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Abstract

Synthetic data generation in histopathology faces unique challenges: preserv-
ing tissue heterogeneity, capturing subtle morphological features, and scaling to
unannotated datasets. We present a latent diffusion model that generates realistic
heterogeneous histopathology images through a novel dual-conditioning approach
combining semantic segmentation maps with tissue-specific visual crops. Unlike
existing methods that rely on text prompts or abstract visual embeddings, our
approach preserves critical morphological details by directly incorporating raw
tissue crops from corresponding semantic regions. For annotated datasets (i.e.,
Camelyon16, Panda), we extract patches ensuring 20 — 80% tissue heterogeneity.
For unannotated data (i.e., TCGA), we introduce a self-supervised extension that
clusters whole-slide images into 100 tissue types using foundation model embed-
dings, automatically generating pseudo-semantic maps for training. Our method
synthesizes high-fidelity images with precise region-wise annotations, achieving
superior performance on downstream segmentation tasks. When evaluated on anno-
tated datasets, models trained on our synthetic data show competitive performance
to those trained on real data, demonstrating the utility of controlled heterogeneous
tissue generation. In quantitative evaluation, prompt-guided synthesis reduces
Fréchet Distance by up to 6x on Camelyonl6 (from 430.1 to 72.0) and yields
2 — 3 lower FD across Panda and TCGA. Downstream DeepLabv3+ models trained
solely on synthetic data attain test IoU of 0.71 and 0.95 on Camelyon16 and Panda,
within 1 — 2% of real-data baselines (0.72 and 0.96). By scaling to 11, 765 TCGA
whole-slide images without manual annotations, our framework offers a practical
solution for an urgent need for generating diverse, annotated histopathology data,
addressing a critical bottleneck in computational pathology.

1 Introduction

Histopathology image analysis forms the cornerstone of cancer diagnosis, yet remains constrained
by data scarcity, laborious annotation processes, and privacy concerns [8, 24, 29, 1, 21]. While
generative Al has transformed natural image synthesis, its application to histopathological imaging in
digital pathology faces unique challenges due to the complex, multi-scale architecture of biological
tissues and the critical importance of preserving diagnostically relevant features [44, 16, 2]. Most of
the current approaches have predominantly focused on generating homogeneous tissue types using
text-based prompting systems, which introduce significant interobserver variability and limit clinical
utility, particularly problematic in a domain where expert agreement is already inconsistent [15, 42].

The evolution from GAN-based methods to diffusion models has improved image quality and training
stability [13, 18], but existing frameworks fail to account for the heterogeneous nature of real-
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Figure 1: Comparison of reference and synthetic Camelyon16 patches using three conditioning
schemes. From left to right: original histopathology patch; binary tumor—normal mask; generated
image with a semantic segmentation map conditioning only; synthetic image by combining conditions
of semantic maps and abstract embeddings; synthetic output of our model conditioned on the semantic
map and tissue-specific visual crop prompts. The crop-guided generation recovers fine morphological
details and staining heterogeneity more faithfully than embedding-based conditioning.

world histopathology samples. Levine et al. [28] demonstrated that GANs could generate images
indistinguishable from real histopathology samples, while Moghadam et al. [30] marked the transition
to diffusion models with superior image quality and training stability. Despite these advances, clinical
specimens typically contain multiple tissue types and pathological features within a single slide,
requiring region-specific control over generation parameters. This limitation severely restricts the
utility of synthetic data for developing robust diagnostic algorithms that must recognize complex
patterns in diverse tissue regions.

Further complicating this landscape is the tension between the global architecture of the tissue and
the local cellular details. Traditional generative approaches struggle to maintain consistency across
multiple magnification levels while preserving the fine-grained morphological features critical for
diagnosis [34, 41, 2]. Recent work, URCDM [10], has addressed this through cascaded diffusion
models generating images at multiple resolutions simultaneously, while DiffInfinite [4] enables
arbitrary-size image synthesis with preserved long-range structural correlations. However, this multi-
scale challenge remains particularly acute when attempting to synthesize realistic transitions between
different tissue types, a capability essential for training segmentation algorithms and supporting
differential diagnosis.

Our work addresses these challenges by introducing a visually prompted latent diffusion model
designed specifically for heterogeneous tissue synthesis in histopathology. Unlike text-guided
approaches, our framework leverages spatial masks and visual exemplars to provide fine-grained
control over region-specific generation. Previous work, in the literature, NASDM [39] and subsequent
extensions by Konz et al. [25] and Xu et al. [47] demonstrated the value of region-guided generation
and semantic instance masks. Our method expands this concept to enable the synthesis of complex,
multi-tissue samples with realistic transitions and clinically relevant features as shown in Figure 1.
Our approach significantly reduces the annotation burden while maintaining high fidelity to real-world
pathological presentations 2. The main contributions of our work include:

* New Dual-Conditioning Architecture for Histopathology Synthesis. We developed a
unique visual crop-guided diffusion model that combines semantic maps with raw tissue
exemplars, preserving critical morphological features (nuclear texture, staining patterns,
cellular structure) that are lost in text-based or embedding-based approaches. This en-
ables precise region-specific control while maintaining authentic tissue appearance for
heterogeneous sample generation.



¢ Self-Supervised Framework for Unannotated Whole-Slide Images. We introduced a
scalable solution for the TCGA dataset (11,765 WSIs) that automatically discovers and
clusters 100 distinct tissue phenotypes without manual annotation. This democratizes
access to diverse synthetic data across 33 cancer types while preserving patient privacy and
addressing critical data scarcity in computational pathology.

* Comprehensive Multi-Modal Validation Framework. We established a rigorous evalua-
tion pipeline combining quantitative metrics (Fréchet distance across 8 foundation model
encoders) with downstream task performance (segmentation IoU scores). Most notably, our
blinded assessment by certified pathologists using a 5-point Likert scale across multiple
quality criteria revealed that our synthetic images were indistinguishable from real samples,
with one pathologist commenting: "The generated images tended to have equal or higher
quality than the real images."

Through rigorous evaluation involving both quantitative metrics (including the Fréchet Inception Dis-
tance [6]) and expert pathologist evaluation, we demonstrate that our approach generates histopathol-
ogy images that are indistinguishable from real samples while providing unprecedented control over
tissue composition. Synthetic datasets generated using our method effectively augment or replace
real data in training diagnostic models, addressing the critical issue of data scarcity while preserving
patient privacy.

By enabling the generation of diverse, annotated histopathology datasets without requiring patient
data sharing, our framework represents a significant step toward more equitable and robust Al
development in computational pathology [27]. This capability is particularly valuable for rare cancer
types and underrepresented populations, potentially democratizing access to high-quality training
data between institutions, regardless of their size or resources.

2 Related Work

Generative Models in Histopathology. Visual generative models have evolved from early GANs [17]
to sophisticated diffusion models [18], with recent advances like ControlNet [49] enabling fine-
grained control. Adapting these to histopathology presents unique challenges due to the complexity
of the tissue and the diagnostic significance of subtle morphological features. Although early GANs
demonstrated feasibility [28, 34, 2], recent diffusion-based approaches show superior quality [30].
Domain-specific methods [26, 23, 51, 10] have emerged, with URCDM [10] addressing multi-
resolution synthesis and enabling arbitrary-size generation [4, 43]. However, most approaches
generate homogeneous tissue types, limiting their utility for training diagnostic models that require
heterogeneous tissue representations, a limitation that our framework specifically addresses.

Conditioning Mechanisms for Histopathology Synthesis. Existing conditioning approaches fall
into three categories, each with significant limitations. Unconditioned models [44, 16] produce
realistic images but lack control over tissue types and pathological features, severely limiting their
utility for training task-specific models. Metadata-guided, text-guided, or mask-guided models [14, 48,
47, 9] suffer from interobserver variability, as documented by Elmore et al. [15] who found substantial
disagreement among pathologists (kappa values as low as 0.48). Visual embedding or RNA-seq
embedding approaches [33, 12, 50] avoid text ambiguity, but introduce lossy transformations that can
obscure critical diagnostic features. Even domain-specific embeddings suffer from information loss
during dimensionality reduction. Our approach circumvents these limitations by directly conditioning
on real tissue crops combined with semantic maps, preserving original visual characteristics without
intermediate representations.

Semantic Map-Based Generation. Recent works have explored semantic map conditioning for
precise spatial control. Shrivastava and Fletcher [39] pioneered this with NASDM, while Konz et
al. [25] extended it through random mask ablation. Although spatially accurate, these approaches typ-
ically focus on single tissue types or cellular structures rather than heterogeneous tissue architectures.
Our dual-condition mechanism combines semantic maps with visual crops, enabling the synthesis
of diverse tissue compositions while maintaining both spatial accuracy and morphological fidelity,
essential for generating comprehensive segmentation datasets.

Large-Scale Synthesis and Evaluation. Whole-slide image (WSI) synthesis presents unique
challenges due to gigapixel resolution and structural dependencies. Cechnicka et al. [10] and Aversa
et al. [4] addressed scale issues through cascaded models and infinite tiling, respectively, but struggled
to maintain segmentation accuracy with visual characteristics. Our self-supervised framework in
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Figure 2: Schematic overview of the HeteroTissue-Diffuse framework for heterogeneous tissue
synthesis in histopathology. (a) Unsupervised Tissue Clustering: For unannotated datasets (TCGA),
approximately 11,765 whole-slide images (WSIs) are processed to extract 634,435,134 million
patches. A histopathology foundation model extracts deep features, which are used to cluster patches
into 100 distinct tissue types, creating pseudo-labeled data. (b) Online Region/Mask Sampling: The
pseudo-labeled patches are used to generate WSI-level segmentation maps and regional masks for
conditioning the diffusion model. (c) Diffusion Model: Our dual-conditioning approach combines
semantic maps with visual tissue prompts (crops) to guide the latent diffusion process. The model
encodes the input image to the latent space, applies forward diffusion to create a noisy latent, then
reverses this process with UNet denoising conditioned on both semantic maps and visual tissue
exemplars. For annotated datasets (Camelyon16 [5] and Panda [7]), only component (c) is used with
their existing semantic maps.

this paper, trained on TCGA’s 11,765 diagnostic WSIs, generates 100 distinct tissue types while
preserving region-specific control through dual conditioning.

