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Abstract

Joint entity and relation extraction (JERE) are001
highly susceptible to weak-generalization due002
to low-quality text on various natural language003
processing (NLP) tasks. Data augmentation004
is a common approach to enhance text qual-005
ity. However, traditional data augmentation006
methods tend to compromise intrinsic textual007
logic, making it challenging to design effective008
augmentation techniques. In this paper, we pro-009
pose a novel paradigm called Structured Seman-010
tic Data Augmentation (SSDAU) that that pre-011
serves the structured semantics of augmented012
text. SSDAU applies context-awareness to en-013
code semantic entities in the text, then designs014
a Tarjan algorithm to complete the neighbor-015
hood semantic analysis of related entity, and016
finally completes the data augmentation by en-017
tity reconstruction of neighboring text with a018
structured semantic model. We compare differ-019
ent baselines under different JERE scenarios020
and evaluate the performance and efficiency of021
SSDAU. The results demonstrate that SSDAU022
can generate high-quality data, which greatly023
improves the performance of the JERE model024
and outperforms the state of the art.025

1 Introduction026

Joint entity and relation extraction (JERE) have027

been widely used for representation learning on028

text due to their superior performance in vari-029

ous applications such as information retrieval (Lin030

et al., 2020), question answering (Abdelaziz et al.,031

2021) and text summarization systems (Zhong032

et al., 2020), etc. JERE have been proven effective033

by achieving impressive performance for diverse034

datasets such as search engine, media networks,035

linguistics, and knowledge graphs. However, the036

performance of JERE models are influenced by the037

amount and quality of dataset used in the training038

process. Researchers usually address this issue039

through data augmentation. Data augmentation can040

be used to increase the diversity of data by introduc-041

ing small perturbations. This technique is widely 042

applied in various fields that require improving 043

the generalization ability of models. For instance, 044

MixUp generates augmented data by mixing la- 045

beled data with low-entropy, high-quality unlabeled 046

data (Cheng et al., 2020). Back-translation (Xie 047

et al., 2020) achieves data augmentation by produc- 048

ing repetitive sentences. LLMs generate coherent 049

text content directionally by learning patterns in 050

the representations of text (Zhou et al., 2022). 051

However, these approaches still pose some chal- 052

lenges. First, data augmentation generally injects 053

slight noise into the text, thus increasing the direc- 054

tion of variation in the data, but this also reduces 055

the correctness of the generated text. Especially in 056

the JERE tasks, this is a severe problem. Since en- 057

tity relations comprise entities, the introduction of 058

external noise may weaken the entity relevance of 059

the augmented text (Kambhatla et al., 2022), conse- 060

quently reducing the accuracy of JERE models in 061

the extraction process. Moreover, traditional data 062

augmentation methods may disturb the semantic 063

logic of the text that affect the semantic structure of 064

the text leading to overlapping relationships. And 065

LLMs are susceptible to fixed paradigms leading to 066

the existence of semantic cascades in the generated 067

sentences. Such issues can lead to the emergence of 068

problems such as security risks in the target model 069

(Liu et al., 2020). 070

To address the above dilemma, we propose 071

a novel data augmentation paradigm known as 072

Structured Semantic Data Augmentation (SSDAU), 073

which achieves data augmentation by preserving 074

the semantic structure of the text. Firstly, we devise 075

a text feature-based encoder that encodes seman- 076

tic entities in the text through context awareness, 077

thereby reducing noise interference. Secondly, we 078

design a decoder based on the Tarjan algorithm. 079

We match the encoded text, identify similar text 080

segments with adjacent semantics, and then re- 081

construct the neighboring semantic entity text to 082
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complete data augmentation. Thirdly, we devise083

