).

To address the above dilemma, we propose
a novel data augmentation paradigm known as
Structured Semantic Data Augmentation (SSDAU),
which achieves data augmentation by preserving
the semantic structure of the text. Firstly, we devise
a text feature-based encoder that encodes seman-
tic entities in the text through context awareness,
thereby reducing noise interference. Secondly, we
design a decoder based on the Tarjan algorithm.
We match the encoded text, identify similar text
segments with adjacent semantics, and then re-
construct the neighboring semantic entity text to



complete data augmentation. Thirdly, we devise
a structured semantic model to select substitute
texts with high similarity and the same semantics
for reorganizing the original text. Finally, inspired
by dense clustering techniques for topic modeling
based on ERT embeddings and c-TF-IDF (Groo-
tendorst, 2022), we utilize the BertTopic model to
record important vocabulary retained in topic de-
scriptions and filter out irrelevant topics from the
augmented text.

We validate the effectiveness of SSDAU using
four datasets that are widely used in the JERE
task. We compared six conventional baselines and
one LLMs (Zhou et al., 2022) baseline in different
JERE models. The experimental results demon-
strate that text augmented by SSDAU outperforms
the state-of-the-art methods in improving the accu-
racy of the JERE task. In addition, further experi-
ments demonstrate that SSDAU has great potential
in enhancing low-resource JERE tasks.

Our contributions are summarized as follows:

* We propose a novel structured semantic data
augmentation paradigm. To the best of our
knowledge, this is the first work that inves-
tigates data enhancement done through text
structured semantics.

* We design a text feature encoding and strong
associative semantic decoding strategy that
can improve the diversity and quality of text
while ensuring its semantic structure.

* We validate the applicability of SSDAU and
demonstrate theoretically and experimentally
that the augmented text generated by SSDAU
has great advantages in terms of validity and
performance.

2 Related Work

Information Extraction JERE is a fundamen-
tal NLP task that aims to map entity and relation,
generate a text-to-triplet model based on their corre-
lation, and assign the triple to a new annotation(Fu
et al., 2019). Previous JERE models mostly em-
ploy joint modeling (Ren et al., 2017) or sequen-
tial annotation (zhe, 2017) to extract entities and
relations together. They focus on structured learn-
ing by manually constructing features, building
information tables or knowledge to enhance the
relevance of entity extraction and relation recogni-
tion(Miwa and Bansal, 2016). However, manually

constructed features make it hard to achieve pos-
itive results in different applications. To address
this challenge, Zhao et al. (Zhao et al., 2021) pro-
pose decomposing the JERE task and completing
contextual learning by modifying the classification
process. They divided the JERE models into three
categories: multi-module multi-step (Zheng et al.,
2021; Wei et al., 2020), multi-module one-step (Sui
etal., 2020; Wang et al., 2020) and one-module one-
step (Shang et al., 2022). The accuracy of these
models is limited by the training data, and our struc-
tured semantic data augmentation method can help
generate a large amount of high quality data, which
has a great advantage in the basic and downstream
applications of JERE models.

Semantic Match Semantic matching is a sub-
task of text matching, which is mainly applied to
retrieve semantically similar texts from libraries in
search scenarios (Wu et al., 2022). Some typical ap-
proaches include cosine similarity, term frequency-
inverse document frequency (TF-IDF) calculation,
and deep structured semantic model (DSSM) (Gao
et al., 2021). Recent studies have shown that pre-
training semantic classification models can effec-
tively compress massive text and improve the gen-
eralization ability of semantic matching models
(Brown et al., 2020). For example, the emergence
of Similarities (Zhang Bingyu, 2022) provides solid
foundation for developing practical applications for
text semantic matching tasks. In particular, the se-
mantic matching function of Similarities has been
widely recognized for its superior effect in text rela-
tion extraction. Based on the existing text similarity
matching techniques, we designed a Tarjan-based
strong linkage semantic logic text matching algo-
rithm to improve the existing JERE work through
text semantic matching.

Data Augmentation Data augmentation is a cost-
effective and efficient method that can improve
the performance and accuracy of machine learn-
ing models, especially in a data-constrained envi-
ronment (Cashman et al., 2020). Common data
augmentation techniques used in NLP include
proximal word replacement (Wei and Zou, 2019),
word vector replacement (Wang and Yang, 2015),
masked language model replacement (Jiao et al.,
2020), back translation (Zhang et al., 2020), adding
noise (Min et al., 2020; Yan et al., 2019; Hou et al.,
2018), etc. Among them, Jonas et al. (Mueller
and Thyagarajan, 2016) propose a lexical substi-
tution method for augmented data that preserves
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Figure 1: Overview of SSDAU. Data Discrete and Reconstructed split the text by semantically segmenting and
injecting tags into the segmented text. The color blocks in the Encoder represent the text in different semantic
regions. We have separated sets by Decoder to support Structured Semantic Data Augmentation where the Input
View conditions on the similarity match and Output View conditions on data augmentation. Finally, we filter the
low-resource data using Scoring-Based Consistency Filtering and get the final augmented data £, combined with T,

to train a more robust JERE model.

original semantics by word proxemics. In addi-
tion, text generation methods based on designing
prompts using pre-trained language models have
garnered significant attention. However, these ap-
proaches are limited by the size of synonym lists,
vocabulary coverage, and adaptability constraints.
Unlike existing methods employing simple pertur-
bation (Liu et al., 2020) or extra augmentor model
(Hou et al., 2021; Hu et al., 2019), we propose
the sampling-based augmentation, generating data
with the same semantic structure by maintaining
the semantic logic of the samples.

