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ABSTRACT

In this paper, we introduce the concept of model cautiousness, which stresses the
importance of aligning a model’s confidence with its accuracy in in-distribution
(ID) scenarios while adopting a more uncertain approach in out-of-distribution
(OoD) contexts. Model cautiousness is framed as a spectrum between justified
confidence and complete ignorance, induced by the inability to clearly define a
model’s domain of expertise. We propose a rigorous post-hoc approach to ob-
tain a cautious model that merges the confidence scores of the primary confi-
dence model and a model discriminating between ID and OoD inputs. A metric
to measure the cautiousness error of a confidence model is introduced. We further
present a simple method for discriminating ID from OoD inputs and providing a
meaningful confidence estimate that an input is OoD. Finally, we benchmark our
approach across 12 question-answering and 37 vision datasets, demonstrating its
effectiveness in enhancing model cautiousness compared to standard calibration
procedures.

1 INTRODUCTION

As machine learning models become increasingly involved in high-stakes domains, the question
of when they are equipped to make critical decisions becomes more pressing. This query lies at
the intersection of philosophy and practical application, requiring careful consideration. Intuitively,
models that consistently produce accurate predictions in their areas of expertise should exhibit high
confidence in their outputs. This is because a strong track record indicates that the model has effec-
tively learned from relevant data and can generalize its knowledge to similar situations.

When a model is asked to make a statement or decision outside its domain of expertise, the situation
becomes more complex. The model’s opinion may be less valuable in such cases, as it lacks the
necessary knowledge and experience to make informed judgments. The question arises: should we
trust the model’s statement, even if we know it lacks expertise in the given topic? If the model offers
a confident opinion outside its expertise and later turns out to be correct, can we justify its initial
confidence? Or should it have expressed uncertainty due to its lack of expertise?

Within a model’s domain of expertise, it is reasonable to require the confidence exhibited by the
model to match the accuracy of the model itself. In other words, the more accurate the model is, the
more confident we should expect it to be. It is well established in the literature, however, that even
within the model’s domain of expertise, models’ confidence and accuracy often do not align (Guo
et al., 2017). In fact, models often exhibit a largely overconfident behaviour, with a significant risk of
incurring into false positive decisions. Among the plethora of uncertainty quantification techniques
developed to properly quantify the model’s uncertainty (Abdar et al., 2021), calibration stands out as
a simple, usually post-hoc, family of techniques which require the model’s confidence and accuracy
to match (Guo et al., 2017). The confidence of a calibrated model therefore retains a notion of
probability, which provides an interpretable measure of risk to the user. However, as we move
further from the model’s expertise, blindly trusting a model because it exhibits good calibration
properties may still be dangerous, as it would encourage to trust models because they happen to be
right, without considering whether they have a solid basis upon which to make a statement.

In this paper, we introduce the concept of model cautiousness, which emphasizes the importance
of aligning a model’s confidence with its accuracy when handling in-distribution (ID) data, while
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gradually adopting a more uncertain stance as it encounters out-of-distribution (OoD) data. Cau-
tiousness can be viewed as a spectrum, ranging from justified confidence to complete uncertainty.
This gradual transition arises from the inherent inability in defining a model’s domain of expertise,
making it difficult to distinguish between instances where the model is interpolating within familiar
data and those where it is extrapolating beyond its knowledge.

Given the challenges of implementing safety mechanisms in real production environments, partic-
ularly when multiple stakeholders control different parts of the product pipeline, we propose an
operational definition of cautiousness that avoids imposing overly restrictive requirements for de-
ployment. Similar to calibration, we approach cautiousness as a post-hoc adjustment to the confi-
dence model, allowing it to be developed independently of the primary model. Unlike traditional
post-hoc calibration methods, which typically require only confidence scores and target variables
from a calibration dataset, our approach additionally leverages the embeddings of calibration inputs
to build a model capable of distinguishing between ID and OoD inputs (see Section 3.1). We do not
require a specific distribution of OoD data, nor do we rely on the synthetic generation of such data,
which could undermine the robustness of the pipeline. However, since qualitative OoD data, even if
synthetic, can enhance the ability to differentiate between ID and OoD inputs, we encourage the use
of such resources if feasible. Nonetheless, our preferred approach remains agnostic, with minimal
assumptions, to lower the barriers to adopting model cautiousness.