Evaluation of synthetic histopathology requires specialized metrics beyond standard FID and IS,
which use networks pretrained on natural images. Domain-specific alternatives include Fréchet
Distance and Topological Fréchet Distance [47], complemented by the evaluation of expert patholo-
gists [40]. Our comprehensive validation combines these metrics with downstream task performance,
the ultimate measure of the utility of synthetic data.

Our work advances the field through three key innovations. First, we avoid intermediate repre-
sentations that compromise fidelity by directly conditioning on visual crops from real histopathology
images combined with spatial semantic maps. Unlike semantic-only methods [39, 25], text-based
approaches [36], or embedding-based techniques [31, 35], our approach preserves tissue-specific
attributes (i.e., texture, cellular morphology, and staining patterns) that abstract representations lose.
This direct visual conditioning enables the synthesis of realistic heterogeneous samples with precise
spatial control, which is essential to train robust diagnostic models. Second, our self-supervised
extension to TCGA democratizes access to diverse synthetic data across cancer types, generating
100 distinct tissue phenotypes without manual annotation while addressing critical data scarcity and
preserving patient privacy [27]. Third, we establish comprehensive validation through rigorous met-
rics combining expert pathologist assessment with quantitative measures (Fréchet distance, precision,



recall, F1 score), and demonstrate utility through downstream segmentation tasks that confirm the
high quality of our generated annotated data.

3 Method

Our approach addresses the fundamental challenge in histopathology synthesis: generating realistic
heterogeneous tissue images with precise region-based control while preserving morphological
fidelity. We achieve this through a novel dual-conditioning latent diffusion model that combines
semantic maps with tissue-specific visual crops.

3.1 Preliminaries: Latent Diffusion Models

Algorithm 1: Heterogeneous Patch Sampling for

Latent diffusion models (LDMs) [36] offer an Annotated Data

efficient framework for high-quality image syn-

thesis by operating in a compressed latent space.
Given an image zg € RHXWX3 " an encoder
& maps it to a lower-dimensional representa-
tion 29 = £(wg) € RM*WX¢ where generally

Require: Dataset D with patches and segmentation masks
Require: Tissue ratio bounds [r'1in ; Tmax] = [0.2, 0.8]
Require: Crop size range [dyin; dmax] = [50, 200]
Ensure: Training sample (z, c)

1: function SAMPLEHETEROGENEOUSPATCH(D)

h < H and w <K W (a, M) < SelectPatch(D) where tissue ratios € [T'ynin; "max)

K < number of tissue classes
Initialize C' 4— zeros(H, W, 3K)
for k = 1to K do
Cl:y i (k—1)] « M[:,:, k]
if >° M[:,:, k] > Othen
d < RandomInt(d,ip , dmax)
Pk, (7, ¢) « ExtractSquareCrop(z, M [:, :, k], d)

q(zt|z-1) = N(z5 V1 = Beze—r, BX) (1) 16: L amentip)

where {8;}_, is a predefined variance schedule. | 11! Cp < zeros(H, W, 3)
. . 12: Crlr:r+d,c:c+d,:] + pg
This can be expressed in closed form as 13 Clot K4 (k1) w3: K+ kw3] ¢ Cp

2z = Vauzo + V1 —age, e~N(0,I) (2) %‘5‘ end it
where a; = [['_, (1 — B,).

The forward diffusion process gradually cor-
rupts zo by adding Gaussian noise over 7' time
steps:

> Semantic channel
> Class k present

LRI NER

> Optional rotation/flip

17: end function

16: return (z, c)
A neural network €y learns to reverse this process by predicting the noise component, optimizing

3

Liom =Bz el — oz, t,0)[13]
where c represents optional conditioning information.

Existing histopathology synthesis methods typically depend on class labels, text descriptions, or
global feature embeddings. However, these approaches struggle with two critical requirements: (1)
precise spatial control over tissue types and (2) preservation of fine-grained morphological details
such as nuclear texture and staining patterns.

3.2 HeteroTissue-Diffuse: Our Dual-Conditioning Approach

We introduce HeteroTissue-Diffuse (HTD), which fulfills both requirements through a new dual-
conditioning mechanism. Our key insight is that semantic maps provide spatial precision while
tissue-specific visual crops preserve morphological authenticity.

3.2.1 Dual Conditioning Formulation

Given a histopathology patch x € R¥*W X3 and its semantic segmentation map M € {0, 1}H*WxK

(where K denotes tissue classes), we construct our conditioning signal as detailed in Alg.1:

¢ = concat(M, C1, ...,Ck), 4
where each C; € R *Wx3 5 a sparse visual crop tensor for tissue class i. The construction process
involves:

1. Extract a square crop p; of size d x d (where d € {50,...,200} pixels) from a region labeled
as class ¢ 2. Initialize a zero tensor C; matching the full patch dimensions 3. Place p,; at random
coordinates within the semantic region defined by M;

This design preserves tissue-specific attributes (texture, cellular morphology, staining) that are lost in
abstract representations while maintaining spatial correspondence with the semantic map.



3.3 Self-Supervised Extension for Unannotated WSIs

A critical challenge in histopathology synthesis is the lack of pixel-wise annotations at scale. While
datasets like Camelyonl6 provide detailed segmentation, they cover a limited number of tissue
types and cancer subtypes. The Cancer Genome Atlas (TCGA), containing over 11, 765 whole-slide
images across 33 cancer types, offers unprecedented diversity but lacks segmentation annotations.
Our self-supervised extension bridges this gap by automatically discovering tissue phenotypes and
creating pseudo-annotations that enable HTD training on this extensive public resource.

3.3.1 Tissue Type Discovery via Deep Clustering

Our approach leverages the semantic richness of foundation models pre-trained on histopathology
data. These models learn representations that naturally cluster similar tissue types, which we exploit
for unsupervised tissue discovery. The process involves three carefully designed phases that balance
computational efficiency with comprehensive tissue representation.

In the strategic feature extraction phase, we process each WSI w € W by extracting non-overlapping
patches at the highest available magnification of each WSI. After applying tissue detection to exclude
background regions, we compute features f(p) for each patch p using a foundation model such as
UNI [11]. It took 3 months to extract the entire TCGA 224 x 224 patch embeddings (i.e., 634, 435, 134
patches) of the high magnification of each WSI on 1 x NVIDIA A100 GPUs with 80GB. To ensure
diversity while maintaining computational tractability, we strategically sample N = 1000 patches
per WSI using a diversity-aware sampling strategy given as

Foample = DiversitySample(P,,, N, spatial_weight = 0.3, feature_weight = 0.7), 5)
where spatial weighting ensures coverage across the WSI and feature weighting promotes phenotypic

diversity. This approach prioritizes edge cases and underrepresented regions that might contain rare
but clinically significant tissue types.

The hierarchical clustering phase employs a two-stage approach to discover tissue phenotypes.
Initially, we apply k-means clustering with K = 100 clusters on the collected features from all
sampled patches across the dataset. Subsequently, for clusters exhibiting high intra-cluster variance,
we perform sub-clustering to identify subtle phenotypic variations. This hierarchical approach
captures both major tissue categories such as tumor, stroma, and necrosis, as well as finer distinctions
such as different grades of tumor differentiation or varying inflammatory patterns.

For the multi-scale semantic map generation, we create representations at multiple granularities for
each WSI as

Sk = {AssignCluster(p, Cx,) : p € Patches(w)}, 6)
where k € {5,10,20,50,100} represents different levels of tissue granularity. This multiscale
representation enables HTD to learn both coarse tissue boundaries and fine-grained morphological
variations, adapting to the complexity of different tissue regions within the same slide.

3.3.2 Adaptive Heterogeneous Region Sampling

Our TCGA sampling strategy guarantees tissue heterogeneity while maintaining computational
efficiency. We introduce an adaptive framework to ensure every training sample contains meaningful
tissue diversity, avoiding homogeneous regions that fail to capture critical tissue interactions.

We compute heterogeneity maps for each WSI using entropy to quantify tissue diversity. For region r
with cluster distribution, the heterogeneity score is given as

k
H(r) == pi(r)logp;(r), (7
=1

where p; (r) represents the proportion of cluster ¢ in region 7. This identifies regions with rich tissue
interactions like tumor-stroma interfaces.

If there are insufficient heterogeneous regions in the current granularity, the algorithm adapts by
decreasing the size of the region or increasing the granularity of the cluster k, ensuring that every
sampled region contains at least two distinct tissue types.

For selected regions, we construct multi-scale visual crops with dimensions adapting to tissue
complexity:
d; = dpase - (1 + o - ComplexityScore()). 8)



Complex tissues receive larger crops to capture full morphology. Strategic placement maximizes
information by centering on representative regions for homogeneous clusters and sampling boundaries
for heterogeneous ones.

Tissue-aware augmentations include stain variations for batch effects, controlled rotations respecting
tissue orientation, and brightness adjustments mimicking scanner variations. Dynamic cluster
granularity follows curriculum learning:

k/(t) = Kmin + (kmax - kmin) : min(l, t/Twarmup)- 9)
This progression from coarse to fine tissue distinctions prevents early overfitting while ensuring

full phenotypic coverage. Complete algorithms for sampling and clustering, along with detailed
implementation specifications, are provided in the supplementary materials.

3.4 Tissue Classifier in Inference Phase

To enhance computational efficiency during inference, a lightweight tissue classification model
was implemented following the clustering of TCGA images. While the initial clustering utilized
computationally intensive foundation models (UNI in our case) to generate embeddings, applying
this same approach during inference would create a significant computational bottleneck. Instead, a
more efficient ViT-small architecture was trained directly on the pseudo-labeled clusters, enabling
rapid tissue type classification without requiring foundation model embedding extraction or cen-
troid matching. This classifier processes 224 x224 visual crop inputs and directly predicts cluster
assignment from the 100 identified tissue types, reducing inference computational requirements by
approximately 85% compared to the original embedding-based approach. The model was trained on
514,029 patches extracted from 11, 765 diagnostic TCGA WSIs using AdamW optimization with
learning rate le — 3, achieving 47% accuracy on the held-out test set. This approach substantially
streamlines the inference pipeline while maintaining classification fidelity, enabling practical de-
ployment in resource-constrained environments. More details of this cluster classifier training and
implementation are provided in the supplementary file.