a structured semantic model to select substitute084

texts with high similarity and the same semantics085

for reorganizing the original text. Finally, inspired086

by dense clustering techniques for topic modeling087

based on ERT embeddings and c-TF-IDF (Groo-088

tendorst, 2022), we utilize the BertTopic model to089

record important vocabulary retained in topic de-090

scriptions and filter out irrelevant topics from the091

augmented text.092

We validate the effectiveness of SSDAU using093

four datasets that are widely used in the JERE094

task. We compared six conventional baselines and095

one LLMs (Zhou et al., 2022) baseline in different096

JERE models. The experimental results demon-097

strate that text augmented by SSDAU outperforms098

the state-of-the-art methods in improving the accu-099

racy of the JERE task. In addition, further experi-100

ments demonstrate that SSDAU has great potential101

in enhancing low-resource JERE tasks.102

Our contributions are summarized as follows:103

• We propose a novel structured semantic data104

augmentation paradigm. To the best of our105

knowledge, this is the first work that inves-106

tigates data enhancement done through text107

structured semantics.108

• We design a text feature encoding and strong109

associative semantic decoding strategy that110

can improve the diversity and quality of text111

while ensuring its semantic structure.112

• We validate the applicability of SSDAU and113

demonstrate theoretically and experimentally114

that the augmented text generated by SSDAU115

has great advantages in terms of validity and116

performance.117

2 Related Work118

Information Extraction JERE is a fundamen-119

tal NLP task that aims to map entity and relation,120

generate a text-to-triplet model based on their corre-121

lation, and assign the triple to a new annotation(Fu122

et al., 2019). Previous JERE models mostly em-123

ploy joint modeling (Ren et al., 2017) or sequen-124

tial annotation (zhe, 2017) to extract entities and125

relations together. They focus on structured learn-126

ing by manually constructing features, building127

information tables or knowledge to enhance the128

relevance of entity extraction and relation recogni-129

tion(Miwa and Bansal, 2016). However, manually130

constructed features make it hard to achieve pos- 131

itive results in different applications. To address 132

this challenge, Zhao et al. (Zhao et al., 2021) pro- 133

pose decomposing the JERE task and completing 134

contextual learning by modifying the classification 135

process. They divided the JERE models into three 136

categories: multi-module multi-step (Zheng et al., 137

2021; Wei et al., 2020), multi-module one-step (Sui 138

et al., 2020; Wang et al., 2020) and one-module one- 139

step (Shang et al., 2022). The accuracy of these 140

models is limited by the training data, and our struc- 141

tured semantic data augmentation method can help 142

generate a large amount of high quality data, which 143

has a great advantage in the basic and downstream 144

applications of JERE models. 145

Semantic Match Semantic matching is a sub- 146

task of text matching, which is mainly applied to 147

retrieve semantically similar texts from libraries in 148

search scenarios (Wu et al., 2022). Some typical ap- 149

proaches include cosine similarity, term frequency- 150

inverse document frequency (TF-IDF) calculation, 151

and deep structured semantic model (DSSM) (Gao 152

et al., 2021). Recent studies have shown that pre- 153

training semantic classification models can effec- 154

tively compress massive text and improve the gen- 155

eralization ability of semantic matching models 156

(Brown et al., 2020). For example, the emergence 157

of Similarities (Zhang Bingyu, 2022) provides solid 158

foundation for developing practical applications for 159

text semantic matching tasks. In particular, the se- 160

mantic matching function of Similarities has been 161

widely recognized for its superior effect in text rela- 162

tion extraction. Based on the existing text similarity 163

matching techniques, we designed a Tarjan-based 164

strong linkage semantic logic text matching algo- 165

rithm to improve the existing JERE work through 166

text semantic matching. 167

Data Augmentation Data augmentation is a cost- 168

effective and efficient method that can improve 169

the performance and accuracy of machine learn- 170

ing models, especially in a data-constrained envi- 171

ronment (Cashman et al., 2020). Common data 172

augmentation techniques used in NLP include 173

proximal word replacement (Wei and Zou, 2019), 174

word vector replacement (Wang and Yang, 2015), 175

masked language model replacement (Jiao et al., 176

2020), back translation (Zhang et al., 2020), adding 177

noise (Min et al., 2020; Yan et al., 2019; Hou et al., 178

2018), etc. Among them, Jonas et al. (Mueller 179

and Thyagarajan, 2016) propose a lexical substi- 180

tution method for augmented data that preserves 181
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Figure 1: Overview of SSDAU. Data Discrete and Reconstructed split the text by semantically segmenting and
injecting tags into the segmented text. The color blocks in the Encoder represent the text in different semantic
regions. We have separated sets by Decoder to support Structured Semantic Data Augmentation where the Input
View conditions on the similarity match and Output View conditions on data augmentation. Finally, we filter the
low-resource data using Scoring-Based Consistency Filtering and get the final augmented data £, combined with T,
to train a more robust JERE model.

original semantics by word proxemics. In addi-182

tion, text generation methods based on designing183

prompts using pre-trained language models have184

garnered significant attention. However, these ap-185

proaches are limited by the size of synonym lists,186

vocabulary coverage, and adaptability constraints.187

Unlike existing methods employing simple pertur-188

bation (Liu et al., 2020) or extra augmentor model189

(Hou et al., 2021; Hu et al., 2019), we propose190

the sampling-based augmentation, generating data191

with the same semantic structure by maintaining192

the semantic logic of the samples.193

3 Method194

In this section, we provide an overview of our pro-195

posed data augmentation method. Figure 1 depicts196

the framework of SSDAU. We first define the tasks197

and then describe the three essential components198

of SSDUA, including i) data discrete and recon-199

structed, ii) structured semantic data augmentation,200

and iii) sorcing-based consistency filtering.201

3.1 Preliminaries202

In this work, triples serve as the foundation for203

text augmentation, achieved by discretizing the text204

within its context and utilizing contextual features205

as semantic labels. This methodology encompasses206

the formulation of rules for text discretization and207

subsequent reconstruction, anchoring the seman-208

tic structure via semantic labels, thereby establish-209

ing a repository for semantic text. Subsequently,210

semantic rules are integrated with semantic simi-211

larity modeling, culminating in the development212

of a Tarjan algorithm. This algorithm is tasked 213

with matching text semantics and generating data 214

while ensuring the integrity of the text’s semantic 215

structure. Finally, the dataset is refined through 216

augmented text filtration employing scoring and 217

filtering modeling techniques. Implementation of 218

SSDAU facilitates the creation of augmented data 219

endowed with comprehensive semantic structures, 220

effectively addressing the quality and quantity pre- 221

requisites for datasets in diverse domains, particu- 222

larly for large-scale language modeling endeavors. 223

3.2 Data Discrete and Reconstructed 224

Given set of sentences S = {s1, s2, ..., sN} con- 225

taining L token and K predefined relations R = 226

{r1, r2, ..., rK}, we extract entities and relations to 227

construct triples T = {(hi, ri, ti)}Mi=1 in S, where 228

hi, ti are the head and tail entities, respectively, N 229

represents the number of sentences, M represents 230

the number of triples. In this process, we maintain 231

a three-dimensional matrix ML∗K∗L to store the 232

existing knowledge. Since the triplet is used as the 233

basic unit of data augmentation, we partition the 234

text according to the triplet labels ρ to obtain three 235

series of text collections. 236

Encoder We use the triplet as the basic unit of 237

data augmentation to eliminate the noise from tex- 238

tual perturbations. We design a text feature-based 239

encoder E. The input of the encoder is the sentence 240

text S, and for each sentence si, we find the spec- 241

ified text block (qhi
, qri , qti) based on the triplet 242

tags (ρhi
, ρri , ρti), and record the context token 243

(lhi
, lri , lti) and the cut position (phi

, pri , pti). The 244
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Algorithm 1 The execution process of data augmentation through SSDAU.
Input: Sentences: S; Token: L, Predefined relations: R; Similarity threshold: ε.
Output: Augmented dataset: Sg.

foreach i=1 to N do
Feed si, L and R to encoder E.
Split the R to get the triplet labels.
Obtain the split text block, context tokens, and segmentation point.
Perform entity type classification to obtain text collections Qh, Qt, Qr.