In this paper, we make the following contributions:

1. We provide a formal definition of model cautiousness and introduce an error metric to
quantify the degree of cautiousness in a confidence model.

2. We propose a simple method for discriminating between ID and OoD inputs, along with a
reliable confidence estimate for identifying OoD data.

3. We outline a simple yet rigorous method for achieving model cautiousness by combining
the confidence scores from both the primary model and the discrimination model into a
cautious confidence score.

4. Finally, we assess the cautiousness of our approach across 37 vision datasets and 12
question-answering datasets. Our results show that our method significantly improves cau-
tiousness compared to models calibrated using standard techniques on the vast majority of
datasets.

1.1 A MOTIVATING EXAMPLE

To illustrate the importance of model cautiousness, we begin with a motivating example. Figure 1
(left) illustrates two distinct clusters of data, which we refer to as “moons”. The data points in the
upper moon are represented in orange, similar to the blob of data located above, while the points in
the lower moon are depicted in blue. A classification model is trained using these two moons of data,
without any exposure to the blob during the training phase. The model manages to classify perfectly
between the two moons. By doing so, it also happens to perfectly classify the out-of-distribution
blob of data. The background color indicates the model’s confidence, which approaches 1 as we
move away from the decision boundary.

Intuitively, the confidence of the classification model is said to be calibrated when the confidence
scores align with the model’s accuracy (for further details, see Section 2). For instance, if the model’s
accuracy is nearly 1 for certain data, we would anticipate the confidence to also be close to 1. Thus,
if we were to assess the calibration error for the blob of OoD data, we would conclude that the model
is well calibrated with respect to this distribution, as both confidence and accuracy are nearly 1.

Nevertheless, even though the model is well calibrated, its high confidence for the OoD blob of
data may be viewed as undesirable and potentially risky in various practical applications. This
concern arises because the model has not been exposed to any data in that specific region of the input
space. Ideally, we would prefer a situation akin to Figure 1 (right), where the model demonstrates
high confidence near the training data but adopts a more cautious stance as we move further into
the OoD area. The left and right images in Figure 1 were generated using histogram binning, a
conventional calibration method described in (Zadrozny & Elkan, 2001; Detommaso et al., 2024a),
and a cautiousness approach, which we will discuss in the following section.
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Figure 1: A binary classification model is trained over two moons of data. The background color
represents the model’s confidence after a calibration (left) and a cautiousness method (right) have
been applied, respectively. Althought the model is perfectly calibrated on the blob of OoD data, it
also exhibits high confidence OoD, which is undesirable. By contrast, the cautiousness approach
requires the model to be uncertain as we move away from the ID data.

2 BACKGROUND ON CALIBRATION

Let us denote input variables by X ∈ X and target variables by Y ∈ Y . For simplicity, in this work
we restrict the focus to binary targets only, that is Y := {0, 1}, but the discussion naturally extends
to more general cases. We denote random variables via upper case letters, and reserve lower case
letters for their corresponding realizations.

Consider a model f(x) representing the confidence that Y equals 1 for a given input x. The follow-
ing definition introduces calibration, a minimal consistency requirement that endows a confidence
model with a notion of probability.

Definition 2.1 (Calibration). We say that a model f is calibrated with respect to the distribution of
(X,Y ) if and only if

P(Y = 1|f(X) = p) = p,

for all p ∈ [0, 1] within the support of the distribution of f(X).

In words, calibration requires that the confidence in a positive outcome matches the fraction of times
the positive outcome arises, for all confidence levels. If, for instance, we are confidence that an event
happens with 80% probability, then the fraction of independent times the event arises, over an infinite
number of trials, should be in fact 80%. While calibration is often thought of as a distribution-free
condition, we remark that Definition 2.1 is equivalent to asking that Y |f(X) ∼ Bernoulli(f(X)).