3 Method

In this section, we provide an overview of our pro-
posed data augmentation method. Figure 1 depicts
the framework of SSDAU. We first define the tasks
and then describe the three essential components
of SSDUA, including i) data discrete and recon-
structed, ii) structured semantic data augmentation,
and iii) sorcing-based consistency filtering.

3.1 Preliminaries

In this work, triples serve as the foundation for
text augmentation, achieved by discretizing the text
within its context and utilizing contextual features
as semantic labels. This methodology encompasses
the formulation of rules for text discretization and
subsequent reconstruction, anchoring the seman-
tic structure via semantic labels, thereby establish-
ing a repository for semantic text. Subsequently,
semantic rules are integrated with semantic simi-
larity modeling, culminating in the development

of a Tarjan algorithm. This algorithm is tasked
with matching text semantics and generating data
while ensuring the integrity of the text’s semantic
structure. Finally, the dataset is refined through
augmented text filtration employing scoring and
filtering modeling techniques. Implementation of
SSDAU facilitates the creation of augmented data
endowed with comprehensive semantic structures,
effectively addressing the quality and quantity pre-
requisites for datasets in diverse domains, particu-
larly for large-scale language modeling endeavors.

3.2 Data Discrete and Reconstructed

Given set of sentences S = {s1, s2,..., SN} con-
taining L token and K predefined relations R =
{r1,r2,...,7K }, We extract entities and relations to
construct triples T = {(hi, i, t;)}}, in S, where
h;, t; are the head and tail entities, respectively, N
represents the number of sentences, M represents
the number of triples. In this process, we maintain
a three-dimensional matrix M*5*L to store the
existing knowledge. Since the triplet is used as the
basic unit of data augmentation, we partition the
text according to the triplet labels p to obtain three
series of text collections.

Encoder We use the triplet as the basic unit of
data augmentation to eliminate the noise from tex-
tual perturbations. We design a text feature-based
encoder . The input of the encoder is the sentence
text .S, and for each sentence s;, we find the spec-
ified text block (gp,, qr;,qt;) based on the triplet
tags (pn,, Pr;s Pt;), and record the context token
(In;, lr;, 1t;) and the cut position (py,, pr,, Pt;)- The



Algorithm 1 The execution process of data augmentation through SSDAU.

Input: Sentences: S; Token: L, Predefined relations: R; Similarity threshold: €.

Output: Augmented dataset: S,,.

foreach i=1/ ro N do
Feed s;, L and R to encoder F.

Split the R to get the triplet labels.

Obtain the split text block, context tokens, and segmentation point.
Perform entity type classification to obtain text collections Qp,, Q¢, @

Feed )}, Q¢, Q- to decoder D.

Classifying relation types and dividing triplet labels to obtain text library B = By, Bo, ..., Br k1.

foreach i=/ to LKL do
Get the number of text blocks m in B;.

foreach j=1 to m do

Record the similarity value ©

if © > ¢ then
| Add O to the priority queue P;.

oreach i=1 ro LKL do

)

Perform text replacement to obtain text S’
Add S’ to S,,.

Feed text block and context token to text matcher STM.

Calculate the topic score value for each text block. (Equation 1)
Calculate the topic vector of each text block’s corresponding text. (Equation 2)

if The target replacement text block is not a thematic text block. then
Meets data augmentation criteria. (Equation 3)

encoder processes all the input text and gets three
output text collections according to the tag types:
head entity collection (), tail entity collection Q¢
and relation entity collection Q).

Decoder We design a j Tarjan-based semantic
structure similarity matching algorithm based on
the strong association property of neighbor seman-
tics. The algorithm will analyze the correlation of
K relation types and M ternary labels in the set
of sentences .S, and match the highly correlated se-
mantic labels by constructing a strong connectivity
graph, which will be used as a basis for designing
a formal similarity based text matching decoder
D. The input of decoder D is (Qp,, @, @s), and it
divides the text collections according to the rela-
tion types and label types to get LK L groups text
library B = {By, Ba, ..., Bk} with the same
relation type and the same label.

3.3 Structured Semantic Data Augmentation

We designed a text matcher based on the semantic
similarity evaluation tool Similarities to perform
similarity matching. Algorithm 1 showcases the
execution steps of the structured semantic data aug-
mentation module. The text blocks b in the text

corpus B; = by, b, ..., bj record the text g, context
tokens [, label type p, and segmentation position p.
We perform a complete match of all b in different
text corpora B;, including semantic, syntactic, and
lexical matching of the text, as well as similarity
evaluation of context tokens. In this process, we
normalize the matching results to a value between
0 and 1, and add them to a priority queue sorted by
decreasing similarity. Finally, for each text corpus
B;, we obtain a similarity priority queue P;.

After completing the similarity matching, we
filter out the text in the priority queue P; =
Py, P>, ..., PLi with similarity less than . For
the remaining, we replace the text information of
the corresponding text block based on the recorded
segmentation position [ in the information of each
text block, thus obtaining the augmented text.

3.4 Sorcing-Based Consistency Filtering

We use the BertTopic model to record important
words retained in topic descriptions and filter the
augmented text of irrelevant topics, thus ensuring
the topic coherence of the augmented text. To this
end, we design a score-based BertTopic text filter.