Feed Qh, Qt, Qr to decoder D.
Classifying relation types and dividing triplet labels to obtain text library B = B1, B2, ..., BLKL.
foreach i=1 to LKL do

Get the number of text blocks m in Bi.
foreach j=1 to m do

Feed text block and context token to text matcher SIM .
Record the similarity value Θ
if Θ ≥ ε then

Add Θ to the priority queue Pi.

foreach i=1 to LKL do
Calculate the topic score value for each text block. (Equation 1)
Calculate the topic vector of each text block’s corresponding text. (Equation 2)
if The target replacement text block is not a thematic text block. then

Meets data augmentation criteria. (Equation 3)
Perform text replacement to obtain text S′

Add S′ to Sg.

encoder processes all the input text and gets three245

output text collections according to the tag types:246

head entity collection Qh, tail entity collection Qt247

and relation entity collection Qr.248

Decoder We design a j Tarjan-based semantic249

structure similarity matching algorithm based on250

the strong association property of neighbor seman-251

tics. The algorithm will analyze the correlation of252

K relation types and M ternary labels in the set253

of sentences S, and match the highly correlated se-254

mantic labels by constructing a strong connectivity255

graph, which will be used as a basis for designing256

a formal similarity based text matching decoder257

D. The input of decoder D is (Qh, Qt, Qs), and it258

divides the text collections according to the rela-259

tion types and label types to get LKL groups text260

library B = {B1, B2, ..., BLKL} with the same261

relation type and the same label.262

3.3 Structured Semantic Data Augmentation263

We designed a text matcher based on the semantic264

similarity evaluation tool Similarities to perform265

similarity matching. Algorithm 1 showcases the266

execution steps of the structured semantic data aug-267

mentation module. The text blocks b in the text268

corpus Bi = b1, b2, ..., bj record the text q, context 269

tokens l, label type ρ, and segmentation position p. 270

We perform a complete match of all b in different 271

text corpora Bi, including semantic, syntactic, and 272

lexical matching of the text, as well as similarity 273

evaluation of context tokens. In this process, we 274

normalize the matching results to a value between 275

0 and 1, and add them to a priority queue sorted by 276

decreasing similarity. Finally, for each text corpus 277

Bi, we obtain a similarity priority queue Pi. 278

After completing the similarity matching, we 279

filter out the text in the priority queue Pi = 280

P1, P2, ..., PLKL with similarity less than ε. For 281

the remaining, we replace the text information of 282

the corresponding text block based on the recorded 283

segmentation position l in the information of each 284

text block, thus obtaining the augmented text. 285

3.4 Sorcing-Based Consistency Filtering 286

We use the BertTopic model to record important 287

words retained in topic descriptions and filter the 288

augmented text of irrelevant topics, thus ensuring 289

the topic coherence of the augmented text. To this 290

end, we design a score-based BertTopic text filter. 291

First, we extract entities and relations from the 292

text. Then, we encode the tokens by BERT (Kenton 293
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and Toutanova, 2019), obtaining the corresponding294

entity tokens l1, l2, ..., lL. Afterwards, we combine295

entities and relations in the form of (lh, r, lt) and296

perform triplet extraction using JERE (Shang et al.,297

2022). Finally, a function is applied to calculate the298

correlation between the head and tail entity. The299

scoring function is defined as:300

h ⋆ t = ϕ(W [lh; lt]
T + b) (1)301

Where h and t represent the head and tail, respec-302

tively. ⋆ : R × Rd → Rd denotes circular corre-303

lation. W ∈ Rde×2d and b are trainable weights304

and biases, respectively, where de denotes the di-305

mension of the entity. [; ] is the concatenation op-306

eration and ϕ(·) represents the ReLU activation307

function. We then incorporate the highly evaluated308

entity pairs with the relations and use the relational309

representation function R ∈ Rde×4K . The vector310

function is defined as follows:311

υ(lh,rk,lt)
K
k=1

=RTϕ(drop(W [lh; lt]
T+b)) (2)312

Where υ represents the score vector and drop(·)313

refers to the dropout strategy (Srivastava et al.,314

2014). Next, we add the scoring vector υ to the soft-315

max function to predict the corresponding labels.316

The formulated triples is as follows:317

ζtriple = − 1

LKL
×

L∑
i=1

K∑
k=1

L∑
j=1

logP (y(li,rk,lj)=g(li,rk,lj)|S)

(3)318

Where g(li,rk,lj) represents the gold tag obtained319

from annotations. We match all triplets with the320

golden label triplets to obtain the topic score for321

each triplet. Finally, we select the high-scoring322

triplets as the topic tag for the text. We filter out the323

augmented text where the topic tags are replaced,324

and obtain augmented data that is both topic-related325

and has a complete structured semantics.326

4 Experiment327

4.1 Experimental Setup328

Baseline We consider seven of the most com-329

monly used data augmentation methods as our330

baseline for comparison. Including Word Substi-331

tution (WS) (Wei and Zou, 2019), Back Transla-332

tion (BT) (Xie et al., 2020), Noise Introduction333

(NI) (Fanghua Ye, 2022), Same-tag Semantic Noise334

(SSN) (Yan et al., 2019), Generative Models (GM)335

(Hou et al., 2021), Mixup (Hu et al., 2019), and336

FlipDA (Zhou et al., 2022). For details on the se-337

lection and implementation of the baselines, please338

refer to Appendix A.1.339

Dataset Since the JERE task fits better with 340

short texts, we conduct comprehensive experi- 341

ments on two authoritative datasets, NYT and 342

WebNLG. Among other things, both types of 343

datasets contain two versions: fully annotated 344

type (NYT, WebNLG) and partially annotated type 345

(NYT, WebNLG). Detailed statistics for these four 346

datasets are provided in Appendix A.2. 347

Evaluation and Selection of Thresholds Table 348

1 describes the number of augmented samples gen- 349

erated by SSDAU for different sets of semantic 350

domains under various similarity thresholds. We 351

counted the effective augmented texts for entities 352

and relations of the four datasets under different 353

variable settings. The results indicate that the num- 354

ber of augmented samples decreases as the thresh- 355

old value increases. Figure 2 shows the precision of 356

the four augmented datasets under different JERE 357

models with various similarity thresholds. For dif- 358

ferent datasets, we selected the threshold with the 359

best results as the threshold parameter in the base- 360

line comparison experiments. 361

Dataset ε Head Relation Tail Sum.

NY T ∗

0.5 ∼ 0.6 15062 243 11300 26605
0.6 ∼ 0.7 9439 38 4631 14108
0.7 ∼ 0.8 1825 19 1365 3209
0.8 ∼ 0.9 2927 0 1137 4064
0.9 ∼ 1.0 960 0 1546 2506

WebNLG∗

0.5 ∼ 0.6 7082 2742 8116 17940
0.6 ∼ 0.7 3933 1946 5342 11221
0.7 ∼ 0.8 2049 2162 1557 5768
0.8 ∼ 0.9 814 2005 1021 3840
0.9 ∼ 1.0 5463 890 2929 9282

NY T

0.5 ∼ 0.6 13507 234 10076 23817
0.6 ∼ 0.7 7721 36 4063 11820
0.7 ∼ 0.8 4922 13 1588 6523
0.8 ∼ 0.9 2198 0 1140 3338
0.9 ∼ 1.0 3700 0 1051 4751

WebNLG

0.5 ∼ 0.6 4023 3186 6028 13237
0.6 ∼ 0.7 2673 2009 4445 9127
0.7 ∼ 0.8 968 1345 1123 3436
0.8 ∼ 0.9 309 919 923 2151
0.9 ∼ 1.0 3019 444 6935 10398

Table 1: The number of augmented samples produced
by SSDAU at various thresholds and semantic domains
varies for each dataset, with the same five similarity
thresholds applied to all.