Definition 2.2 (Expected Calibration Error). We introduce the Expected Calibration Error (ECE)
defined by

ECE(f) := EP

[∣∣P(Y = 1|f(X) = P )− P
∣∣], (1)

where P is distributed as f(X).

The ECE is a popular measure of calibration error firstly introduced in (Guo et al., 2017). It is
immediate to see that if f is calibrated, than the ECE is zero. The ECE has been critized in multiple
works for being impossible to compute in practice and not robust to approximations (Błasiok et al.,
2023). Several variants have been proposed to improve over the ECE (Nixon et al., 2019). In this
work, we will propose a novel definition of calibration error that is built upon the definition of ECE
in (1), but we remark that the same concept can be directly applied to any of its variations.

As discussed in Section 1.1, evaluating the ECE against OoD data can lead to scenarios where a
model appears perfectly calibrated, resulting in a very low ECE, yet the model may exhibit high
confidence in its OoD predictions. This situation can create a misleading sense of security, poten-
tially leading to unsafe deployment of models in critical applications. The next section presents a
solution to this issue.
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3 MODEL CAUTIOUSNESS

In this section, we present the concept of model cautiousness. Essentially, cautiousness requires
models to be well-calibrated when operating in-distribution and to exhibit complete uncertainty
when dealing with out-of-distribution inputs. We denote the subdomain of out-of-distribution inputs
as OoD ⊂ X . Importantly, whether an input belongs to OoD or not is a binary random variable
because it is impossible to establish a clear boundary between in-distribution and out-of-distribution
data. Although we cannot precisely identify where OoD lies, if we were to ascertain that an input is
indeed OoD, we would require the model to demonstrate total ignorance regarding the outcome of
the target variable. In other words, our predictions in this scenario would reflect the same level of
confidence as random guessing. That is,

P(Y = 1|f(X) = p,X ∈ OoD) =
1

2
, (2)

for all p ∈ [0, 1] in the support of the distribution of f(X). Vice versa, if we do know that the input
is not OoD, then a standard calibration requirement should apply, that is

P(Y = 1|f(X) = p,X ̸∈ OoD)︸ ︷︷ ︸
=:F(p)

= p, (3)

again for all p ∈ [0, 1] in the support of the distribution of f(X).

Let us now introduce a discrimination model g(x) representing the confidence that an input x is
OoD. Similarly as for f , we ought for the model g to be calibrated, that is the fraction of times an
input is OoD should match the discrimination model itself. That is,

P(X ∈ OoD|g(X) = q)︸ ︷︷ ︸
=:G(q)

= q, (4)

We observe that, by conditioning on whether the input is OoD, we can write

P(Y = 1|f(X) = p, g(X) = q) = F(p) (1− G(q)) + 1

2
G(q)︸ ︷︷ ︸

=:H(p,q)

, (5)

which leads us to the following definition.

Definition 3.1 (Cautiousness). Let us define

h(x) := f(x)(1− g(x)) +
1

2
g(x). (6)

We say that the model h is cautious if and only if

H(p, q) = E[h(X)|f(X) = p, g(X) = q] = p(1− q) +
1

2
q, (7)

for all p, q ∈ [0, 1] in the support of the joint distribution of f(X) and g(X).

It is immediate that if f is calibrated ID as in (3) and g is calibrated at discriminating between ID
and OoD inputs as in (4), then the model h defined in (6) is cautious. Furthermore, if f is calibrated
ID, the pair (f, g) with g(x) ≡ 0, also denoted as (f, 0), produces a cautious model h only when
evaluated over data that is fully ID, but not otherwise. A standard confidence model f can usually
be identified as (f, 0), as it acts under the assumption that all inputs are ID.

We now introduce a measure of cautiousness.

Definition 3.2 (Expected Cautiousness Error). We introduce the Expected Cautiousness Error
(ECauE) defined by

ECauE(f, g) := EP,Q

[∣∣∣H(P,Q)−
(
P (1−Q) +

1

2
Q
)∣∣∣] (8)
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Similarly to the ECE, which is an expected absolute error between left- and right-hand sides of the
calibration requirement in Definition 2.1, the ECauE is an expected absolute error between left- and
right-hand sides of the cautiousness requirements in Definition 3.1. We observe that when all the
inputs over which the ECauE is evaluated are ID, then ECauE(f, 0) reduces to ECE(f), but the two
metrics are different otherwise.

