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Abstract

Recent work in language modeling has raised the possibility of “self-improvement,”1

where an LLM evaluates and refines its own generations to achieve higher2

performance without external feedback. It is impossible for this self-improvement3

to create information that is not already in the model, so why should we expect4

that this will lead to improved capabilities?5

We offer a new theoretical perspective on the capabilities of self-improvement6

through a lens we refer to as “sharpening.” Motivated by the observation that7

language models are often better at verifying response quality than they are8

at generating correct responses, we formalize self-improvement as using the9

model itself as a verifier during post-training in order to ‘sharpen’ the model10

to one placing large mass on high-quality sequences, thereby amortizing the11

expensive inference-time computation of generating good sequences. We begin12

by introducing a new statistical framework for sharpening in which the learner has13

sample access to a pre-trained base policy. Then, we analyze two natural families14

of self-improvement algorithms based on SFT and RLHF. We find that (i) the15

SFT-based approach is minimax optimal whenever the initial model has sufficient16

coverage, but (ii) the RLHF-based approach can improve over SFT-based self-17

improvement by leveraging online exploration, bypassing the need for coverage.18

We view these findings as a starting point toward a foundational understanding19

that can guide the design and evaluation of self-improvement algorithms.20

1 Introduction21

Contemporary language models are remarkably proficient on a wide range of natural language22

tasks [BMR+20, OWJ+22, TMS+23, Ope23, Goo23], but they inherit shortcomings of the data23

on which they were trained. A fundamental challenge is to achieve better performance than what24

is directly induced by the distribution of available, human-generated training data. To this end,25

recent work [HGH+22, WKM+22, BKK+22, PWL+23, YPC+24] has raised the possibility of26

“self-improvement,” where a model—typically through forms of self-play or self-training in which27

the model critiques its own generations—learns to improve on its own, without external feedback.28

This phenomenon is somewhat counterintuitive; at first glance it would seem to disagree with the29

well-known data-processing inequality [Cov99], which asserts that no form of self-training should30

be able to create information not already in the model, motivating the question of why we should31

expect such supervision-free interventions will lead to stronger reasoning and planning capabilities.32

A dominant hypothesis for why improvement without external feedback might be possible is that33

models contain “hidden knowledge” [HVD15] that is difficult to access. Self-improvement, rather34

than creating knowledge from nothing, is a means of extracting and distilling this knowledge35

into a more accessible form, and thus is a computational phenomenon rather than a statistical36

one. While there is a growing body of empirical evidence for this hidden-knowledge hypothesis37
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Figure 1: Validation of the sharpening mechanism: Performance of Best-of-N (inference time)
Sharpening—with self-reward rself(y, x) = log πbase(y | x)—as a function of N on three reasoning
tasks (left: GameOf24, center: GSM8k, right: MATH). Sharpening consistently improves model accuracy
with increasing N and outperforms greedy token-wise decoding with πbase. Details in Appendix F.

[FLT+18, GKXS19, DHLZ19, ADZ20, AZL20], particularly in the context of self-distillation, a38

fundamental understanding of self-improvement remains missing. Concretely, where in the model39

is this hidden knowledge, and when and how can it be extracted?40

1.1 Our Perspective: The Sharpening Mechanism41

In this paper, we posit a potential source of hidden knowledge, and offer a theoretical perspective42

on how to extract it. Our starting point is the widely observed phenomenon that language models are43

often better at verifying whether responses are correct than they are at generating correct responses44

[HGH+22, WKM+22, BKK+22, PWL+23, YPC+24]. This gap may be explained by the theory45

of computational complexity, which suggests that generating high-quality responses can be less46

computationally tractable than verification [Coo71, Lev73, Kar72]. In autoregressive language47

modeling, for example, computing the most likely response for a given prompt is NP-hard in the48

worst case (Appendix E), whereas the model’s likelihood for a given response can be easily evaluated.49

We view self-improvement as any attempt to narrow this gap, i.e., use the model as its own verifier50

to improve generation and sharpen the model toward high-quality responses. Formally, consider a51

learner with access to a base model πbase : X → ∆(Y) mapping a prompt x ∈ X to a distribution52

over responses (i.e., πbase(y | x) is the probability that the model generates the response y given the53

prompt x).1 In applications, we consider πbase to be trained either through next-token prediction, or54

through additional post-training steps such as SFT or RLHF, with the key feature being that πbase is a55

good verifier, as measured by some self-reward function rself(y | x;πbase) measuring model certainty.56

The self-reward function is derived purely from the base model πbase, without the use of external57

supervision or feedback. Examples include normalized and/or regularized sequence likelihood58

[MVC20], models-as-judges [ZCS+24, YPC+24, WYG+24, WKG+24], and model confidence59

[WZ24].60

We refer to sharpening as any process that tilts πbase toward responses that are more certain
in the sense that they enjoy greater self-reward rself. More formally, a sharpened model
π̂ is one that (approximately) maximizes the self-reward:

π̂(x) ≈ argmax
y∈Y

rself(y | x;πbase) (1)

61

Note that, in Eq. (1), y denotes an entire response, rather than a single token. Sharpening may62

be implemented at inference-time, or amortized via self-training (Section 3). Popular decoding63

strategies such as greedy, low-temperature sampling, and beam-search can all be viewed as instances64

of the former (albeit at the token-level).2 The latter captures many existing self-training schemes65

[HGH+22, WKM+22, BKK+22, PWL+23, YPC+24], and is the main focus of this paper; we use66

the term sharpening without further qualification to refer to the latter.67

1Our general results are agnostic to the structure of X , Y , and πbase, but an important special case for language
modeling is the autoregressive setting where Y = VH for a vocabulary space V and sequence length H , and
where πbase has the autoregressive structure πbase(y1:H | x) =

∏H
h=1 πbase,h(yh | y1:h−1, x) for y = y1:H ∈ Y .

2More sophisticated decoding strategies like normalized/regularized sequence likelihood [MVC20] or
chain-of-thought decoding [WZ24] also admit an interpretation as sharpening; see Appendix B.
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We refer to the sharpening mechanism as the phenomenon where responses from a model with the68

highest certainty (in the sense of large self-reward rself) exhibit the greatest performance on a task of69

interest. Though it is unclear a-priori whether there are self-rewards related to task performance, the70

successes of self-improvement in prior works [HGH+22, WKM+22, BKK+22, PWL+23, YPC+24]71

give strong positive evidence. These works suggest that, in many settings, models do have hidden72

knowledge: the model’s own self-reward correlates with response quality, but it is computationally73

challenging to generate high self-rewarding—and thus high quality—responses. It is the role of74

(algorithmic) sharpening to leverage these verifications to improve the quality of generations, despite75

computational difficulty.76

1.2 Contributions77

We initiate the theoretical study of self-improvement via the sharpening mechanism. We disentangle78

the choice of self-reward from the algorithms used to optimize it, and aim to understand: (i) When and79

how does self-training achieve sharpening? (ii) What are the fundamental limits for such algorithms?80

Maximum-likelihood sharpening objective (Section 2). As a concrete proposal of one source of81

hidden knowledge, we consider self-rewards defined by the model’s sequence-level log-probabilities:82

rself(y | x) := log πbase(y | x) (2)

This is a stylized self-reward function, which offers perhaps the simplest objective for self-83

improvement in the absence of external feedback (i.e., purely supervision-free), yet also connects84

self-improvement to a rich body of theoretical computer science literature on computational85

trade-offs for optimization (inference) versus sampling (Appendix B). In spite of its simplicity,86

maximum-likelihood sharpening is already sufficient to achieve non-trivial performance gains for87

reasoning tasks such as GameOf24, GSM8k, and MATH over greedy decoding; cf. Figure 1. We believe88

that it can serve as a starting point toward understanding forms of self-improvement that use more89

sophisticated self-rewarding [HGH+22, WKM+22, PWL+23, YPC+24].90

A statistical framework for sharpening (Section 2). Though the goal of sharpening is computa-91

tional in nature, we recast self-training according to the maximum-likelihood sharpening objective92

Eq. (2) as a statistical problem where we aim to produce a model approximating (1) using a polyno-93

mial number of (i) sample prompts x ∼ µ, (ii) sampling queries of the form y ∼ πbase(x), and (iii)94

likelihood evaluations of the form πbase(y | x). Evaluating the efficiency of the algorithm through95

the number of such queries, this abstraction offers a natural way to evaluate the performance of96

self-improvement/sharpening algorithms and establish fundamental limits; we use our framework to97

prove new lower bounds that highlight the importance of the base model’s coverage.98

Algorithms for sharpening (Section 3). The starting point for our work is to consider two natural99

families of self-improvement algorithms based on supervised fine-tuning (SFT) and reinforcement100

learning (RL/RLHF), respectively, SFT-Sharpening and RLHF-Sharpening. Both algorithms amor-101

tize the sharpening objective (1) into a dedicated post-training/fine-tuning phase:102

• SFT-Sharpening filters responses where the self-reward rself(y | x;πbase) is large and fine-tunes103

on the resulting dataset, invoking common SFT pipelines [AVC24, SDH+24].104

• RLHF-Sharpening directly applies reinforcement learning techniques (e.g., PPO [SWD+17] or105

DPO [RSM+23]) to optimize the self-reward function rself(y | x;πbase).106

Analysis of sharpening algorithms. Within our statistical framework for sharpening, we show107

that SFT-Sharpening and RLHF-Sharpening provably converge to sharpened models, establishing108

several results: (i) SFT-Sharpening is minimax optimal, and learns a sharpened model whenever109

πbase has sufficient coverage (we also show that a novel variant based on adaptive sampling can110

sidestep the minimax lower bound); (ii) RLHF-Sharpening benefits from on-policy exploration,111

and can bypass the need for coverage—improving over SFT-Sharpening.Informal results are given112

in Section 3, and a formal discussion is deferred Appendix G.113

1.3 Related Work114

Our work is most directly related to a growing body of empirical research that studies self-115

improvement/training for language models in a supervision-free setting with no external feed-116

back [HGH+22, WKM+22, BKK+22, PWL+23, YPC+24]. The specific algorithms for self-117

improvement/sharpening we study can be viewed as applications of standard alignment algorithms118
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[AVC24, SDH+24, CLB+17, BJN+22, OWJ+22, RSM+23] with a specific choice of reward func-119

tion. However, note that the maximum likelihood sharpening objective (2) used for our theoretical120

results has been relatively unexplored within the alignment and self-improvement literature.121

On the theoretical side, current understanding of self-training is limited. One line of work, focusing on122

the self-distillation objective [HVD15] for classification and regression, aims to provide convergence123

guarantees for self-training in stylized setups such as linear models [MFB20, FZCG22, DS23,124

DDE+24, PDO24], with125

2 A Statistical Framework for Sharpening126

This section introduces the theoretical framework within which we will analyze the SFT-Sharpening127

and RLHF-Sharpening algorithms. We first introduce the maximum-likelihood sharpening objective128

as a simple, stylized self-reward function, then introduce our statistical framework for sharpening.129

We write f = Õ(g) to denote f = O(g · max{1,polylog(g)}) and a ≲ b as shorthand for a = O(b).130

Our theoretical results focus on the maximum-likelihood sharpening objective given by131

rself(y | x) := log πbase(y | x). (3)

This is a simple and stylized self-reward function, but we will show that it already enjoys a rich132

theory. In particular, we can restate the problem of maximum-likelihood sharpening as follows.133

Can we efficiently amortize maximum likelihood inference (optimization) for a conditional
distribution πbase(y | x) given access to a sampling oracle that can sample y ∼ πbase(· | x)?

134

The tacit assumption in this framing is that the maximum-likelihood response constitutes a useful135

form of hidden knowledge. Maximum-likelihood sharpening connects the study of self-improvement136

to a large body of research in theoretical computer science demonstrating computational reductions be-137

tween optimization (inference) and sampling (generation) [KGJV83, LV06, SV14, MCJ+19, Tal19].138

We evaluate the quality of an approximately sharpened model as follows. Let y⋆(x) :=139

argmaxy∈Y log πbase(y | x); we interpret y⋆(x) ⊂ Y as a set to accommodate non-unique maximiz-140

ers, and will write y⋆(x) to indicate a unique maximizer when it exists (i.e., when y⋆(x) = {y⋆(x)}).141

Definition 2.1 (Sharpened model). We say that a model π̂ is (ϵ, δ)-sharpened relative to πbase if142

Px∼µ[π̂(y
⋆(x) | x) ≥ 1− δ] ≥ 1− ϵ.

That is, an (ϵ, δ)-sharpened model places at least 1 − δ mass on arg-max responses on all but an143

ϵ-fraction of prompts under µ. For small δ and ϵ, we are guaranteed that π̂ is a high-quality generator:144

sampling from the model will produce an arg-max response with high probability for most prompts.145

Maximum-likelihood sharpening for autoregressive models. Though our most general results146

are agnostic to the structure of X , Y , and πbase, an important special case is the autoregressive147

setting in which Y = VH for a vocabulary space V and sequence length H , and where πbase has148

the autoregressive structure πbase(y1:H | x) =
∏H

h=1 πbase,h(yh | y1:h−1, x) for y = y1:H ∈ Y .149

We observe that when the response y = (y1, . . . , yH) ∈ Y = VH is a sequence of tokens, the150

maximum-likelihood sharpening objective (2) sharpens toward the sequence-level arg-max response:151

argmax
y1:H

log πbase(y1:H | x). (4)

Although somewhat stylized, Eq. (4) is a non-trivial (in general, computationally intractable; see152

Appendix E) solution concept. In particular, we view the sequence-level arg-max as a form of hidden153

knowledge that cannot necessarily be uncovered through naive sampling or greedy decoding.154

Empirical validation of maximum-likelihood sharpening. Empirically, we find that when155

πbase is a pre-trained language model, inference-time maximum-likelihood sharpening leads to a156

meaningful performance increase over both direct sampling and greedy decoding. We demonstrate157

this by appealing to a practical approximation, inference-time sharpening via best-of-N sampling:158

given a prompt x ∈ X , we draw N responses y1, . . . , yN ∼ πbase(· | x), and return the response159

ŷ = argmaxyi
log πbase(yi | x); this is equivalent to [SOW+20, GSH23, YSS+24], with reward160
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rself(y | x) = log πbase(y | x), and is a popular approach in modern deployments.3 Figure 1161

demonstrates how maximum-likelihood sharpening via best-of-N sampling improves performance162

on three challenging reasoning tasks: GameOf24 [YYZ+24], GSM8k [CKB+21], and MATH [HBK+21]163

(with πbase as fine-tuned Llama2-7b4 for the GameOf24 and with πbase as gpt-3.5-turbo-instruct164

for the latter two tasks). Observed improvements suggest that maximum-likelihood sharpening,165

while stylized, is a desirable criterion.166

Role of δ for autoregressive models. As can be verified through simple examples, beam-search167

and greedy tokenwise decoding do not, in general, return an exact solution to (4). There is one notable168

exception, which implies that it always suffices to sharpen to level δ = 1/2 (cf. Definition 2.1).169

Proposition 2.1 (Greedy decoding succeeds for sharpened policies). Let π = π1:H be an170

autoregressive model defined over response space Y = VH . For a given prompt x ∈ X , if171

y⋆(x) = {y⋆(x)} is a singleton and π(y⋆(x) | x) > 1/2, then the greedy decoding strategy that172

selects ŷh = argmaxyh∈V πh(yh | ŷ1, . . . , ŷh−1, x) guarantees that ŷ = y⋆(x).173

As described, sharpening in the sense of Definition 2.1 is a purely computational problem, which174

makes it difficult to evaluate the quality and optimality of self-improvement algorithms. To address175

this, we introduce a novel statistical/information-theoretic framework for sharpening, inspired by the176

success of oracle complexity in optimization [NYD83, TWW88, RR11, ABRW12] and statistical177

query complexity in computational learning theory [BFJ+94, Kea98, Fel12, Fel17].178

Definition 2.2 (Sample-and-evaluate framework). In the Sample-and-Evaluate framework, the179

algorithm designer does not have explicit access to the base model πbase. Instead, they access πbase180

only through sample-and-evaluate queries. Concretely, the learner is allowed to sample n prompts181

x ∼ µ. For each prompt x, they can sample N responses y1, y2, . . . yN ∼ πbase(· | x) and observe182

the likelihood πbase(yi | x) for each such response. The efficiency, or sample complexity, of the183

algorithm is measured through the total number of sample-and-evaluate queries m := n ·N .184

This framework can be seen to capture algorithms like SFT-Sharpening and RLHF-Sharpening185

(implemented with DPO) introduced below, which only access the base model πbase through i)186

sampling responses via y ∼ πbase(· | x) (generation), and ii) evaluating the likelihood πbase(y |187

x) (verification) for these responses. We view the sample complexity m = n · N as a natural188

statistical abstraction for the computational complexity of self-improvement (exactly parallel to189

oracle complexity for optimization algorithms), one which is amenable to information-theoretic190

lower bounds.5 We will aim to show that, under appropriate assumptions, SFT-Sharpening and191

RLHF-Sharpening can learn an (ϵ, δ)-sharpened model with sample complexity polynomial in192

1/ϵ, 1/δ and other natural problem paratmers.193

2.1 Fundamental Limits194

Intuitively, the performance of any sharpening algorithm based on sampling should depend on how195

well πbase covers the arg-max response y⋆(x). Thus, we define the following coverage coefficient:6196

Ccov = Ex∼µ[1/πbase(y
⋆(x) | x)]. (5)

Next, for a model π, we define yπ(x) = argmaxy∈Y π(y | x) and Ccov(π) = Ex∼µ

[
1

π(yπ(x)|x)

]
.197

Our main lower bound shows that for worst-case choice of Π, the coverage coefficient acts as a lower198

bound on the sample complexity of any algorithm.199

Theorem 2.1 (Lower bound for sharpening). Fix an integer d ≥ 1 and parameters ϵ ∈ (0, 1)200

and C ≥ 1. There exists a class of models Π such that (i) log |Π| ≂ d(1 + log(Cϵ−1)), (ii)201

supπ∈Π Ccov(π) ≲ C, and (iii) yπ(x) is a singleton for all π ∈ Π, for which any sharpening202

algorithm π̂ that achieves E[Px∼µ[π̂(y
πbase(x) | x) > 1/2]] ≥ 1− ϵ for all πbase ∈ Π must collect a203

total number of samples m = n ·N at least m ≳ C log |Π|
ϵ2·(1+log(Cϵ−1)) .204

3We mention in passing that inference-time best-of-N sampling enjoys provable guarantees for maximizing
the maximum-likelihood sharpening objective when N is sufficiently large. See Appendix C for details.