First, we extract entities and relations from the
text. Then, we encode the tokens by BERT (Kenton



and Toutanova, 2019), obtaining the corresponding
entity tokens 1, lo, ..., l;. Afterwards, we combine
entities and relations in the form of (I, r, ;) and
perform triplet extraction using JERE (Shang et al.,
2022). Finally, a function is applied to calculate the
correlation between the head and tail entity. The
scoring function is defined as:

hxt = (Wil l]" + ) (1)

Where h and ¢ represent the head and tail, respec-

tively. x : R x R? — R? denotes circular corre-
lation. W € R%*24 and b are trainable weights
and biases, respectively, where d. denotes the di-
mension of the entity. [;] is the concatenation op-
eration and ¢(-) represents the ReLU activation
function. We then incorporate the highly evaluated
entity pairs with the relations and use the relational
representation function R € R%*4K The vector
function is defined as follows:

V) iy = BE @ (drop(W [l; LT +b)

Where v represents the score vector and drop(-)
refers to the dropout strategy (Srivastava et al.,
2014). Next, we add the scoring vector v to the soft-
max function to predict the corresponding labels.
The formulated triples is as follows:

L K L
1
Griple = T LKL X ZZzlogp(y(livrkvlj):g(liv"“kvl]‘)‘s)

i=1 k=1 j=1

3
Where g(;, r,1,) Tepresents the gold tag obtained
from annotations. We match all triplets with the
golden label triplets to obtain the topic score for
each triplet. Finally, we select the high-scoring
triplets as the topic tag for the text. We filter out the
augmented text where the topic tags are replaced,
and obtain augmented data that is both topic-related
and has a complete structured semantics.

4 Experiment

4.1 Experimental Setup

Baseline We consider seven of the most com-
monly used data augmentation methods as our
baseline for comparison. Including Word Substi-
tution (WS) (Wei and Zou, 2019), Back Transla-
tion (BT) (Xie et al., 2020), Noise Introduction
(NI) (Fanghua Ye, 2022), Same-tag Semantic Noise
(SSN) (Yan et al., 2019), Generative Models (GM)
(Hou et al., 2021), Mixup (Hu et al., 2019), and
FlipDA (Zhou et al., 2022). For details on the se-
lection and implementation of the baselines, please
refer to Appendix A.1.

Dataset Since the JERE task fits better with
short texts, we conduct comprehensive experi-
ments on two authoritative datasets, NYT and
WebNLG. Among other things, both types of
datasets contain two versions: fully annotated
type (NYT, WebNLG) and partially annotated type
(NYT, WebNLG). Detailed statistics for these four
datasets are provided in Appendix A.2.

Evaluation and Selection of Thresholds Table
1 describes the number of augmented samples gen-
erated by SSDAU for different sets of semantic
domains under various similarity thresholds. We
counted the effective augmented texts for entities
and relations of the four datasets under different
variable settings. The results indicate that the num-
ber of augmented samples decreases as the thresh-
old value increases. Figure 2 shows the precision of
the four augmented datasets under different JERE
models with various similarity thresholds. For dif-
ferent datasets, we selected the threshold with the
best results as the threshold parameter in the base-
line comparison experiments.

Dataset € Head Relation Tail Sum.
0.5~0.6 15062 243 11300 26605
0.6 ~0.7 9439 38 4631 14108
NYT* 0.7 ~0.8 1825 19 1365 3209
0.8~0.9 2927 0 1137 4064
09~ 1.0 960 0 1546 2506
0.5~0.6 7082 2742 8116 17940
0.6 ~0.7 3933 1946 5342 11221
WebNLG* 0.7~0.8 2049 2162 1557 5768
0.8 ~0.9 814 2005 1021 3840
09~ 1.0 5463 890 2929 9282
0.5~0.6 13507 234 10076 23817
0.6 ~0.7 7721 36 4063 11820
NYT 0.7 ~0.8 4922 13 1588 6523
0.8~0.9 2198 0 1140 3338
09~ 1.0 3700 0 1051 4751
0.5~0.6 4023 3186 6028 13237
0.6 ~0.7 2673 2009 4445 9127
WebNLG 0.7 ~0.8 968 1345 1123 3436
0.8 ~0.9 309 919 923 2151
09~1.0 3019 444 6935 10398

Table 1: The number of augmented samples produced
by SSDAU at various thresholds and semantic domains
varies for each dataset, with the same five similarity
thresholds applied to all.

4.2 Main Result

Results of the baseline comparison Table 2
shows the results of SSDAU with seven baseline
methods. From the experimental results, it is evi-
dent that the augmented text generated by SSDAU
is able to train a JERE model with better robustness
compared to the baseline methods, which implies
that SSDAU has a better performance capability
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in the JERE task. This indicates that the strategy
of data augmentation by holding the structured se-
mantics of the text has better results in ensuring the
accuracy of the JERE task.

In addition, Table 2 shows the validity (Prec),
performance (F1), and adaptability (IoU) results of
SSDAU and the seven baseline methods in different
JERE tasks. The findings consistently show that SS-
DAU outperforms the other baselines in effectively
augmenting the data for various JERE tasks. In
addition, it is observed that the data augmentation
methods for LLMs is able to show better results
in low iteration scenarios compared to the other
methods, but the quality of the generated data will
be lower than the other methods as the number of
iterations is augmented. While in JERE task, due to
the specificity of the scenarios, data resources are
extremely scarce, so it is necessary to iteratively
augment the data continuously to ensure the robust-
ness of the trained model. Therefore, SSDAU is
more suitable for the current application scenario.