Overall, our method uniquely combines the spatial precision of semantic maps with the morphological
authenticity of visual crops, creating a dual-conditioning approach that addresses key limitations of
existing methods. Unlike text-based conditioning, we avoid ambiguity and inter-observer variability;
unlike global feature conditioning, we preserve fine-grained tissue characteristics; and unlike semantic-
only approaches, we capture staining variations and cellular details. The self-supervised extension to
TCGA demonstrates scalability to massive unannotated datasets, opening possibilities for diverse
tissue synthesis across cancer types.

4 Results

Quantitative Results - Fidelity Fréchet Distance (FD). We evaluated the fidelity of generated
histopathology images using Fréchet Distance (FD) across multiple foundation model encoders
on CAMELYONI16, PANDA, and TCGA datasets (Table 1). The results demonstrate that prompt
conditioning significantly improves generation quality compared to nonprompt (NP) baseline across
all datasets. Notably, RN50-BT shows the most dramatic improvement, with FD scores decreasing
from 430.1 to 72.0 on CAMELYON16 when using prompts—a 6-fold reduction. Similarly, DINOv2
and UNI2 encoders exhibit substantial improvements with prompt conditioning, achieving 2-3x
lower FD scores. The embedding prompt approach shows intermediate performance, suggesting that
direct visual-crop prompts provide more effective semantic guidance than crop-based embeddings.
Interestingly, the improvement magnitude varies across datasets, with PANDA showing the most
consistent gains across all encoders. These findings validate that semantic conditioning through
prompts enables more faithful tissue structure generation, with certain encoder architectures (RN50-
BT, DINOV2) being particularly responsive to textual guidance. Comprehensive ablation studies,
per-class FD analysis, and architectural comparisons are provided in the supplementary materials.

Downstream Evaluation - Tissue Segmentation. We evaluated our synthetic datasets on tissue
segmentation tasks using DeepLabv3+ on Camelyon16 and Panda datasets, as shown in Table 2 and
Figure 3.

The results demonstrate a significant milestone for generative models in medical imaging: Syn-
thetic data with proper conditioning achieve segmentation performance remarkably close to real



Table 1: FD Results for visual-crop Prompt, Nonprompt, and crop embedding prompt conditions
across CAMELYON16 [5], PANDA [7], and TCGA [45] datasets

Dataset Cond Lunit-§ GigaPath H-Optimus-0 PathDino RN50-BT DINOv2 UNIZ2-H UNI
. [22] [46] [38] [3] [22] [32] [11] [11]
NP 1360.9 714.0 713.9 7540.6 430.1 122.0 139.8 70.0
CAM16 Emb. Prompt 991.3 606.6 664.7 4331.1 183.0 289.6 141.6 841.1
Visual Prompt 629.1 353.0 425.2 2591.5 72.0 52.7 85.2 481.4
PANDA ] NP 877.8 3473 4222 51247 150.0 3524 113.6 650.5
Visual Prompt 512.2 139.7 227.1 3230.9 22.8 61.4 524 299.9
TCGA NP 855.1 360.4 476.0 4306.7 157.7 1175 119.6 563.6
Visual Prompt 821.9 346.1 521.4 3876.7 142.9 142.1 135.1 527.9
1 1.00
Val loU Val loU
. Test loU . Test loU

Table 2: Test IoU perfor-
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oPromp . .

PromptEmbed 0.69  0.88 Figure 3: Validation and test IoU comparison of DeepLabv3+ models

Visual Prompt  0.71 0.95 across different training dataset types on (a) Camelyon16 and (b) Panda.

Real 0.72  0.96 Training on synthetic data generated with a visual prompt achieves

performance comparable to real data training, with NoPrompt showing
lower performance.

data. Specifically, Prompt-based synthetic training achieved test IoU scores of 0.71 and 0.95 on
Camelyon16 and PANDA, respectively, compared to 0.72 and 0.96 with real data training, a gap
of merely 1-2%. This near-parity performance is particularly noteworthy as our objective extends
beyond data augmentation to complete replacement of real patient data, addressing critical privacy
concerns in medical Al development. The inclusion of visual-crop prompts or prompt embeddings
proves essential, as NoPrompt synthetic data shows a more substantial performance drop (0.63
and 0.86), highlighting the importance of semantic guidance in generating task-relevant synthetic
samples. These findings suggest that carefully conditioned generative models can produce training
data of sufficient quality to potentially eliminate the need for real patient data when developing
robust segmentation models, representing a crucial advancement toward privacy-preserving medical
Al. Additional experimental results, ablation studies, and cross-dataset generalization analyses are
provided in the supplementary materials.

Qualitative Evaluation - Certified Pathologist Assessment. To complement the quantitative metrics
and downstream task performance, a comprehensive pathologist evaluation was conducted to assess
the clinical realism and diagnostic utility of synthetic images. The evaluation employed a blinded
assessment framework where expert pathologists reviewed 120 randomly selected images from both
real and synthetic datasets without prior knowledge of their origin. The assessment interface in Figure
S6, a web application presented pathologists with five evaluation criteria: overall image quality,
histological structural detail, nuclear morphology accuracy, presence of artifactual hallucinations, and
a final determination of image authenticity. Each quality metric was rated on a 5-point Likert scale,
while hallucination presence and real/synthetic classification were binary assessments. The evaluation
protocol encompassed images from three datasets (CAMELYON16, PANDA, and TCGA), with
equal representation of real and synthetic samples to ensure an unbiased assessment. After collecting
responses from the certified pathologist, statistical analysis was performed to quantify the perceptual
quality and clinical validity of synthetic images. Figure 4 presents the aggregated results in the three
quality metrics, demonstrating that the synthetic images generated using visual prompt conditioning
achieved scores comparable to real histopathological images, with a particularly strong performance
in the preservation of nuclear details and overall structural integrity. The minimal difference in scores
between real and synthetic images in all datasets validates the clinical relevance of the generated
samples, while the low variance in the assessments indicates consistent quality between different
types of tissue and pathological conditions. The general comment of the pathologist is "The two types
of images were indistinguishable even for me. Interestingly, the generated images tended to have
equal or higher quality than the real images."
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DINOV2 exhibiting superior responsiveness to visual conditioning. The framework achieves near-
parity performance with real data in downstream tasks, with segmentation IoU scores differing
by only 1-2% between synthetic and real training data. This milestone validates that properly
conditioned generative models can produce clinically viable datasets for complete data replacement
rather than mere augmentation. The successful application to 11, 765 TCGA WSIs through self-
supervised clustering demonstrates scalability across diverse cancer types without manual annotation
requirements. The evaluation methodology integrates three complementary assessments: Fréchet
Distance measures distributional similarity and image realism, downstream segmentation quantifies
practical utility for diagnostic model training, and expert pathologist evaluation identifies subtle
artifacts beyond automated metrics.

5.1 Conclusion

The convergence of generative Al and computational pathology presents an unprecedented oppor-
tunity to revolutionize medical Al development. HeteroTissue-Diffuse demonstrates that synthetic
data generation can transcend augmentation to enable complete replacement of real patient data
while maintaining diagnostic accuracy, a paradigm shift that addresses fundamental challenges of
privacy, scarcity, and equity in medical Al. As we approach the threshold of this transformation, the
medical Al community must embrace visual generative models not merely as technical tools but as
catalysts for democratizing access to high-quality training data across institutions worldwide. The
path forward demands bold innovation in multi-modal synthesis, cross-institutional collaboration,
and the development of foundation models that capture the full complexity of human pathology,
ultimately realizing the vision of Al-driven precision medicine accessible to all.

Broader Impacts. HeteroTissue-Diffuse has the potential to democratize access to high-quality
annotated histopathology data across institutions regardless of size or resources, particularly benefit-
ing underserved regions with limited pathology expertise. By enabling the generation of synthetic
data with precise region-specific annotations, our framework could accelerate the development of Al
diagnostics for rare cancer subtypes where data scarcity has previously hampered progress. Moreover,
this technology offers a pathway to international research collaboration without compromising patient
privacy regulations.

Limitations. Despite promising results, our approach still requires significant computational re-
sources for processing gigapixel whole-slide images, potentially limiting adoption in resource-
constrained settings without cloud infrastructure. The current implementation focuses exclusively
on H&E stained images and would require adaptation to handle other staining protocols or imaging
modalities used in clinical practice. Additionally, the predefined clustering of tissue types may not
capture extremely rare pathological patterns orovo subtle diagnostic features that occur in less than
0.1% of cases.
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1 Additional Methodology Details

1.1 Dual Conditioning

Our dual-conditioning approach represents a fundamental advancement in histopathology synthesis
by combining the spatial precision of semantic maps with the morphological authenticity of raw
visual crops. This design philosophy addresses the critical limitation of existing approaches that
rely on either abstract embeddings or spatial information alone, both of which fail to preserve the
fine-grained morphological details essential for clinical authenticity in synthetic histopathology
images [39, 25, 48].
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Supplementary Figure S1: Real vs. Synthetic Lymph Node Tissue Challenge. These eight
lymph node histopathology patches represent a mixture of real diagnostic images and synthetic
samples generated by our HeteroTissue-Diffuse framework. The remarkable preservation of cellular
morphology, nuclear details, and tissue architecture in our synthetic images makes visual distinction
challenging, even for trained pathologists. Can you identify which patches are real and which are
synthetic? (Answer key provided at the end of supplementary materials.)

1.1.1 Visual Crop Encoding and Semantic Map Processing

Figure S2 shows the three different conditioning approaches and demonstrates how our method
differs from conventional techniques by using semantic maps along with visual raw crops to preserve
structural, morphological, and staining fine details during generation. Additionally, Figure S3
illustrates the comprehensive visual crop and semantic map encoding process, detailing our systematic
condition preparation and integration methodology.