In practice, the ECauE can be estimated using a similar procedure used to estimating the ECE.
Given a supervised dataset of inputs X , labels Y , and binary events for whether X ∈ OoD, the pairs
(f(X), g(X)) are jointly binned to a two-dimensional grid. For each joint bin, the values of F and
G can be empirically estimated, which are in turned used to estimate H. The expression in (8) can
then be computed by evaluating the absolute difference and calculate the average weighted by the
number of elements in each joint bin.

Algorithm 1 outlines the procedure to obtain a cautious confidence model: given a calibrated model
f and a discrimination model g, the process involves calculating the model confidence h as defined
in equation (6). This confidence can then be utilized to make decisions at an interpretable level
of risk, offering a safer alternative to relying solely on calibrated confidence, as it accounts for the
model’s potential inability to make reliable predictions because outside its area of expertise.

Algorithm 1: Cautious Confidence Model

Require: A confidence model f , calibration data D := {(xi, yi)}Ni=1.
1: Use a standard calibration approach to calibrate f with respect to D.
2: Fit a discrimination confidence model g over the calibration data D.
3: Compute the cautious confidence model as in (6).

3.1 A DISCRIMINATION METHOD

Our approach to construct a model g that is able to discriminate between ID and OoD inputs is
pragmatic. Given a calibration dataset, we first fit a multivariate distribution over the embeddings of
the calibration inputs. At prediction time, we reconduct the prediction problem to a one-dimensional
statistical test, and exploit the p-value to quantify the probability that an input is ID.

Concretely, given the calibration data D = {(xi, yi)}Ni=1, let zi denote the embeddings of the cal-
ibration inputs xi. Because embeddings generally live in an unbounded space, we fit a multivari-
ate Gaussian mixture model, where mean and covariance matrix of the j-th Gaussian distribution
N(·|µj ,Σj) in the mixture are estimated using all the inputs xi such that yi = j. As in this work we
are restricting the problem to binary classification for simplicity, that is j = 0, 1, we have at most
two Gaussian distributions in the mixture.

At prediction time, we associate the test input x with the Gaussian in the mixture that is most likely
to have drawn the sample, that is j∗ = argmaxj=0,1 N(z|µj ,Σj). Under the assumption that Z ∼

N(·|µj∗ ,Σj∗), we then have Z̃ := Σ− 1
2 (Z − µj∗) ∼ N(·|0, I), whence C :=

∑d
k=1 Z̃

2
k ∼ χ2

d(·),
where d denotes the dimension of the input embeddings, and stands for the number of degrees of
freedom of the Chi-squared distribution. Then we quantify the probability that an input is OoD by

g(x) := P(C ≤ c |C > q1−α), (9)

where q1−α is the (1− α)-quantile of a χ2
d distribution, and c is a realisation of C obtained starting

from the input x. The further OoD the sample x is, the larger c, the larger the confidence g(x) that
the input is OoD. The quantile q1−α works as a guardrail so that whenever c ≤ q1−α, that is the
input is not far enough from the the top of the distribution, we are fully confident that the input is
ID, that is g(x) = 0.

Algorithms 2 and 3 respectively describes in detail how the fit and confidence prediction functions
of the method can be implemented efficiently. We name the method X2-α, in name of the χ2

d
distribution used in the algorithm, and the parameter α for the confidence guardrail. Together with a
calibrated model f , this provides a discrimination model g to eventually compute a cautious model
h, as described in Algorithm 1.