4.2 Main Result 362

Results of the baseline comparison Table 2 363

shows the results of SSDAU with seven baseline 364

methods. From the experimental results, it is evi- 365

dent that the augmented text generated by SSDAU 366

is able to train a JERE model with better robustness 367

compared to the baseline methods, which implies 368

that SSDAU has a better performance capability 369
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Figure 2: Extraction precision of the JERE models with different similarity thresholds. (a), (b), (c), and (d) describe
the precision of different JERE models under different datasets, respectively.
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Figure 3: The effects of various baselines on different datasets are examined. Specifically, (a), (b), (c), and (d)
illustrate the precision of the data augmentation baseline at different iterations, with the CasRel model serving as
the prediction model.

in the JERE task. This indicates that the strategy370

of data augmentation by holding the structured se-371

mantics of the text has better results in ensuring the372

accuracy of the JERE task.373

In addition, Table 2 shows the validity (Prec),374

performance (F1), and adaptability (IoU) results of375

SSDAU and the seven baseline methods in different376

JERE tasks. The findings consistently show that SS-377

DAU outperforms the other baselines in effectively378

augmenting the data for various JERE tasks. In379

addition, it is observed that the data augmentation380

methods for LLMs is able to show better results381

in low iteration scenarios compared to the other382

methods, but the quality of the generated data will383

be lower than the other methods as the number of384

iterations is augmented. While in JERE task, due to385

the specificity of the scenarios, data resources are386

extremely scarce, so it is necessary to iteratively387

augment the data continuously to ensure the robust-388

ness of the trained model. Therefore, SSDAU is389

more suitable for the current application scenario.390

Results in different JERE tasks To validate the391

generality of the data generated by SSDAU, we392

conduct comparative experiments across different393

JERE tasks. We choose BT as the comparative394

baseline, which is a representative augmentation395

method that best preserves the semantic structure396

of augmented text. Table 3 presents the effective-397

ness of SSDAU and the BT method across various 398

JERE models. The results show that the dataset 399

augmented by SSDAU improves in different types 400

of JERE models. For instance, in the SPN model, 401

the precision of the WebNLG∗
g dataset increased 402

by 3.03%, while in the TPLinker model, the pre- 403

cision of the NY Tg dataset improved by 0.94%. 404

These outcomes demonstrate that the structured se- 405

mantic data generated by our approach effectively 406

enhances the robustness of JERE models in per- 407

forming tasks. 408

4.3 Ablation Study of SSDAU 409

We conduct an ablation study on the NY T ∗ and 410

WebNLG∗ benchmarks to evaluate three compo- 411

nents: Data Discrete and Reconstructed, Structured 412

Semantic Data Augmentation, and Scoring-Based 413

Consistency Filtering. In the process, we maintain 414

the other component settings consistent. 415

Data Discrete and Reconstruction First, we re- 416

move the pre-processing component, Data Discrete 417

and Reconstruction, and instead directly split the 418

data based on the triad message without semantic 419

tags (No Label Split). Additionally, we employ 420

conventional text split methods, the no split and 421

complete full split schemes (Gao et al., 2020). As 422

Table 4 shows, we evaluate the effectiveness of 423

the pre-processing components before and after 424
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Category
Partial Match Exact Match

NYT∗ WebNLG∗ NYT WebNLG

Prec. F1 IoU Prec. F1 IoU Prec. F1 IoU Prec. F1 IoU
Original 90.17 91.45 84.24 90.62 90.25 82.23 92.83 92.17 85.47 90.66 89.08 80.31
WS (Wei and Zou, 2019) 88.82 88.98 80.16 91.47 91.51 84.35 89.91 89.61 81.17 89.66 88.88 79.98
BT (Prabhumoye et al., 2018) 88.97 89.52 81.02 91.77 91.97 85.14 89.10 89.54 81.07 89.46 89.90 81.70
NI (Fanghua Ye, 2022) 89.37 89.91 81.67 92.41 92.16 85.46 88.38 89.70 81.32 88.41 87.64 78.00
SSN (Yan et al., 2019) 89.03 89.55 81.08 91.89 92.44 85.94 88.25 89.77 81.44 84.77 85.93 75.34
GM (Hou et al., 2021) 88.30 89.38 80.79 91.84 92.41 85.89 88.60 89.35 80.75 90.82 89.15 80.42
Mixup (Hu et al., 2019) 90.56 90.06 81.92 91.29 92.22 85.56 91.36 90.16 82.08 90.35 88.50 79.37
FlipDA (Zhou et al., 2022) 90.43 89.92 81.43 90.11 90.03 82.77 90.52 88.32 80.20 90.71 89.85 81.47
SSDAU 92.00 92.05 85.27 92.80 92.95 86.83 91.74 92.90 86.74 91.58 89.94 81.77

Table 2: Precision (%) , F1 score (%) and Intersection over Union (%) of our proposed SSDAU and baselines in
CasRel model. All results are for multiple pattern models and the same training set size.

Model NYT∗ WebNLG∗ NYT WebNLG
SPN(Suiet al., 2020) 91.44/91.95 93.81/96.84 92.67/92.64 90.21/90.88
PRGC(Zhenget al., 2021) 93.33/93.36 94.00/94.46 93.54/94.40 89.92/91.32
CasRel(Weiet al., 2020) 88.97/91.47 91.77/92.13 89.10/91.74 89.46/91.58
OneRel(Shanget al., 2022) 90.17/92.00 90.62/92.80 92.83/92.90 90.66/91.60
TPLinker(Wanget al., 2020) 90.23/92.21 90.89/91.34 91.33/92.27 89.12/89.93

Table 3: The precision of different models under different datasets. PRE: A/B denotes BT/SSDAU, indicating the
prediction precision of the model obtained by the original training set and the augmented one by SSDAU. Among
the seven baselines, BT has the most superior performance.

