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Abstract001

Parameter-Efficient Fine-Tuning (PEFT) meth-002
ods, such as LoRA, significantly reduce the003
number of trainable parameters by introducing004
low-rank decomposition matrices. However,005
existing methods perform extensive matrix006
multiplications in domain specialization tasks,007
resulting in computational inefficiency and008
sub-optimal fine-tuning performance. Hence,009
we propose LoSiA1 (Low-Resources Subnet010
Integration Adaptation), an innovative method011
that dynamically localizes and optimizes crit-012
ical parameters during the training process.013
Specifically, it identifies a sub-network using014
gradient sparsity analysis and optimizes it as015
the trainable target. This design enables ef-016
fective high-rank adaptation by updating only017
the sub-network parameters, reducing the ad-018
ditional matrix multiplication. We also present019
LoSiA-Pro, a faster implementation of LoSiA,020
which reduces the training latency by about021
27% compared to LoRA. Extensive evaluations022
show that our method achieves minimal perfor-023
mance drop compared to full fine-tuning, while024
requiring the least training time across domain025
specialization and common-sense reasoning026
tasks. Further analysis shows that LoSiA also027
reduces forgetting during continued training.028

1 Introduction029

Large language models, when fine-tuned via su-030

pervised learning, can be effectively adapted to031

downstream tasks such as mathematics (Shao et al.,032

2024), programming (Hui et al., 2024), and domain033

knowledge reasoning (Wei et al., 2021). Although034

full parameter fine-tuning often yields the best per-035

formance, updating billions of parameters is com-036

putationally expensive and resource-intensive. To037

address this, parameter-efficient fine-tuning (PEFT)038

updates only a small subset of parameters to reduce039

GPU memory usage and communication overhead040

1The source code will be publicly available.
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Figure 1: Overview of LoSiA. It locates and optimizes
core sub-network in asynchronous periods.

while maintaining performance comparable to full 041

fine-tuning (Houlsby et al., 2019; Ding et al., 2023). 042

Among PEFT approaches, LoRA (Hu et al., 043

2022) has gained widespread adoption by introduc- 044

ing low-rank matrices to approximate full weight 045

updates, enabling competitive performance with 046

significantly reduced computational and economic 047

costs (Taori et al., 2023). Variants in the LoRA 048

family further refine the method by biased fine- 049

tuning modules (Zhu et al., 2024; Hayou et al., 050

2024a) or dimensions (Meng et al., 2024a) to ac- 051

celerate convergence and achieve superior perfor- 052

mance. However, constrained by the low-rank as- 053

sumption, these paradigms often struggle to bal- 054

ance model performance and efficiency, particu- 055

larly in domain-specific tasks (Yang et al., 2024; 056

Ghosh et al., 2024) and continual learning scenar- 057

ios (Shuttleworth et al., 2024a). In such settings, 058

low rank configurations (e.g., 8 or 16) can lead to 059

performance degradation and underfitting (Bider- 060

man et al., 2024). Although increasing the rank 061

may mitigate these issues, it introduces additional 062
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memory consumption, extensive floating point op-063