Results in different JERE tasks To validate the
generality of the data generated by SSDAU, we
conduct comparative experiments across different
JERE tasks. We choose BT as the comparative
baseline, which is a representative augmentation
method that best preserves the semantic structure
of augmented text. Table 3 presents the effective-

ness of SSDAU and the BT method across various
JERE models. The results show that the dataset
augmented by SSDAU improves in different types
of JERE models. For instance, in the SPN model,
the precision of the WebN LG dataset increased
by 3.03%, while in the TPLinker model, the pre-
cision of the NY'T, dataset improved by 0.94%.
These outcomes demonstrate that the structured se-
mantic data generated by our approach effectively
enhances the robustness of JERE models in per-
forming tasks.

4.3 Ablation Study of SSDAU

We conduct an ablation study on the NYT™* and
WebN LG* benchmarks to evaluate three compo-
nents: Data Discrete and Reconstructed, Structured
Semantic Data Augmentation, and Scoring-Based
Consistency Filtering. In the process, we maintain
the other component settings consistent.

Data Discrete and Reconstruction First, we re-
move the pre-processing component, Data Discrete
and Reconstruction, and instead directly split the
data based on the triad message without semantic
tags (No Label Split). Additionally, we employ
conventional text split methods, the no split and
complete full split schemes (Gao et al., 2020). As
Table 4 shows, we evaluate the effectiveness of
the pre-processing components before and after



Partial Match Exact Match
Category
NYT* WebNLG* NYT WebNLG

Prec. Fl IoU Prec. Fl IoU Prec. Fl IoU Prec. Fl IoU
Original 90.17 91.45 84.24 90.62 90.25 82.23 92.83 92.17 85.47 90.66 89.08 80.31
WS (Wei and Zou, 2019) 88.82 88.98 80.16 91.47 91.51 84.35 89.91 89.61 81.17 89.66 88.88 79.98
BT (Prabhumoye et al., 2018) 88.97 89.52 81.02 91.77 91.97 85.14 89.10 89.54 81.07 89.46 89.90 81.70
NI (Fanghua Ye, 2022) 89.37 89.91 81.67 92.41 92.16 85.46 88.38 89.70 81.32 88.41 87.64 78.00
SSN (Yan et al., 2019) 89.03 89.55 81.08 91.89 92.44 8594 88.25 89.77 81.44 84.77 85.93 75.34
GM (Hou et al., 2021) 88.30 89.38 80.79 91.84 92.41 85.89 88.60 89.35 80.75 90.82 89.15 80.42
Mixup (Hu et al., 2019) 90.56 90.06 81.92 91.29 9222 85.56 91.36 90.16 82.08 90.35 88.50 79.37
FlipDA (Zhou et al., 2022) 90.43 89.92 81.43 90.11 90.03 82.77 90.52 88.32 80.20 90.71 89.85 81.47
SSDAU 92.00 92.05 85.27 92.80 92.95 86.83 91.74 92.90 86.74 91.58 89.94 81.77

Table 2: Precision (%) , F1 score (%) and Intersection over Union (%) of our proposed SSDAU and baselines in
CasRel model. All results are for multiple pattern models and the same training set size.

Model NYT* WebNLG* NYT WebNLG

SPN (Suiet al., 2020) 91.44/91.95 93.81/96.84 92.67/92.64 90.21/90.88
PRGC(Zhenget al., 2021) 93.33/93.36  94.00/94.46 93.54/94.40 89.92/91.32
CasRel(Weiet al., 2020) 88.97/91.47 91.77/92.13 89.10/91.74 89.46/91.58
OneRel(Shanget al., 2022) 90.17/92.00 90.62/92.80 92.83/92.90 90.66/91.60
TPLinker(Wanget al., 2020) 90.23/92.21 90.89/91.34 91.33/92.27 89.12/89.93

Table 3: The precision of different models under different datasets. PRE:

A/B denotes BT/SSDAU, indicating the

prediction precision of the model obtained by the original training set and the augmented one by SSDAU. Among
the seven baselines, BT has the most superior performance.

DataSet NYT* WebNLG* Auve.
CasRel Baseline 90.17  90.62  90.39
SSDAU 92.00 92.80 9240
Ablation for Pre-processing
No Split 89.32  90.17 89.75
No Label Split 90.33 9042  90.38
Full Split 88.64  89.76  89.20
Ablation for Augmentation
(h,t) 6421 7383  69.02
(r) 7742 8431  80.87
(h,r,t) 90.41 91.13  90.77
(h,r,h) 85.66 88.53 87.10
(tr,t) 82.12 8444  83.28
Ablation for Filtering
No Filtering 89.92  90.84  90.38

Table 4: Ablation study for SSDAU. No Split denotes
not splitting the text. No Label Split denotes splitting
by semantics without semantic tag. Full Split denotes
complete splitting of the words in the text.

removal by precision. We observe that the outper-
forms with Discrete Data Reconstruction get an
improvement of approximately 2.02%-3.20%. Fur-
thermore, we find that the inclusion of semantic
tagging prompts has a positive impact on discrete
text data augmentation in low-resource JERE tasks.