DataSet NYT∗ WebNLG∗ Ave.
CasRel Baseline 90.17 90.62 90.39

SSDAU 92.00 92.80 92.40
Ablation for Pre-processing

No Split 89.32 90.17 89.75
No Label Split 90.33 90.42 90.38

Full Split 88.64 89.76 89.20
Ablation for Augmentation

(h,t) 64.21 73.83 69.02
(r) 77.42 84.31 80.87

(h,r,t) 90.41 91.13 90.77
(h,r,h) 85.66 88.53 87.10
(t,r,t) 82.12 84.44 83.28

Ablation for Filtering

No Filtering 89.92 90.84 90.38

Table 4: Ablation study for SSDAU. No Split denotes
not splitting the text. No Label Split denotes splitting
by semantics without semantic tag. Full Split denotes
complete splitting of the words in the text.

removal by precision. We observe that the outper-425

forms with Discrete Data Reconstruction get an426

improvement of approximately 2.02%-3.20%. Fur-427

thermore, we find that the inclusion of semantic428

tagging prompts has a positive impact on discrete429

text data augmentation in low-resource JERE tasks.430

Structured Semantic Data Augmentation We431

apply an exact matching method to verify the effec-432

tiveness of the augmentation components. In this 433

process, the tags of the discrete text are replaced 434

with the augmented data’s tags, and we classify the 435

augmented data based on the triple’s type and use 436

the classified data to train a model to compare the 437

validity of the augmented data after removing the 438

augmented component. 439

According to the findings in Table 4, the aug- 440

mented data consists of five types of ternary labels. 441

Among these five types of labels, only the aug- 442

mented text belonging to the third triad (h, r, t) 443

had a limited positive effect (0.38%) on the JERE 444

task. On the contrary, the remaining four types 445

negatively affected the accuracy of the JERE task. 446

When the augmentation component was removed, 447

the threshold limit was lifted and low quality data 448

was included in the augmentation process. This 449

led to a significant increase in negative data, which 450

in turn reduced the accuracy of the model. It can 451

be seen that the augmentation component helps 452

to maintain the semantic structure and facilitates 453

the mapping process between augmented text and 454

ternary labels. This component determines the ac- 455

curacy of the coming text extraction process. The 456

experimental results show that the accuracy of the 457

JERE model decreases significantly when the en- 458

hancement component is removed, which empha- 459

sizes the key role of the enhancement component 460
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Source
Text = South Africa, and the rest of Africa.
Triple = [[Africa, /location/location/contains, South Africa]]
Structured Semantic = location contain location

Syntax Matching

Text1 = South Africa is a part of Africa. ν = 0.516
Text2 = North Africa, and the rest of Africa. ν = 0.923
Triple = [[Africa, /location/location/contains, North Africa]]
Structured Semantic = location contain location

Table 5: Semantic consistency verification of augmented text. ν is the syntactic coherence.

in semantically structured data augmentation.461

Scoring-Based Consistency Filtering We ver-462

ify the impact of the consistency filtering compo-463

nent in SSDAU. Table 4 shows the precision of464

the JERE models with and without filtered data.465

The results show that the filtered data positively im-466

pacts the model’s precision, which decreases when467

low-quality augmented data are not removed. This468

implies that within the augmented text produced469

by SSDAU, there still exist small amounts of data470

with accurate semantic structures but lower quality.471

Therefore, to uphold model accuracy, it is essential472

to filter the augmented text as well.473

4.4 Analysis474

Semantic coherence analysis. To ensure seman-475

tic consistency of the augmented text, we take two476

steps. First, we consider similarities between text477

annotations of the same type and entity to label the478

text by semantic annotations. And we use the Biber479

Tagger (A. Bergman, 2022) to match ternary texts480

with the same tags. The high level of syntactic481

consistency between Text1 and Text2 is shown482

in the appendix table 5. Secondly, we filter out483

texts with low relevance (below 0.8) and include484

the remaining data in the training set to ensure se-485

mantic consistency of the augmented texts. After486

that, we distinguish between entities and relations487

in the triples, perform separate similarity match-488

ing on entity texts, and replace the triples contain-489

ing replacement texts. This approach effectively490

solves the problem of mutual exclusion of multiple491

relations due to text relevance and ensures seman-492

tic coherence between the augmented text and the493

original text. In addition, in the Appendix A.5, we494

perform a linguistic validation of the model results.495

Training Cost and Convergence. Appendix A.6496

provides details about the original and augmented497

texts containing varying numbers of triples. By498

classifying the augmented data according to triplets499

and incorporating them into the training set, we as- 500

sess different JERE models using the same test 501

set. The results demonstrate the efficacy of SS- 502

DAU for texts with different numbers of triplets. 503

Our method proves valuable for texts with vary- 504

ing triplet counts, indicating that as the number of 505

triplets in the training set decreases, the availability 506

of augmented data increases, leading to improved 507

precision of the model. 508

5 Limitation 509

Though the proposed SSDAU outperforms all base- 510

line methods, it still has some limitations. First, 511

we initially employed score filtering to screen out 512

lower-quality augmented data, a process that re- 513

lies heavily on the selection of filtering criteria 514

with varying reference metrics across JERE appli- 515

cation domains, so the method still needs to take 516

into account different domain characteristics when 517

migrating across domains. Second, in scenarios 518

where both quality and quantity are ensured, SS- 519

DAU may be less efficient in achieving the same 520

effect since LLM’s data augmentation methods typ- 521

ically require a fewer number of iterations. In our 522

future work, it will be instructive to validate our 523

approach on JERE tasks in different domains and 524

further optimize the efficiency of SSDAU at the 525

algorithmic and model level. 526

6 Conclusion 527

We propose SSDAU, a data augmentation paradigm 528

that provides instances of augmentation for the low- 529

resource JERE task by labeling semantic segmen- 530

tation of entity texts and evaluating the similarity 531

of neighboring semantic regions. Compared with 532

existing methods, SSDAU solves the problems of 533

noise introduction, relationship overlap, and seman- 534

tic cascading in low-resource data augmentation 535

scenarios. We experimentally demonstrate that pre- 536

serving the structured semantics of text may be a 537

more favorable choice for NLP data augmentation. 538
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A Appendix776