erations, and risks of overfitting or convergence dif-064

ficulties (Kalajdzievski, 2023; Borse et al., 2024).065

Recent studies have attempted to approximate high-066

rank updates by accumulating multiple low-rank067

components. However, these approaches still suffer068

from issues such as locally low-rank updates (Meng069

et al., 2024b; Lialin et al., 2023) or increased com-070

putational complexity (Zhao et al., 2024a). There-071

fore, while the low-rank assumption offers notable072

improvements in efficiency, it also introduces in-073

herent limitations.074

The Lottery Ticket Hypothesis (Frankle and075

Carbin, 2019) suggests that dense neural networks076

contain trainable sub-networks capable of achiev-077

ing comparable test accuracy. This prompts us to078

reconsider the route of PEFT and explore an alter-079

native: Can we identify and fine-tune such sub-080

networks within the backbone model to achieve081

high-quality adaptation more efficiently?082

To answer this question, we propose LoSiA083

(Low-Resources Subnet Integration Adaptation), a084

novel PEFT framework that dynamically localizes085

and optimizes critical sub-networks periodically,086

as illustrated in Figure 1. LoSiA asynchronously087

selects a core sub-network for each layer by cal-088

culating sensitivity-based importance scores and089

performing greedy selecting algorithms. Following090

localization, it fine-tunes the identified sub-network091

and applies a rewarming learning rate strategy to092

promote stable and robust training. The design093

enables real-time high-rank updates without intro-094

ducing additional matrix multiplication overhead,095

which reduces training latency and ensures no steep096

increase in training time for high-rank updating.097

Additionally, LoSiA does not introduce extra archi-098

tectural components and only requires an optimizer099

replacement for seamless deployment. Extensive100

experiments demonstrate its superior performance101

among PEFT baselines on domain-specific, com-102

monsense reasoning tasks, while mitigating forget-103

ting in continue learning. We also propose LoSiA-104

Pro, a more refined equivalent implementation of105

LoSiA, which significantly reduces the activation106

storage and computational complexity in backward107

propagation. LoSiA-Pro speeds up training 1.38×108

compared to LoRA and 2.68× compared to DoRA.109

In summary, our contributions are as follows.110

(1) Innovatively introduces the structure of the111

sub-network to the field of parameter-efficient fine-112

tuning. We develop periodic subnet localization,113

optimization and integration techniques to dynam-114

ically capture and adapt task-essential parameters. 115

(2) We propose LoSiA, a novel PEFT approach 116

that dynamically localizes and optimizes sub- 117

networks to achieve high performance, efficiency, 118

and usability. To further improve practicality, we 119

also introduce a faster variant, LoSiA-Pro. 120

(3) We conduct extensive evaluations across 121

multiple models and benchmarks. LoSiA outper- 122

forms all advanced PEFT baselines on domain- 123

specific and commonsense reasoning tasks, while 124

also accelerating training by 1.15× compared to 125

LoRA. Moreover, its efficient variant, LoSiA-Pro, 126

achieves a further speedup of 1.38×. 127

2 Related Work 128

Parameter-Efficient Fine-Tuning Full param- 129

eter fine-tuning (FFT) adapts pre-trained models 130

to downstream tasks by updating all model 131

parameters (Wei et al., 2022), but it is often 132

computationally expensive. In contrast, parameter- 133

efficient fine-tuning (PEFT) methods update only a 134

small subset of parameters, significantly reducing 135

training costs while still maintaining strong per- 136

formance. LoRA (Hu et al., 2022) approximates 137

parameter updates as the product of low-rank ma- 138

trices, achieving promising performance for tasks 139

such as instruction tuning (Ghosh et al., 2024). En- 140

hanced variants such as PiSSA (Meng et al., 2024a) 141

accelerate convergence by prioritizing major singu- 142

lar vectors, while DoRA (Liu et al., 2024) improves 143

performance in low-rank by decomposing updates 144

into directional and magnitude components. Other 145

derivatives such as LoRA+ (Hayou et al., 2024b), 146

LoRA-GA (Wang et al., 2024a) and LoRA-Dash 147

(Si et al., 2025) refine the framework by directional 148

or module biased fine-tuning. 149

However, recent studies (Jiang et al., 2024b; 150

Biderman et al., 2024; Ghosh et al., 2024) reveal 151

that the low-rank structure limits effectiveness in 152

knowledge-intensive domains (e.g., mathematics, 153

coding). Advanced solutions adopt novel strategies: 154

1) Architectural modifications through MoE-based 155

LoRA combinations (Zadouri et al., 2023; Li et al., 156

2024; Wang et al., 2024b) for multitask scenarios; 157

2) High-rank fine-tuning via accumulated low-rank 158

projections, such as ReLoRA (Lialin et al., 2023), 159

MoRA (Jiang et al., 2024a) and GaLore (Zhao et al., 160

2024a) to enhance training effectiveness. However, 161

these approaches incur an increase in architectural 162

complexity or a drop in throughput. Rare methods 163

achieve an optimal balance between performance, 164
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training latency, and implementation simplicity.165