5
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Algorithm 2: The X2-α Discrimination Model — Fit

Require: Calibration data D := {(zi, yi)}Ni=1, where zi denote an embedding of xi; α ∈ (0, 1].
1: for j=0, 1 do
2: Fit a Gaussian N(·|µj ,Σj) on the data in Dj := {zi : yi = j}.
3: Set Σj 7→ Σj + 10−6I to improve stability.
4: Compute the Choleskly factorization Σj = LjL

⊤
j , and the factor inverse L−1

j .
5: end for

Algorithm 3: The X2-α Discrimination Model — Predict confidence g(x)

Require: A test embedding z.
1: for j=0, 1 do
2: Compute z̃j := L−T

j (z − µj)

3: Compute cj := z̃⊤j z̃j
4: Evaluate logN(z|µj ,Σj) = − 1

2 (cj + log(2π)) + sum
(
log

(
diag(L−1

j )
))

5: end for
6: Set j∗ := argmaxj logN(z|µj ,Σj).

7: Set g(x) :=
(
1−

1−F
χ2
d
(cj∗ )

α

)+

, where Fχ2
d

denotes the CDF of a χ2
d distribution.

4 EXPERIMENTS

The purpose of this section is to show the effectiveness of our methods in quantifying model cau-
tiousness, and to show how our method significantly improves cautiousness against just a calibrated
model. We benchmark on 37 vision datasets and 13 question-answering datasets - see a detailed list
of the datasets in Section 4.1. For every vision dataset, we use a CLIP ViT 32b model (Radford
et al., 2021) with Quick GELU (Hendrycks & Gimpel, 2016) to compute confidence scores for each
class. For each question-answering dataset, we use a Google Gemma-2b model (Team et al., 2024)
to compute confidence scores for each answer. Let us denote by fj(X) the confidence score asso-
ciated to the j-th class/answer given the image/question x, and by yj a binary variable indicating
whether the class/answer j is correct. Because for simplicity in this work we restricted the scope to
binary classification, we introduce ι(x) := argmaxj fj(x), whence we define the confidence score
f̃(x) := fι(x)(x) and the corresponding binary target y := yι(x).

We form pairs of datasets, of which one is considered as ID and the other OoD. The ID dataset is
randomly split 50/50 into calibration and holdout datasets. Each model f̃(x) is calibrated using the
calibration dataset, to produce a final calibrated model f(x). The same calibration dataset is used
to fit a discrimination model g(x). We form a test dataset by combining the holdout ID dataset with
the OoD in a 50/50 split. Metrics reported in this section are computed over this test dataset unless
differently specified. Results are on average over 5 different runs, resulting from 5 different random
splits of the ID dataset.

Table 1 compares the ECauE values for (f, 0) and (f, g) across all (ID, OoD) pairs of question-
answering datasets, where g represents the confidence of the X2-95 discrimination model. The
notation (f, 0) refers to a case where the discrimination model is entirely absent, meaning all inputs
are predicted as ID with full confidence. This is equivalent to relying solely on the calibrated model
f without any additional information. We observe that in almost every dataset pair, the use of X2-95
results in a notably lower ECauE, demonstrating that the cautious model h, formed by combining f
and g, consistently provides greater cautiousness compared to using the calibrated model f alone.

Similar conclusions hold for pairs of vision datasets, as shown in Figure 2 (left). The figure illustrates
that the ECauE decreases significantly when using the X2-95 discrimination model in nearly every
dataset pair. Interestingly, although the cautious model prioritizes cautiousness over calibration, it
does not consistently worsen the calibration error. In fact, it reduces the ECE in 54% of cases.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Results in these figures are computed over 37 different vision datasets, on average over
5 runs. The figure on the left shows ECE and ECauE using only a calibrated model f (denoted
by (f, 0)) versus using a cautious model obtained by the combination of f and X2-95 (denoted by
(f, g)). The use of (f, g) decreases the ECE around 54% of the times, and it drastically decreases the
ECauE. This demonstrates the effectiveness of the cautious model towards increasing cautiousness.
The figure on the right compares ECE and PRAUC using X2-0 and X2-95. While results appear
fairly similar for the two discrimination models, the X2-95 obtains better ECE and PRAUC than
X2-0 respectively around 93% and 83% of the times.

Figure 3: ECauE distribution on question-answering (top) and vision (bottom) test datasets evaluated
on fully ID (left) and fully OoD (right) data. Blue vs. orange represent calibrated and cautious
models, respectively. We can see that the error in the discrimination model makes the left tail of
the ECauE distribution slightly larger for the cautious than for the calibrated model. However, the
ECauE for the cautious model is very close to 0 OoD and significantly better than for the calibrated
model.