4https://huggingface.co/OhCherryFire/llama2-7b-game24-policy-hf
5Concretely, the sample complexity m = n ·N is a lower bound on the running time of any algorithm that

operates in the sample-and-evaluate framework.
6This quantity can be interpreted as a special case of the L1-concentrability coefficient [FSM10, XJ20,

ZWB21] studied in the theory of offline reinforcement learning.
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We will show in the sequel that it is possible to match this lower bound. Note that this re-205

sult also implies a lower bound for the general sharpening problem (i.e., general rself), since206

maximum-likelihood sharpening is a special case.207

3 Sharpening Algorithms for Self-Improvement208

This section introduces the two families of self-improvement algorithms for sharpening that we209

study. While our algorithms can be implemented for arbitrary rself, all theoretical results use210

maximum-likelihood self-reward in Eq. (3). We use argmaxπ∈Π or argminπ∈Π to denote exact211

optimization over a user-specified model class Π. Formal results are deferred to Appendix G.212

3.1 Self-Improvement through SFT.213

SFT-Sharpening amortizes inference-time sharpening via the effective-but-costly best-of-N sam-214

pling approach [BJE+24, SLXK24, WSL+24] by applying standard supervised fine-tuning on the215

resulting dataset [AVC24, SDH+24, GGV24, PMM+24]. Given a x1, . . . , xn. For each prompt,216

we sample N responses yi,1, . . . , yi,N ∼ πbase(· | xi), then compute the best-of-N response217

yBoNi = argmaxj∈[N ]{rself(yi,j | xi)}, scoring via the model’s self-reward function. We compute218

π̂BoN = argmax
π∈Π

n∑
i=1

log π(yBoNi | xi).

219

Theorem 3.1 (Informal). For N appropriately chosen, the sample complexity of π̂BoN matches the220

lower bounds in Theorem 2.1 up to logarithmic factors. Using an adaptive sampling algorithm,221

studied in Appendix D, obtains improved bounds that are tight in an adaptive-sampling query model.222

3.2 Self-Improvement through RLHF.223

A drawback of the SFT-Sharpening algorithm is that it may ignore useful information contained224

in the self-reward function rself(y | x). Fixing a regularization parameter β > 0 throughout, our225

second class of algorithms solve a KL-regularized reinforcement learning problem in the spirit of226

RLHF and other alignment methods [CLB+17, RSM+23]. Defining Eπ[·] = Ex∼µ,y∼πbase(·|x)[·] and227

DKL(π ∥πbase) = Eπ

[
log π(y|x)

πbase(y|x)
]
, we choose228

π̂ ≈ argmax
π∈Π

{Eπ[rself(y | x)]− βDKL(π ∥πbase)}. (6)

The exact optimizer π⋆
β = argmaxπ∈Π{Eπ[rself(y | x)]− βDKL(π ∥πbase)} for this objective has229

the form π⋆
β(y | x) ∝ πbase(y | x) · exp

(
β−1rself(y | x)

)
, which converges to the solution to the230

sharpening objective in Eq. (1) as β → 0. Thus Eq. (6) can be seen to encourage sharpening.231

There are many possible choices for what RLHF/alignment algorithm to use to solve (6). For our232

theoretical results, we first implement Eq. (6) using an approach inspired by DPO and its reward-based233

variants [RSM+23, GCZ+24]. Given a dataset D = {(x, y, y′)} of n examples sampled via x ∼ µ234

and y, y′ ∼ πbase(y | x), RLHF-Sharpening solves235

π̂ ∈ argmin
π∈Π

∑
(x,y,y′)∈D

(
β log

π(y | x)
πbase(y | x) − β log

π(y′ | x)
πbase(y′ | x) −

(
rself(y | x)− rself(y

′ | x)
))2

. (7)

To analyze this algorithm, we require a margin condition: maxy∈Y πbase(y | x) ≥ (1 + γmargin) ·236

πbase(y
′ | x) ∀y′ /∈ y⋆(x), ∀x ∈ supp(µ); as discussed in Appendix G, this appears unavoidable237

due to mismatch between the RLHF reward and the sharpening objective.238

Theorem 3.2 (Informal). RLHF-Sharpening attains similar guarantees to SFT-Sharpening (i.e.239

polynomial in relevant factors), up to polynomial factors in the margin γ described above.240

Finally, we propose a more sophisticated DPO variant that incorporates online exploration [XFK+24]241

(described in the appendix). Though this algorithm also requires the margin condition, it can242

replace dependence on coverage (Ccov) under πbase which potentially much more benign measure,243

“coverability” [XFB+23], measuring ease-of-exploration of high-quality generations.244

Theorem 3.3 (Informal). Exploration-augmented RLHF-Sharpening obtains similar guarantees to245

RLHF-Sharpening (including margin dependence), but it replaces dependence on coverage with a246

possibly much-smaller quantity. In the special case where πbase is “linearly-parameterizable”, this247

yields unconditionally polynomial sample complexity irrespective of the base policy coverage.248
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Part I585

Additional Discussion and Results586

A Concluding Remarks587

We view our theoretical framework for sharpening as a starting point toward a foundational under-588

standing of self-improvement that can guide the design and evaluation of algorithms. To this end, we589

raise several directions for future research.590

• Representation learning. A conceptually appealing feature of our framework is that it is agnostic591

to the structure of the model under consideration, but an important direction for future work is to592

study the dynamics of self-improvement for specific models (e.g. transformers), and understand593

the representations these models learn under self-training.594

• Richer forms of self-reward. Our theoretical results study the dynamics of self-training in a595

stylized framework where the model uses its own logits for self-reward. Empirical research on596

self-improvement leverages more sophisticated approaches (e.g. specific prompting techniques)597

[HGH+22, WKM+22, BKK+22, PWL+23, YPC+24] and it is important to understand when and598

how these forms of self-improvement are beneficial.599

B Detailed Discussion of Related Work600

In this section, we discuss related work in greater detail, including relevant works not already covered.601

Self-improvement and self-training. Our work is most directly related to a growing body of602

empirical research that studies self-improvement/self-training for language models in a supervision-603

free setting in which there is no external feedback [HGH+22, WKM+22, BKK+22, PWL+23], and604

takes a first step toward providing a theoretical understanding for these methods. This line of work605

is closely related to a body of research on “LLM-as-a-Judge” techniques and related work, which606

investigates approaches to designing self-reward functions rself, often based on specific prompting607

techniques [ZCS+24, YPC+24, WYG+24, WKG+24].608

There is a somewhat complementary line of research that develops algorithms based on self-training609

and self-play [ZWMG22, CDY+24, WSY+24, QZGK24], but leverages various forms of external610

feedback (e.g., positive examples for SFT or explicit reward signal). These methods typically out-611

perform self-improvement methods, which do not use any external feedback [ZWMG22]. However,612

in many scenarios, obtaining external feedback can be costly or laborious; it may require collecting613

high-quality labeled/annotated data, rewriting examples in a formal language, etc. Thus, these614

methods are not directly comparable to methods based on self-improvement.615

Lastly, we mention in passing that the self-improvement problem we study is related to a more616

classical line of research on self-distillation [BCNM06, HVD15, Dev18, PDXL21, RDRS21], but617

this specific form of self-training has received limited investigation in the context of language618

modeling.619

Alignment and RLHF. The specific algorithms for self-improvement/sharpening we study can620

be viewed as special cases of standard alignment algorithms, including classical RLHF methods621

[CLB+17, BJN+22, OWJ+22], direct alignment [RSM+23], and (inference-time or training-time)622

best-of-N methods [AVC24, SDH+24, GGV24, PMM+24]. However, the maximum likelihood623

sharpening objective (2) used for our theoretical results has been relatively unexplored within the624

alignment literature.625

Inference-time decoding. Many inference-time decoding strategies such as greedy/low-temperature626

decoding, beam-search [MVC20], and chain-of-thought decoding [WZ24] can be viewed as instances627

of inference-time sharpening for specific choices of the self-reward function rself. More sophisti-628

cated inference-time search strategies such tree search and MCTS [YYZ+24, WFW+24, MLG+23,629

ZBMG24] are also related, though this line of working frequently makes use of external reward630

signals or verification, which is somewhat complementary to our work.631
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Theoretical guarantees for self-training. On the theoretical side, current understanding of self-632

training is limited. One line of work, focusing on the self-distillation objective [HVD15] for binary633

classification and regression, aims to provide convergence guarantees for self-training in stylized634

setups such as linear models [MFB20, DS23, DDE+24, PDO24], with [AZL20] giving guarantees635

for feedforward neural networks. Perhaps most closely related to our work is [FZCG22], who show636

that self-training on a model’s pseudo-labels can amplify the margin for linear logistic regression.637

However, to the best of our knowledge, our work is the first to study self-training in a general638

framework that subsumes language modeling.639

Our theoretical results for RLHF-Sharpening are also related to a recent body of work that640

provides sample complexity guarantees for alignment methods [ZJJ23, XDY+23, YXZ+24,641

HZX+24, LLZ+24, SSS+24, XFK+24], but our results leverage the unique structure of the642

maximum-likelihood sharpening self-reward function rself(y | x) = log πbase(y | x), and provide643

guarantees for the sharpening objective in Definition 2.1 instead of the usual notion of reward644

suboptimality used in reinforcement learning theory.645

Lastly, we mention that our results—particularly our amortization perspective on self-improvement—646

are related to recent work that studies fundamental representational advantages of allowing additional647

inference time [Mal23, LLZM24]. These work focus on truly sequential tasks, while our work648

focuses on the complementary question of amortizing parallel computation. Thus the representational649

implications are quite different.650

Optimization versus sampling. The maximum-likelihood sharpening we introduce in Section 2651

connects the study of self-improvement to a large body of research in theoretical computer science on652

computational tradeoffs (e.g., separations and equivalences) for optimization and sampling [Bar82,653

KGJV83, LV06, SV14, MCJ+19, Tal19, EKZ22]. On the one hand, this line of research highlights654

that there exist natural classes of distributions for which sampling is tractable, yet maximum likelihood655

optimization is intractable, and vice-versa. On the other hand, various works in this line of research656

also demonstrate computational reductions between optimization and sampling, whereby optimization657

can be reduced to sampling and vice-versa.658

Our setting indeed includes natural model classes where one should not expect there to be a com-659

putational reduction from optimization (argmaxy∈Y πbase(y | x)) to sampling (y ∼ πbase(· | x)),660

and hence inference-time sharpening is computationally intractable (Proposition E.1). Of course,661

coverage assumptions eliminate this intractability. For training-time sharpening (where the goal is662

to amortize across prompts by training a sharpened model, as formulated in Section 2) the obstacle663

in natural, concrete model classes is not just computational but in fact representational (Proposi-664

tion E.2). Regarding the latter point, we note that while amortized Bayesian inference has received665

extensive investigation empirically [Bea03, GG14, SRDM20, BJK+21, HJE+23], we are unaware of666

theoretical guarantees outside of this work.667

C Guarantees for Inference-Time Sharpening668

In this section, we give theoretical guarantees for the inference-time best-of-N sampling algorithm for669

sharpening described in Section 2, under the maximum-likelihood sharpening self-reward function670

rself(y | x;πbase) = log πbase(y | x).671

Recall that given a prompt x ∈ X , the inference-time best-of-N sampling algorithm draws N672

responses y1, . . . , yn ∼ πbase(· | x), then return the response ŷ = argmaxyi
log πbase(yi | x). We673

show that this algorithm returns an approximate maximizer for the maximum-likelihood sharpening674

objective whenever the base policy πbase has sufficient coverage. Recall that for a parameter γ ∈ [0, 1)675

we define676

y⋆
γ(x) :=

{
y | πbase(y | x) ≥ (1− γ) ·max

y∈Y
πbase(y | x)

}
as the set of (1− γ)-approximate maximizers for log πbase(y | x).677

Proposition C.1. Let a prompt x ∈ X be given. For any ρ ∈ (0, 1) and γ ∈ [0, 1), as long as678

N ≥ log(ρ−1)

πbase(y⋆
γ(x) | x)

,

inference-time best-of-N sampling produces a response ŷ ∈ y⋆
γ(x) with probability at least 1− ρ.679
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Proof of Proposition C.1. Fix a prompt x ∈ X , failure probability ρ ∈ (0, 1), and parameter680

γ ∈ (0, 1).681

By definition of the set y⋆
γ(x), ŷ ∈ y⋆

γ(x) if and only if there exists i ∈ [N ] such that yi ∈ y⋆
γ(x).682

The complement of this event, i.e., that yi /∈ y⋆
γ(x) for all i ∈ [N ], has probability683

P
(
yi /∈ y⋆

γ(x),∀i ∈ [N ]
)
=
(
1− πbase(y

⋆
γ(x) | x)

)N
.

Rearranging the right-hand-side, we have684 (
1− πbase(y

⋆
γ | x)

)N
= exp

(
−N log

(
1

1− πbase(y⋆
γ | x)

))
≤ exp

(
−N · πbase(y

⋆
γ | x)

)
,

since log(x) ≥ 1 − 1
x for x > 0, which implies that log

(
1

1−πbase(y⋆
γ |x)

)
≥ πbase(y

⋆
γ | x). Thus, as685

long as N ≥ log(ρ−1)
πbase(y⋆

γ |x)
, we have686

P
(
yi /∈ y⋆

γ(x),∀i ∈ [N ]
)
≤ exp

(
−N · πbase(y

⋆
γ | x)

)
≤ exp(− log(ρ−1)) = ρ.

We conclude that with probability at least 1 − ρ, there exists i ∈ [N ] such that yi ∈ y⋆
γ(x), and687

ŷ ∈ y⋆
γ(x) as a result.688

689

690

D Guarantees for SFT-Sharpening with Adaptive Sampling691

SFT-Sharpening is a simple and natural self-training scheme, and converges to a sharpened policy692

as n,N → ∞. However, using a fixed response sample size N may be wasteful for prompts693

where the model is confident. To this end, in this section we introduce and analyze, a variant of694

SFT-Sharpening based on adaptive sampling, which adjusts the number of sampled responses695

adaptively.696

Algorithm. We present the adaptive SFT-Sharpening algorithm only for the special case of the697

maximum-likelihood sharpening self-reward. Let a stopping parameter µ > 0 be given. For xi ∈ X ,698

and yi,1, yi,2 . . . ∼ πbase(· | xi), define a stopping time (e.g., [BH95]) via:699

Nµ(xi) := inf

{
k :

1

max1≤j≤k πbase(yi,j | xi)
≤ k

µ

}
. (8)

The adaptive SFT-Sharpening algorithm computes adaptively sampled responses yAdaBoNi via700

yAdaBoNi ∼ argmax
{
log πbase(yi,j | xi) | yi,1, . . . , yi,Nµ(xi)

}
,

then trains the sharpened model through SFT:701

π̂AdaBoN = argmax
π∈Π

n∑
i=1

log π(yAdaBoNi | xi).

Critically, by using scheme in Eq. (8), this algorithm can stop sampling responses for the prompt xi if702

it becomes clear that the confidence is large.703

Theoretical guarantee. We now show that adaptive SFT-Sharpening enjoys provable benefits704

over its non-adaptive counterpart through the dependence on the accuracy parameter ϵ > 0.705

Given x ∈ X , and y1, y2 . . . ∼ πbase(x), let Nµ(x) := inf{k : 1
max1≤i≤k πbase(yi|x) ≤ k/µ}, and706

define a random variable yAdaBoN(x) ∼ argmax
{
log πbase(yi | x) | y1, . . . , yNµ ∼ πbase(x)

}
. Let707

πAdaBoN
µ (x) denote the distribution over yAdaBoN(x). We make the following realizability assumption.708

Assumption D.1. The model class Π satisfies πAdaBoN
µ ∈ Π.709

Compared to SFT-Sharpening, we require a somewhat stronger coverage coefficient given by710

Ccov = Ex∼µ

[
1

maxy∈Y πbase(y | x)

]
.