Structured Semantic Data Augmentation We
apply an exact matching method to verify the effec-

tiveness of the augmentation components. In this
process, the tags of the discrete text are replaced
with the augmented data’s tags, and we classify the
augmented data based on the triple’s type and use
the classified data to train a model to compare the
validity of the augmented data after removing the
augmented component.

According to the findings in Table 4, the aug-
mented data consists of five types of ternary labels.
Among these five types of labels, only the aug-
mented text belonging to the third triad (h,r,t)
had a limited positive effect (0.38%) on the JERE
task. On the contrary, the remaining four types
negatively affected the accuracy of the JERE task.
When the augmentation component was removed,
the threshold limit was lifted and low quality data
was included in the augmentation process. This
led to a significant increase in negative data, which
in turn reduced the accuracy of the model. It can
be seen that the augmentation component helps
to maintain the semantic structure and facilitates
the mapping process between augmented text and
ternary labels. This component determines the ac-
curacy of the coming text extraction process. The
experimental results show that the accuracy of the
JERE model decreases significantly when the en-
hancement component is removed, which empha-
sizes the key role of the enhancement component



Text = South Africa, and the rest of Africa.

Source Triple = [[Africa, /location/location/contains, South Africa]]
Structured Semantic = location contain location
Textl = South Africa is a part of Africa. v =0.516
) Text2 = North Africa, and the rest of Africa. v = 0.923
Syntax Matching

Triple = [[Africa, /location/location/contains, North Africa]]

Structured Semantic = location contain location

Table 5: Semantic consistency verification of augmented text. v is the syntactic coherence.

in semantically structured data augmentation.

Scoring-Based Consistency Filtering We ver-
ify the impact of the consistency filtering compo-
nent in SSDAU. Table 4 shows the precision of
the JERE models with and without filtered data.
The results show that the filtered data positively im-
pacts the model’s precision, which decreases when
low-quality augmented data are not removed. This
implies that within the augmented text produced
by SSDAU, there still exist small amounts of data
with accurate semantic structures but lower quality.
Therefore, to uphold model accuracy, it is essential
to filter the augmented text as well.

4.4 Analysis

Semantic coherence analysis. To ensure seman-
tic consistency of the augmented text, we take two
steps. First, we consider similarities between text
annotations of the same type and entity to label the
text by semantic annotations. And we use the Biber
Tagger (A. Bergman, 2022) to match ternary texts
with the same tags. The high level of syntactic
consistency between Textl and Text2 is shown
in the appendix table 5. Secondly, we filter out
texts with low relevance (below 0.8) and include
the remaining data in the training set to ensure se-
mantic consistency of the augmented texts. After
that, we distinguish between entities and relations
in the triples, perform separate similarity match-
ing on entity texts, and replace the triples contain-
ing replacement texts. This approach effectively
solves the problem of mutual exclusion of multiple
relations due to text relevance and ensures seman-
tic coherence between the augmented text and the
original text. In addition, in the Appendix A.5, we
perform a linguistic validation of the model results.

Training Cost and Convergence. Appendix A.6
provides details about the original and augmented
texts containing varying numbers of triples. By
classifying the augmented data according to triplets

and incorporating them into the training set, we as-
sess different JERE models using the same test
set. The results demonstrate the efficacy of SS-
DAU for texts with different numbers of triplets.
Our method proves valuable for texts with vary-
ing triplet counts, indicating that as the number of
triplets in the training set decreases, the availability
of augmented data increases, leading to improved
precision of the model.

5 Limitation

Though the proposed SSDAU outperforms all base-
line methods, it still has some limitations. First,
we initially employed score filtering to screen out
lower-quality augmented data, a process that re-
lies heavily on the selection of filtering criteria
with varying reference metrics across JERE appli-
cation domains, so the method still needs to take
into account different domain characteristics when
migrating across domains. Second, in scenarios
where both quality and quantity are ensured, SS-
DAU may be less efficient in achieving the same
effect since LLM’s data augmentation methods typ-
ically require a fewer number of iterations. In our
future work, it will be instructive to validate our
approach on JERE tasks in different domains and
further optimize the efficiency of SSDAU at the
algorithmic and model level.

6 Conclusion

We propose SSDAU, a data augmentation paradigm
that provides instances of augmentation for the low-
resource JERE task by labeling semantic segmen-
tation of entity texts and evaluating the similarity
of neighboring semantic regions. Compared with
existing methods, SSDAU solves the problems of
noise introduction, relationship overlap, and seman-
tic cascading in low-resource data augmentation
scenarios. We experimentally demonstrate that pre-
serving the structured semantics of text may be a
more favorable choice for NLP data augmentation.
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A Appendix

A.1 Details of Seven Data Augmentation
Methods

Word Substitution Approaches that rely on near-
synonyms center around word list replacement tech-
niques (Mueller and Thyagarajan, 2016), which
include word vector-based replacement (Wang and
Yang, 2015) and mask-based models (Jiao et al.,
2020). By replacing the original words with their
synonyms, a new text can be generated while main-
taining a similar semantic structure.

Back Translation The process of back-
translation involves utilizing an English-French
translation model (Xie et al., 2020), wherein the
original text is translated and then translated back
into the original language. This approach generates
a new text that retains the semantic structure
of the original. Rather than simply replacing
individual words, back-translation achieves data
augmentation by effectively repeating entire
sentences.

Noise Introduction The process of augment-
ing text involves adding, removing, or modifying
words and sentences by introducing various forms
of noise, such as changes to the text’s form, order,
and semantics (Fanghua Ye, 2022). By adding sub-
tle noise that does not relate to the original text,
the diversity of the text is expanded, resulting in a
larger number of distinct texts.