In Figure 2 (right), we also assess the calibration of X2-0 and X2-95. Note that X2-0 is similar to the
model proposed in (Venkataramanan et al., 2023), with the key distinction that here we extend the
method to use a covariance matrix for each class, rather than a shared one across all data. The results
demonstrate that X2-95 consistently provides better calibration (as defined in (4)) compared to X2-0,
achieving a lower ECE in 93% of cases and a higher PRAUC in 83% of cases. This indicates that the
guardrail quantile introduced in (9) effectively improves the alignment between the discrimination
model’s confidence and its ability to distinguish between ID and OoD inputs.

In Figure 3, we present the ECauE distribution for question-answering (top) and vision (bottom) test
datasets, evaluated on fully ID (left) and fully OoD (right) data. We compare the errors of (f, g) and
(f, 0), where X2-95 is used as the discrimination model g. It is worth noting that when all the data
are ID, the optimal choice for the discrimination model is g(x) ≡ 0, meaning any generic model g
can only perform worse. However, we observe that the error introduced by (f, g) compared to (f, 0)
mostly shifts the left tail of the ECauE distribution slightly higher, without significantly affecting
the overall distribution. Conversely, when the test data is fully OoD, g significantly reduces the
error, highlighting the benefit of using a cautious model over a calibrated one when we do not know
whether the data is ID or OoD.

7
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ECauE(f, 0) ECauE(f, g)
ID dataset OoD dataset

anli xcopa 0.194873 0.086460
bigbench-mc 0.218318 0.128833
xnli 0.191277 0.109544
piqa 0.212760 0.101698
prost 0.161699 0.128043
True mathqa 0.160231 0.108828
truthfulqa mc1 0.178957 0.118723
winogrande 0.191063 0.141359
openbookqa 0.175881 0.116813
mc taco 0.198397 0.146840
race 0.208803 0.123891

xcopa anli 0.051657 0.026142
bigbench-mc 0.053268 0.024751
xnli 0.088327 0.057906
piqa 0.113961 0.047305
prost 0.071667 0.036261
True mathqa 0.067857 0.044478
truthfulqa mc1 0.098448 0.041711
winogrande 0.096988 0.043057
openbookqa 0.102907 0.045866
mc taco 0.103338 0.044193
race 0.113378 0.047256

bigbench-mc anli 0.176408 0.064507
xcopa 0.277806 0.109804
xnli 0.255108 0.124373
piqa 0.320390 0.143959
prost 0.226711 0.149327
True mathqa 0.226108 0.151922
truthfulqa mc1 0.295069 0.153045
winogrande 0.280228 0.154819
openbookqa 0.295305 0.159965
mc taco 0.280716 0.159126
race 0.310790 0.159105

xnli anli 0.152319 0.057046
xcopa 0.176577 0.153925
bigbench-mc 0.167059 0.060496
piqa 0.174088 0.063226
prost 0.152066 0.062844
True mathqa 0.158880 0.062579
truthfulqa mc1 0.157442 0.065173
winogrande 0.149253 0.069914
openbookqa 0.151942 0.062421
mc taco 0.151171 0.074925
race 0.159429 0.070791

piqa anli 0.091851 0.118873
xcopa 0.302141 0.174622
bigbench-mc 0.145058 0.139208
xnli 0.161596 0.145675
prost 0.138841 0.143589
True mathqa 0.152763 0.155030
truthfulqa mc1 0.230172 0.163187
winogrande 0.199415 0.157626
openbookqa 0.232821 0.167207
mc taco 0.160972 0.156282
race 0.257574 0.168609

prost anli 0.178440 0.044172
xcopa 0.226167 0.052584
bigbench-mc 0.182836 0.053108
xnli 0.162214 0.053458
piqa 0.226207 0.057549
True mathqa 0.147478 0.055795
truthfulqa mc1 0.189060 0.060452
winogrande 0.165478 0.059089
openbookqa 0.183577 0.064157
mc taco 0.149152 0.053459
race 0.195267 0.057960