This definition coincides with Eq. (5) when the arg-max response is unique, but is larger in general.711

Our main theoretical guarantee for adaptive SFT-Sharpening is as follows.712
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Theorem D.1. Let δ, ρ ∈ (0, 1) be given. Set µ = ln(2δ−1), and assume Assumption D.1 holds.713

Then with probability at least 1− ρ, the adaptive SFT-Sharpening algorithm has714

Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≲

log(|Π|ρ−1)

δn
,

and has sample complexity E[m] = n · Ccov log(δ
−1). Taking n ≳ log(|Π|ρ−1)

δϵ ensures that with715

probability at least 1− ρ,716

Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≤ ϵ,

and gives total sample complexity717

E[m] = O

(
Ccov log(|Π|ρ−1) log(δ−1)

δϵ

)
.

Compared to the result for SFT-Sharpening in Theorem G.1, this shows that adaptive718

SFT-Sharpening achieves sample complexity scaling with 1
ϵ instead of 1

ϵ2 . We believe the719

dependence on Ccov for this algorithm is tight, as the adaptive stopping rule used in the algorithm720

can be overly conservative when |y⋆(x)| is large.721

A matching lower bound. We now prove a complementary lower bound, which shows that the722

ϵ-dependence in Theorem D.1 is tight. To do so, we consider the following adaptive variant of the723

sample-and-evaluate framework.724

Definition D.1 (Adaptive sample-and-evaluate framework). In the Adaptive Sample-and-Evaluate725

framework, the learner is allowed to sample n prompts x ∼ µ, and sample an arbitrary, adaptively726

chosen number of samples y1, y2, · · · ∼ πbase(· | x) before sampling a new prompt x′ ∼ µ. In727

this framework we define sample complexity m as the total number of pairs (x, y) sampled by the728

algorithm, which is a random variable.729

Our main lower bound is as follows.730

Theorem D.2 (Lower bound for sharpening under adaptive sampling). Fix an integer d ≥ 1 and731

parameters ϵ ∈ (0, 1) and C ≥ 1. There exists a class of models Π such that (i) log |Π| ≂732

d(1 + log(Cϵ−1)), (ii) supπ∈Π Ccov(π) ≲ C, and (iii) yπ(x) is a singleton for all π ∈ Π, for733

which any sharpening algorithm π̂ in the adaptive sample-and-evaluate framework that achieves734

E[Px∼µ[π̂(y
πbase(x) | x) > 1/2]] ≥ 1− ϵ for all πbase ∈ Π must collect a total number of samples735

m = n ·N at least736

E[m] ≳
C log |Π|

ϵ · (1 + log(Cϵ−1))
.

Theorem D.2 is a special case of a more general theorem, Theorem 2.1′, which is stated and proven737

in Appendix J.738

E Computational and Representational Challenges in Sharpening739

In this section, we make several basic observations about the inherent computational and repre-740

sentational challenges of maximum-likelihood sharpening. First, in Appendix E.1, we focus on741

computational challenges, and show that computing a sharpened response for a given prompt x can742

be computationally intractable in general, even when sampling y ∼ πbase(· | x) can be performed743

efficiently. Then, in Appendix E.2, we shift our focus to representational challenges, and show that744

even if πbase is an autoregressive model, the “sharpened” version of πbase may not be representable as745

an autoregressive model with the same architecture. These results motivate the statistical assumptions746

(coverage and realizability) made in our analysis of SFT-Sharpening and RLHF-Sharpening in747

Appendix G.748

To make the results in this section precise, we work in perhaps the simplest special case of autore-749

gressive language modelling, where the model class consists of multi-layer linear softmax models.750

Formally, let X be the space of prompts, and let Y := VH be the space of responses, where V is751

the vocabulary space and H is the horizon. For a collection of fixed/known d-dimensional feature752
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mappings ϕh : X × Vh → Rd and a norm parameter B, we define the model class Πϕ,B,H as the set753

of models754

πθ(y1:H | x) =
H∏

h=1

πθh(yh | x, y1:h−1) (9)

where755

πθ(yh | x, y1:h−1) ∝ exp(⟨ϕ(x, y1:h), θh⟩)
and θ = (θ1, . . . , θH) ∈ (Rd)H is any tuple with ∥θh∥2 ≤ B for all h ∈ [H].756

E.1 Computational Challenges757

Given query access to ϕ, for any given parameter vector θ and prompt x, sampling from a linear soft-758

max model πθ (Eq. (9)) is computationally tractable, since it only requires time poly(H, |V|, d).759

Similarly, evaluating πθ(y1:H | x) for given prompt x and response y1:H is computationally760

tractable. However, the following proposition shows that computing the sharpened response761

argmaxy1:H∈VH πθ(y1:H | x) for a given parameter θ and response x is NP-hard. Hence, even762

inference-time sharpening is computationally intractable in the worst case.763

Proposition E.1. Set X = {⊥} and V = {−1, 1}. Set d = d(H) := H +H2 +H3. Identifying [d]764

with [H] ⊔ [H]2 ⊔ [H]3, we define ϕh : X × Vh → Rd by ϕh(⊥, y1:h)i = yi and ϕh(⊥, y1:h)(i,j) =765

yiyj and ϕh(⊥, y1:h)(i,j,k) = yiyjyk. There is a function B(H) ≤ poly(H) such that the following766

problem is NP-hard: given θ = (θ1, . . . , θH) with maxh∈[H]∥θh∥2 ≤ B(H), compute any element767

of argmaxy1:H∈VH πθ(y1:H | x).768

Note that our results in Appendix G and Appendix C bypass this hardness through the assumption769

that the coverage parameter Ccov is bounded.770

Proof of Proposition E.1. Fix H and recall that d(H) = H + H2 + H3. We define three771

collection of basis vectors: {eh}h∈[H] cover the first H coordinates,
{
e(h,h′)

}
h,h′∈[H]2

cover772

the next H2 coordinates, and
{
e(h,h′,h′′)

}
h,h′,h′′∈[H]3

cover the last H3 coordinates. Suppose773

we define θ1, . . . , θH−2 = 0, so that πθ(yh|x, y1:h−1) = 1/2 for all 1 ≤ h ≤ H − 2. Define774

θH−1 =
∑

1≤i,j≤H−2 Jije(i,j,H−1) for a matrix J ∈ R(H−2)×(H−2) to be specified later, and define775

θH = B
2 (e(H−1,H) + eH). Then 2H−2 · πθ(y1:H | ⊥) ≤ 1/2 for any y1:H with yH−1 = −1 or776

yH = −1, since this implies that πθH (yH | ⊥, y1:H−1) ≤ 1/2. Meanwhile, for any y1:H with777

yH−1 = yH = 1, we have778

2H−2·πθ(y1:H | ⊥) =
exp
(∑

i,j≤H−2 Jijyiyj

)
exp
(∑

i,j≤H−2 Jijyiyj

)
+ exp

(
−
∑

i,j≤H−2 Jijyiyj

) · exp(B)

exp(B) + exp(−B)
.

Let G be any graph on vertex set [H − 2] and let J = −A(G) where A(G) is the adjacency779

matrix of G. Then among y1:H with yH−1 = yH = 1, 2H−2 · πθ(y1:H | ⊥) is maximized when780

y1:H−2 corresponds to a max-cut in G. If G has an odd number of edges, then some max-cut781

removes strictly more than half of the edges, and for the corresponding sequence y1:H we have782

2H−2 · πθ(y1:H | ⊥) ≥ (1/2 + Ω(1)) · (1 − exp(−Ω(B))), which is greater than 1/2 when we783

take B := H and H is sufficiently large. Thus, computing argmaxy1:H∈VH πθ(y1:H | ⊥) yields a784

max-cut of G. It is well-known that computing a max-cut in a graph is NP-hard, and the assumption785

that G has an odd number of edges is without loss of generality.786

787

E.2 Representational Challenges788

To give provable guarantees for our sharpening algorithms, we required certain realizability assump-789

tions, which in particular posited that the model class actually contains a “sharpened” version of790

πbase (Assumptions G.1 and G.3). In the simple example of a single-layer linear softmax model791

classes (corresponding to H = 1 in the above definition), Assumption G.3 is in fact satisfied, and792

the sharpened model can be obtained by increasing the temperature of πbase. However, multi-layer793

linear softmax models with H ≫ 1 better capture autoregressive language models. The following794

proposition shows that as soon as H ≥ 2, multi-layer linear softmax model classes may not be closed795

under sharpening. This illustrates a potential drawback of training-time sharpening compared to796
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inference-time sharpening, which requires no realizability assumptions. It also provides a simple797

example where greedy decoding does not yield a sequence-level arg-max response (since increasing798

temperature in a multi-layer softmax model class exactly converges to the greedy decoding).799

Proposition E.2. Let X = {⊥}, V = [n], and H = d = 2. For any n sufficiently large, there is800

a multi-layer linear softmax policy class Πϕ,B,H and a policy πbase ∈ Πϕ,B,H such that y⋆1:H :=801

argmaxy1:H∈VH πθ(y1:H | ⊥) is unique but for all B′ > B and π ∈ Πϕ,B′,H , it holds that802

π(y⋆1:H | ⊥) ≤ 1/2.803

Proof of Proposition E.2. Throughout, we omit the dependence on the prompt ⊥ for notational804

clarity. Since H = 2, the model class consists of models πθ of the form805

πθ(a) = πθ1(y1)πθ2(y2 | y1) =
exp(⟨ϕ1(y1), θ1⟩)

Zθ1

exp(⟨ϕ2(y1:2), θ2⟩)
Zθ2(y1)

(10)

for Zθ1 :=
∑

y1∈V exp(⟨ϕ1(y1), θ1⟩) and Zθ2(y1) :=
∑

y2∈V exp(⟨ϕ2(y1:2), θ2⟩).806

Define ϕ1 by:807

ϕ1(i) =


e1 if i = 1

e1 if i = 2

e2 if i ≥ 3

.

Define ϕ2 by:808

ϕ2(i, j) =


e1 if i = 2, j = 1

e2 if i = 2, j ̸= 1

0 if i ̸= 2

.

Define πbase := πθ⋆ where θ⋆1 := θ⋆2 := B ·e1 for a parameter B ≥ log(n). Then πbase(1) = πbase(2)809

and πbase(i) ≤ e−Bπbase(2) for all i ∈ {3, . . . , n}. Moreover, πbase(· | i) = Unif([n]) for all i ̸= 2,810

and πbase(j | 2) ≤ e−Bπbase(1 | 2) for all j ̸= 1. Thus,811

πbase(2, 1) = πbase(2)πbase(1 | 2) ≥
1

2 + (n− 2)e−B
· 1

1 + (n− 1)e−B
≥ Ω(1)

whereas πbase(i, j) = O(1/n) for all (i, j) ̸= (2, 1). Thus, (2, 1) is the sequence-level argmax for812

sufficiently large n. However, for any πθ of the form described in Eq. (10), we have813

πθ(2, 1) ≤ πθ(2) ≤
πθ(2)

πθ(1) + πθ(2)
=

1

2

since ϕ(1) = ϕ(2). This means that there is no B′ for which Πϕ,B′,H contains an (ϵ, δ)-sharpened814

policy for πbase for any δ > 1/2.815

816
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Figure 2: Validation for GameOf24 on the training split. We compare greedy decoding against BoN
inference time sharpening in both accuracy and log-likelihoods and see that both increase nontrivially
over greedily decoding the base model. In the rightmost plot, we compare the CDF of the log-
likelihoods of sampled responses according to the base model conditioned on whether or not the
generated response is correct. We see that the distribution conditioned on correctness stochastically
dominates that conditioned on incorrectness, verifying that log-likelihood is a reasonable self-reward.

F Additional Experiments and Details817

All of our experiments were run either on 40G NVIDIA A100 GPUs or through the OpenAI818

API. To form the plots in Figure 1, for each (model, task) pair, we sampled N generations819

per prompt with temperature 1 and returned the best of the N generations according to the820

maximum-likelihood sharpening self-reward function rself(y | x) = log πbase(y | x); we compare821

against greedy decoding as a baseline. We considered four (model, task) pairs:822

1. GameOf24: We used the model of [WFW+24], which is a Llama-2 model finetuned on the823

GameOf24 task [YYZ+24]. The prompts are four numbers and the goal is to combine the numbers824

with standard arithmetic operations to reach the number ‘24.’ Here we use both the train and test825

splits of the dataset.7 Results can be found in Figure 2 and Figure 3 for the training and testing826

sets respectively.827

2. GSM8k: We use gpt-3.5-turbo-instruct [BMR+20] to generate responses to prompts from828

the GSM-8k dataset [CKB+21] where the goal is to generate a correct answer to an elementary829

school math question. We take the first 256 examples from the test set in the main subset.8 The830

results are presented in Figure 4.831

3. MATH: We use gpt-3.5-turbo-instruct to generate responses to prompts from the MATH832

[HBK+21], which consists of more difficult math questions. We consider “all” subsets and833

take the first 256 examples of the test set where the solution matches the regular expression834

(\d*).9 The results are displayed in Figure 5.835

4. ProntoQA: We use gpt-3.5-turbo-instruct to generate responses to prompts from the836

ProntoQA dataset [SH23], which consists of chain-of-thought-style reasoning questions with837

boolean answers. We take the first 256 examples from the training set.10 The results are shown in838

Figure 6.839

For GameOf24 we used three seeds, while for GSM8k, MATH and ProntoQA we used 10, 10, and 5840

seeds respectively. For the latter three datasets, we simulated N for N < 50 by subsampling the 50841

generated samples. In our experiments, we collected both the responses and their log-likelihoods842

under the reference model. In Figures 2 to 6, we present the effect that the parameter N has on the843

average accuracy of the best-of-N generation policy, as measured by sequence-level log likelihood,844

i.e. the self-reward function we consider in our theoretical results. In all cases, we see improvements845

over the naïve sampling strategy, wherein we simply sample a single geneation with temperature 1.0.846

In all results except for that of ProntoQA, we also see improvement over the standard greedy decoding847

7https://github.com/princeton-nlp/tree-of-thought-llm/tree/master/src/tot/data/24
8https://huggingface.co/datasets/openai/gsm8k.
9https://huggingface.co/datasets/lighteval/MATH.

10https://huggingface.co/datasets/longface/prontoqa-train.
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strategy, with some tasks exhibiting greater improvement than others. Examining the generations in848

ProntoQA, we see that many of the correct answers simply output the final boolean value of ‘True’ or849

‘False’ without resorting to the chain-of-thought style reasoning required on more complicated tasks;850

in such cases where the number of generated tokens is extremely small, we do not expect best-of-N851

to improve over greedy decoding, as the greedy strategy is already essentially optimal.852

In the center plots of Figures 2 to 6, we display the effect that best-of-N sampling has on the853

average log-likelihood of sampled generations. Unsurprisingly, the average log-likelihood increases854

monotonically until it flattens out on what must be close to the argmax sequence for most prompts.855

Indeed, examining the scale of average log likelihood, we see that, on average, the reference model’s856

probability of the sampled sequence is on the order of 0.05; as we are generating at least 50 sequences857

per prompt, the probability of there existing a higher probability sequence that is not found is858

vanishingly small. In all cases, we are finding (on average) sequences with higher probability than the859

greedily decoded sequence, although only marginally so in the case of ProntoQA, which is consistent860

with the observation that the greedy strategy is already close to optimal in this task.861

Finally, in the rightmost plots of Figures 2 to 6, we display the empirical Cumulative Density862

Functions (CDFs) of the distribution of log-likelihoods of sampled generations from the reference863

model conditioned on whether or not the generated response is correct. In all cases, we see that the864

distribution of log-likelihoods conditioned on correctness stochastically dominates that conditioned on865

the response being wrong, which lends further credence to the idea that log-likelihood is a reasonable866

self-reward function for these model-task pairs.867
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Figure 3: Validation for GameOf24 on the test split. We compare greedy decoding against BoN
inference time sharpening in both accuracy and log-likelihoods, as well as the CDFs of log likelihoods
of sampled generations according to the base model conditioned on correctness, and see more limited
stochastic domination than in the training split, suggesting that log-likelihood is a less reliable
self-reward.
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Figure 4: Validation for GSM8k. We compare greedy decoding against BoN inference time sharp-
ening in both accuracy and log-likelihoods, as well as the CDFs of the log-likelihoods of sampled
generations conditioned on correctness. We see substantial stochastic domination of the distribution
of log-likelihoods conditioned on correctness over that conditioned on incorrectness, verifying that
log-likelihood is a reasonable self-reward for GSM8k.
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Figure 5: Validation for MATH. We compare greedy decoding against BoN inference time sharpening in
both accuracy and log-likelihoods, as well as the CDFs of the log-likelihoods of sampled generations
conditioned on correctness. We see substantial stochastic domination of the distribution of log-
likelihoods conditioned on correctness over that conditioned on incorrectness, verifying that log-
likelihood is a reasonable self-reward for MATH.
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Figure 6: Validation for ProntoQA. We compare greedy decoding against BoN inference time
sharpening in both accuracy and log-likelihoods, as well as the CDFs of the log-likelihoods of
sampled generations conditioned on correctness. Here we see that the BoN accuracy and log-
likelihoods saturate close to the greedy benchmark, suggesting that greedy decoding already sharpens
in this task. Again, the distribution of log-likelihoods conditioned on correctness stochastically
dominates that conditioned on incorrectness, verifying that log-likelihood is a reasonable self-reward
for ProntoQA.
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Part II868