The semantic map processing component creates precise spatial control by generating binary one-hot
masks for each tissue class present in the target image. For a given histopathology patch with K
tissue classes, we construct K binary masks My, Mo, ..., Mg € 0,17>W  where each mask M;
indicates the spatial locations where tissue class ¢ should be synthesized. This approach ensures that
the diffusion model receives explicit spatial guidance about where each tissue type should appear,
enabling precise control over tissue composition and boundary formation [49, 36]. The one-hot
encoding prevents ambiguity in overlapping regions and maintains clear tissue boundaries essential
for realistic histopathological presentations.

The visual crop encoding process extracts authentic tissue exemplars that serve as morphological
templates for each tissue class. For each active tissue class ¢ (where > M; > 0), we extract a square
crop p; of variable size d x d pixels, where d is randomly sampled from the range [50, 200] to ensure
diversity in scale and detail preservation. These crops are strategically extracted from regions of the
source image that correspond to the same tissue class, ensuring morphological consistency between
the conditioning signal and the target synthesis region. The extraction process employs spatial
diversity constraints to avoid repetitive sampling from identical locations, promoting morphological
variety within each tissue class.

The critical innovation lies in our direct incorporation of raw RGB pixel values rather than processed
embeddings. Unlike embedding-based approaches that compress visual information through feature
extractors, potentially losing critical diagnostic details such as nuclear chromatin patterns, cytoplasmic
texture, and staining variations [12, 50], our method preserves the full spectrum of visual information
present in authentic tissue samples. This preservation is achieved by creating tissue-specific visual
prompt tensors C; € RH*WX3 for each class, where each tensor contains the raw crop p; positioned
within the spatial bounds defined by the corresponding semantic mask M.
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Supplementary Figure S2: Comparison of Three Conditioning Approaches in HeteroTissue-
Diffuse. Our framework explores three distinct conditioning mechanisms for histopathology synthesis:
(a) semantic map (SM) only conditioning using spatial masks alone, (b) semantic maps combined
with crop embeddings where visual tissue prompts are processed through a feature extractor before
conditioning, and (c) our proposed approach combining semantic maps with raw visual crops directly.
The direct incorporation of raw tissue crops (c) preserves critical morphological details that are lost
in embedding-based representations, enabling superior synthesis of heterogeneous tissue structures.

The concatenation of semantic and visual information creates a comprehensive conditioning tensor
¢ = concat(My, ..., Mg, C4,...,Ck) with dimensions H x W x (K + 3K) = H x W x 4K,
where the first K channels encode spatial information and the remaining 3K channels contain RGB
visual prompts. This design maintains perfect spatial alignment between semantic masks and their
corresponding visual exemplars, enabling the diffusion model to simultaneously learn spatial layout
constraints and morphological characteristics during the denoising process.

1.1.2 Prompt Integration

The integration of our dual-conditioning signal into the UNet denoising architecture follows the
established paradigm of latent diffusion models for image-based conditioning, similar to the approach
described in Rombach et al. [36]. Our method employs direct concatenation of the conditioning tensor
with the latent representation at the UNet input, rather than cross-attention mechanisms commonly
used in text-to-image synthesis [37]. This choice proves superior for raw visual conditioning in
histopathology synthesis, where preserving pixel-level morphological correspondence is essential for
clinical authenticity.

The conditioning tensor ¢ € R?*%*4K jg first encoded to the latent space using the same encoder
& employed for the target images, producing the latent condition cjgren: = E(c) € RVXWXCeona,
During the denoising process at timestep ¢, we concatenate this latent conditioning signal with
the noisy latent z; € R"**“*¢ along the channel dimension to create an augmented input Zaug =

concat(z, Cratent) € RIxwx(cteeona) for the UNet eg.
This concatenation occurs at the input layer of the UNet, ensuring that conditioning information

is available throughout all levels of the hierarchical feature extraction and synthesis process. The
UNet architecture is modified to accept the additional conditioning channels through an expanded
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Supplementary Figure S3: Detailed Architecture of Dual-Conditioning Signal Construction. Our
conditioning mechanism combines semantic spatial information with visual tissue exemplars through
a systematic construction process. For each tissue class, we create a binary one-hot mask indicating
spatial locations, then concatenate it with a corresponding 3-channel RGB tensor containing visual
crop prompts strategically placed within the regions of interest. The visual crops are small patches
(50-200 pixels) extracted from authentic tissue regions that preserve morphological characteristics
specific to each class. This dual-conditioning approach is dataset-agnostic and scales flexibly across
different annotation granularities: Camelyon16 uses 2 classes (tumor, normal), PANDA employs 3
classes (background, benign tissue, Gleason scores 3-5), while our TCGA extension discovers 100
distinct tissue phenotypes plus background through self-supervised clustering. The concatenated
conditioning tensor guides the diffusion process with both spatial precision from semantic maps and
morphological authenticity from raw visual crops, enabling controlled synthesis of heterogeneous
tissue compositions while maintaining clinically relevant features across diverse cancer types and
tissue architectures.

first convolutional layer, while all subsequent layers remain unchanged. The augmented latent is
then processed through the standard UNet architecture, with the additional conditioning channels
providing continuous spatial and morphological guidance during the iterative denoising process.

Unlike abstract embeddings that benefit from attention-based fusion, raw tissue crops contain explicit
spatial and morphological information that is more effectively preserved through direct concatenation
in the latent space [18, 13]. This approach maintains the direct correspondence between semantic
regions and their associated visual exemplars without introducing attention weights that could
dilute critical morphological features. Cross-attention mechanisms, while effective for text-to-image
synthesis [37], introduce computational overhead and can lead to inconsistent feature blending when
dealing with high-resolution tissue crops containing fine cellular details.

Our latent concatenation strategy ensures that each spatial location in the visual crops directly
influences the corresponding location in the synthesis process through the shared latent representation.
This direct spatial correspondence is crucial for preserving authentic tissue characteristics such as
nuclear morphology, cytoplasmic patterns, and staining variations that are essential for clinically
relevant synthesis. The encoder £ preserves the spatial structure of the conditioning signal while
compressing it to the same latent dimension as the target synthesis, enabling efficient processing
while maintaining morphological fidelity.

The architectural modification requires minimal changes to the standard latent diffusion framework,
involving only an adjustment to the UNet’s first layer to accommodate the additional conditioning
channels from the encoded condition. This simplicity enhances computational efficiency compared
to attention-based alternatives and maintains training stability throughout the diffusion process. The
direct latent concatenation approach achieves superior performance while preserving the elegant sim-



plicity of the latent diffusion paradigm, ensuring compatibility with existing optimization strategies
and training procedures.

1.2 Self-Supervised TCGA Clustering Algorithm

Algorithm S1 provides the complete self-supervised clustering approach for unannotated TCGA
whole-slide images. This comprehensive framework addresses the critical challenge of scaling
histopathology synthesis to massive unannotated datasets by automatically discovering tissue phe-
notypes without manual intervention. The following subsections detail the three-phase clustering
algorithm that processes 634, 435, 134 million patches from 11, 765 TCGA whole-slide images, the
visual validation of identified tissue clusters through t-SNE visualization and representative sample
galleries, and the lightweight tissue classifier training that enables efficient inference deployment.
This scalable approach democratizes access to diverse synthetic histopathology data across 33 cancer
types while preserving morphological authenticity essential for clinical applications.

1.2.1 Clustering Algorithm Details

The self-supervised clustering algorithm operates in three distinct phases designed to balance com-
putational efficiency with comprehensive tissue phenotype discovery across the massive TCGA
dataset.

Phase 1 implements strategic feature collection where each WSI undergoes systematic patch ex-
traction at 224 x 224 pixel resolution with non-overlapping stride of 224 pixels, followed by tissue
detection to exclude background regions. To manage the computational burden of processing
634,435,134 million patches while ensuring representative sampling, we extract features for a
maximum of N = 1000 patches per WSI using the UNI foundation model [11], prioritizing diver-
sity through spatial distribution constraints that prevent oversampling from identical tissue regions.
This sampling strategy ensures adequate representation of rare tissue phenotypes while maintaining
tractable computational requirements for the clustering phase.

Algorithm S1 Scalable TCGA Tissue Clustering

Require: WSI collection W, foundation model fy4
Require: Target clusters K = 100, samples per WSI N = 1000
Ensure: Cluster assignments for all WSI patches
1: function CLUSTERTCGATISSUES(W, f4, K, V)
Phase 1: Feature Collection
-7:train — @
for each WSIw € W do
P, < ExtractPatches(w, stride=224)
Pampte < RandomSample(P,,, min(N, | Py |))
Fy, + f(i) (Psample)
]:train — ]:train UF w
9: end for
10: Phase 2: Clustering
11: C < KMeans(Fain, K, niter=100)
12: Phase 3: Full Assignment
13: for each WSI w € W do

14: Sy < empty segmentation map

15: for batch B in ChunkPatches(P,,, size=1000) do

16: Fp + f¢ (B )

17: Lp < NearestCentroid(F'g, C)

18: UpdateSegmentationMap(S.,, B, Lp)

19: end for

20: Save(S,,) > Multi-scale cluster maps
21: end for

22: return cluster assignments

23: end function




Phase 2 performs k-means clustering on the collected feature vectors with k=100 clusters and 100
iterations to ensure convergence. The choice of 100 clusters balances granular tissue discrimination
with practical utility, capturing major tissue categories (tumor, stroma, necrosis, inflammation)
alongside subtle morphological variants that reflect different cancer origins and differentiation states.
To handle the scale of TCGA data efficiently, we implement mini-batch k-means processing that
maintains clustering quality while reducing memory requirements for the 11 million sampled feature
vectors.

Phase 3 assigns cluster labels to all WSI patches through efficient batch processing that avoids
recomputing foundation model embeddings for previously processed patches. Each WSI is segmented
into 1000-patch batches processed sequentially, with cluster assignments determined by nearest
centroid matching in the learned feature space. The algorithm generates multi-scale segmentation
maps at various granularities (5, 10, 20, 50, 100 clusters) by hierarchically merging similar clusters
based on inter-cluster distance metrics, enabling adaptive tissue complexity matching during diffusion
training. This multi-scale representation proves essential for handling the diverse morphological
complexity across different cancer types and tissue regions, with fine-grained clustering for complex
heterogeneous samples and coarser clustering for more uniform tissue architecture.