Skill Localization and Pruning LLM pruning166

reduces neural network size by eliminating redun-167

dant or less critical parameters. Prior work demon-168

strates that sparse networks can play crucial roles169

(Frankle and Carbin, 2019; Yao et al., 2025). Pan-170

igrahi et al. (2023) identifies critical parameters171

in fine-tuned LMs by optimizing masks of grafted172

models, though such methods require additional173

training time and data. Alternatively, gradient- and174

sensitivity-based metrics enable real-time identifi-175

cation of task-aware parameters (Molchanov et al.,176

2019; Sanh et al., 2020; Zhang et al., 2022). Recent177

advances adapt the techniques to PEFT: Zhang et al.178

(2023) prunes LoRA trainable parameters, while179

Feng et al. (2024) applies the approach to continual180

learning scenarios.181

3 Method182

Definition Consider a model f0 : X → Y183

trained on dataset D = {Bi}Ni=1, where each batch184

Bi = {(xj , yj)}Mj=1 contains M samples. Let W185

denote the parameters and L the loss function.186

The neural network S0 in f0 can be represented187

as a tuple comprising input neurons XS0 , output188

neurons YS0 and neural connections WXS0
,YS0

,189

that is, S0 = (XS0 , YS0 ,WXS0
,YS0

). The notation190

f0
P0−→
D

f denotes training model f0 on D over full191

parameters P0 = {WXS0
,YS0
} and produces model192

f . We investigate the following question: Can we193

efficiently identify a parameter subset P ⊂ P0 of194

fixed size, such that training f
P−→
D

f ′ minimizes195

the loss difference ∆L = |L(f ′,D)− L(f,D)|?196

3.1 Structure of Gradients197

Inspired by pruning techniques, we minimize the198

mean squared error (MSE) LMSE between the out-199

puts of models fk, f
′
k, where both are trained on200

fk−1 with trainable parameter set P0 and P , respec-201

tively. For SGD optimizers, we derive the bound:202

LMSE ≤ η2
∥1(i,j)̸∈P · ∇W0L(Bk)∥2F ∥x∥2F

M
(1)203

For AdamW optimizers, LMSE admits a simi-204

lar bound through ∇W in most cases (Appendix205

A.1.1). Thus, gradient magnitudes in P provide206

an upper bound for the approximation error, while207

prioritizing larger gradients yields tighter bounds.208

We therefore seek optimal subsets P to capture the209

parameters with large gradient magnitudes.210
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Figure 2: Gradient Magnitude Distribution of proj_v.
Large gradients follow a sparse subnet distribution.

Ideally, selecting the top-K entries of ∇W 211

would suffice, but storing and fine-tuning sparse 212

matrices compromises efficiency. Instead, we 213

claim that a suitable pattern for P corresponds to 214

the parameters in subnet S = (XS , YS ,WXS ,YS
), 215

i.e., all connections between the input neuron set 216

XS and the output neuron set YS . 217

To validate this selection paradigm, Figure 2 218

visualizes the gradient magnitude distributions in 219

LLaMA-2 7B’s proj_v layer: The 32 attention 220

heads exhibit a significant disparity in attention 221

scores, while gradients strongly correlate with out- 222

put neurons YS . In particular, a consistent sub- 223

set of input neurons XS (green markers, x-axis) 224

contributes dominantly to all attention heads. The 225

sparse pattern remains consistent in MLP layers 226

(Appendix A.2.1). We therefore focus on fine- 227

tuning subnet S = (XS , YS ,WXS ,YS
) - termed 228

the core subnet - rather than the entire network. 229

3.2 Subnet Localization 230

To localize core subnets efficiently, an ideal 231

algorithm should satisfy three key requirements: 232

1) Efficiency: no additional data requirements or 233

significant latency. 2) Lightweight: minimal GPU 234

memory overhead. 3) Dynamic Awareness: enable 235

real-time localizations during training. To meet 236

these objectives, the subnet localization process 237

is divided into two stages: 238

Parameter Importance Calculation To quan- 239

tify parameter importance I(·), existing approaches 240

(LeCun et al., 1989; Ma et al., 2023) observe the 241

change in loss assuming Wk = 0 for the k-th pa- 242

rameter. Adopting second-order Taylor expansion, 243
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element-wise I(·) is estimated as:244

I = |∂L(D)

∂Wk
Wk − 1

2
WkHkkWk + o(W 2

k )| (2)245

Here, H stands for the Hessian matrix. However,246

Eq.2 is difficult to calculate in real-time. We derive247

a micro-batch approximation:248

Ii = |∂L(Bi)

∂Wk
Wk − 1

2
(

∑
j

∂L(Bij)

∂Wk

M
Wk)