Proofs869

G Formal Analysis of Sharpening Algorithms870

Equipped with the sample complexity framework from Section 2, we now prove that the871

SFT-Sharpening and RLHF-Sharpening families of algorithms provably learn a sharpened model872

for the maximum-likelihood sharpening objective under natural statistical assumptions.873

Throughout this section, we treat the model class Π as a fixed, user-specified parameter. Our results—874

in the tradition of statistical learning theory—allow for general classes Π, and are agnostic to the875

structure beyond standard generalization arguments.876

G.1 Analysis of SFT-Sharpening877

Recall that when we specialize to the maximum-likelihood sharpening self-reward, the878

SFT-Sharpening algorithm takes the form π̂BoN = argmaxπ∈Π

∑n
i=1 log πbase(y

BoN
i | xi), where879

yBoNi = argmaxj∈[N ]{log πbase(yi,j | xi)} for yi,1, . . . , yi,N ∼ πbase(· | xi).880

To analyze SFT-Sharpening, we first make a realizability assumption. Let πBoN
N (x) be the distribution881

of the random variable yBoNN (x) ∼ argmax{log πbase(yi | x) | y1, . . . , yN ∼ πbase(x)}.882

Assumption G.1. The model class Π satisfies πBoN
N ∈ Π.883

Our main guarantee for SFT-Sharpening is as follows.884

Theorem G.1 (Sample complexity of SFT-Sharpening). Let ϵ, δ, ρ ∈ (0, 1) be given, and885

suppose we set n = c · log(|Π|ρ−1)
δϵ and N⋆ = c · Ccov log(2δ

−1)
ϵ for an appropriate constant886

c > 0. Then with probability at least 1 − ρ, SFT-Sharpening produces a model π̂ such that887

that Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≤ ϵ, and has total sample complexity11

888

m = O

(
Ccov log(|Π|ρ−1) log(δ−1)

δϵ2

)
. (11)

This result shows that SFT-Sharpening, via Eq. (11), is minimax optimal in the sample-and-evaluate889

framework when δ is constant. In particular, the sample complexity bound in Eq. (11) matches the890

lower bound in Theorem 2.1 up to polynomial dependence on δ and logarithmic factors. Whether the891

1/δ factor in Eq. (11) can be removed is an interesting question, but—as discussed in Section 2—the892

regime δ = 1/2 is most meaningful for autoregressive language modeling, rendering such discussion893

moot.894

Remark G.1 (On realizability and coverage). Realizability assumptions such as Assumption G.1895

(which asserts that the class Π is powerful enough to model the distribution of the best-of-N responses)896

are standard in learning theory [AJK19, FR23], though certainly non-trivial (see Appendix E for a897

natural example where they may not hold). The coverage assumption, while also standard, when898

combined with the hypothesis that high-likelihood responses are desirable, suggests that πbase gener-899

ates high-quality responses with reasonable probability. In general, doing so may require leveraging900

non-trivial serial computation at inference time via procedures such as Chain-of-Thought [WWS+22].901

Although recent work shows that such serial computation cannot be amortized [LLZM24, Mal23],902

SFT-Sharpening instead amortizes the parallel computation of best-of-N sampling, and thus has903

different representational considerations.904

Benefits of adaptive sampling. SFT-Sharpening is optimal in the sample-and-evaluate framework,905

but we show in Appendix D that a variant which selects the number of responses adaptively based906

on the prompt x can bypass this lower bound, improving the ϵ-dependence in Eq. (11) from 1
ϵ2 to 1

ϵ .907

11We focus on finite classes for simplicity, following a convention in reinforcement learning theory [AJK19,
FR23], but our results readily extend to infinite classes through standard uniform convergence arguments.
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G.2 Analysis of RLHF-Sharpening908

We now turn our attention to theoretical guarantees for the RLHF-Sharpening algorithm family,909

which uses tools from RL to optimize the self-reward function.910

When specialized to maximum-likelihood sharpening, the RL objective used by RLHF-Sharpening911

takes the form π̂ ≈ argmaxπ∈Π{Eπ[log πbase(y | x)]− βDKL(π ∥πbase)} for β > 0. The exact op-912

timizer π⋆
β = argmaxπ∈Π{Eπ[log πbase(y | x)]− βDKL(π ∥πbase)} for this objective has the form913

π⋆
β(y | x) ∝ π1+β−1

base (y | x), which converges to a sharpened model (per Definition 2.1) as β → 0.914

The key challenge we encounter in this section is the mismatch between the RL reward log πbase(y |915

x) and the sharpening desideratum π̂(y⋆(x) | x). For example, suppose a unique argmax—say,916

y⋆(x)—and second-to-argmax—say, y′(x)—are nearly as likely under πbase. Then the RL reward917

Eπ̂[log πbase(y | x)] must be optimized to extremely high precision before π̂ can be guaranteed to918

distinguish the two. To quantify this effect, we introduce a margin condition.919

Assumption G.2 (Margin). For a margin parameter γmargin > 0, the base model πbase satisfies920

max
y∈Y

πbase(y | x) ≥ (1 + γmargin) · πbase(y
′ | x) ∀y′ /∈ y⋆(x), ∀x ∈ supp(µ).

921

SFT-Sharpening does not suffer from the pathology in the example above, because once y⋆(x) and922

y′(x) are drawn in a batch of N responses, we have yBoNi = y⋆(xi) regardless of margin. However, as923

we shall show in Appendix G.2.2, the RLHF-Sharpening algorithm is amenable to online exploration,924

which may improve dependence on other problem parameters.925

G.2.1 Guarantees for RLHF-Sharpening with Direct Preference Optimization926

The first of our theoretical results for RLHF-Sharpening takes an offline reinforcement learning927

approach, whereby we implement Eq. (6) using a reward-based variant of Direct Preference928

Optimization (DPO) [RSM+23, GCZ+24]. Let Dpref = {(x, y, y′)} be a dataset of n examples929

sampled via x ∼ µ, y, y′ ∼ πbase(y | x). For a parameter β > 0, we solve π̂ ∈ argminπ∈Π930

∑
(x,y,y′)∈Dpref

(
β log

π(y | x)
πbase(y | x) − β log

π(y′ | x)
πbase(y′ | x) −

(
log πbase(y | x)− log πbase(y

′ | x)
))2

. (12)

Assumptions. Per [RSM+23], the solution to Eq. (12) coincides with that of Eq. (2) asymptotically.931

To provide finite-sample guarantees, we make a number of statistical assumptions. First, we make a932

natural realizability assumption (e.g., [ZJJ23, XFK+24]).933

Assumption G.3 (Realizability). The model class Π satisfies π⋆
β ∈ Π.12

934

Next, we define two concentrability coefficients for a model π:935

Cπ = Eπ

[
π(y | x)

πbase(y | x)

]
, and Cπ/π′;β := Eπ

[(
π(y | x)
π′(y | x)

)β
]
. (13)

The following result shows that both coefficients are bounded for the KL-regularized model π⋆
β .936

Lemma G.1. The model π⋆
β satisfies Cπ⋆

β
≤ Ccov and Cπbase/π⋆

β ;β
≤ |Y|.937

Motivated by this result, we assume the coefficients in Eq. (13) are bounded for all π ∈ Π.938

Assumption G.4 (Concentrability). All π ∈ Π satisfy Cπ ≤ Cconc for a parameter Cconc ≥ Ccov,939

and Cπbase/π;β ≤ Closs for a parameter Closs ≥ |Y|.940

Per Lemma G.1, this assumption is consistent with Assumption G.3 for reasonable bounds on Cconc941

and Closs; note that our sample complexity bounds will only incur logarithmic dependence on Closs.942

12See Remark G.1 for a discussion of this assumption.
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Main result. Our sample complexity guarantee for RLHF-Sharpening (via Eq. (12)) is as follows.943

Theorem G.2. Let ϵ, δ, ρ ∈ (0, 1) be given. Set β ≲ γmarginδϵ, and suppose that Assumptions G.2944

to G.4 hold with parameters Cconc, Closs, and γmargin > 0. For an appropriate choice for n, the DPO945

algorithm (Eq. (12)) ensures that with probability at least 1− ρ, Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≤ ϵ,946

and has sample complexity947

m = Õ

(
Cconc log

3(Closs|Π|ρ−1)

γ2
marginδ

2ϵ2

)
.

Compared to the guarantee for SFT-Sharpening, RLHF-Sharpening learns a sharpened model with948

the same dependence on the accuracy ϵ, but a worse dependence on δ; as we primarily consider949

δ constant (cf. Proposition 2.1), we view this as relatively unimportant. We further remark that950

RLHF-Sharpening uses N = 2 responses per prompt, while SFT-Sharpening uses many (N = 1/ϵ)951

responses (but fewer prompts). Other differences include:952

• RLHF-Sharpening requires the margin condition in Assumption G.2, and has sample953

complexity scaling with γ−1
margin. We believe this dependence is fundamental for algo-954

rithms based on reinforcement learning, as it is needed to translate bounds on subop-955

timality with respect to the reward function rself(y | x) = log πbase(y | x) (i.e.,956

Ex∼µ

[
maxy∈Y log πbase(y | x)− Ey∼π̂(x)[log πbase(y | x)]

]
≤ ϵ, the objective minimized by rein-957

forcement learning) into bounds on the approximate sharpening error Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ].958

• RLHF-Sharpening requires a bound on the uniform coverage parameter Cconc, which is larger than959

the parameter Ccov required by SFT-Sharpening in general. We expect that this assumption can be960

removed by incorporating pessimism in the vein of [LLZ+24, HZX+24]. Also, RLHF-Sharpening961

requires a bound on the parameter Closs. This grants control over the range of the reward function962

log πbase(y | x), which can otherwise be unbounded. Since the dependence on Closs is only963

logarithmic, we view this as a fairly mild assumption. Overall, the guarantee in Theorem G.2 may964

be somewhat pessimistic in practice; it would be interesting if the result can be improved to match965

the sample complexity of SFT-Sharpening whenever γmargin is held constant.966

G.2.2 Benefits of Exploration967

The sample complexity guarantees we have presented scale with the coverage parameter Ccov =968

E[1/πbase(y
⋆(x)|x)], which is unavoidable in general in the sample-and-evaluate framework via our969

lower bound, Theorem 2.1. Although Ccov is a problem-dependent parameter, in the worst case it can970

be as large as |Y| (which is exponential in sequence length for autoregressive models). Luckily, unlike971

SFT-Sharpening, the RLHF-Sharpening objective (6) is amenable to RL algorithms employing972

active exploration, leading to improved sample complexity when the class Π has additional structure.973

Our below guarantees for RLHF-Sharpening replace the assumption of bounded coverage with974

boundedness of a structural parameter for the model class Π known as the “sequential extrapolation975

coefficient” (SEC) [XFB+23, XFK+24], which we denote by SEC(Π). The formal definition is976

deferred to Appendix L.2. Conceptually, SEC(Π) may thought of as a generalization of the eluder977

dimension [RVR13, JLM21], and can always be bounded by the coverability coefficient of the978

model class [XFK+24]. Beyond boundedness of the SEC, we require a bound on the range of the979

log-probabilities of πbase.980

Assumption G.5 (Bounded log-probabilities). For all π ∈ Π, (x, y) ∈ X × Y ,981 ∣∣log 1
πbase(y|x)

∣∣ ≤ Rmax.982

We expect that the dependence on Rmax in our result can be replaced with log(Closs) (Assump-983

tion G.4), but we omit this extension to simplify presentation as much has possible.984

We appeal to (a slight modification of) XPO, an iterative language model alignment algorithm due to985

[XFK+24]. XPO is based on the objective in Eq. (12), but unlike DPO, incorporates a bonus term to986

encourage exploration to leverage online interaction. See Appendix L.2 for a detailed overview.987

Theorem G.3 (Informal version of Theorem L.2). Suppose that Assumptions G.2 and G.5 hold with988

parameters γmargin, Rmax > 0, and that Assumption G.3 holds with β = γmargin/(2 log(2|Y|/δ)).989

For any m ∈ N and ρ ∈ (0, 1), XPO (Algorithm 1), when configured appropriately, produces990

26



an (ϵ, δ)-sharpened model π̂ ∈ Π with probability at least 1 − ρ, and uses sample complexity991

m = Õ
(
(γmarginδϵ)

−2SEC(Π) · log(|Π|ρ−1)
)
.13

992

The takeaway from Theorem G.3 is that there is no dependence on the coverage coefficient for993

πbase. Instead, the rate depends on the complexity of exploration, as governed by the sequential994

extrapolation coefficient SEC(Π). We expect similar guarantees can derived for other active995

exploration algorithms and complexity measures [JKA+17, FKQR21, JLM21, XFB+23].996

Example: Linearly parameterized models. As a stylized example of a model class Π where active997

exploration dramatically improves the sample complexity of sharpening, we consider the class Πϕ,B998

of linear softmax models. This class consists of models of the form πθ(y | x) ∝ exp(⟨ϕ(x, y), θ⟩),999

where θ ∈ Rd is a parameter vector with ∥θ∥2 ≤ B, and ϕ(x, y) ∈ Rd is a known feature map1000

with ∥ϕ(x, y)∥ ≤ 1. The sequential extrapolation coefficient for this class can be bounded as1001

SEC(Π) = Õ(d), and the optimal KL-regularized model π⋆
β is a linear softmax model (i.e., π⋆

β ∈ Π)1002

whenever the base model πbase is itself a linear softmax model. This leads to the following result.1003

Theorem G.4. Fix ϵ, δ, ρ ∈ (0, 1) and B > 0. Suppose that (i) πbase = πθ⋆ is a linear softmax model1004

with ∥θ⋆∥2 ≤ γmarginB
3 log(2|Y|/δ) ; (ii) πbase satisfies Assumption G.2 with parameter γmargin. Algorithm 1,1005

with reward function r(x, y) := log πbase(x, y), and model class Πϕ,B , returns an (ϵ, δ)-sharpened1006

model with prob. 1− ρ, and with sample complexity m = poly(ϵ−1, δ−1, γ−1
margin, d, B, log(|Y|/ρ)).1007

Importantly, Theorem G.4 has no dependence on the coverage parameter Ccov, scaling only with1008

the dimension d of the softmax model class. For a quantitative comparison, it is straightforward1009

to construct examples of models πbase where Ccov = E[1/πbase(y
⋆(x)|x)] ≍ |Y| ≍ exp(Ω(d)), and1010

Assumption G.2 is satisfied with γmargin = Ω(1). For such models, SFT-Sharpening will incur1011

exp(Ω(d)) sample complexity; see Example L.1 for details. Hence, Theorem G.4 represents an1012

exponential improvement, obtained by exploiting the structure of the self-reward function in a way1013

that goes beyond SFT-Sharpening.1014

Remark G.2 (Non-triviality). Theorem G.4 is quite stylized in the sense that if the parameter vector1015

θ⋆ of πbase is known, then it is trivial to directly compute the parameter vector for the sharpened1016

model π⋆
β . However, Algorithm 1 is interesting and non-trivial nonetheless because it does not have1017

explicit knowledge of θ⋆, as it operates in the sample-and-evaluate oracle model (Definition 2.2).1018

H Further Preliminaries1019

H.1 Guarantees for Approximate Maximizers1020

Recall that the theoretical guarantees for sharpening algorithms in Appendix G provide convergence1021

to the set y⋆(x) := argmaxy∈Y πbase(y | x) of (potentially non-unique) maximizers for the1022

maximum-likelihood sharpening self-reward function log πbase(y | x). These guarantees require1023

that the base model πbase places sufficient provability mass on y⋆(x), which may be unrealistic. To1024

address this, throughout this appendix we state and prove more general versions of our theoretical1025

results that allow for approximate maximizers, and consequently enjoy weaker coverage assumptions1026

For a parameter γ ∈ [0, 1) we define1027

y⋆
γ(x) :=

{
y | πbase(y | x) ≥ (1− γ) ·max

y∈Y
πbase(y | x)

}
as the set of (1 − γ)-approximate maximizers for log πbase(y | x). We quantify the quality of a1028

sharpened model as follows.1029

Definition H.1 (Sharpened model). We say that a model π̂ is (ϵ, δ, γ)-sharpened relative to πbase if1030

Px∼µ

[
π̂
(
y⋆
γ(x) | x

)
≥ 1− δ

]
≥ 1− ϵ.

That is, an (ϵ, δ, γ)-sharpened policy places at least 1 − δ mass on (1 − γ)-approximate arg-max1031

responses on all but an ϵ-fraction of prompts under µ.1032

13Technically, Algorithm 1 operates in a slight generalization of the sample-and-evaluate framework for
accessing πbase (Definition 2.2), where the algorithm is allowed to query πbase(y | x) for arbitrary x, y. We
expect that our lower bound (Theorem 2.1) can be extended to this more general framework, in which case
Algorithm 1 is fundamentally using additional structure of Π (via the SEC) to avoid dependence on Ccov.