Same-tag Semantic Noise Introduction SSN
achieves data augmentation by introducing noise
associated with text tags at the word level (Yan
et al., 2019), as well as at the sentence level (Gau-
rav Sahu, 2022), while preserving the original text’s
semantics.

Generative Models The GM method involves
constructing a generative model based on the orig-
inal texts to perform targeted data augmentation
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(Hou et al., 2021). To train the generative model,
the original data is passed through a pre-existing
generative adversarial network, and the resulting
augmented data is added to the training set for
JERE models.

Mixup Mixup achieves cross-label data augmen-
tation through hybrid interpolation at both the word
and sentence levels (Zhang et al., 2017; Cheng
et al., 2020). This method involves fine-grained
word vector interpolation and mixing of data or
tags to generate new, smoother data and augment
the existing dataset.

FlipDA FlipDA first generates text using splicing,
then randomly masks off some input tokens and
predicts them, and finally sifts through the new
samples with the help of a classifier to pick out the
ones with the highest confidence to get augmented
data (Zhou et al., 2022).

A.2 Details of Low-Source Datasets

We evaluate our method and all the baseline models
on two widely used datasets, NYT and WebNLG.
The former is generated initially by a remote super-
vision method, consisting of 1.18 million sentences
with 24 predefined relation types. The latter is
built for the Natural Language Generation (NLG)
task, using triples from DBPedia and including six
categories: astronauts, architecture, monuments,
universities, sports teams, and writings. NYT and
WebNLG come in two versions: one version an-
notates only the last word of entities, while the
other annotates the entire span of entities. We refer
to the first version of the datasets as NYT* and
WebNLG*, and the second version as NYT and
WebNLG. Table 6 provides detailed information
about these four datasets.

A.3 Details of Different JERE Models

SPN SPN is a transformer network with non-
autoregressive parallel decoding capability. Unlike
traditional methods that output triples in sequence,
SPN generates the entire set of triples all at once.
In this process, SPN disregards the content of the
triples and instead focuses solely on relation and
entity types. The method of unique prediction by
two-part matching provides accurate training sig-
nals for SPN.

PRGC PRGC solves the issues of redundant re-
lation prediction, poor generalization, and low effi-
ciency of span-based extraction in the JERE tasks.


https://doi.org/10.18653/v1/2020.acl-main.552
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Table 6: Statistics of datasets. N is the number of triples in a sentence.

Dataset Triples in Train Set
Category
Train Valid Test Relations N=1 N=2 N=3 N=4 N2>5 Triples
NYT 56195 5000 5000 24 36835 12065 3672 2623 1001 88366
NYT* 56195 4999 5000 24 36868 12058 3663 2618 988 88253
WebNLG 5019 500 703 216 1865 1237 1033 641 243 11313
WebNLG* 5019 500 703 171 1716 1264 1043 648 348 11776

Its core idea is to use a prediction component to
estimate the potential relation between entities and
extract relevant constraints between them to con-
struct a subset of relation, thereby addressing the
issue of overlapping statements during text extrac-
tion. Besides, PRGC organizes the subjects and
objects into a low-complexity triplet using an inter-
nal global communication component.

CasRel CasRel solves the issue of overlapping
triples in the JERE tasks by primarily modeling
relations as subject-to-object mapping functions
(Wei et al., 2020). It revisits the task of relational
triple extraction and enhances the current approach
by addressing the problem of overlapping triples
with identical entities.

OneRel OneRel solves the issue of string-level
errors and relation redundancy in the joint extrac-
tion process of the JERE tasks (Shang et al., 2022).
It breaks down the JERE process into a classifica-
tion problem and incorporates tokens into the texts
to establish a directed mapping between the decod-
ing and encoding processes. A classifier is used to
score the triples and ensure consistent performance
of the extracted triples across different scenarios.

TPLinker TPLinker focuses on addressing the
issue of exposure bias caused by overlapping rela-
tions of shared entities in JERE tasks (Wang et al.,
2020). It utilizes a single-stage joint extraction
framework that guarantees the extracted triples to
be free from the exposure bias. TPLinker intro-
duces a new labeling scheme that aligns the entities
under each relation type to identify overlapping
relation that share multiple entities.

The performance of the four augmented datasets
under different JERE models with various similar-
ity thresholds is depicted in Figure 2. The results
indicate that the five JERE tasks perform optimally
when the threshold value is set to 0.7.

A.4 Implementation Details

In our experiments, we complete all processes on
a single server equipped with an Intel Xeon Gold
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6248 2.50GHz CPU, two Tesla V100 SXM2 32GB
GPUs, and Ubuntu 18.04.6 operating system. We
reuse the pre-trained base-cased English model re-
leased by Huggingface for BERT.

We store the unstructured texts that need to be
extracted along with their corresponding categories.
To deal with a large sample size, we divide the
dataset into multiple samples of size 1000, and
randomly select three samples for augmentation.
This process results in a sample set of 1,000,000
texts, with a sample capacity of 1000, to reduce
the time cost. Additionally, we match unstructured
texts with the same category and store text pairs
with a similarity score greater than 0.60. For text
augmentation, we filter out entity and relation texts
with similarity scores greater than 0.50 and 0.70,
respectively. Finally, we obtain the head entity,
tail entity, and relation entity structured augmented
texts and combine them to generate a structured
augmented text.