A.1 Details of Seven Data Augmentation777

Methods778

Word Substitution Approaches that rely on near-779

synonyms center around word list replacement tech-780

niques (Mueller and Thyagarajan, 2016), which781

include word vector-based replacement (Wang and782

Yang, 2015) and mask-based models (Jiao et al.,783

2020). By replacing the original words with their784

synonyms, a new text can be generated while main-785

taining a similar semantic structure.786

Back Translation The process of back-787

translation involves utilizing an English-French788

translation model (Xie et al., 2020), wherein the789

original text is translated and then translated back790

into the original language. This approach generates791

a new text that retains the semantic structure792

of the original. Rather than simply replacing793

individual words, back-translation achieves data794

augmentation by effectively repeating entire795

sentences.796

Noise Introduction The process of augment-797

ing text involves adding, removing, or modifying798

words and sentences by introducing various forms799

of noise, such as changes to the text’s form, order,800

and semantics (Fanghua Ye, 2022). By adding sub-801

tle noise that does not relate to the original text,802

the diversity of the text is expanded, resulting in a803

larger number of distinct texts.804

Same-tag Semantic Noise Introduction SSN805

achieves data augmentation by introducing noise806

associated with text tags at the word level (Yan807

et al., 2019), as well as at the sentence level (Gau-808

rav Sahu, 2022), while preserving the original text’s809

semantics.810

Generative Models The GM method involves811

constructing a generative model based on the orig-812

inal texts to perform targeted data augmentation813

(Hou et al., 2021). To train the generative model, 814

the original data is passed through a pre-existing 815

generative adversarial network, and the resulting 816

augmented data is added to the training set for 817

JERE models. 818

Mixup Mixup achieves cross-label data augmen- 819

tation through hybrid interpolation at both the word 820

and sentence levels (Zhang et al., 2017; Cheng 821

et al., 2020). This method involves fine-grained 822

word vector interpolation and mixing of data or 823

tags to generate new, smoother data and augment 824

the existing dataset. 825

FlipDA FlipDA first generates text using splicing, 826

then randomly masks off some input tokens and 827

predicts them, and finally sifts through the new 828

samples with the help of a classifier to pick out the 829

ones with the highest confidence to get augmented 830

data (Zhou et al., 2022). 831

A.2 Details of Low-Source Datasets 832

We evaluate our method and all the baseline models 833

on two widely used datasets, NYT and WebNLG. 834

The former is generated initially by a remote super- 835

vision method, consisting of 1.18 million sentences 836

with 24 predefined relation types. The latter is 837

built for the Natural Language Generation (NLG) 838

task, using triples from DBPedia and including six 839

categories: astronauts, architecture, monuments, 840

universities, sports teams, and writings. NYT and 841

WebNLG come in two versions: one version an- 842

notates only the last word of entities, while the 843

other annotates the entire span of entities. We refer 844

to the first version of the datasets as NYT∗ and 845

WebNLG∗, and the second version as NYT and 846

WebNLG. Table 6 provides detailed information 847

about these four datasets. 848

A.3 Details of Different JERE Models 849

SPN SPN is a transformer network with non- 850

autoregressive parallel decoding capability. Unlike 851

traditional methods that output triples in sequence, 852

SPN generates the entire set of triples all at once. 853

In this process, SPN disregards the content of the 854

triples and instead focuses solely on relation and 855

entity types. The method of unique prediction by 856

two-part matching provides accurate training sig- 857

nals for SPN. 858

PRGC PRGC solves the issues of redundant re- 859

lation prediction, poor generalization, and low effi- 860

ciency of span-based extraction in the JERE tasks. 861
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Table 6: Statistics of datasets. N is the number of triples in a sentence.

Category
Dataset Triples in Train Set

Train Valid Test Relations N=1 N=2 N=3 N=4 N≥5 Triples
NY T 56195 5000 5000 24 36835 12065 3672 2623 1001 88366
NY T ∗ 56195 4999 5000 24 36868 12058 3663 2618 988 88253

WebNLG 5019 500 703 216 1865 1237 1033 641 243 11313
WebNLG∗ 5019 500 703 171 1716 1264 1043 648 348 11776

Its core idea is to use a prediction component to862

estimate the potential relation between entities and863

extract relevant constraints between them to con-864

struct a subset of relation, thereby addressing the865

issue of overlapping statements during text extrac-866

tion. Besides, PRGC organizes the subjects and867

objects into a low-complexity triplet using an inter-868

nal global communication component.869

CasRel CasRel solves the issue of overlapping870

triples in the JERE tasks by primarily modeling871

relations as subject-to-object mapping functions872

(Wei et al., 2020). It revisits the task of relational873

triple extraction and enhances the current approach874

by addressing the problem of overlapping triples875

with identical entities.876

OneRel OneRel solves the issue of string-level877

errors and relation redundancy in the joint extrac-878

tion process of the JERE tasks (Shang et al., 2022).879

It breaks down the JERE process into a classifica-880

tion problem and incorporates tokens into the texts881

to establish a directed mapping between the decod-882

ing and encoding processes. A classifier is used to883

score the triples and ensure consistent performance884

of the extracted triples across different scenarios.885

TPLinker TPLinker focuses on addressing the886

issue of exposure bias caused by overlapping rela-887

tions of shared entities in JERE tasks (Wang et al.,888

2020). It utilizes a single-stage joint extraction889

framework that guarantees the extracted triples to890

be free from the exposure bias. TPLinker intro-891

duces a new labeling scheme that aligns the entities892

under each relation type to identify overlapping893

relation that share multiple entities.894

The performance of the four augmented datasets895

under different JERE models with various similar-896

ity thresholds is depicted in Figure 2. The results897

indicate that the five JERE tasks perform optimally898

when the threshold value is set to 0.7.899

A.4 Implementation Details900

In our experiments, we complete all processes on901

a single server equipped with an Intel Xeon Gold902

6248 2.50GHz CPU, two Tesla V100 SXM2 32GB 903

GPUs, and Ubuntu 18.04.6 operating system. We 904

reuse the pre-trained base-cased English model re- 905

leased by Huggingface for BERT. 906

We store the unstructured texts that need to be 907

extracted along with their corresponding categories. 908

To deal with a large sample size, we divide the 909

dataset into multiple samples of size 1000, and 910

randomly select three samples for augmentation. 911

This process results in a sample set of 1,000,000 912

texts, with a sample capacity of 1000, to reduce 913

the time cost. Additionally, we match unstructured 914

texts with the same category and store text pairs 915

with a similarity score greater than 0.60. For text 916

augmentation, we filter out entity and relation texts 917

with similarity scores greater than 0.50 and 0.70, 918

respectively. Finally, we obtain the head entity, 919

tail entity, and relation entity structured augmented 920

texts and combine them to generate a structured 921

augmented text. 922

In our experiments, we utilize three standard 923

evaluation metrics, namely Precision (Prec.), F1- 924

score (F1), and Intersection over Union (IoU). Dur- 925

ing the evaluation process, we employ an exact 926

matching approach for the dataset, where the pre- 927

dicted triples are considered correct only if the 928

entire span of the two entities and relation are 929

matched. 930

Obama lives in New York.
Sentence:

(people, location, place_lived)
Triple:

Label-Independent General Methods

Label-Related Specific Methods

Method 1: Obama resides in New York.