27



Lastly, we will make use of the following generalized coverage coefficient1033

Ccov,γ = Ex∼µ

[
1

πbase(y⋆
γ(x) | x)

]
,

which has Ccov,γ ≤ Ccov.1034

H.2 Technical Tools1035

For a pair of probability measures P and Q with a common dominating measure ω, Hellinger distance1036

is defined via1037

D2
H(P,Q) =

∫ (√
dP
dω
−
√

dQ
dω

)2

dω.

Lemma H.1 (MLE for conditional density estimation (e.g., [WS95, vdG00, Zha06])). Consider1038

a conditional density π⋆ : X → ∆(Y). Let D = {(xi, yi)}ni=1 be a dataset in which (xi, yi) are1039

drawn i.i.d. as xi ∼ µ ∈ ∆(X ) and yi ∼ π⋆(· | x). Suppose we have a finite function class1040

Π ⊂ (X → ∆(Y)) such that π⋆ ∈ Π. Define the maximum likelihood estimator1041

π̂ := argmax
π∈Π

∑
(x,y)∈D

log π(y | x).

Then with probability at least 1− ρ,1042

Ex∼µ

[
D2

H(π̂(· | x), π⋆(· | x))
]
≤ 2 log(|Π|ρ−1)

n
.

Lemma H.2 (Elliptic potential lemma). Let λ,K > 0, and let A1, . . . , AT ∈ Rd×d be positive1043

semi-definite matrices with Tr(At) ≤ K for all t ∈ [T ]. Fix Γ0 = λId and Γt = λId +
∑t

i=1 Ai for1044

t ∈ [T ]. Then1045

T∑
t=1

Tr(Γ−1
t−1At) ≤

dK log (T+1)K
λ

λ log(1 +K/λ)
.

Proof of Lemma H.2. Fix t ∈ [T ]. Since Tr(At) ≤ 1, there is some pt ∈ ∆(Rd) such that1046

At = Ea∼pt
aa⊤ and P[∥a∥2 ≤ 1] = 1. Now observe that1047

log det(Γt) = log det(Γt−1 +At)

= log det(Γt−1) + log det(Id + Γ
−1/2
t−1 AtΓ

−1/2
t−1 )

= log det(Γt−1) + log det
(
Ea∼pt

[
Id + Γ

−1/2
t−1 aa⊤Γ

−1/2
t−1

])
≥ log det(Γt−1) + Ea∼pt log det(Id + Γ

−1/2
t−1 aa⊤Γ

−1/2
t−1 )

= log det(Γt−1) + Ea∼pt
log(1 + a⊤Γ−1

t−1a).

Now a⊤Γ−1
t−1a ≤ 1/λ with probability 1, where λ = λmin(Γ0). We know that λx log(1 + 1/λ) ≤1048

log(1 + x) for all x ∈ [0, 1/λ]. Thus,1049

log det(Γt) ≥ log det(Γt−1) + λ log(1 + 1/λ)Ea∼pt
a⊤Γ−1

t−1a.

Summing over t ∈ [T ], we get1050

log det(ΓT ) ≥ log det(Γ0) + λ log(1 + 1/λ)

T∑
t=1

Tr(Γ−1
t−1At).

Finally note that λmax(ΓT ) ≤ T + 1 so log det(ΓT ) ≤ d log T , whereas log det(Γ0) ≥ d log λ.1051

Thus,1052
T∑

t=1

Tr(Γ−1
t−1At) ≤

d log T+1
λ

λ log(1 + 1/λ)

as claimed.1053

1054
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Lemma H.3 (Freedman’s inequality, e.g. [AHK+14]). Let (Zt)
T
t=1 be a martingale difference1055

sequence adapted to filtration (Ft)
T−1
t=0 . Suppose that |Zt| ≤ R holds almost surely for all t. For any1056

δ ∈ (0, 1) and η ∈ (0, 1/R), it holds with probability at least 1− δ that1057

T∑
t=1

Zt ≤ η

T∑
t=1

E[Z2
t |Ft−1] +

log(1/δ)

η
.

Corollary H.1. Let (Zt)
T
t=1 be a sequence of random variables adapted to filtration (Ft)

T−1
t=0 .1058

Suppose that Zt ∈ [0, R] holds almost surely for all t. For any δ ∈ (0, 1), it holds with probability at1059

least 1− δ that1060

T∑
t=1

E[Zt|Ft−1] ≤ 2

T∑
t=1

Zt + 4R log(1/δ).

Proof of Corollary H.1. Observe that for any t ∈ [T ],1061

E[(Zt − E[Zt | Ft−1])
2 | Ft−1] ≤ E[Z2

t | Ft−1]

≤ R · E[Zt | Ft−1].

Applying Lemma H.3 to the sequence (E[Zt | Ft−1] − Zt)
T
t=1, which is a martingale difference1062

sequence with elements supported almost surely on [−R,R], we get for any η ∈ (0, 1/R) that with1063

probability at least 1− δ,1064

T∑
t=1

(E[Zt | Ft−1]− Zt) ≤ η

T∑
t=1

E[(Zt − E[Zt | Ft−1])
2 | Ft−1] +

log(1/δ)

η

≤ ηR

T∑
t=1

E[Zt | Ft−1] +
log(1/δ)

η
.

Set η = 1/(2R). Simplifying gives1065

T∑
t=1

E[Zt | Ft−1] ≤ 2

T∑
t=1

Zt + 4R log(1/δ).

as claimed.1066

1067

I Proofs from Section 21068

Proof of Proposition 2.1. We prove the result by induction. Fix x ∈ X , and let y⋆1 , . . . , y
⋆
H := y⋆(x).1069

Fix h ∈ [H], and assume by induction that ŷh′ = y⋆h′ for all h′ < h. We claim that in this case,1070

πh(y
⋆
h | ŷ1, . . . , ŷh−1, x) = πh(y

⋆
h | y⋆1 , . . . , y⋆h−1, x) > 1/2,

which implies that ŷh = y⋆h. To see this, we observe that by Bayes’ rule,1071

π(y⋆1 , . . . , y
⋆
H | x) ≤ π(y⋆1 , . . . , y

⋆
h | x)

=

h∏
h′=1

πh′(y⋆h′ | y⋆1 , . . . , y⋆h′−1, x) ≤ πh(y
⋆
h | y⋆1 , . . . , y⋆h−1, x).

If we were to have πh(y
⋆
h | ŷ1, . . . , ŷh−1, x) = πh(y

⋆
h | y⋆1 , . . . , y⋆h−1, x) ≤ 1/2, it would contradict1072

the assumption that π(y⋆1 , . . . , y
⋆
H | x) > 1/2. This proves the result.1073

1074

J Proofs from Section 2.11075

Below, we state and prove a generalization of Theorems 2.1 and D.2 which allows for approximate1076

maximizers in the sense of Definition H.1, as well as a more general coverage coefficient.1077

29



To state the result, for a model π, we define1078

yπ
γ (x) =

{
y | π(y | x) ≥ (1− γ) ·max

y∈Y
π(y | x)

}
.

Next, for any integer p ∈ N, we define1079

Ccov,γ,p(π) =

(
E
[

1

(π(yπ
γ (x) | x))p

])1/p

,

with the convention that Ccov,γ,p = Ccov,γ,p(πbase). For our negative results, we select γ = 1/2.1080

Thus, our lower bounds which we are about to state and prove hold in a regime where the best y has1081

bounded margin away from suboptimal responses.1082

Theorem 2.1′ (Lower bound for sharpening). Fix integers d ≥ 1 and p ≥ 1 and parameters1083

ϵ ∈ (0, 1) and C ≥ 1, and set γ = 1/2. There exists a class of models Π such that i) log |Π| ≂1084

d(1 + log(Cϵ−1/p)), ii) supπ∈Π Ccov,γ,p(π) ≲ C, and iii) yπ
γ (x) is a singleton for all π ∈ Π,1085

for which any sharpening algorithm π̂ that attains E
[
Px∼µ[π̂(y

πbase
γ (x)) > 1/2]

]
≥ 1 − ϵ for all1086

πbase ∈ Π must collect a total number of samples m = n ·N at least1087

m ≳

{
C log |Π|

ϵ1+1/p(1+log(Cϵ−1/p))
sample-and-evaluate oracle,

C log |Π|
ϵ1/p(1+log(Cϵ−1/p))

adaptive sample-and-evaluate oracle.

Proof of Theorem 2.1′. Let parameter d, p ∈ N and ϵ > 0 be given, and set γ = 1/2. Let M ∈ N1088

and ∆ > 0 be parameter to be chosen later. Let X = {x0, x1, . . . , xd} and Y = {y0, y1, . . . , yM}1089

be arbitrary discrete setes (with |X | = d+ 1 and |Y| = M + 1).1090

Construction of prompt distribution and model class. We use the same construction for the1091

non-adaptive and adaptive lower bounds in the theorem statement. We define the prompt distribution1092

µ via1093

µ := (1−∆)δx0
+

∆

d

d∑
i=1

δxi
,

where δx denotes the Dirac delta distribution on element x.1094

As the first step toward constructing the model class Π, we introduce a family of distributions1095

(P0, P1, . . . , PM ) on Y as follows1096

P0 = δy0
, ∀i ≥ 1, Pi =

1

(1− γ)M
δyi

+
∑

j∈[M ]\{i}

1

M

(
1− γ

(M − 1)(1− γ)

)
δyj

.

Next, for or any index I = (j1, j2, . . . , jd) ∈ [M ]d, define a model1097

πI(xi) =

{
P0 i = 0

Pji i > 0
.

We define the model class as1098

Π := {πI : I ∈ [M ]d},

which we note has1099

log |Π| = d logM.

Preliminary technical results. Define1100

yI
γ (x) := {y : πI(y | x) ≥ (1− γ)max

y∈Y
πI(y | x)}.

The following property is immediate.1101

Lemma J.1. Let I = (j1, . . . , jd) ∈ [d]M . Then yI
γ (xi) = {yji} if i > 0, and yI

γ (x0) = {y0}.1102
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In view of this result, we define yI(x) = argmaxy π
I(y | x) as the unique arg-max response for x.1103

Going forward, let us fix the algorithm under consideration. Let PI [·] denote the law over the dataset1104

used by the algorithm when the true instance is πI (including possible randomness and adaptivity1105

from the algorithm itself), and let EI [·] denote the corresponding expectation. The following lemma1106

is a basic technical result.1107

Lemma J.2 (Reduction to classification). Let π̂ be the model produced by an algorithm with access1108

to a sample-and-evaluate oracle for πI . Suppose that for some ϵ ≥ 0,1109

EI∼Unif EI Px∼µ[π̂(y
I
γ (x) | x) > 1/2] ≥ 1− ϵ.

Define Î = (ĵ1, . . . , ĵd) via ĵi = argmaxj π̂(yj | xi), and write I = (j⋆1 , . . . , j
⋆
d). Then,1110

1

d

d∑
i=1

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≤ ϵ/∆.

Proof of Lemma J.2. As established in Lemma J.1, under instance I, yI
γ (xi) = {yj⋆i } for any1111

i ∈ [d]. Thus, whenever π̂(yI
γ (xi)) > 1/2, j⋆i = argmaxj π̂(yj | xi) =: ĵi. The result follows by1112

noting that the event {∃i ∈ [d] : x = xi} occurs with probability at least ∆ under x ∼ µ.1113

1114

Lower bound under sample-and-evaluate oracle. Recall that in the non-adaptive framework, the1115

sample complexity m is fixed. In light of Lemma J.2, it suffices to establishes the following claim.1116

Lemma J.3. There exists a universal constant c > 0 such that for all M ≥ 8, if m ≤ cdM/∆, then1117

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1/8 for all i.1118

With this, the result follows by selecting ∆ = 16ϵ, with which Lemma J.2 implies that any algorithm1119

with EI∼Unif EI Px∼µ[π̂(y
I
γ (x) | x) > 1/2] ≥ 1 − ϵ must have m ≳ dM/∆, then. To conclude,1120

we choose M ≂ 1+Cϵ−1/p, which gives m ≂ dM/∆ ≂ dCϵ−(1+1/p) ≂ ϵ−(1+1/p) log Π/ log(1+1121

Cϵ1/p). Finally, we check that with this choice, all π ∈ Π satisfy1122

Ccov,γ,p(π) = (Px∼µ[x = x0] + (M(1− γ))
pPx∼µ[x ̸= x0])

1/p

= ((1−∆) + (M(1− γ))
p
∆)

1/p

≲ ((1−∆) + (8C(1− γ))
p
)
1/p

≲ C.

Proof of Lemma J.3. Let i ∈ [d] be fixed. Of the m = n ·N tuples (x, y, log πbase(y | x)) that are1123

observed by the algorithm, let mi denote (random) the number of such examples for which x = xi.1124

From Markov’s inequality, we have1125

P[mi ≤ 2∆m/d] ≥ 1

2
(14)

Going forward, let D = {(x, y, log πbase(y | x))} denote the dataset collected by the algorithm,1126

which has |D| = m. Let Ei denote the event that, for prompt x = xi, (i) there are at least two1127

distinct responses yj for which (xi, yj) /∈ D; and (ii) there are no pairs (xi, y) ∈ D for which1128

πbase(y | xi) >
1
M . Since Ei is a measurable function of D, we can write1129

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ EI∼Unif EI

[
I{ĵi ̸= j⋆i } · I {Ei}

]
= EI∼Unif EI

[
I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]]
, (15)

where I ∼ P[I = · | D] is sampled from the posterior distribution over I conditioned on the dataset1130

D. Observe that conditioned on Ei, the posterior distribution over j⋆i under I ∼ P[I = · | D] is1131

uniform over the set of indices j ∈ [M ] for which (xi, yj) /∈ D, and this set has size at least 2. Hence,1132

I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]
≥ 1

2 , and resuming from Eq. (17), we have1133

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

2
EI∼Unif EI [I{Ei}] ≥

1

2
EI∼Unif PI [Ei ∩ {mi ≤ 2∆m/d}]

≥ 1

4
EI∼Unif PI [Ei | mi ≤ 2∆m/d] ,
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where the last inequality is from Eq. (14). Finally, we can check that, under the law PI , the probability1134

of the event Ei—conditioned on the value mi—is at least the probability that (xi, yj⋆i ), (xi, yj′) /∈ D1135

for an arbitrary fixed index j′ ̸= j⋆i , which on the event {mi ≤ 2∆m/d} is at least1136 (
1− 3

M

)mi

≥
(
1− 3

M

)2∆m/d

,

where we have used that γ = 1/2. The value above is at least 1
4 whenever m ≤ c · dM/∆1137

for a sufficiently small absolute constant c > 0. For this value of m, we conclude that1138

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

4 EI∼Unif PI [Ei | {mi ≤ 2∆m/d}] ≥ 1
8 .1139

1140

Lower bound under adaptive sample-and-evaluate oracle. In the adaptive framework, we let mi1141

denote the (potentially random) number of tuples (x, y, log πbase(y | x)) observed by the algorithm1142

in which x = xi. Note that unlike the non-adaptive framework, the distribution over mi depends on1143

the underlying instance I with which the algorithm interacts.1144

To begin, from Lemma J.2 and Markov’s inequality, if π̂ satisfies the guarantee1145

EI∼Unif EI Px∼µ[π̂(y
I
γ (x)) > 1/2] ≥ 1− ϵ, then there exists a set of indices Sgood ⊂ [d] such that14

1146

|Sgood| ≥ ⌊d/2⌋, ∀i ∈ Sgood, EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≤ 2ϵ

∆
. (16)

We now appeal to the following lemma.1147

Lemma J.4. As long as M ≥ 6, it holds that for all i ∈ [d],1148

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

4e
EI∼Unif EI [I{mi ≤M/3}] .

Combining Lemma J.4 with Eq. (16), it follows that there exist absolute constant c1, c2, c3 > 0 such1149

that if ∆ = c1 · ϵ, then for all i ∈ Sgood,1150

EI∼Unif PI [mi ≥ c2M ] ≥ c3.

Thus, with this choice for ∆, we have that i ∈ Sgood,1151

EI∼Unif EI [mi] ≳ M,

and we can lower bound the algorithm’s expected sample complexity by summing over i ∈ Sgood:1152

EI∼Unif EI [m] ≥ EI∼Unif EI

 ∑
i∈Sgood

mi

 ≳ |Sgood|M ≳ dM.