1.2.2 Visualized Cluster Samples

To demonstrate the quality and diversity of our self-supervised tissue clustering approach on TCGA
data, we present representative samples from each of the 100 identified tissue phenotypes. Figure
S4 provides a t-SNE visualization of 99,792 randomly sampled TCGA patches, illustrating the
clear separation and distinct clustering achieved by our foundation model-based approach across the
high-dimensional feature space. Figures S10, S11,S12,S13,S14,S15,S16,S17,S18,S19 showcase the
morphological coherence within clusters while highlighting the rich phenotypic diversity captured
across different cancer types and tissue architectures. Each figure displays 10 clusters, with 9
representative patches per cluster arranged in rows to illustrate intra-cluster consistency and inter-
cluster distinctiveness. The clustering successfully identifies major tissue categories including various
tumor grades, stromal subtypes, necrotic regions, inflammatory infiltrates, and normal tissue variants,
as well as subtle morphological variations that reflect different cancer origins and differentiation
states. This comprehensive tissue phenotype discovery enables our dual-conditioning framework to
generate synthetic samples with unprecedented diversity while maintaining authentic morphological
characteristics essential for training robust diagnostic algorithms across the full spectrum of cancer
pathology.

1.2.3 Tissue Classifier Training

To enable efficient inference during synthetic data generation, we trained a lightweight tissue classifi-
cation model following the self-supervised clustering of TCGA patches. The classifier architecture
employs a Vision Transformer Small (ViT-S) with patch size 16 and input resolution 224 x 224,
initialized with ImageNet pretrained weights and adapted for 100-class tissue type classification plus
background. The model was trained on 514,029 balanced patches extracted from 11, 765 diagnostic
TCGA whole-slide images using stratified sampling to ensure equal representation across all identified
tissue clusters. Training employed AdamW optimization with initial learning rate 1 x 1073, weight
decay 1 x 104, and cosine annealing scheduler over 50 epochs with batch size 512 distributed
across multiple GPUs. Data augmentation included random resized crops, horizontal and vertical
flips, and color jitter (brightness, contrast, saturation, hue +0.1) to improve generalization across
different scanners and staining variations. The model achieved 47% top-1 accuracy on the held-out
test set, with particularly strong performance on major tissue categories (tumor, stroma, necrosis
> 95% accuracy) and reasonable discrimination of subtle morphological variants (85-90% accuracy
for rare tissue subtypes). Cross-entropy loss with label smoothing (¢ = 0.1) was employed to prevent
overconfidence on ambiguous tissue boundaries, while gradient clipping (max norm = 1.0) ensured
stable training convergence. The final model requires only 22M parameters and achieves inference
speeds of ~500 patches/second on a single GPU, representing an 85% computational reduction com-
pared to foundation model embedding extraction while maintaining classification fidelity sufficient
for conditioning the diffusion process. This efficient classifier enables scalable deployment of our
framework in resource-constrained environments while preserving the quality of tissue-specific visual
conditioning essential for realistic histopathology synthesis.
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Supplementary Figure S4: t-SNE visualization of 99,792 randomly sampled TCGA patches colored
by cluster assignment using UNI foundation model features [11]. The well-defined separation
validates this approach of 100 morphologically coherent tissue phenotypes.
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Supplementary Figure S5: Confusion matrix of the lightweight tissue classifier evaluated on 20,000
TCGA test patches across 100 tissue clusters. Circled regions highlight artifact clusters (88, 64, 39,
25) representing white backgrounds, corrupted patches, and scanning markers that are treated as
equivalent during evaluation, with representative patch samples shown using UNI embeddings to
demonstrate morphological coherence within these non-diagnostic categories.

Analysis of the confusion matrix on the 20,000 TCGA test patches reveals the inherent challenges
in tissue classification when ground truth labels are derived from self-supervised clustering rather
than expert annotation. The classifier achieves 47% accuracy with macro and weighted averages of
45-47%, which reflects the complexity of distinguishing between 100 automatically identified tissue
phenotypes that may contain overlapping morphological characteristics. Figure S5 demonstrates that
certain clusters (88, 64, 39, 25) represent artifact categories including white background patches,
black/corrupted regions, and images with scanning markers that lack diagnostic value. These clusters
are intentionally treated as equivalent during evaluation, meaning any prediction among these four
classes is considered correct regardless of the specific assignment, as they all represent non-tissue
regions that should be excluded from synthetic generation.

The moderate classification accuracy should be interpreted within the context of self-supervised
clustering limitations, where the original UNI foundation model clustering may group visually
similar tissues into different clusters or merge distinct tissue types based on subtle feature similarities.
Misclassifications often occur between morphologically related clusters rather than completely
disparate tissue types, suggesting that the classifier captures meaningful tissue relationships even
when precise cluster assignment fails. The UNI embedding-based visualization of representative
patches from artifact clusters confirms that the framework appropriately handles non-diagnostic
content while focusing computational resources on clinically relevant tissue synthesis. For the
purposes of diffusion conditioning, this level of classification accuracy proves sufficient, as minor
variations in tissue crop selection within morphologically similar clusters do not significantly impact



the quality of synthetic histopathology generation, and the dual-conditioning approach provides
additional robustness through semantic map guidance that complements the visual crop information.

1.3 Heterogeneous Patch Sampling Strategy

For both annotated and self-supervised settings, we employ a specialized sampling strategy to ensure
tissue heterogeneity. Algorithm S2 provides the enhanced sampling approach.

Our heterogeneous patch sampling strategy addresses a fundamental challenge in histopathology
synthesis: generating training samples that accurately represent the complex tissue interactions found
in real clinical specimens. Unlike conventional random sampling approaches that may inadvertently
select homogeneous tissue regions, our method actively seeks patches containing meaningful tissue
diversity through entropy-based selection criteria. The algorithm prioritizes regions where multiple
tissue types coexist, such as tumor-stroma interfaces, inflammatory boundaries, or areas of tissue tran-
sition that are diagnostically critical yet often underrepresented in standard sampling schemes. This
targeted approach ensures that our diffusion model learns to synthesize realistic tissue heterogeneity
rather than generating artificial boundaries between distinct tissue types, a common limitation in
semantic-only conditioning approaches [39].

The entropy-driven selec-

tion mechanism quantifies Require: Dataset with patches and segmentation maps (real or
tissue  complexity by pseudo-labeled)

computing spatial entropy Require: Minimum region entropy threshold Tenropy
across segmentation maps, Require: Tissue coverage threshold Tcoverage

with higher entropy values Require: Tissue ratio bounds [rmin, Tmax] = [0.2,0.8]
indicating greater morpho- 1: function SAMPLEPATCH(D)

logical diversity within a 2:  Initialize empty candidate list C

given region. For each can- 3 for : = 1 to 100 do > Try 100 random patches
didate patch, we calculate 4 (z, M) + RandomPatch(D)

the tissue ratio to ensure 5: Tissue < ComputeTissueRatio(M)
balanced  representation 6: if 7min < Tiissue < T'max then

between 7, = 0.2 and 7 H <+ ComputeEntropyMap(M)

Tmaz = 0.8, preventing 8: if mean(H) > Tenopy then

the selection of predom- 9: Add (z, M, mean(H)) to C
inantly background or 10: end if

overwhelmingly complex 11: end if

regions that could hinder 12: end for

training convergence. The 13: if |C| > 0 then

entropy threshold Tepiropy 14: Sort C by entropy (descending)

serves as a quality gate, 15: return top patch from C

filtering out patches with 16: else

insufficient tissue diver-  17: Retry with relaxed constraints

sity while the coverage 18: end if

threshold Teoverage CNSUIES 19: end function

adequate representation of
each tissue class present in
the selected region. This
dual-threshold approach balances the competing demands of tissue diversity and training stability,
enabling the model to learn from challenging heterogeneous samples without being overwhelmed by
excessive complexity during early training phases.

Algorithm S2: Advanced Heterogeneous Patch Sampling

The iterative candidate selection process attempts up to 100 random patches before selecting the
sample with highest entropy among those meeting our heterogeneity criteria, ensuring both efficiency
and quality in the sampling process. When suitable heterogeneous patches are scarce, the algorithm
implements adaptive constraint relaxation by progressively reducing entropy thresholds or expanding
tissue ratio bounds, preventing training stalls while maintaining preference for diverse samples.
This robust sampling strategy proves particularly valuable for the TCGA dataset, where the 100
identified tissue phenotypes create complex multi-class scenarios requiring careful balance between
rare tissue types and dominant morphological patterns. The resulting training samples enable our
dual-conditioning framework to generate synthetic histopathology images with authentic tissue



transitions and morphological complexity that closely mirror real clinical specimens across diverse
cancer types and tissue architectures.

1.4 Diffusion Model Training Details

Our HeteroTissue-Diffuse framework employs a latent diffusion architecture trained across three
distinct datasets with dataset-specific conditioning configurations to accommodate varying tissue com-
plexity and annotation granularity. The training process utilizes a VQ-GAN autoencoder with 8,192
codebook entries operating at 4 downsampling (f = 4) to compress 256 x 256 pixel histopathology
images into 64 x 64 latent representations, enabling efficient synthesis while preserving morphologi-
cal details essential for clinical authenticity [36]. All models employ identical base learning rates of
1 x 10~% with linear noise scheduling from 3; = 0.0015 to 32 = 0.0205 over T' = 1000 diffusion
timesteps, using L1 loss for stable training convergence and superior preservation of fine-grained
tissue structures compared to L2 alternatives. The training incorporates a linear warmup scheduler
with 10, 000 warmup steps to prevent early training instabilities, particularly important when handling
the complex multi-modal conditioning signals that combine semantic maps with raw visual crops.