Method 2: Obama [MASK] lives in New York.

Method 3: New York is lived by Obama.

Method 2: Obama really lives in New York.

Method 1: Obama lives in New York.
Method 1: New York is an city.

Obama lives in New York is an city.
Method 2: Obama lives in New York.

Method 1: New York is an amazing city.

Obama lives in an amazing city.

Unstructured-based General Methods
Method 1: Obama lives in New York.
Method 1: Alama lives in Los Angeles.

Alama(people), Los Angeles(location),
Sim(Alama, Obama)>𝜀!

Method 1: Alama lives in New York.
Method 1: Obama lives in Los Angeles.

1
2

Method 2: Obama lives in New York.

Method 1: Wilson works in Texas.
Wilson(people), Texas(location),

Sim(lives in, borns in)>𝜀"
Method 1: Obama borns in New York.

Method 1: Wilson lives in Texas.

3

4

(people, location, place_of_birth)

(people, location, place_lived)

Figure 4: The process for our augmentation method. Arrows
from texts to triplet indicate text extraction; arrows from triple
to texts indicate data augmentation. The threshold of similar-
ity between head and tail entities is denoted by ε1, and the
threshold of similarity of relation is denoted by ε2.
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A.5 Validity Verification931

Verification of Lexical Fluency As shown in932

Figure 4, we are comparing our method with the tra-933

ditional data augmentation paradigm. During our934

augmentation process, we aim to mitigate any lexi-935

cal damage to the text by preserving its structure.936

To maintain the lexical fluency and relevance of937

the augmented texts, we use similarity constraints938

while keeping the structure of the text intact, as939

long as they have the same entity annotation type.940

For instance, although the morphological similarity941

between "son" and "sun" is 0.6824, their seman-942

tic similarity is only 0.3723. Therefore, we only943

use texts with the same entity text annotation and944

similarity above 0.7 for our data augmentation to945

ensure the text’s lexical fluency.946

Table 7: Recall (%) of SSDAU versus seven baselines.

Category NYT∗ WebNLG∗ NYT WebNLG
Original 92.76 91.45 91.51 87.55
WS 91.17 89.88 89.31 88.11
BT 90.08 91.55 89.98 90.34
NI 90.46 92.17 91.06 86.88
SSN 90.08 91.91 91.34 87.12
GM 90.49 93.00 90.11 87.54
Mixup 89.57 93.17 89.99 86.72
FlipDA 91.83 91.20 90.31 87.93
SSDAU 92.10 93.10 94.09 88.36

Verification of Usability Table 7 shows the re-947

call of various data augmentation methods. It is948

observed that while training the JERE models, con-949

ventional methods cause a slight decrease in the950

model’s recall. However, the data augmented by951

SSDAU can still maintain a high recall, indicating952

that our data augmentation method is more effec-953

tive than the baselines in terms of usability.954

Besides, the experimental results show that con-955

ventional data augmentation methods are not sig-956

nificantly effective in improving the accuracy of957

joint entity and relation models and may even have958

adverse effects. On the other hand, our proposed959

method, SSDAU, leads to a positive recall improve-960

ment. Additionally, we compare the IoU values961

of models trained on data augmented by SSDAU962

and conventional methods. It can be observed that963

SSDAU produces the highest IoU value, indicating964

that the augmented data is more closely correlated.965

Verification of Effectiveness Table 8 illustrates966

the effectiveness of SSDAU in different types of967

JERE tasks. It is evident that SSDAU yields posi- 968

tive results in various JERE tasks. This is mainly 969

due to the fact that SSDAU transforms the JERE 970

tasks into a triple classification problem by apply- 971

ing structured semantic labeling of features, which 972

eliminates the induced association of similar texts. 973

For the NYT dataset, the entire entity informa- 974

tion is annotated to match the annotated entity 975

types. During this process, the text is divided into 976

unstructured discrete texts based on semantic tags, 977

and data augmentation is performed by replacing 978

texts with the same annotation type and similar se- 979

mantics. The conventional methods tend to directly 980

ignore texts with high similarity when the seman- 981

tics are the same, and the structure is consistent, 982

leading to lower text extraction accuracy. In con- 983

trast, SSDAU overcomes this issue by employing 984

consistency filtering to ensure the effectiveness of 985

the augmented text. 986

A.6 Training Cost and Convergence 987

Comprasion of partial and exact datasets Fig- 988

ure 5(a) displays the partially annotated datasets 989

before and after augmentation, including the num- 990

ber of triads in the texts. Additionally, exactly 991

matched datasets are also included in the analysis. 992

To test the effectiveness of our data augmentation 993

method across all datasets, we apply it to the NYT 994

and WebNLG datasets, which match the annotated 995

entity types, resulting in the augmented datasets 996

NY Tg and WebNLGg. To evaluate the effective- 997

ness of SSDAU under different JERE tasks, we vali- 998

date it using five models, namely SPN, PRGC, Cas- 999

Rel, OneRel, and TPLinker. Figure 5(b) presents 1000

the information before and after data augmentation. 1001

During the similarity matching process, as de- 1002

scribed in Section 3.3, our approach distinguishes 1003

between the entities and relation in the triples. It 1004

conducts separate similarity matching for the head 1005

entities, tail entities, and entity relationships. This 1006

approach effectively avoids the issue of multiple 1007

groups of relations being mutually exclusive due to 1008

text-relatedness. During this process, the entity and 1009

relation texts retain only their text type annotations 1010

and are reconstructed into semantically consistent 1011

structured text using these annotations. Therefore, 1012

to complete the text matching, we need to replace 1013

all the triples corresponding to the texts of the entity 1014

in the entire set of multiple groups. 1015

We use text type annotations as semantics in the 1016

matching process for entities and relations. Each 1017

entity or relation text only represents its annotated 1018
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Table 8: Effect of SSDAU in different JERE models. PRE: A/B denotes Original/SSDAU, indicating the prediction
precision of the model obtained by the original training set and the augmented by SSDAU.