In our experiments, we utilize three standard
evaluation metrics, namely Precision (Prec.), F1-
score (F1), and Intersection over Union (IoU). Dur-
ing the evaluation process, we employ an exact
matching approach for the dataset, where the pre-
dicted triples are considered correct only if the
entire span of the two entities and relation are
matched.

Triple:
New York. (

Sentence:
, location, )
bel-Inde
L p

General Method: Unstructured-based General Methods

Method 1: Obama New York. Method 1: Obama lives in New York.

Alama lives in Los Angeles.

Method 2: Obama lives in New York.

vl
Alama ), Los Angeles(location),

» Obama lives in New York. Sim(Alama, Obama)>g;

Method 3: New York Obama. , (DAlama lives in New York.

2)Obama lives in Los Angeles.
Label-Related Specific Methods
Method 1: Obama lives in New York.
New York
» Obama lives in New York is
Method 2: Obama lives in
New York is

Method 2: Obama lives in New York.
Wilson works in Texas.
Wilson( ), Texas(location),
Sim(lives in, borns in)>¢,

3)Obama borns in New York.
> () , location, )

4)Wilson lives in Texas.
, location, )

> Obama lives in e (
Figure 4: The process for our augmentation method. Arrows
from texts to triplet indicate text extraction; arrows from triple
to texts indicate data augmentation. The threshold of similar-
ity between head and tail entities is denoted by €1, and the
threshold of similarity of relation is denoted by €.



A.5 Validity Verification

Verification of Lexical Fluency As shown in
Figure 4, we are comparing our method with the tra-
ditional data augmentation paradigm. During our
augmentation process, we aim to mitigate any lexi-
cal damage to the text by preserving its structure.
To maintain the lexical fluency and relevance of
the augmented texts, we use similarity constraints
while keeping the structure of the text intact, as
long as they have the same entity annotation type.
For instance, although the morphological similarity
between "son" and "sun" is 0.6824, their seman-
tic similarity is only 0.3723. Therefore, we only
use texts with the same entity text annotation and
similarity above 0.7 for our data augmentation to
ensure the text’s lexical fluency.

Table 7: Recall (%) of SSDAU versus seven baselines.

Category NYT* WebNLG* NYT WebNLG

Original 92.76 9145 9151 87.55
wSs 91.17 89.88 8931 88.11
BT 90.08 91.55 89.98 90.34
NI 90.46  92.17 91.06 86.88
SSN 90.08 9191 9134 87.12
GM 90.49 93.00 90.11 87.54
Mizup  89.57 93.17 89.99 86.72
FlipDA 91.83 9120 9031 87.93
SSDAU 92.10 93.10 94.09 88.36

Verification of Usability Table 7 shows the re-
call of various data augmentation methods. It is
observed that while training the JERE models, con-
ventional methods cause a slight decrease in the
model’s recall. However, the data augmented by
SSDAU can still maintain a high recall, indicating
that our data augmentation method is more effec-
tive than the baselines in terms of usability.
Besides, the experimental results show that con-
ventional data augmentation methods are not sig-
nificantly effective in improving the accuracy of
joint entity and relation models and may even have
adverse effects. On the other hand, our proposed
method, SSDAU, leads to a positive recall improve-
ment. Additionally, we compare the IoU values
of models trained on data augmented by SSDAU
and conventional methods. It can be observed that
SSDAU produces the highest IoU value, indicating
that the augmented data is more closely correlated.

Verification of Effectiveness Table 8 illustrates
the effectiveness of SSDAU in different types of
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JERE tasks. It is evident that SSDAU yields posi-
tive results in various JERE tasks. This is mainly
due to the fact that SSDAU transforms the JERE
tasks into a triple classification problem by apply-
ing structured semantic labeling of features, which
eliminates the induced association of similar texts.

For the NYT dataset, the entire entity informa-
tion is annotated to match the annotated entity
types. During this process, the text is divided into
unstructured discrete texts based on semantic tags,
and data augmentation is performed by replacing
texts with the same annotation type and similar se-
mantics. The conventional methods tend to directly
ignore texts with high similarity when the seman-
tics are the same, and the structure is consistent,
leading to lower text extraction accuracy. In con-
trast, SSDAU overcomes this issue by employing
consistency filtering to ensure the effectiveness of
the augmented text.

A.6 Training Cost and Convergence

Comprasion of partial and exact datasets Fig-
ure 5(a) displays the partially annotated datasets
before and after augmentation, including the num-
ber of triads in the texts. Additionally, exactly
matched datasets are also included in the analysis.
To test the effectiveness of our data augmentation
method across all datasets, we apply it to the NYT
and WebNLG datasets, which match the annotated
entity types, resulting in the augmented datasets
NYT, and WebN LG,,. To evaluate the effective-
ness of SSDAU under different JERE tasks, we vali-
date it using five models, namely SPN, PRGC, Cas-
Rel, OneRel, and TPLinker. Figure 5(b) presents
the information before and after data augmentation.

During the similarity matching process, as de-
scribed in Section 3.3, our approach distinguishes
between the entities and relation in the triples. It
conducts separate similarity matching for the head
entities, tail entities, and entity relationships. This
approach effectively avoids the issue of multiple
groups of relations being mutually exclusive due to
text-relatedness. During this process, the entity and
relation texts retain only their text type annotations
and are reconstructed into semantically consistent
structured text using these annotations. Therefore,
to complete the text matching, we need to replace
all the triples corresponding to the texts of the entity
in the entire set of multiple groups.