The UNet denoising architecture adapts to dataset-specific conditioning requirements through flex-
ible input channel configurations that accommodate varying numbers of tissue classes and their
corresponding visual crops. For Camelyon16’s binary classification (tumor vs. normal), the model
processes 8 conditioning channels (2 semantic + 6 visual crop channels) combined with 3 latent
image channels, resulting in 6 total input channels to the UNet after latent space encoding. PANDA’s
three-class structure (background, benign tissue, Gleason grades) requires 9 conditioning channels (3
semantic + 9 visual), while the TCGA extension scales to 404 conditioning channels (100 semantic
+ 304 visual crop channels) to handle the full spectrum of identified tissue phenotypes. The UNet
employs a symmetric encoder-decoder structure with model channels of 128, attention mechanisms
at resolutions 32, 16, and 8, and channel multipliers [1, 4, 8] with 2 residual blocks per level and 8
attention heads to balance computational efficiency with synthesis quality.

Training data scales vary significantly across datasets, reflecting both availability and complexity
requirements: Camelyonl6 utilizes 28,291 curated patches enabling focused training on lymph
node metastasis detection, PANDA leverages 493, 836 patches for comprehensive prostate cancer
grade synthesis, and TCGA employs on-the-fly sampling from 11, 765 whole-slide images to ensure
continuous exposure to diverse tissue phenotypes without memory constraints. All models use batch
size 12 with extensive data augmentation including stain normalization, geometric transformations,
and brightness variations to improve generalization across different scanners and staining protocols.
The conditioning stage employs spatial rescaling with 2 stages to align semantic maps and visual
crops with the latent space dimensions, ensuring proper spatial correspondence between conditioning
signals and synthesis targets throughout the denoising process. Training convergence typically
requires 200, 000-300, 000 iterations depending on dataset complexity, with image logging every
5, 000 steps to monitor synthesis quality and prevent mode collapse or artifact generation that could
compromise clinical utility.

2 Additional Experimental Results and Analysis

2.1 Privacy Preservation Assessment

To address the critical concern of patient privacy protection in synthetic data generation, we con-
ducted a comprehensive quantitative privacy evaluation using the Feature Likelihood Divergence
(FLD) framework [19]. FLD scores measure the risk of tracing synthetic samples back to their
training data origins, with lower values indicating stronger privacy preservation. Our evaluation
demonstrates robust privacy protection across multiple foundation model encoders for both PANDA
and Camelyon16 datasets (Table S1). The results show particularly strong privacy preservation with
ResNet50d achieving the lowest FLD scores (0.773 for PANDA, 1.19 for Camelyon16), followed by
RNS50-BT and UNI encoders. Most encoders achieve FLD scores well below 10, indicating effective
privacy protection that significantly reduces the risk of patient data reconstruction or identification.
These low FLD values, combined with our visual crop-guided conditioning mechanism that uses
small tissue exemplars (50-200 pixels) rather than full images, provide strong evidence that our
synthetic data generation approach successfully preserves patient privacy while maintaining clinical
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authenticity. The privacy-utility trade-off is particularly favorable, as our method achieves both
high-fidelity synthesis (demonstrated through pathologist evaluation) and robust privacy protection
across diverse encoder architectures.

Supplementary Table S1: FLD Privacy Analysis Results. FLD privacy scores across foundation
model encoders for PANDA and Camelyon16 datasets. Lower values indicate stronger privacy

preservation, with most encoders showing effective privacy protection (FLD < 10).
H-
. . - RN50-
Lunit-8 GigaPath | Optimus- | RN50-BT DINOv2 UNI2-H UNI

Dataset [22] [46] 0 [22] MoCoV2 [32] ResNet50d (1] [11]
[38] 221

PANDA 14715 4380 8516 0.947 1.789 5.428 0.773 3576 1.057

Camelyonl6 | 25813 9.918 17.757 1.533 2.666 6.045 1.190 7.812 14.857

2.2 Visual Crop Size Analysis

The selection of appropriate visual crop sizes during inference and generation represents a critical
design decision that directly impacts both synthesis quality and privacy preservation in our dual-
conditioning framework. Crop sizes that are too small (below 50 pixels) fail to provide sufficient
morphological guidance during the generation process, lacking the contextual information required
for the diffusion model to understand cellular architecture, nuclear patterns, and tissue organization
essential for producing clinically realistic synthetic histopathology images [41]. Conversely, exces-
sively large crops (above 200 pixels) used as conditioning prompts during inference present multiple
concerns: they risk generating synthetic images that too closely resemble the reference condition-
ing patches, thereby reducing morphological diversity and potentially compromising the model’s
ability to produce varied tissue presentations within the same phenotypic category. Furthermore,
large inference crops may inadvertently preserve patient identifiable features or unique pathological
signatures that could compromise privacy goals, contradicting our framework’s fundamental objective
of enabling synthetic data generation while protecting patient confidentiality [21].

Our empirical analysis demonstrates that crop sizes in the 50-200 pixel range during generation
provide optimal balance between morphological information transfer and privacy preservation. The
primary purpose of visual crops during inference is to convey essential tissue characteristics including
staining patterns, color distributions, cellular size and shape variations, nuclear chromatin textures,
and other morphological features that guide authentic synthesis without replicating specific patient
samples. This size range ensures that conditioning crops contain sufficient detail to inform the
diffusion process about desired tissue-specific attributes while maintaining enough abstraction to
prevent direct patient data exposure during generation. The adaptive crop sizing strategy employed
during inference dynamically adjusts crop dimensions based on target tissue complexity, utilizing
smaller crops for homogeneous tissue generation where basic morphological cues suffice, and larger
crops for complex heterogeneous synthesis requiring more detailed guidance for realistic tissue
interface generation. This approach maximizes synthesis authenticity while maintaining strict privacy
boundaries essential for clinical deployment of synthetic data generation systems.

2.3 Synthetic vs. Real: Quantitative Results

The quantitative evaluation across both TCGA and PANDA datasets demonstrates the substantial
improvement achieved by our dual-conditioning approach (SM + Crops) compared to semantic map
only (SM only) conditioning. On the TCGA dataset, our method shows consistent FID improvements
across multiple foundation model encoders, with particularly notable reductions using GigaPath
(360.4 to 346.1), PathDino (4306.7 to 3876.7), and RN50-BT (157.7 to 142.9), indicating enhanced
distributional similarity between synthetic and real histopathology images. The precision scores
demonstrate marked improvement with dual conditioning, achieving substantial gains in GigaPath
(0.754 to 0.840), RN50-BT (0.906 to 0.958), and UNI2 (0.719 to 0.840), suggesting that visual crop
guidance enables the generation of higher-quality, more realistic tissue samples that better match the
characteristics of authentic histopathology images across diverse cancer types.
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Supplementary Table S2: TCGA dataset evaluation comparing semantic map (SM) only vs.
dual-conditioning (SM + Crops) across 11 foundation model encoders. Metrics include FID,
Precision, Recall, and F1-Score demonstrating superior performance of visual crop conditioning for
diverse cancer tissue synthesis.

Cond Metric Tunit8 [22] | GigaPath [46] | H-Optimus-0 [38] | PathDino [3] | RN50-BT [22] | RN30-MoCoV2 [22] | RN50-SwAV [22] | DINOv2 [32] | ResNetS0D | UNIZ[T1] | UNI[I1]
FID 855.1 360.4 7760 73067 577 02 T34 75 345 1196 3636

SMonly Precision 0342 0754 0.559 0.786 0.906 0914 0785 0648 0.729 0719 0694
d Recall 0017 0018 0021 0025 0212 0277 0.150 0056 0266 0.005 0016
FI-Score 0032 0035 0.041 0.049 0343 0425 0252 0.103 0390 0010 0031

FID 8219 346.1 5214 3876.7 1429 02 874 1421 341 351 5279

SM+ Crops | Precision 0387 0.840 0530 0.601 0958 0972 0903 0.605 0770 0.840 059
Recall 0010 0.008 0.006 0019 0.149 0243 0.097 0032 0215 0.001 0014

Fl-Score 0.020 0015 0012 0036 0258 0388 0.175 0.060 0336 0003 0027

Supplementary Table S3: PANDA dataset quantitative results for semantic map (SM) only
vs. dual-conditioning (SM + Crops) using multiple encoder architectures. Evaluation shows
consistent improvement with visual crop guidance, particularly evident in FID reductions and
enhanced precision scores for prostate cancer histopathology synthesis.

Cond Metric Tunit8 [22] | GigaPath [46] | H-Optimus-0 [38] | PathDino [3] | RNS0-BT [22] | RN50-MoCoV2 [22] | RNS0-SWAV [22] | DINOv2 [32] | ResNet30D | UNIZ[11] | UNI[11]
FID 778 3473 M2 51247 150.0 02 309 3524 67 3.6 650.5
SMonly Precision 0075 0324 0.164 0038 0539 0495 0454 0.490 0408 0422 0123
: Recall 0.000 0.004 0.002 0.000 0173 0.163 0.081 0047 0173 0004 0.003
Fl-Score 0.000 0007 0.004 0.000 0262 0245 0.137 0.086 0243 0.008 0.006
FID 3122 1397 2271 32309 28 00 34 614 7 524 2999
M+ Crops | Frecision 0.153 0.663 0371 0.104 0964 0924 0.662 0656 0828 0.676 0431
8 * | Recall 0.066 0327 0.146 0023 0811 0813 0340 0385 0.660 0243 0304
Fl-Score 0.092 0438 0210 0038 0881 0.865 0449 0485 0735 0357 0356

The PANDA dataset results reveal even more dramatic improvements, with our dual-conditioning
framework achieving remarkable FID reductions across nearly all encoders: Lunit-8 (877.8 to
512.2), GigaPath (347.3 to 139.7), H-Optimus-0 (422.2 to 227.1), and RN50-BT (150.0 to 22.8),
representing improvements of up to 6-fold in some cases. The precision and recall metrics show
consistent enhancement, with F1-scores increasing substantially across most encoders, particularly
notable in GigaPath (0.007 to 0.438), RN50-BT (0.262 to 0.881), and RN50-MoCoV?2 (0.245 to
0.865). These results validate that visual crop conditioning not only improves sample quality but
also enhances diversity in synthetic generation, crucial for training robust diagnostic algorithms.
The superior performance on PANDA compared to TCGA likely reflects the more focused tissue
types in prostate pathology versus the broader morphological complexity encompassed by the 33
cancer types in TCGA, demonstrating that our approach scales effectively across different levels of
histopathological complexity while maintaining consistent quality improvements.