ECauE(f, 0) ECauE(f, g)
ID dataset OoD dataset

True mathqa anli 0.166498 0.091963
xcopa 0.191961 0.121566
bigbench-mc 0.138799 0.112402
xnli 0.138327 0.117819
piqa 0.179438 0.125168
prost 0.121034 0.121657
truthfulqa mc1 0.148316 0.125165
winogrande 0.128156 0.123862
openbookqa 0.141484 0.126466
mc taco 0.116892 0.124014
race 0.152895 0.125060

truthfulqa mc1 anli 0.226312 0.147654
xcopa 0.166179 0.179006
bigbench-mc 0.202163 0.162108
xnli 0.195775 0.167246
piqa 0.166895 0.187132
prost 0.229024 0.154224
True mathqa 0.239757 0.156519
winogrande 0.198708 0.164725
openbookqa 0.184377 0.172840
mc taco 0.191781 0.167848
race 0.175773 0.176841

winogrande anli 0.055605 0.065443
xcopa 0.285250 0.145813
bigbench-mc 0.092341 0.103105
xnli 0.186673 0.126741
piqa 0.307480 0.150027
prost 0.145653 0.111462
True mathqa 0.145136 0.120347
truthfulqa mc1 0.256190 0.140062
openbookqa 0.247371 0.139319
mc taco 0.211634 0.144226
race 0.269374 0.141792

openbookqa anli 0.183179 0.139512
xcopa 0.194433 0.149510
bigbench-mc 0.208411 0.128750
xnli 0.197463 0.141157
piqa 0.201149 0.158886
prost 0.209307 0.140694
True mathqa 0.210884 0.139551
truthfulqa mc1 0.193029 0.149191
winogrande 0.194993 0.143232
mc taco 0.204869 0.136131
race 0.192379 0.148286

mc taco anli 0.048849 0.025789
xcopa 0.229644 0.026954
bigbench-mc 0.165212 0.026435
xnli 0.106443 0.025512
piqa 0.245675 0.030207
prost 0.060963 0.024790
True mathqa 0.079396 0.026713
truthfulqa mc1 0.155009 0.031477
winogrande 0.101956 0.029712
openbookqa 0.144715 0.033470
race 0.172014 0.031330

race anli 0.267539 0.074490
xcopa 0.241411 0.148867
bigbench-mc 0.215293 0.112469
xnli 0.213885 0.125642
piqa 0.247089 0.147459
prost 0.241692 0.100604
True mathqa 0.257653 0.089054
truthfulqa mc1 0.232243 0.129010
winogrande 0.214164 0.124248
openbookqa 0.226671 0.128183
mc taco 0.210200 0.118511

Table 1: Results in these tables are computed over 12 different text datasets on average over 5 runs.
Each row in the tables is computed over a dataset obtained by a 50/50 split between the ID and the
OoD dataset. The tables show the ECauE using only a calibrated model f (denoted by (f, 0)) versus
using a cautious model obtained by the combination of f and X2-95 (denoted by (f, g)). The use of
(f, g) decreases the ECauE in almost all rows, demonstrating the significantly better cautiousness
of the cautious model obtained from (f, g) compared to just the calibrated model f .
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4.1 DATASETS

We list here the datasets used for the experiments of Section 4.

Question-answering: ANLI (Nie et al., 2019), XCOPA (Ponti et al., 2020), BIG-Bench (bench au-
thors, 2023), XNLI (Conneau et al., 2018), PIQA (Bisk et al., 2020), PROST (Aroca-Ouellette et al.,
2021), (Amini et al., 2019), TruthfulQA (Lin et al., 2021), Winogrande (Sakaguchi et al., 2021),
OpenbookQA (Mihaylov et al., 2018), MC-TACO (Zhou et al., 2019), RACE (Lai et al., 2017).