The result now follows by tuning M ≂ 1 + Cϵ−1/p as in the proof of the lower bound for1153

non-adaptive sampling, which gives E[m] ≳ dM ≂ dCϵ−1/p ≂ ϵ−1/p log Π/ log(1 + Cϵ1/p) and1154

Ccov,γ,p(π) ≲ C for all π ∈ Π.1155

Proof of Lemma J.4. Let i ∈ [d] be fixed. Let D = {(x, y, log πbase(y | x))} denote the dataset1156

collected by the algorithm at termination, which has |D| = m. Let Ei denote the event that, for1157

prompt x = xi, (i) there are at least two distinct responses yj for which (xi, yj) /∈ D; and (ii) there1158

are no pairs (xi, y) ∈ D for which πbase(y | xi) >
1
M . Since Ei is a measurable function of D, we1159

can write1160

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ EI∼Unif EI

[
I{ĵi ̸= j⋆i } · I {Ei}

]
= EI∼Unif EI

[
I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]]
, (17)

where I ∼ P[I = · | D] is sampled from the posterior distribution over I conditioned on the dataset1161

D. Observe that conditioned on Ei, the posterior distribution over j⋆i under I ∼ P[I = · | D] is1162

14We emphasize that the set Sgood is not a random variable, and depends only on the algorithm itself.
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uniform over the set of indices j ∈ [M ] for which (xi, yj) /∈ D, and this set has size at least 2. Hence,1163

I{Ei}EI∼P[I=·|D]

[
I{ĵi ̸= j⋆i }

]
≥ 1

2 , and resuming from Eq. (17), we have1164

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

2
EI∼Unif EI [I{Ei}]

≥ 1

2
EI∼Unif PI [Ei ∩ {mi ≤M/3}]

=
1

2
EI∼Unif

[
PI [Ei | mi ≤M/3] · PI [mi ≤M/3]

]
.

The event Ei is a superset of the event Ei,j′ that (xi, yj⋆i ), (xi, yj′) /∈ D for an arbitrary fixed index1165

j′ ̸= j⋆i . Thus,1166

PI [Ei | mi ≤M/3] ≥ PI [Ei,j′ | mi ≤M/3]

Moreover, we can realize the law of PI considering an infinite tape, associated to index i, of i.i.d.1167

samples y ∼ πbase(· | xi), and letting values of y form the samples (x, y, log πbase(y | x)) ∈ D with1168

x = xi corresponding to the first mi elements on this tape (see, e.g. [SJR17] for an argument of this1169

form). On the event {mi ≤M/3}, then, mi samples in (x, y, log πbase(y | x)) ∈ D with x = xi are1170

a subset of the first M/3 samples from the index-i tape. Viewed in this way, we can lower bound the1171

probability of Ei,j of by the probability of the event Ẽi,j′ that the first M/3 y’s on the index-i tape1172

contain neither j⋆i , nor the designated index j′. As these first M/3 y’s are not chosen adaptively, the1173

probability of Ẽi,j′ is at least1174 (
1− 3

M

)mi

≥
(
1− 3

M

)M/3

≥ 1

2e
,

as long as M ≥ 6 and γ = 1/2. We conclude that1175

EI∼Unif EI
[
I{ĵi ̸= j⋆i }

]
≥ 1

4e
EI∼Unif EI [I{mi ≤M/3}] .

1176

1177

1178

1179

K Proofs from Appendix G.1 and Appendix D1180

The following theorem is a generalization of Theorem G.1′ which allows for approximate maximizers1181

in the sense of Definition H.1.1182

Theorem G.1′. Let ρ, δ ∈ (0, 1) be given, and suppose we set N = N⋆ log(2δ−1) for a parameter1183

N⋆ ∈ N. Then for any n ∈ N, SFT-Sharpening ensures that with probability at least 1− ρ, for any1184

γ ∈ (0, 1), the output model π̂ satisfies1185

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− 2δ
]
≲

1

δ
· log(|Π|ρ

−1)

n
+

Ccov,γ

N⋆
.

In particular, given (ϵ, δ, γ), by setting n = CG.1
log|Π|
δϵ and N⋆ = CG.1

Ccov,γ

ϵ for a sufficiently large1186

absolute constant CG.1 > 0, we are guaranteed that1187

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ
]
≤ ϵ

The total sample complexity is1188

m = O

(
Ccov,γ log(|Π|ρ−1) log(δ−1)

δϵ2

)
.
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Proof of Theorem G.1′. Under realizability of πBoN
N (Assumption G.1), Lemma H.1 implies that the1189

output of SFT-Sharpening satisfies, with probability at least 1− ρ,1190

Ex∼µ

[
D2

H

(
π̂(· | x), πBoN

N (· | x)
)]
≤ ε2stat :=

2 log(|Π|/ρ)
n

. (18)

Henceforth we condition on the event that Eq. (18) holds. Let1191

Xgood :=

{
x ∈ X | N⋆ ≥ 1

πbase(y⋆
γ(x) | x)

}
denote the set of prompts for which πbase places sufficiently high mass on y⋆

γ(x). We can bound1192

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ
]

≤ Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ, x ∈ Xgood

]
+ Px∼µ[x /∈ Xgood]. (19)

To bound the first term in Eq. (19), note that if x ∈ Xgood, then πBoN
N (y⋆

γ(x) | x) ≥ 1− δ/2. Indeed,1193

observe that y ∼ πBoN
N (· | x) /∈ y⋆

γ(x) if and only if y1, . . . , yN ∼ πbase(x) have yi /∈ y⋆
γ(x) for all i,1194

which happens with probability (1− πbase(y
⋆
γ(x) | x))N ≤ (1− 1/N⋆)N ≤ δ/2 since x ∈ Xgood. It1195

follows that for any such x, we can lower bound (using the data processing inequality)1196

D2
H

(
π̂(· | x), πBoN

N (· | x)
)
≥
(√

1− π̂(y⋆
γ(x) | x)−

√
1− πBoN

N (y⋆
γ(x) | x)

)2
≳ δ · I

{
π̂(y⋆

γ(x) | x) ≤ 1− δ
}
. (20)

By Eqs. (18) and (20), it follows that1197

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− 2δ, x ∈ Xgood

]
≲

ε2stat
δ

.

For the second term in Eq. (19), we bound1198

Px∼µ[x /∈ Xgood] = Px∼µ

[
N⋆ <

1

πbase(y⋆
γ(x) | x)

]
= Px∼µ

[
1

N⋆πbase(y⋆
γ(x) | x)

> 1

]
≤ 1

N⋆
Ex∼µ

[
1

πbase(y⋆
γ(x) | x)

]
≤ Ccov,γ

N⋆

via Markov’s inequality and the definition of Ccov,γ . Substituting both bounds into Eq. (19) completes1199

the proof.1200

1201

Proof of Theorem D.1. The proof begins similarly to Theorem G.1. By realizability of πNµ
,1202

Lemma H.1 implies that the output of SFT-Sharpening satisfies, with probability at least 1− ρ,1203

Ex∼µ

[
D2

H

(
π̂(· | x), πNµ(· | x)

)]
≤ ε2stat :=

2 log(|Π|/ρ)
n

.

Condition on the event that this guarantee holds. We invoke the following lemma, proven in the1204

sequel.1205

Lemma K.1. Let P be a distribution on a discrete space Y . Let y⋆ = argmaxy∈Y P (y) and let1206

P ⋆ := maxy∈Y P (y). Let y1, y2, . . . ∼ P , and for any stopping time τ , define1207

ŷτ ∈ argmax {P (y) : y ∈ {y1, . . . , yτ}} .
Next, for a parameter µ > 0, define the stopping time1208

Nµ := inf

{
k :

1

max1≤i≤k P (yi)
≤ k/µ

}
.

Then1209

E[Nµ] ≤
µ+ (1/|y⋆|)

P ⋆
.

In addition, for any stopping time τ ≥ Nµ (including τ = Nµ itself), we have P[ŷτ /∈ y⋆] ≤ e−|y⋆|µ.1210
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This lemma, with our choice of µ, ensures that for all x ∈ X ,1211

πNµ
(y⋆(x) | x) ≥ 1− e−µ = 1− δ/2.

Following the reasoning in Eq. (20), this implies that1212

D2
H

(
π̂(· | x), πNµ(· | x)

)
≳ δ · I{π̂(y⋆(x) | x) ≤ 1− δ},

so that1213

Px∼µ[π̂(y
⋆(x) | x) ≤ 1− δ] ≲

ε2stat
δ

as desired.1214

To bound the expected sample complexity, we observe that1215

E[m] = n · E[Nµ(x)]
(i)

≤ E
[

1 + µ

πbase(y⋆(x) | x)

]
= (1 + µ)Ccov,

where inequality (i) invokes Lemma K.1 once more.1216

1217

Proof of Lemma K.1. Define N⋆ := µ/P ⋆. To bound the tails of Nµ, define1218

τ = inf{k | k ≥ N⋆ and y⋆ ∩ {y1, . . . , yk} ≠ ∅}.

It follows from the definition that Nµ ≤ τ , since for any k ≥ N⋆, if there exists i ≤ k such that1219

yi ∈ y⋆, then1220

1

P (yi)
=

1

P ⋆
=

N⋆

µ
≤ k

µ
.

Thus, for k ≥ N⋆, we can bound1221

P[Nµ > k] ≤ P[τ > k] = P[Y⋆ ∩ {y1, . . . , yk} = ∅] ≤ (1− |y⋆|P ⋆)k,

and consequently1222

E[Nµ] ≤ E[τ ] ≤ E[τI{τ ≤ N⋆}] + E[τI{τ > N⋆}]

≤ N⋆ +
∑

k>N⋆

(1− |y⋆|P ⋆)k

≤ N⋆ +
1

|y⋆|P (y⋆)
=

µ+ 1/|y⋆|
P (y⋆)

.

To check correctness, observe that Nµ ≥ N⋆, because for all y ∈ Y , 1
P (y) ≥ N⋆/µ. Hence,1223

any stopping time τ ≥ Nµ also satisfies τ ≥ N⋆, and moreover has ŷτ ∈ y⋆ whenever y⋆ ∩1224

{y1, y2, . . . , yτ} ≠ ∅. This fails to occur with probability no more than1225 (
1− |y

⋆|
P ⋆

)N⋆

=

(
1− |y

⋆|
P ⋆

)µ/P⋆

≤ e−|y⋆|µ.

1226

1227

L Proofs from Appendix G.21228

The following result is a generalization of Lemma G.1.1229

Lemma G.1′. For all γ ∈ (0, 1), the model π⋆
β satisfies Cπ⋆

β
≤ (1−γ)−1Ccov,γ and Cπbase/π⋆

β ;β
≤ |Y|.1230
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Proof of Lemma G.1′. For any fixed x ∈ X , we have1231

Ey∼π⋆
β(·|x)

[
π⋆
β(y | x)

πbase(y | x)

]
= Ey∼π⋆

β(·|x)

[
π1+β−1

base (y | x)
πbase(y | x)

]
·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

≤ max
y∈Y

πβ−1

base(y | x) ·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

≤ (1− γ)−1πβ−1

base(y
⋆
γ(x) | x) ·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

= (1− γ)−1
π1+β−1

base (y⋆
γ(x) | x)

πbase(y⋆
γ(x) | x)

·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

= (1− γ)−1

∑
y∈y⋆

γ(x)
π1+β−1

base (y | x)
πbase(y⋆

γ(x) | x)
·

∑
y′∈Y

π1+β−1

base (y′ | x)

−1

≤ (1− γ)−1 1

πbase(y⋆
γ(x) | x)

.

It follows that Cπ⋆
β
≤ (1− γ)−1Ccov,γ as claimed.1232

For the second result, we have1233

Cπbase/π⋆
β ;β

= Eπbase

 1

πbase(y | x)
·

∑
y′∈Y

π1+β−1

base (y′ | x)

β
 ≤ Eπbase

[
1

πbase(y | x)

]
= |Y|.

1234

1235

L.1 Proof of Theorem G.21236

We state and prove a generalized version of Theorem G.2. In the assumptions below, we fix a1237

parameter γ ∈ [0, 1); the setting γ = 0 corresponds to Theorem G.2.1238

Assumption L.1 (Coverage). All π ∈ Π satisfy Cπ ≤ Cconc for a parameter Cconc ≥ (1−γ)−1Ccov,γ ,1239

and Cπbase/π;β ≤ Closs for a parameter Closs ≥ |Y|.1240

By Lemma G.1′, this is assumption is consistent with the assumption that π⋆
β ∈ Π.1241

Assumption L.2 (Margin). For all x ∈ supp(µ), the initial model πbase satisfies1242

πbase(y
⋆
γ(x) | x) ≥ (1 + γmargin) · πbase(y | x) ∀y ̸∈ y⋆

γ(x)

for a parameter γmargin > 0.1243

Theorem G.2′. Assume that π⋆
β ∈ Π (Assumption G.3), and that Assumption G.4 and Assumption G.21244

hold with respect to some γ ∈ [0, 1), with parameters Cconc, Closs, and γmargin > 0. For any1245

δ, ρ ∈ (0, 1), the DPO algorithm in Eq. (7) ensures that with probability at least 1− ρ,1246

Px∼µ

[
π̂(y⋆

γ(x) | x) ≤ 1− δ
]
≲

1

γmarginδ
· Õ

√Cconc log
3(Closs|Π|ρ−1)

n
+ β log(Cconc) + γ


where Õ(·) hides factors logarithmic in n and Cconc and doubly logarithmic in Π, Closs, and ρ−1.1247

We first state and prove some supporting technical lemmas, then proceed to the proof of Theorem G.2′.1248
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L.1.1 Technical lemmas1249

Lemma L.1. Suppose β ∈ [0, 1]. For any model π, with probability at least 1− δ over the draw of1250

x ∼ µ, y, y′ ∼ πbase(· | x), we have that for all s > 0,1251

P
[∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣ > log(2Cπbase/π;β) + s

]
≤ exp(−s).

Proof of Lemma L.1. Define1252

X :=

∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣.
By the Chernoff method, we have that with probability at least 1− δ,1253

X ≤ log(E[exp(X)]) + log(δ−1)

= log

(
Ex∼µ,y,y′∼πbase(x)

[
exp

(∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣)])+ log(δ−1)

≤ log

(
Ex∼µ,y,y′∼πbase(x)

[
exp

(
β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

))]

+ Ex∼µ,y,y′∼πbase(x)

[
exp

(
β log

(
π(y′ | x)

πbase(y′ | x)

)
− β log

(
π(y | x)

πbase(y | x)

))])
+ log(δ−1)

= log

(
2Ex∼µ,y,y′∼πbase(x)

[
exp

(
β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

))])
+ log(δ−1)

= log

(
Ex∼µ,y,y′∼πbase(x)

[(
π(y | x)

πbase(y | x)
· πbase(y

′ | x)
π(y′ | x)

)β
])

+ log(2δ−1).

As long as β ≤ 1, by Jensen’s inequality, we can bound1254

Ex∼µ,y,y′∼πbase(x)

[(
π(y | x)

πbase(y | x)
· πbase(y

′ | x)
π(y′ | x)

)β
]

≤ Ex∼µ,y′∼πbase(x)

[(
Ey∼πbase(x)

[
π(y | x)

πbase(y | x)

]
· πbase(y

′ | x)
π(y′ | x)

)β
]

= Ex∼µ,y′∼πbase(x)

[(
πbase(y

′ | x)
π(y′ | x)

)β
]

= Cπbase/π;β ,

which proves the result.1255

1256

Lemma L.2. Let β ∈ [0, 1]. For all models π, we have1257

Ex∼µ,y,y′∼πbase(·|x)

[∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣4
]
≤ O(log4(Cπbase/π;β) + 1).

Proof of Lemma L.2. Define1258

X :=

∣∣∣∣β log

(
π(y | x)

πbase(y | x)

)
− β log

(
π(y′ | x)

πbase(y′ | x)

)∣∣∣∣.
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Set k = log(2Cπbase/π;β). We can bound1259

E
[
X4
]
= E

[∫ ∞

0

I
{
X4 > t

}
dt

]
= 4E

[∫ ∞

0

I{X > t}t3dt
]

= 4

∫ ∞

0

P[X > t]t3dt

≤ k4 + 4

∫ ∞

k

P[X > t]t3dt

≤ k4 + 4

∫ ∞

k

ek−tt3dt

= k4 + 4(k3 + 3k2 + 6k + 6)

= O(k4 + 1),

where the third-to-last line uses Lemma L.1.1260

1261

L.1.2 Proof of Theorem G.2′
1262

Proof of Theorem G.2′. For any model π ∈ Π, define J(π) := Eπ[log πbase(y | x)]. Let π̂ ∈ Π1263

denote the model returned by the DPO algorithm in Eq. (12). Let Eπ,π′ [·] denote shorthand for1264

Ex∼µ,y∼π(x),y′∼π′(x)[·], and for any r : X × Y → R define ∆r(x, y, y′) := r(x, y) − r(x, y′).1265

Define1266

r⋆(x, y) := log πbase(y | x) = β log

(
π⋆
β(y | x)

πbase(y | x)

)
+ Z(x),

and let r̂(x, y) := β log
(

π̂(y|x)
πbase(y|x)

)
. By a standard argument [HZX+24], we have1267

π̂ ∈ argmax
π:X→∆(Y)

Eπ[r̂(x, y)]− βDKL(π ∥πbase). (21)

Therefore for any comparator model π⋆ : X → ∆(Y) (not necessarily in the model class Π), we have1268

J(π⋆)− J(π̂) = Eπ⋆ [r⋆(x, y)]− Eπ̂[r
⋆(x, y)]

= Eπ⋆ [r̂(x, y)]− βDKL(π
⋆ ∥πbase)− Eπ̂[r̂(x, y)] + βDKL(π̂ ∥πbase)

+ Eπ⋆ [r⋆(x, y)− r̂(x, y)] + βDKL(π
⋆ ∥πbase) + Eπ̂[r̂(x, y)− r⋆(x, y)]− βDKL(π̂ ∥πbase)

≤ Eπ⋆ [r⋆(x, y)− r̂(x, y)] + βDKL(π
⋆ ∥πbase) + Eπ̂[r̂(x, y)− r⋆(x, y)]− βDKL(π̂ ∥πbase)

= Eπ⋆,πbase

[
∆r⋆(x, y, y′)−∆r̂(x, y, y′)

]
+ Eπ̂,πbase

[
∆r̂(x, y, y′)−∆r⋆(x, y, y′)

]
+ βDKL(π

⋆ ∥πbase)− βDKL(π̂ ∥πbase) (22)

where the inequality uses Eq. (21). To bound the right-hand-side above, we will use the following1269

lemma, which is proven in the sequel.1270

Lemma L.3. For any model π and any η > 0, we have that1271

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣]

≲ C1/2π ·
(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}])1/2

+ C1/2π (log(Cπbase/π̂;β) + log(Cπbase/π⋆
β ;β

)) ·
(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
.
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Using Lemma L.3 to bound the first two terms of Eq. (22), and using the fact that all π ∈ Π have1272

Cπ ≤ Cconc and Cπbase/π;β ≤ Closs, we have that1273

J(π⋆)− J(π̂)

≲ (Cπ⋆ + Cconc)
1/2 ·

(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}])1/2

+ (Cπ⋆ + Cconc)
1/2 log(Closs) ·

(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
+ βDKL(π

⋆ ∥πbase).