Module Type Datasets
NYT∗ WebNLG∗ NYT WebNLG

Multi-module Multi-Step 91.48/92.42 92.89/93.33 91.32/93.07 89.69/91.45
Multi-module One-Step 90.81/91.98 92.22/94.82 92.75/92.77 90.44/91.24
One-module One-Step 90.17/92.00 90.62/92.80 92.83/92.90 90.66/91.60
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Figure 5: The comparison between the number of triads included in SSDAU after augmentation and the initial one
for different types of datasets.

type in the text, which helps avoid semantic in-1019

compatibility issues caused by the transformation1020

of entities from different types in different triples,1021

while ensuring the completeness of the semantic1022

text.1023

Topology of Augmented Data Figure 6 displays1024

the topology of data with the location type of1025

the head entity, comprising of five triple relations.1026

For two relation groups, “/location/country/capital”1027

and “/location/country/administrative_divisions”,1028

their spatial locations are adjacent, indicating that1029

they have stronger associations during data aug-1030

mentation. We perform data augmentation on two1031

data samples of the same type of triplet relation,1032

and the resulting augmented sample lies between1033

these two samples in terms of spatial structure.1034

These results demonstrate that our data augmen-1035

tation method 1) ensures consistency of tuple rela-1036

tionships, 2) aligns with real-world general knowl-1037

edge, and 3) has generalization capabilities in com-1038

plementary applications of knowledge graphs.1039

/location/administrative_division/country

/location/administrative_division/country

/location/administrative_division/country

/location/country/administrative_divisions

/location/country/administrative_divisions

/location/country/capital

/location/country/capital

/location/country/capital

/location/country/capital

/location/country/capital

/location/location/contains

/location/location/contains

/location/location/contains

/location/location/contains

/location/location/contains

/location/neighborhood/neighborhood_of

/location/neighborhood/neighborhood_of

/location/neighborhood/neighborhood_of

/location/country/capital

/location/country/capital

/location/country/administrative_divisions

/location/country/administrative_divisions

/location/country/administrative_divisions

/location/country/administrative_divisions

/location/location/contains

/location/neighborhood/neighborhood_of

/location/country/capital

/location/country/capital

Figure 6: (Best viewed in color and zoom in.) Visual represen-
tation of augmented data on spatial structure. The augmented
data are labeled in red.

A.7 Case Study 1040

Table 9 shows the seven baseline methods for the 1041

sample after the augmentation of the original data. 1042

WS For the original text, the keyword “reviewed 1043

the tire” is replaced with “took a closer review to 1044

the tire” by word substitution. 1045

BT Back translation is familiar to convert the 1046

text to French, then convert the text to the original 1047

language to get “Goodyear officials rushed back to 1048

their headquarters in Akron, Ohio, and carefully 1049

examined the tire data from the June 12 race.”. 1050

NI Noise insertion gets augmented text by adding 1051

the words “curried” and “race competition”. 1052

SSN The same-tag noise insertion gets aug- 1053

mented text by adding the word “anxiously” with 1054

a similar tag to the text “scurried”. 1055

GM Generative models are obtained by training 1056

four datasets as training sets. And the augmented 1057

text “Officials from Goodyear hurried back to the 1058

racing headquarters in Akron, Ohio, to double- 1059

check the tire data for the June 12 race.” with high 1060

similarity to the original text. 1061

Mixup Mixup obtains the augmented text 1062

“Goodyear officials scurried back to their racing 1063

headquarters in Akron, Ohio, city, and carefully 1064

reviewed the tissue data from the June 12 race.” by 1065

mixed interpolation at the sentence level. As we 1066

can see, compared to the data obtained by conven- 1067

tional data augmentation methods, SSDAU is able 1068
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Table 9: Augmented cases by conventional data augmentation methods.

Source

Text: Goodyear officials scurried back to their racing headquarters in Akron, Ohio,
and carefully reviewed the tire data from the June 12 race.
Triples: Abu Ohio(location)|Akron(location)|contains

WS

Text: Goodyear officials scurried back to their racing headquarters in Akron, Ohio,
and carefully took a closer review to the tire data from the June 12 race.
Triples: Abu Ohio(location)|Akron(location)|contains

BT

Text: Goodyear officials rushed back to their headquarters in Akron, Ohio, and ca-
refully examined the tire data from the June 12 race.
Triples: Abu Ohio(location)|Akron(location)|contains

NI

Text: Goodyear officials scurried rushed back to their racing headquarters in A-
kron, Ohio, and carefully reviewed the tire data from the June 12 race competition.
Triples: Abu Ohio(location)|Akron(location)|contains

SSN

Text: Goodyear officials scurried anxiously back to their racing headquarters in
Akron, Ohio, and carefully reviewed the tire data from the June 12.
Triples: Abu Ohio(location)|Akron(location)|contains

GM

Text: Officials from Goodyear hurried back to the racing headquarters in Akron,
Ohio, to double-check the tire data for the June 12 race.
Triples: Abu Ohio(location)|Akron(location)|contains

Mixup

Text: Goodyear officials scurried back to their racing headquarters in Akron, Ohio,
city, and carefully reviewed the tissue data from the June 12 race.
Triples: Abu Ohio(location)|Akron(location)|contains

FlipDA

Text: Officials from Goodyear hurriedly returned to their racing headquarters
in Akron, Ohio, where they meticulously examined the tire data from the race
held on June 12th.
Triples: Abu Ohio(location)|Akron(location)|contains

SSDAU

Text: Goodyear officials rushed back to their racing headquarters in Akron, Ohio,
where they meticulously reviewed the tire data from the race on June 12th.
Triples: Abu Ohio(location)|Akron(location)|contains
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to augment diverse text data with different triadic1069

semantic structures while maintaining the semantic1070

structure of the text.1071

FlipDA FlipDA generates a text with similar se-1072

mantics:“Officials from Goodyear hurriedly re-1073

turned to their racing headquarters in Akron, Ohio,1074

where they meticulously examined the tire data1075

from the race held on June 12th.”1076

SSDAU SSDAU will search for semantically la-1077

beled text with high similarity based on neighbor-1078

ing semantically strong connectivity intervals, and1079

get new text after filtering: “Goodyear officials1080

rushed back to their racing headquarters in Akron,1081

Ohio, where they meticulously reviewed the tire1082

data from the race on June 12th”1083
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