Vision: MNIST (LeCun et al., 1998), FER2013 (Goodfellow et al., 2013), SVHN (Netzer et al.,
2011), PCAM (Veeling et al., 2018), FGVC-Aircraft (Maji et al., 2013), KITTI (Geiger et al.,
2012), ImageNet-O (Hendrycks et al., 2021b), ImageNet-A (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), ImageNetV2 (Recht et al., 2019), ImageNet-Sketch, ImageNet1k
(Russakovsky et al., 2015), (Wang et al., 2019), EuroSAT (Helber et al., 2019), STL-10 (Coates
et al., 2011), Caltech-101 (Fei-Fei et al., 2004), Oxford-IIIT Pet (Parkhi et al., 2012), Dmlab (Zhai
et al., 2019), smallNORB (LeCun et al., 2004), CIFAR10, (Krizhevsky et al., 2009), CIFAR100
(Krizhevsky et al., 2009), Oxford 102 Flower (Nilsback & Zisserman, 2008), SUN397 (Xiao et al.,
2010), Rendered SST2 (Socher et al., 2013), CLEVR (Johnson et al., 2017), ObjectNet (Barbu et al.,
2019), PASCAL VOC (Everingham et al.), Diabetic Retinopathy Kaggle & EyePacs (2015), dSprites
(Higgins et al., 2017), DTD (Cimpoi et al., 2014), Stanford Cars (Krause et al., 2013), Country211
(Radford et al., 2021), GTSRB (Stallkamp et al., 2012), RESISC45 (Cheng et al., 2017).

5 RELATED WORK

Several works in the literature focus on providing calibration or conformal prediction guarantees
under covariate shift assumptions (Tibshirani et al., 2019; Park et al., 2020; Jonkers et al., 2024).
This is relevant to our work since shifted covariates are considered OoD. However, these approaches
differ fundamentally as they aim to ensure OoD calibration, while the goal of cautiousness is to
ensure that the system remains uncertain when faced with OoD inputs. Additionally, the success
of these methods often depends on estimating a density ratio, which can be unreliable in practice
(Sugiyama et al., 2010).

Another branch of the literature focuses on OoD detection. In ODIN (Liang et al., 2017; Hsu et al.,
2020), the authors attempt to detect OoD inputs using a softmax approach with temperature scaling
(Guo et al., 2017) and input preprocessing. Other works use distance functions to measure how far
an input is from the training distribution, with the Mahalanobis distance (Lee et al., 2018) being the
most common. This distance is equivalent to the negative log-probability density function (PDF) of
a Gaussian distribution. A related approach, the relative Mahalanobis distance (Ren et al., 2021),
computes the maximum ratio between the Gaussian likelihood for a specific class and the likeli-
hood for the entire dataset. Other works based on the nearest neighbor distance (Sun et al., 2022;
Detommaso et al., 2022) calculate the distance between an input and the closest training input, but
these methods require knowledge of the training inputs and can be computationally expensive. DUQ
(Van Amersfoort et al., 2020) introduces a radial basis function to estimate confidence, while DDU
(Mukhoti et al., 2023) uses a Gaussian Mixture Model (GMM) over classes, similar to our approach
in Section 3.1. In (Venkataramanan et al., 2023), a GMM with a shared covariance matrix is used,
and OoD confidence is derived using a Chi-squared approach. This method is similar to X2-α, but
we utilize separate covariance matrices as in (Mukhoti et al., 2023), and introduce a guardrail quan-
tile in (9), which is shown in Section 4 to improve performance. Another related line of work is
SNGP (Liu et al., 2020), where the authors introduce a decomposition similar to ours in (5). How-
ever, they do not impose a full uncertainty requirement for OoD inputs as we do in (2), and their
approach is not post-hoc, requiring modifications to the confidence model.

6 CONCLUSION

In this work, we introduced the concept of model cautiousness, which requires a model to be cali-
brated for in-distribution (ID) data while remaining uncertain for out-of-distribution (OoD) inputs.
The balance between these two states is rigorously determined based on the performance of an aux-
iliary model that discriminates between ID and OoD inputs. We also introduced a metric to measure
cautiousness error and proposed a method for discriminating ID versus OoD inputs, which pro-
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vides meaningful confidence estimates. Our approach was evaluated across numerous vision and
question-answering datasets, showing its effectiveness in improving model cautiousness compared
to standard calibration methods.
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