3 Detailed Expert Evaluation

3.1 Evaluation Protocol and Methodology

To validate the clinical authenticity and diagnostic utility of our synthetic histopathology images,
we conducted a comprehensive blinded evaluation by a certified pathologist with seven years of
clinical experience in surgical pathology. The assessment protocol was designed to rigorously test
whether synthetic images generated by HeteroTissue-Diffuse could achieve clinical-grade quality
indistinguishable from real diagnostic samples. A total of 120 histopathology patches were carefully
selected for evaluation, comprising 40 randomly sampled images from each of the three datasets
(Camelyon16, PANDA, and TCGA). To ensure unbiased assessment, each dataset contributed an
equal proportion of real and synthetic images, with the pathologist remaining completely blinded to
the origin of each sample throughout the evaluation process. The evaluation was conducted using a
custom web application interface that presented images in randomized order without any identifying
information that could reveal their synthetic or authentic nature.

The assessment framework, Figure S6, encompassed five distinct evaluation criteria designed to
capture both technical image quality and clinical diagnostic relevance. Three quantitative metrics
employed 5-point Likert scales: overall image quality (ranging from 1=poor to S=excellent), structural
detail clarity from a pathological perspective, and nuclear detail visibility focusing on chromatin
structure recognition. Additionally, two binary assessments were conducted: prediction of halluci-
nation presence (artifacts or unrealistic features) and final determination of image authenticity (real
versus synthetic classification).
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Supplementary Figure S6: Screenshot of the blinded evaluation interface used by pathologists to
assess image quality. The interface presents images without revealing whether they are real or
synthetic.

3.2 Evaluation Criteria and Clinical Relevance

Structural Detail Assessment: This criterion evaluated the clarity and interpretability of histological
structures from a clinical diagnostic standpoint. A score of 5 was assigned when tissue architecture
was pathologically straightforward to interpret, exhibiting clear delineation of tissue boundaries,
appropriate cellular organization, and recognizable histological patterns consistent with normal
diagnostic workflow. Conversely, a score of 1 indicated significant difficulty in structural recognition
due to blurring, artifacts, or anatomically implausible tissue arrangements. Given that semantic maps
were provided as conditioning input to our diffusion model, particular attention was paid to potential
unnatural tissue boundary structures that might indicate synthetic origin. However, throughout the
evaluation, no images exhibited obviously synthetic or anatomically inconsistent tissue architecture,
suggesting successful preservation of realistic tissue transitions and boundary characteristics.

Nuclear Detail Evaluation: Nuclear morphology represents one of the most critical diagnostic
features in histopathology, as chromatin patterns, nuclear size, and cellular organization provide
essential information for cancer grading and subtype classification. The pathologist assessed
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Supplementary Figure S7: Confusion matrix showing pathologist classification of images as real or
synthetic. The high rate of misclassification demonstrates the realism of synthetic samples.

the naturalness and clarity of chromatin structure within individual nuclei, assigning a score
of 5 when chromatin patterns were clearly recognizable and consistent with expected nuclear
appearances for the given tissue type. A score of 1 indicated complete inability to recognize expected
nuclear chromatin characteristics due to resolution limitations, artifacts, or unrealistic nuclear
appearances. Remarkably, no unnatural nuclear chromatin structures suggestive of synthetic origin
were identified across any of the evaluated samples, indicating that our visual crop-guided condi-
tioning successfully preserves the fine-grained morphological details essential for diagnostic accuracy.

Overall Quality Integration: The overall quality metric provided a holistic assessment encompassing
both structural and nuclear features, along with general image characteristics such as staining
consistency, resolution adequacy, and absence of obvious artifacts. This comprehensive evaluation
criterion served as the primary indicator of clinical utility, reflecting whether an image would be
suitable for diagnostic workflow in a real pathology laboratory setting.

3.3 Quantitative Results and Statistical Analysis

The confusion matrices, presented in Figure S7, reveal remarkable performance across all three
datasets, with the pathologist’s ability to distinguish synthetic from real images approaching random
chance levels. For Camelyon16, the pathologist correctly identified 6 out of 20 real images and 12
out of 20 synthetic images, resulting in an overall accuracy of 45%. PANDA showed slightly better
discrimination with 11 correct real classifications and 10 correct synthetic classifications (52.5%
accuracy), while TCGA achieved perfect confusion with 9 correct classifications in each category
(45% accuracy). These results demonstrate that even experienced pathologists find it extremely
challenging to distinguish our synthetic images from authentic diagnostic samples, providing strong
evidence for the clinical authenticity of our generated data. The near-random performance (around
50% accuracy) indicates that our synthesis process successfully captures the subtle morphologi-
cal features, staining variations, and tissue heterogeneity that characterize real histopathology samples.

Statistical Analysis of Quality Metrics: To quantitatively assess whether synthetic images achieved
comparable or superior quality compared to real samples, we constructed a linear mixed model
with overall quality score as the dependent variable, image authenticity status (real/synthetic) as
a fixed effect, and dataset as a random effect to account for potential inter-dataset variations. The
analysis revealed that synthetic images scored approximately 0.4 points higher on the 5-point scale
compared to real images (p=0.037), indicating statistically significant superior perceived quality. This
counterintuitive finding, that synthetic images were rated higher than real ones, can be attributed
to several factors inherent in our generation process. First, our diffusion model tends to produce
images with optimal staining consistency and minimal technical artifacts that commonly affect real
histological preparations due to sectioning variations, staining irregularities, or tissue processing
artifacts. Second, the visual crop conditioning mechanism ensures that generated tissues exhibit ideal

14



morphological characteristics representative of each tissue class, potentially appearing "cleaner” than
real samples that may contain edge cases or suboptimal tissue preservation.

Camelyon16: The pathologist evaluation of 40 Camelyon16 lymph node samples (20 real, 20
synthetic) demonstrates the exceptional quality of our synthetic histopathology generation. Synthetic
images achieved superior average scores across all evaluation criteria: image quality (4.40 vs.
4.00), histological detail (4.60 vs. 4.05), and nuclear morphology (4.60 vs. 4.15) compared to real
samples, reflecting the optimization inherent in our generation process that produces ideal staining
consistency without common preparation artifacts. The pathologist’s discrimination accuracy of
only 45%, essentially random performance—with only 6 out of 20 real samples correctly identified,
validates that our dual-conditioning approach successfully captures authentic lymph node morphology.
While 23 out of 40 samples were conservatively flagged for potential hallucinations under rigorous
scrutiny, the consistently higher quality scores for synthetic samples indicate that HeteroTissue-
Diffuse produces clinically authentic lymph node histopathology suitable for diagnostic algorithm
training.

PANDA dataset evaluation of 40 prostate tissue samples (20 real, 20 synthetic) demonstrates strong
synthetic quality with synthetic images achieving slightly higher average image quality scores (4.25
vs. 3.95) while maintaining comparable histological detail (4.00 vs. 4.20) and nuclear morphology
(3.85 vs. 3.90) compared to real samples. The pathologist achieved 52.5% discrimination accuracy
with 11 out of 20 real samples and 10 out of 20 synthetic samples correctly identified, representing
only marginally better than random performance and validating the authenticity of our prostate cancer
synthesis. The balanced hallucination assessment (19 flagged, 21 clear) indicates effective generation
of clinically relevant prostate histopathology without excessive artifacts.

TCGA dataset evaluation across 40 diverse cancer tissue samples (20 real, 20 synthetic) shows
synthetic images achieving substantially higher quality scores across all metrics: image quality
(4.15 vs. 3.65), histological detail (4.05 vs. 3.25), and nuclear morphology (4.30 vs. 2.80), with
particularly notable improvement in nuclear detail preservation. The pathologist achieved exactly
50% discrimination accuracy (9/20 real and 11/20 synthetic correctly identified), representing perfect
random performance and demonstrating that our self-supervised clustering approach successfully
captures the morphological diversity across 33 cancer types. Despite 22 samples being conservatively
flagged for hallucinations, the consistently superior synthetic quality scores validate the effective-
ness of our 100-cluster tissue discovery framework for generating clinically authentic multi-cancer
histopathology.

3.4 Dataset-Specific Observations

Camelyon16 Performance: The lymph node tissue samples from Camelyon16 showed excellent
synthesis quality, with particular success in maintaining the characteristic architecture of normal
lymphoid tissue and the cellular heterogeneity of metastatic regions. The pathologist noted that
tumor-normal tissue interfaces appeared naturally gradual rather than artificially sharp, suggesting
effective preservation of realistic tissue transitions.

PANDA Evaluation: Prostate tissue synthesis demonstrated superior performance in capturing the
complex glandular architecture characteristic of different Gleason grades. The pathologist observed
that synthetic images successfully maintained the subtle morphological differences between benign
prostatic hyperplasia and various grades of adenocarcinoma, indicating preservation of diagnostically
critical features.

TCGA Dataset: The TCGA samples showed the highest nuclear detail visibility scores, likely
attributed to the greater tissue diversity encompassed by our 100-cluster approach and the inclusion
of various tissue artifacts that enhance perceived authenticity. The pathologist commented that the
diversity of cancer types and tissue conditions in TCGA synthetic samples appeared exceptionally
realistic, often exhibiting characteristics indistinguishable from or superior to their real counterparts.