(23)

Let us overload notation and write ∆π(x, y, y′) = β log
(

π(y|x)
πbase(y|x)

)
− β log

(
π(y′|x)

πbase(y′|x)

)
, so that1274

∆π̂ = ∆r̂ and ∆π⋆
β = ∆r⋆ . Since π⋆

β ∈ Π, the definition of π̂ in Eq. (7) implies that1275 ∑
(x,y,y′)∈Dpref

(
∆π̂(x, y, y′)−∆π⋆

β (x, y, y′)
)2
≤ min

π∈Π

∑
(x,y,y′)∈Dpref

(
∆π(x, y, y′)−∆π⋆

β (x, y, y′)
)2

≤
∑

(x,y,y′)∈Dpref

(
∆π⋆

β (x, y, y′)−∆π⋆
β (x, y, y′)

)2
= 0.

Define Bn,ρ := log(2nCloss|Π|ρ−1). It is immediate that1276 ∑
(x,y,y′)∈Dpref

(
∆π̂(x, y, y′)−∆π⋆

β (x, y, y′)
)2

I
{∣∣∆π̂

∣∣ ≤ Bn,ρ,
∣∣∆π⋆

β

∣∣ ≤ Bn,ρ

}
≤ 0.

From here, Bernstein’s inequality and a union bound implies that with probability at least 1− ρ,1277

Eπbase,πbase

[∣∣∣∆π̂(x, y, y′)−∆π⋆
β (x, y, y′)

∣∣∣2I{∣∣∆π̂
∣∣ ≤ Bn,ρ,

∣∣∆π⋆
β

∣∣ ≤ Bn,ρ

}]
≲

B2
n,ρ log(|Π|ρ−1)

n
=: ε2stat.

In particular, if we combine this with Eq. (23) and set η = Bn,ρ, then Lemma L.1 implies that1278

J(π⋆)− J(π̂) ≲ (Cπ⋆ + Cconc)
1/2 · εstat + (Cπ⋆ + Cconc)

1/2 log(Closs) · ρ1/4 + βDKL(π
⋆ ∥πbase).

Note that the above bound holds for any π⋆ : X → ∆(Y). We define π⋆ by1279

π⋆(y | x) :=
πbase(y | x)I[y ∈ y⋆

γ(x)]

πbase(y⋆
γ(x) | x)

,

which can be seen to satisfy Cπ⋆ ≤ Ccov,γ ≤ Cconc and DKL(π
⋆ ∥πbase) ≤ log(Cπ⋆) ≤ log(Cconc).1280

With this choice, we can further bound the expression above by1281

J(π⋆)− J(π̂) ≲ (Cconc)
1/2 · εstat + (Cconc)

1/2 log(Closs) · ρ1/4 + β log(Cconc)

Given a desired failure probability ρ, applying the bound above with ρ′ := ρ ∧ (εstat/ log(Closs))
4

1282

then gives1283

J(π⋆)− J(π̂) ≲ (Cconc)
1/2 · εstat + β log(Cconc).

Finally, we observe that for our choice of π⋆, under the margin condition with parameter γ, we have1284

J(π⋆)− J(π̂) = Ex∼µ Ey,y′∼π⋆,π̂

[
log

(
πbase(y | x)
πbase(y′ | x)

)]
≳ γmargin · Ex∼µ Ey′∼π̂

[
I{y′ ̸∈ y⋆

γ(x)}
]
− γ

≳ γmarginδ · Ex∼µ

[
I{π̂(y⋆

γ(x) | x) ≤ 1− δ}
]
− γ

where the first inequality uses Assumption L.2 together with the fact that y ∈ y⋆
γ(x) with probability1285

1 over x ∼ µ and y ∼ π⋆(· | x). This proves the result.1286
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1287

1288

Proof of Lemma L.3. For any η > 0, we can bound1289

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣] ≤ Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}]

+ Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ > η ∨
∣∣∆r̂

∣∣ > η
}]

.

For the second term above, we can use Cauchy-Schwarz to bound1290

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ > η ∨
∣∣∆r̂

∣∣ > η
}]

≤ C1/2π ·
(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ > η ∨
∣∣∆r̂

∣∣ > η
}])1/2

≲ C1/2π ·
(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
·
(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)
∣∣∣4]+ Eπbase,πbase

[∣∣∣∆r̂(x, y, y′)
∣∣∣4])1/4

≲ C1/2π ·
(
Pπbase,πbase

[∣∣∆r⋆
∣∣ > η

]
+ Pπbase,πbase

[∣∣∆r̂
∣∣ > η

])1/4
· (log(Cπbase/π̂;β) + log(Cπbase/π⋆

β ;β
)),

where the last inequality follows from Lemma L.2.1291

Meanwhile, for the first term, for any λ > 0 we can bound1292

Eπ,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}]

≤ C1/2π

(
Eπbase,πbase

[∣∣∣∆r⋆(x, y, y′)−∆r̂(x, y, y′)
∣∣∣2I{∣∣∆r⋆

∣∣ ≤ η,
∣∣∆r̂

∣∣ ≤ η
}])1/2

.

1293

1294

L.2 Proof of Theorem G.3 and Theorem G.41295

In this section we prove Theorem G.3 as well as Theorem G.4, the application to linear softmax1296

models. For the formal theorem statements, see Theorem L.2 and Theorem L.3 respectively. The1297

section is organized as follows.1298

• In Appendix L.2.1, we give necessary background on KL-regularized policy optimization, as well1299

as the Sequential Extrapolation Coefficient.1300

• Appendix L.2.2 presents a generic guarantee for XPO under a general choice of reward function.1301

• Appendix L.2.3 instantiates the result above with the self-reward function r(x, y) := log πbase(y |1302

x) to prove Theorem G.3.1303

• Finally, Appendix L.2.4 applies the preceding results to prove Theorem G.4.1304

L.2.1 Background1305

To begin, we give background on KL-regularized policy optimization and the Sequential Extrapolation1306

Coefficient.1307

KL-regularized policy optimization. Let β > 0 be given, and let r : X ×Y → [−Rmax, Rmax] be1308

an unknown reward function on prompt/action pairs. Define a value function Jβ over model class Π1309

by:1310

Jβ(π) := Eπ[r(x, y)]− β ·DKL(Pπ ∥Pπbase).

We refer to this as a KL-regularized policy optimization objective (we use the term “policy” following1311

the reinforcement learning literature; for our setting, policies correspond to models). Given query1312

access to r, the goal is to find π̂ ∈ Π such that1313

Jβ(π
⋆
β)− Jβ(π̂) ≤ ϵ
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Algorithm 1 Reward-based variant of Exploratory Preference Optimization [XFK+24]
input: Base model πbase : X → ∆(Y), reward function r : X × Y → R, number of iterations
T ∈ N, KL regularization coefficient β > 0, optimism coefficient α > 0.
Initialize: π(1) ← πbase, D(0) ← ∅.
for iteration t = 1, . . . , T do

Generate sample: (x(t), y(t), ỹ(t)) via x(t) ∼ µ, y(t) ∼ π(t)(· | x(t)), ỹ(t) ∼ πbase(· | x(t)).
Update dataset: D(t) ← D(t−1) ∪ {(x(t), y(t), ỹ(t))}.
Model optimization with global optimism:

π(t+1) ← argmin
π∈Π

{
α

∑
(x,y,y′)∈D(t)

log(π(y′ | x))

−
∑

(x,y,y′)∈D(t)

(
β log

π(y | x)
πbase(y | x)

− β log
π(y′ | x)

πbase(y′ | x)
− (r(x, y)− r(x, y′))

)2
}
.

return: π̂ ← argmaxt∈[T+1] Jβ(π
(t)). ▷ Can estimate Jβ(π

(t)) using validation data.

where π⋆
β(y | x) ∝ πbase(y | x) exp(β−1r(x, y)) is the model that maximizes Jβ over all models1314

π : X → ∆(Y).1315

We make use of the following assumptions, as in [XFK+24].1316

Assumption L.3 (Realizability). It holds that π⋆
β ∈ Π.1317

Assumption L.4 (Bounded density ratios). For all π ∈ Π, (x, y) ∈ X ×Y ,
∣∣β log π(y|x)

πbase(y|x)
∣∣ ≤ Vmax.1318

Finally, we require two definitions.1319

Definition L.1 (Sequential Extrapolation Coefficient for RLHF, [XFK+24]). For a model class Π,1320

reward function r, reference model πbase, and parameters T ∈ N and β, λ > 0, the Sequential1321

Extrapolation Coefficient is defined as1322

SEC(Π, r, T, β, λ;πbase)

:= sup
π(1),...,π(T )∈Π


T∑

t=1

E(t)
[
β log π(t)(y|x)

πbase(y|x) − r(x, y)− β log π(t)(y′|x)
πbase(y′|x) + r(x, y′)

]2
λ ∨

∑t−1
i=1 E(i)

[(
β log π(t)(y|x)

πbase(y|x) − r(x, y)− β log π(t)(y′|x)
πbase(y′|x) + r(x, y′)

)2]


where E(t) denotes expectation over x ∼ µ, y ∼ π(t)(· | x), and y′ ∼ πbase(· | x).1323

Definition L.2. Let ϵ > 0. We say that Ψ ⊆ Π is a ϵ-net for model class Π if for every π ∈ Π there1324

exists π′ ∈ Ψ such that1325

max
x∈X

max
y∈Y

∣∣∣∣log π(y | x)
π′(y | x)

∣∣∣∣ ≤ ϵ.

We write N (Π, ϵ) to denote the size of the smallest ϵ-net for Π.1326

L.2.2 Guarantees for KL-regularized policy optimization with XPO1327

In this section, we give self-contained guarantees for the XPO algorithm (Algorithm 1). XPO was1328

introduced in [XFK+24] for KL-regularized policy optimization in the related setting where the1329

learner only has indirect access to the reward function r through preference data (specifically, pairs1330

of actions labeled via a Bradley-Terry model). Standard offline algorithms for this problem, such as1331

DPO, require bounds on concentrability of the model class (see e.g. Eq. (13)). [XFK+24] show that1332

the XPO algorithm avoids this dependence, and instead requires bounded Sequential Extrapolation1333

Coefficient.1334

Algorithm 1 is a variant of the XPO algorithm which is adapted to reward-based feedback (as opposed1335

to preference-based feedback), and Theorem L.1 shows that this algorithm enjoys guarantees similar1336

to those of [XFK+24] for this setting. Note that this is not an immediate corollary of the results in1337
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[XFK+24], since the sample complexity in the preference-based setting scales with eO(Rmax), and for1338

our application to sharpening it is important to avoid this dependence. However, our algorithm and1339

analysis only diverge from [XFK+24] in a few places.1340

Theorem L.1 (Variant of Theorem 3.1 in [XFK+24]). Suppose that Assumptions L.3 and L.41341

hold. For any T ∈ N, ϵdisc, ρ ∈ (0, 1), by setting α := β
Rmax+Vmax

√
log(2N (Π,ϵdisc)T/ρ)

SEC(Π)T , Algorithm 11342

produces a model π̂ ∈ Π such that with probability at least 1− ρ,1343

βDKL

(
π̂ ∥π⋆

β

)
= Jβ(π

⋆
β)− Jβ(π̂) ≲ (Rmax + Vmax)

√
SEC(Π) log(2N (Π, ϵdisc)T/ρ)

T

+ βϵdisc
√

SEC(Π)T

where SEC(Π) := SEC(Π, r, T, β, V 2
max;πbase).1344

Proof of Theorem L.1. For compactness, we abbreviate SEC(Π) := SEC(Π, r, T, β, V 2
max;πbase).1345

From Equation (37) of [XFK+24], we have1346

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≲
α

β
(Rmax + Vmax)

2 · SEC(Π) +
β

αT
+

Vmax

T
+

1

T

T∑
t=2

E
(x,y)∼πbase

[β log π(t)(y | x)− β log π⋆
β(y | x)]

+
β

α(Rmax + Vmax)2T

T∑
t=2

E
x∼µ

y,y′∼π(t)|x

[(
β log

π(t)(y | x)
πbase(y | x)

− r(x, y)− β log
π(t)(y′ | x)
πbase(y′ | x)

+ r(x, y′)

)2
]

where π(t) := 1
t−1

∑
i<t π

(i)⊗πbase denotes the model that, given x ∈ X , samples i ∼ Unif([t− 1])1347

and then samples y ∼ π(i)(· | x) and y′ ∼ πbase(· | x). For any 2 ≤ t ≤ T , define L(t) : Π→ [0,∞)1348

by1349

L(t)(π) := E
(x,y)∼πbase

[β log π(y | x)− β log π⋆
β(y | x)]

+
β

α(Vmax +Rmax)2
E

x∼µ

y,y′∼π(t)|x

[(
β log

π(y | x)
πbase(y | x)

− r(x, y)− β log
π(y′ | x)

πbase(y′ | x)
+ r(x, y′)

)2
]
.

Similarly, define1350

L̂(t)(π) :=
∑

(x,y,y′)∈D(t)

[β log π(y′ | x)− β log π⋆
β(y

′ | x)]

+
β

α(Vmax +Rmax)2

∑
(x,y,y′)∈D(t)

[(
β log

π(y | x)
πbase(y | x)

− r(x, y)− β log
π(y′ | x)

πbase(y′ | x)
+ r(x, y′)

)2
]

where D(t) is the dataset defined in iteration t of Algorithm 1. By Assumption L.3 we have π⋆
β ∈ Π,1351

so infπ∈Π L̂(t)(π) ≤ 0. Moreover by definition, π(t) ∈ argminπ∈Π L̂(t).1352

Let Ψ be an ϵdisc-net over Π, of size N (Π, ϵdisc). Fix any π ∈ Ψ and 2 ≤ t ≤ T , and define1353

increments Xi := L̂(i)(π) − L̂(i−1)(π) for 2 ≤ i ≤ t, with the notation L̂(1)(π) := 0 so that1354

L̂(t)(π) =
∑t

i=2 Xi. Let Fi be the filtration induced by D(i) and define γi := E[Xi | Fi−1].1355

Observe that (t− 1)L(t)(π) =
∑t

i=2 γi. For any i, note that we can write Xi = Yi + Zi where Yi ∈1356

[−Vmax, Vmax] and Zi ∈ [0, β/α]. By Corollary H.1, it holds with probability at least 1− ρ/(2|Π|T )1357

t∑
i=2

E[Zi | Fi−1] ≲
β

α
log(2|Ψ|T/ρ) +

t∑
i=2

Zi.

By Azuma-Hoeffding, it holds with probability at least 1− ρ/(2|Π|T ) that1358

t∑
i=2

E[Yi | Fi−1] ≲ Vmax

√
T log(2|Ψ|T/ρ) +

t∑
i=2

Yi.
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Hence, with probability at least 1− ρ/(|Ψ|T ) we have1359

(t− 1)L(t)(π) ≲
β

α
log(2|Ψ|T/ρ) + Vmax

√
T log(2|Ψ|T/ρ) + L̂(t)(π).

With probability at least 1− ρ this bound holds for all π ∈ Ψ and 2 ≤ t ≤ T . Henceforth condition1360

on this event. Fix any π ∈ Π and 2 ≤ t ≤ T . Since Ψ is an ϵ-net for Π, we see by definition of L(t)
1361

that there is some π′ ∈ Ψ such that1362

|L(t)(π)−L(t)(π′)| ≲ βϵdisc+
β

α(Vmax +Rmax)2
·βϵdisc(Vmax+Rmax) ≤ βϵdisc

(
1 +

β

α(Vmax +Rmax)

)
and similarly1363

|L̂(t)(π)− L̂(t)(π′)| ≲ (t− 1)βϵdisc

(
1 +

β

α(Vmax +Rmax)

)
.