We use text type annotations as semantics in the
matching process for entities and relations. Each
entity or relation text only represents its annotated



Table 8: Effect of SSDAU in different JERE models. PRE: A/B denotes Original/SSDAU, indicating the prediction
precision of the model obtained by the original training set and the augmented by SSDAU.

Datasets
Module Type NYT*  WebNLG" NYT WebNLG
Multi-module Multi-Step  91.48/92.42 92.89/93.33 91.32/93.07 89.69/91.45
Multi-module One-Step ~ 90.81/91.98 92.22/94.82 92.75/92.77 90.44/91.24
One-module One-Step ~ 90.17/92.00 90.62/92.80 92.83/92.90  90.66/91.60

35000
g’ 20000
;ﬂ 15000

5000

N=2

N=3 N=4
Number of Triples

(a) The Partially Data

Number of Triples

(b) The Exactly Data

Figure 5: The comparison between the number of triads included in SSDAU after augmentation and the initial one

for different types of datasets.

type in the text, which helps avoid semantic in-
compatibility issues caused by the transformation
of entities from different types in different triples,
while ensuring the completeness of the semantic
text.

Topology of Augmented Data Figure 6 displays
the topology of data with the location type of
the head entity, comprising of five triple relations.
For two relation groups, “/location/country/capital”
and “/location/country/administrative_divisions”,
their spatial locations are adjacent, indicating that
they have stronger associations during data aug-
mentation. We perform data augmentation on two
data samples of the same type of triplet relation,
and the resulting augmented sample lies between
these two samples in terms of spatial structure.
These results demonstrate that our data augmen-
tation method 1) ensures consistency of tuple rela-
tionships, 2) aligns with real-world general knowl-
edge, and 3) has generalization capabilities in com-
plementary applications of knowledge graphs.

Figure 6: (Best viewed in color and zoom in.) Visual represen-
tation of augmented data on spatial structure. The augmented
data are labeled in red.
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A.7 Case Study

Table 9 shows the seven baseline methods for the
sample after the augmentation of the original data.

WS  For the original text, the keyword “reviewed
the tire” is replaced with “took a closer review to
the tire” by word substitution.

BT Back translation is familiar to convert the
text to French, then convert the text to the original
language to get “Goodyear officials rushed back to
their headquarters in Akron, Ohio, and carefully
examined the tire data from the June 12 race.”.

NI Noise insertion gets augmented text by adding
the words “curried” and “race competition”.

SSN The same-tag noise insertion gets aug-
mented text by adding the word “anxiously” with
a similar tag to the text “scurried”.

GM Generative models are obtained by training
four datasets as training sets. And the augmented
text “Officials from Goodyear hurried back to the
racing headquarters in Akron, Ohio, to double-
check the tire data for the June 12 race.” with high
similarity to the original text.

Mixup Mixup obtains the augmented text
“Goodyear officials scurried back to their racing
headquarters in Akron, Ohio, city, and carefully
reviewed the tissue data from the June 12 race.” by
mixed interpolation at the sentence level. As we
can see, compared to the data obtained by conven-
tional data augmentation methods, SSDAU is able



Table 9: Augmented cases by conventional data augmentation methods.

Text: Goodyear officials scurried back to their racing headquarters in Akron, Ohio,
and carefully reviewed the tire data from the June 12 race.

Source Triples: Abu Ohio(location)|Akron(location)|contains
Text: Goodyear officials scurried back to their racing headquarters in Akron, Ohio,
WS and carefully took a closer review to the tire data from the June 12 race.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Goodyear officials rushed back to their headquarters in Akron, Ohio, and ca-
BT refully examined the tire data from the June 12 race.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Goodyear officials scurried rushed back to their racing headquarters in A-
NI kron, Ohio, and carefully reviewed the tire data from the June 12 race competition.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Goodyear officials scurried anxiously back to their racing headquarters in
SSN Akron, Ohio, and carefully reviewed the tire data from the June 12.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Officials from Goodyear hurried back to the racing headquarters in Akron,
GM Ohio, to double-check the tire data for the June 12 race.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Goodyear officials scurried back to their racing headquarters in Akron, Ohio,
Mixup city, and carefully reviewed the tissue data from the June 12 race.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Officials from Goodyear hurriedly returned to their racing headquarters
in Akron, Ohio, where they meticulously examined the tire data from the race
FlipDA  held on June 12th.
Triples: Abu Ohio(location)| Akron(location)|contains
Text: Goodyear officials rushed back to their racing headquarters in Akron, Ohio,
SSDAU where they meticulously reviewed the tire data from the race on June 12th.

Triples: Abu Ohio(location)| Akron(location)|contains
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to augment diverse text data with different triadic
semantic structures while maintaining the semantic
structure of the text.

FlipDA FlipDA generates a text with similar se-
mantics: “Officials from Goodyear hurriedly re-
turned to their racing headquarters in Akron, Ohio,
where they meticulously examined the tire data
from the race held on June 12th.”

SSDAU SSDAU will search for semantically la-
beled text with high similarity based on neighbor-
ing semantically strong connectivity intervals, and
get new text after filtering: “Goodyear officials
rushed back to their racing headquarters in Akron,
Ohio, where they meticulously reviewed the tire
data from the race on June 12th”
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