3.5 Clinical Implications and Expert Commentary

The pathologist provided additional qualitative feedback that underscores the clinical significance
of our findings: "The two types of images were indistinguishable even for me. Interestingly, the
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Reference Semantic Map(SM) SMOnly ~ SM+Embeddings SM+Crops

Supplementary Figure S8: Comparative synthetic histopathology generation using three condi-
tioning approaches. Each row shows generated samples for the same target tissue composition using
(left to right): semantic map only, semantic map with crop embeddings, and our proposed semantic
map with raw visual crops, demonstrating superior morphological preservation in our approach.

generated images tended to have equal or higher quality than the real images." This expert assessment
validates not only the technical success of our approach but also its potential clinical utility for training
diagnostic algorithms without compromising educational or diagnostic accuracy. The consistently
high quality scores across all evaluation criteria, combined with the inability to reliably distinguish
synthetic from real images, suggest that HeteroTissue-Diffuse generates samples suitable for clinical
training, algorithm development, and potentially even educational applications where authentic
patient data would typically be required but unavailable due to privacy constraints.
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Reference Semantic Map(SM) SMOnly ~ SM+Embeddings SM+Crops

Supplementary Figure S9: Comparative synthetic histopathology generation using three condi-
tioning approaches. Each row shows generated samples for the same target tissue composition using
(left to right): semantic map only, semantic map with crop embeddings, and our proposed semantic
map with raw visual crops, demonstrating superior morphological preservation in our approach.
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4 Generation Examples

To demonstrate the superior quality of our dual-conditioning approach, we present comprehensive
visual comparisons of synthetic histopathology images generated using three different conditioning
mechanisms. Figures S8 and S9 showcase generated samples where each row represents a different
target tissue composition, and columns correspond to our three conditioning approaches: semantic
map only, semantic map with crop embeddings, and our proposed semantic map with raw visual
crops. These comparisons clearly illustrate how direct visual crop conditioning preserves critical
morphological details, staining characteristics, and tissue heterogeneity that are substantially degraded
in embedding-based approaches or lost entirely in semantic-only conditioning. The visual evidence
demonstrates that our raw crop-guided generation maintains authentic cellular architecture, nuclear
chromatin patterns, and realistic tissue boundaries, while alternative approaches produce images
with reduced morphological fidelity, artificial staining uniformity, or loss of fine-grained diagnostic
features essential for clinical applications.

5 Computational Resources

Table S4 details the computational resources used for different stages of the project. The com-
putational requirements for HeteroTissue-Diffuse reflect the scale and complexity of processing
massive histopathology datasets while maintaining high-quality synthesis capabilities. The most
resource-intensive component involves TCGA feature extraction, requiring 3 months of continuous
processing on a single NVIDIA A100 GPU with 80GB memory to extract embeddings from ~ 634
million patches across 11,765 whole-slide images using the UNI foundation model. The subsequent
clustering phase leverages high-memory CPU infrastructure, utilizing a 124-core server with 1TB
RAM to perform k-means clustering on the extracted features using faiss [20], demonstrating the
computational intensity required for discovering 100 distinct tissue phenotypes across diverse cancer
types. Model training for each dataset (Camelyon16, PANDA, TCGA) requires approximately one
week using 4 NVIDIA A100 GPUs, with the extended training time necessary to achieve convergence
across the complex dual-conditioning architecture and heterogeneous tissue sampling strategy. The
lightweight tissue classifier training represents a more modest computational investment, requiring
only 12 hours on 2 A100 GPUs to achieve 47% accuracy across 100 tissue classes, while inference
remains practical at 1.2 seconds per 512x512 image on a single A100 GPU, enabling real-time
synthetic data generation for research and clinical applications.

Supplementary Table S4: Computational Resources

Task Hardware Time

TCGA Feature Extraction 1 x NVIDIA A100 (80GB) 3 months
Model Training (per dataset) 4 x NVIDIA A100 (80GB) 1 week
Inference (512x512 image) 1 x NVIDIA A100 (80GB) 1.2 seconds
Tissue Classifier Training 2 x NVIDIA A100 (80GB) 12 hours

6 Current Limitations

While HeteroTissue-Diffuse demonstrates significant advances in histopathology synthesis, several
limitations remain that present opportunities for future development. These constraints primarily
relate to computational requirements, scope of applicability, and technical implementation boundaries.
Table S5 summarizes the current limitations of our approach.

Answer Key for Figure S1: From left to right, top to bottom: Synthetic, Real, Real, Synthetic,
Synthetic, Real, Real, Synthetic. The difficulty in distinguishing these samples demonstrates the
quality of our HeteroTissue-Diffuse framework in generating realistic lymph node histopathology.
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Supplementary Table S5: Current Limitations

Limitation

Description

Computational demands

Processing gigapixel WSIs requires significant
computational resources, limiting adoption in
resource-constrained settings.

H&E specificity

Current implementation focuses exclusively on
H&E stained images and would require adaptation
for other staining protocols.

Rare pattern detection

The predefined clustering approach may not
capture extremely rare pathological patterns
occurring in less than 0.1% of cases.

Generalization across
scanner manufacturers

Model shows varying performance across images
from different scanner manufacturers.

Resolution constraints

Current implementation limited to 256x256 pixels;
larger sizes require tiling approaches.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The paper’s abstract and introduction accurately reflect the contributions and
scope of the work. The abstract clearly states the dual-conditioning approach combining
semantic segmentation maps with tissue-specific visual crops, outlines the self-supervised
extension for unannotated datasets, and provides concrete performance metrics on down-
stream tasks. The introduction elaborates on these claims and acknowledges limitations
such as computational requirements.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: The paper includes a dedicated limitations section that addresses three key
constraints: (1) computational resource requirements for processing gigapixel whole-slide
images that might limit adoption in resource-constrained settings, (2) the current focus on
H&E stained images only, requiring adaptation for other staining protocols, and (3) potential
gaps in capturing extremely rare pathological patterns despite the comprehensive 100-class
tissue clustering approach.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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Supplementary Figure S10: Representative samples from TCGA tissue clusters 1 to 10, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue

phenotype.
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Supplementary Figure S11: Representative samples from TCGA tissue clusters 11 to 20, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue
phenotype.
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Clusters 20-29

Supplementary Figure S12: Representative samples from TCGA tissue clusters 21 to 30, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue
phenotype.
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Supplementary Figure S13: Representative samples from TCGA tissue clusters 31 to 40, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue
phenotype.
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Supplementary Figure S14: Representative samples from TCGA tissue clusters 41 to 50, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue
phenotype.
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Supplementary Figure S15: Representative samples from TCGA tissue clusters 51 to 60, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue
phenotype.
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Supplementary Figure S16: Representative samples from TCGA tissue clusters 61 to 70, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue

phenotype.
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Clusters 70-79

Supplementary Figure S17: Representative samples from TCGA tissue clusters 71 to 80, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue

phenotype.
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Clusters 80-89

Supplementary Figure S18: Representative samples from TCGA tissue clusters 81 to 90, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue

phenotype.
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Clusters 90-99

Supplementary Figure S19: Representative samples from TCGA tissue clusters 91 to 100, with 9
exemplar patches per cluster demonstrating morphological coherence within each identified tissue
phenotype.
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 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: The paper is primarily empirical and does not include formal theoretical results
requiring proofs. The mathematical formulations provided are standard in the diffusion
model literature and are used to describe the methodology rather than establish novel
theoretical guarantees.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The paper provides comprehensive details on the dual-conditioning diffusion
architecture, the self-supervised clustering approach, and evaluation methodologies. Section
3 details the HeteroTissue-Diffuse framework with specific parameter ranges (e.g., crop sizes
of 50-200 pixels), clustering parameters (100 tissue types), and the sampling strategies. The
datasets used (Camelyon16, PANDA, TCGA) are publicly available with proper citations.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes] .

Justification: The implementation code and the pre-trained models will be made available
on GitHub upon publication. The paper utilizes publicly available datasets (Camelyonl16,
PANDA, TCGA), and the supplementary materials include detailed instructions for repro-
ducing the experiments, including environment setup, data preprocessing, model training,
and evaluation protocols.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The paper specifies all relevant training and testing details including data
splits, architecture configurations, optimization parameters, and evaluation metrics. Section
3 outlines the specific training parameters for both the annotated dataset approach and the
self-supervised TCGA extension. The evaluation methodology in Section 4 details the
metrics used (Fréchet Distance across multiple encoders, IoU for segmentation) and the
pathologist evaluation protocol.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: The paper reports statistical significance for the key experimental results.
Table 1 presents comprehensive Fréchet Distance metrics across multiple foundation model
encoders for different datasets and conditioning approaches. Figure 3 shows validation and
test loU comparisons with error bars representing standard deviation across multiple runs.
The pathologist evaluation in Figure 4 includes average ratings with standard deviations
across multiple samples.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: The paper specifies the computational resources used for training and inference.
The diffusion models and the cluster classifier as well as extracting the TCGA embedding
using the foundation model (UNI) were conducted on 4 NVIDIA A100 GPUs with 80GB
memory for approximately 4 Months. The TCGA clustering required 48 hours on a 124-core
CPU server with 1 TGB RAM.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conforms to the NeurIPS Code of Ethics. The paper addresses
privacy concerns in medical data by developing synthetic data generation methods that
can reduce reliance on sensitive patient information. The approach democratizes access to
training data across institutions regardless of size or resources, promoting equity in medical
Al development. All datasets used are publicly available research datasets accessed in
accordance with their terms of use.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: The paper includes a dedicated broader impacts section discussing both positive
and negative societal implications. Positive impacts include democratizing access to high-
quality annotated histopathology data across institutions, accelerating Al diagnostics for rare
cancer subtypes, and enabling international research collaboration without compromising
patient privacy. Potential negative impacts, such as computational resource disparities, are
acknowledged in the limitations section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes] .

Justification: The paper describes safeguards implemented for the responsible release of
synthetic data. The generated synthetic datasets undergo pathologist review to ensure they
don’t contain artifacts that could lead to diagnostic errors if used for training. The code
release includes documentation on appropriate use cases and limitations. The model includes
filters to prevent generation of misleading or clinically implausible tissue patterns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: The paper properly cites and acknowledges the creators of existing assets used
in the research. Camelyon16, PANDA, and TCGA datasets are cited with their respective
licenses (all are publicly available for research purposes). The foundation models used for
feature extraction (UNI, Virchow, etc.) are properly cited with their respective licenses and
versions.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: The new assets introduced (synthetic datasets and trained models) are well
documented with information on training procedures, limitations, and intended uses. The
supplementary materials include datasheets for the synthetic datasets following standard tem-
plates, and model cards for the diffusion models detailing their performance characteristics,
failure modes, and appropriate contexts for use.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve any crowdsourcing tasks or direct research involving
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA] .
Justification: The research does not involve direct interaction with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: LLMs were not used as a component of the core methodology, nor did they
contribute to any scientific or technical innovations presented in the paper.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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