It follows that, for all 2 ≤ t ≤ T , since L̂(t)(π(t)) ≤ 0, we get1364

(t−1)L(t)(π(t)) ≲
β

α
log(2|Ψ|T/ρ)+Vmax

√
T log(2|Ψ|T/ρ)+βϵdiscT

(
1 +

β

α(Vmax +Rmax)

)
.

Hence,1365

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≲
α

β
(Rmax + Vmax)

2 · SEC(Π) +
β

αT
+

Vmax

T
+

1

T

T∑
t=2

L(t)(π(t))

≲ (Rmax + Vmax)

√
SEC(Π) log(2|Ψ|T/ρ)

T
+ βϵdisc

√
SEC(Π)T

by taking1366

α :=
β

Rmax + Vmax

√
log(2|Ψ|T/ρ)
SEC(Π)T

.

Since the output π̂ of Algorithm 1 satisfies π̂ ∈ argmaxt∈[T ] Jβ(π
(t)), the claimed bound on1367

Jβ(π
⋆
β)− Jβ(π̂) is immediate. Finally, observe that by definition of π⋆

β ,1368

Jβ(π
⋆
β)− Jβ(π̂) = E

(x,y)∼π⋆
β

[
r(x, y)− β log

π⋆
β(y | x)

πbase(y | x)

]
− E

(x,y)∼π̂

[
r(x, y)− β log

π̂(y | x)
πbase(y | x)

]
= E

(x,y)∼π⋆
β

[
r(x, y)− β log

π⋆
β(y | x)

πbase(y | x)

]
− E

(x,y)∼π̂

[
r(x, y)− β log

π⋆
β(y | x)

πbase(y | x)

]

+ E
(x,y)∼π̂

[
β log

π̂(y | x)
π⋆
β(y | x)

]
= β log E

(x,y)∼πbase

[exp(r(x, y))]− β log E
(x,y)∼πbase

[exp(r(x, y))] + βDKL

(
π̂ ∥π⋆

β

)
= βDKL

(
π̂ ∥π⋆

β

)
.

This completes the proof.1369

1370

L.2.3 Applying XPO to maximum-likelihood sharpening1371

We now prove Theorem L.2, the formal statement of Theorem G.3, which applies XPO to1372

maximum-likelihood sharpening. This result is a straightforward corollary of Theorem L.1 with1373

the reward function rself(x, y) := log πbase(y | x), together with the observation that low KL-1374

regularized regret implies sharpness (under Assumption G.2).1375
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Theorem L.2 (Sharpening via active exploration). There are absolute constants cL.2, CL.2 > 0 so1376

that the following holds. Let ϵ, δ, γmargin, ρ, β ∈ (0, 1) and T ∈ N be given. For base model πbase,1377

define reward function r(x, y) := log πbase(y | x). Let Rmax ≥ 1 + maxx,y log
1

πbase(y|x) . Suppose1378

that πbase satisfies Assumption G.2 with parameter γmargin, that β−1 ≥ 2γ−1
margin log(2|Y|/δ), and1379

that there is ϵdisc ∈ (0, 1) so that1380

T ≥ CL.2
R2

maxSEC(Π) log(2N (Π, ϵdisc)T/ρ)

ϵ2δ2β2

and1381

ϵdisc ≤ cL.2
ϵδ√

SEC(Π)T

where SEC(Π) := SEC(Π, r, T, β,R2
max;πbase). Also suppose that π⋆

β ∈ Π where π⋆
β(y | x) ∝1382

π1+β−1

base (y | x).1383

Then applying Algorithm 1 with base model πbase, reward function r, iteration count T , regularization1384

β, and optimism parameter α := β
Rmax

√
log(2N (Π,ϵdisc)T/δ)

SEC(Π)T yields a model π̂ ∈ Π such that with1385

probability at least 1− ρ,1386

Px∼µ[π̂(y
⋆(x) | x) < 1− δ] ≤ ϵ.

The total sample complexity is1387

m = Õ

(
R2

maxSEC(Π) log(N (Π, ϵdisc)/ρ) log
2(|Y|δ−1)

γ2
marginϵ

2δ2

)
.

Proof of Theorem L.2. By definition of r, we have |r(x, y)| ≤ Rmax for all x, y. By assumption,1388

Assumption L.3 is satisfied, and by definition of Rmax, Assumption G.5 is satisfied with parameter1389

Vmax := βRmax ≤ Rmax. It follows from Theorem L.1 that with probability at least 1− ρ, the output1390

π̂ of Algorithm 1 satisfies1391

βDKL

(
π̂ ∥π⋆

β

)
≲ (Rmax + Vmax)

√
SEC(Π) log(2N (Π, ϵdisc)T/ρ)

T

+ βϵdisc
√
SEC(Π)T .

By choice of T and ϵdisc, so long as CL.2 > 0 is chosen to be a sufficiently large constant and1392

cL.2 > 0 is chosen to be a sufficiently small constant, we have βDKL

(
π̂ ∥π⋆

β

)
≤ 1

12βϵδ, so by e.g.1393

Equation (16) of [SV16], D2
H

(
π̂, π⋆

β

)
≤ ϵδ/(12).1394

For any x ∈ X and y′ ∈ Y \ y⋆(x), by Assumption G.2 and definition of π⋆
β we have1395

1

π⋆
β(y

′ | x)
≥

maxy∈Y π⋆
β(y | x)

π⋆
β(y

′ | x)
=

(
maxy∈Y πbase(y | x)

πbase(y′ | x)

)1+β−1

≥ (1 + γmargin)
1+β−1

≥ eγmargin/(2β) ≥ 2|Y|
δ

where the final inequality is by the assumption on β in the theorem statement. Therefore1396

π⋆
β(y

⋆(x) | x) ≥ 1−
∑

y′∈Y\y⋆(x)

π⋆
β(y

′ | x) ≥ 1− δ

2
.

Now for any x, we can lower bound1397

D2
H

(
π̂(· | x), π⋆

β(· | x)
)
≥
(√

1− π̂(y⋆(x) | x)−
√

1− π⋆
β(y

⋆(x) | x)
)2

≥ δ

12
· I{π̂(y⋆(x) | x) ≤ 1− δ}.
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Hence,1398

Px∼µ[π̂(y
⋆(x) | x) < 1− δ] ≤ 12

δ
Ex∼µD

2
H

(
π̂(· | x), π⋆

β(· | x)
)

=
12

δ
D2

H

(
π̂, π⋆

β

)
≤ ϵ.

as claimed.1399

1400

L.2.4 Application: linear softmax models1401

In this section we apply Theorem G.3 to the class of linear softmax models, proving Theorem G.4.1402

This demonstrates that Algorithm 1 can achieve an exponential improvement in sample complexity1403

compared to SFT-Sharpening.1404

Definition L.3 (Linear softmax model). Let d ∈ N be given, and let ϕ : X×Y → Rd be a feature map1405

with ∥ϕ(x, y)∥2 ≤ 1 for all x, y. Let πzero : X → ∆(Y) be the uniform model πzero(y | x) := 1
|Y| ,1406

and let B ≥ 1.15 We consider the linear softmax model class Πϕ,B := {πθ : θ ∈ Rd, ∥θ∥2 ≤ B}1407

where πθ : X → ∆(Y) is defined by1408

πθ(y | x) ∝ πzero(y | x) exp(⟨ϕ(x, y), θ⟩).

Theorem L.3 (Restatement of Theorem G.4). Let ϵ, δ, γmargin, ρ ∈ (0, 1) be given. Suppose that1409

πbase = πθ⋆ ∈ Πϕ,B for some θ⋆ ∈ Rd with ∥θ⋆∥2 ≤ γmarginB
3 log(2|Y|/δ) . Also, suppose that πbase satisfies1410

Assumption G.2 with parameter γmargin. Then Algorithm 1 with base model πbase, reward function1411

r(x, y) := log πbase(x, y), regularization parameter β := γmargin/(2 log(2|Y|/δ)), and optimism1412

parameter α(T ) ∝ β
B+log(|Y|)

√
d log(BdT/(ϵδ))+log(T/ρ)

dT log(T ) returns an (ϵ, δ)-sharpened model with1413

probability at least 1− ρ, and has sample complexity1414

m = poly(ϵ−1, δ−1, γ−1
margin, d, B, log(|Y|/ρ)).

Before proving the result, we unpack the conditions. Theorem L.3 requires the base model πbase to lie1415

in the model class and also satisfy the margin condition (Assumption G.2). For any constant ϵ, δ > 0,1416

the sharpening algorithm then succeeds with sample complexity poly(d, γ−1
margin, B, log(|Y|)). These1417

conditions are non-vacuous; in fact, there are fairly natural examples for which non-exploratory1418

algorithm such as SFT-Sharpening require sample complexity exp(Ω(d)), whereas all of the above1419

parameters are poly(d). The following is one such example.1420

Example L.1 (Separation between RLHF-Sharpening and SFT-Sharpening). Set X = {x} and let1421

Y ⊂ Rd be a 1/4-packing of the unit sphere in Rd of cardinality exp(Θ(d)). Define ϕ : X ×Y → Rd
1422

by ϕ(x, y) := y, and let B = Cd log d for an absolute constant C > 0. Fix any y⋆ ∈ Y and define1423

πbase := πθ⋆ ∈ Πϕ,B by θ⋆ := y⋆. Then for any y ̸= y⋆, we have ⟨y, y⋆⟩ ≤ 1− Ω(1), so1424

πbase(y
⋆ | x)

πbase(y | x)
= exp(⟨y⋆ − y, y⋆⟩) = exp(Ω(1)) = 1 + Ω(1).

Thus, πbase satisfies Assumption G.2 with γmargin = Ω(1). Moreover, ∥θ⋆∥2 = 1 ≤ γmarginB
3 log(2|Y|/δ)1425

for any δ = 1/poly(d), so long as C is a sufficiently large constant. It follows from Theorem G.41426

that Algorithm 1 computes an (ϵ, δ)-sharpened model with sample complexity poly(ϵ−1, δ−1, d).1427

However, since πbase(y
⋆ | x) ≤ πbase(y | x) · exp(2) for all y ∈ Y , it is clear that1428

Ccov = E
[

1

πbase(y⋆(x) | x)

]
=

1

πbase(y⋆ | x)
= Ω(|Y|) = exp(Ω(d)).

Thus, the sample complexity guarantee for SFT-Sharpening in Theorem G.1 will incur exponential1429

dependence on d in the sample complexity. It is straightforward to check that this dependence is real1430

for SFT-Sharpening, and not just an artifact of the analysis, since the model that SFT-Sharpening1431

is trying to learn (via MLE) will itself not be sharp in this example, unless exp(Ω(d)) samples are1432

drawn per prompt. ◁1433

15We use the notation πzero to highlight the fact that πzero = πθ for θ = 0.
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We now proceed to the proof of Theorem L.3, which requires the following bounds on the covering1434

number and the Sequential Extrapolation Coefficient of Πϕ,B .1435

Lemma L.4. Let ϵdisc > 0. Then Πϕ,B has an ϵdisc-net of size (6B/ϵdisc)
d.1436

Proof of Lemma L.4. By a standard packing argument, there is a set {θ1, . . . , θN} of size1437

(6B/ϵdisc)
d such that for every θ ∈ Rd with ∥θ∥2 ≤ B there is some i ∈ [N ] with ∥θi−θ∥2 ≤ ϵdisc/2.1438

Now for any x ∈ X and y ∈ Y ,1439

log
πθ(y | x)
πθi(y | x)

= log
exp(⟨ϕ(x, y), θ⟩)
exp(⟨ϕ(x, y), θi⟩)

+ log
E(x′,y′)∼πzero

exp(⟨ϕ(x′, y′), θi⟩)
E(x′,y′)∼πzero

exp(⟨ϕ(x′, y′), θ⟩)

= ⟨ϕ(x, y), θ − θi⟩+ log
E(x′,y′)∼πzero

[exp(⟨ϕ(x′, y′), θ⟩) exp(⟨ϕ(x′, y′), θi − θ⟩)]
E(x′,y′)∼πzero

exp(⟨ϕ(x′, y′), θ⟩)
.

The first term is bounded by ϵdisc/2 in magnitude. In the second term, we have1440

exp(⟨ϕ(x′, y′), θi − θ⟩) ∈ [exp(−ϵdisc/2), exp(ϵdisc/2)], so the ratio of expectations lies in1441

[exp(−ϵdisc/2), exp(ϵdisc/2)] as well, and so the log-ratio lies in [−ϵdisc/2, ϵdisc/2]. In all, we get1442 ∣∣∣log πθ(y|x)
πθi

(y|x)

∣∣∣ ≤ ϵdisc. Thus, {πθ1 , . . . , πθN } is an ϵdisc-net for Π.1443

1444

Lemma L.5. Let r : X × Y → [−Rmax, Rmax] be a reward function and let T ∈ N and β > 0. If1445

λ ≥ 4β2B2 +R2
max then for any π⋆ ∈ Πϕ,B ,1446

SEC(Πϕ,B , r, T, β, λ;π
⋆) ≲ d log(T + 1).

Proof of Lemma L.5. Fix π(1), . . . , π(T ) ∈ Πϕ,B . By definition, there are some θ(1), . . . , θ(T ) ∈ Rd
1447

with ∥θ(t)∥2 ≤ B and1448

π(t)(y | x) ∝ πzero(y | x) exp(⟨ϕ(x, y), θ(t)⟩)

for all t ∈ [T ] and (x, y) ∈ X × Y . Similarly, there is some θ⋆ ∈ Rd with ∥θ⋆∥2 ≤ B and1449

π⋆(y | x) ∝ πzero(y | x) exp(⟨ϕ(x, y), θ⋆⟩).1450

Define ϕ̃ : X ×Y → Rd+1 by ϕ̃(x, y) := [ϕ(x, y), r(x,y)
Rmax

] and define θ̃(t) := [β(θ(t) − θ⋆),−Rmax].1451

Then for any t ∈ [T ] we have1452

E(t)
[
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

]2
λ ∨

∑t−1
i=1 E(i)

[(
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

)2]

=
E(t)

[
⟨ϕ̃(x, y)− ϕ̃(x, y′), θ̃(t)⟩

]2
λ ∨

∑t−1
i=1 E(i)

[(
⟨ϕ̃(x, y)− ϕ̃(x, y′), θ̃(t)⟩

)2]
≤ (θ̃(t))⊤Σ(t)θ̃(t)

λ ∨
∑t−1

i=1(θ̃
(t))⊤Σ(i)θ̃(t)
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where for each i ∈ [T ] we have defined Σ(i) := E(i)
[
(ϕ̃(x, y)− ϕ̃(x, y′))(ϕ̃(x, y)− ϕ̃(x, y′))⊤

]
.1453

Observe that ∥θ̃(t)∥22 ≤ 4β2B2 +R2
max ≤ λ by assumption on λ. Therefore,1454

(θ̃(t))⊤Σ(t)θ̃(t)

λ ∨
∑t−1

i=1(θ̃
(t))⊤Σ(i)θ̃(t)

≲
(θ̃(t))⊤Σ(t)θ̃(t)

λ+
∑t−1

i=1(θ̃
(t))⊤Σ(i)θ̃(t)

≤ (θ̃(t))⊤Σ(t)θ̃(t)

(θ̃(t))⊤
(
Id +

∑t−1
i=1 Σ

(i)
)
θ̃(t)

≤ λmax

(Id + t−1∑
i=1

Σ(i)

)−1/2

Σ(t)

(
Id +

t−1∑
i=1

Σ(i)

)−1/2


≤ Tr

(Id + t−1∑
i=1

Σ(i)

)−1/2

Σ(t)

(
Id +

t−1∑
i=1

Σ(i)

)−1/2


= Tr

(Id + t−1∑
i=1

Σ(i)

)−1

Σ(t)

 .

Observe that Tr(Σ(t)) ≤ maxx,y∥ϕ̃(x, y)∥22 ≲ 1. Hence by Lemma H.2, we have1455

T∑
t=1

E(t)
[
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

]2
λ ∨

∑t−1
i=1 E(i)

[(
β log π(t)(y|x)

π⋆(y|x) − r(x, y)− β log π(t)(y′|x)
π⋆(y′|x) + r(x, y′)

)2]

≲
T∑

t=1

Tr

(Id + t−1∑
i=1

Σ(i)

)−1

Σ(t)


≲ d log(T + 1).

Since π(1), . . . , π(T ) ∈ Π were arbitrary, this completes the proof.1456

1457

The proof is now immediate from Theorem L.2 and the above lemmas.1458

Proof of Theorem L.3. By the assumption on θ⋆ and choice of β, the model π⋆
β defined1459

by π⋆
β(y | x) ∝ πbase(y | x)1+β−1

satisfies π⋆
β = π(1+β−1)θ⋆ ∈ Πϕ,B . By Lemma L.4, we1460

have N (Πϕ,B , ϵdisc) ≤ (6B/ϵdisc)
d. Take Rmax :=

√
4β2B2 + (2B + log |Y|)2. We know that1461

r(x, y) := log πbase(y | x) satisfies |r(x, y)| ≤ 2B + log |Y| for all x, y. By Lemma L.5, we1462

therefore get that SEC(Πϕ,B , r, T, β,R
2
max;πbase) ≲ d log(T + 1). Substituting these bounds into1463

Theorem L.2 yields the claimed result.1464

1465
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