2 + o(W 2
k )| (3)249

Furthermore, estimates by single micro-batch250

may introduce bias by ignoring training dynamics.251

Sensitivity smoothing and uncertainty quantifica-252

tion (Zhang et al., 2022) are used to handle the253

problem. For the training step i, compute an ex-254

ponential moving average (EMA) Ii for Ii ,and255

uncertainty U i for variation ∆Ii = |Ii − Ii|:256

Ii(Wk) = β1Ii−1(Wk) + (1− β1)Ii(Wk) (4)257

U i(Wk) = β2U i−1(Wk) + (1− β2)|∆Ii(Wk)| (5)258

s(Wk) = I(Wk) · U(Wk) (6)259

where β1, β2 ∈ (0, 1) is the EMA factors. We260

regard s(·) as a appropriate importance assessment.261

Notably, to obtain gradients W asynchronously,262

LoSiA use per-layer weight updates (Lv et al.,263

2024), executing the optimization during backprop-264

agation without storing gradients.265

Core Subnet Localization via Importance Scores266

For a subnet S selected from origin network S0 =267

({i}ni=1, {j}mj=1,W ), define its importance as:268

s(S) =
∑
i∈XS

∑
j∈YS

s(Wij) (7)269

The objective is to identify optimal subset S and270

maximize s(S), while satisfying the memory con-271

straint max{ |XS |
n , |YS |

m } ≤ p, where p ∈ (0, 1)272

represents the rank factor. However, the task is273

NP-Hard. Leveraging observations in Section 3.1274

regarding gradient magnitude sparsity patterns, we275

develop greedy selection algorithms to identify crit-276

ical input and output neuron sets (XS , YS):277

Algorithm 1 Greedy Strategy for Localization

1: function ROW2COLUMN(q)
2: sums← Sum(q, dim = 1)
3: rows← Top-K(sums, ⌊np⌋).indices
4: sums← Sum(q[rows, :], dim = 0)
5: cols← Top-K(sums, ⌊mp⌋).indices
6: return (rows, cols)
7: end function
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Figure 3: Core Subnet Distribution during Training. The
subnet various across different training iterations.

Algorithm 1 implements a row-major greedy ap- 278

proach that selects the top-K rows by importance 279

score summation, and then finds {YS} to maximum 280

s(S) given fixed {XS}. A column-major greedy 281

algorithm Column2Row is also considered. The 282

better selection result of two strategies is selected. 283

Dimensionality Reduction in Output Layer Fine- 284

Tuning While prior work (Chen et al., 2024) 285

has established the benefits of fine-tuning the 286

output layer in conjunction with PEFT meth- 287

ods, the approach remains computationally pro- 288

hibitive for large-vocabulary models (e.g., Gemma- 289

2B). However, empirically, backward propaga- 290

tion through the output layer exhibits gradient 291

sparsity, with only a limited subset of tokens re- 292

ceiving significant updates. Building on this in- 293

sight, LoSiA easily implements an efficient opti- 294

mization strategy by constructing a tunable sub- 295

net S = (XS0 , YS ,WXS0
,YS

) of the output layer, 296

where |YS | = po|YS0 |, and po ∈ (0, 1) denoting 297

the dimension reduction factor. 298

3.3 Subnet Optimization and Intergration 299

During fine-tuning, the locations of core subnets 300

may undergo dynamic shifts, as illustrated in Fig- 301

ure 3. Although a small subset of neurons is con- 302

sistently selected, peripheral components exhibit 303

significant temporal variability. Fine-tuning with 304

a static subnet risks model underfitting and neu- 305

ron over-specialization. To address the issue, we 306

introduce an asynchronous and periodic subnet re- 307

localization mechanism that adapts to the evolving 308

network topology. 309

Naive periodic re-localization strategies can 310

induce training instability and loss spikes (Lialin 311

et al., 2023). Furthermore, the storage require- 312

ments for I(·), U(·) in a synchronous period 313

would lead to a scaling of GPU memory overhead. 314

Therefore, we propose asynchronous periodic 315
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localization coupled with rewarmings of learning316

rate. Consider a model f with L decoder layers317

{Dl}L−1
l=0 , where each layer Dl contains K linear318

layers {Wl,k}Kk=1 with corresponding core subnets319

{Sl,k}Kk=1. The training timeline is divided into320

time slots of T steps, such that for time slots321

[iT, (i+ 1)T ), i = 1, 2, . . ., we:322

1. Compute I(·), U(·) for layer Dl in the time323

slot [(kL+ l − 1)T, (kL+ l)T ), k ∈ N .324

2. Sequentially reselect Sl by s(·) before step325

t = (kL+ l)T , the end of time slots in 1.326

This yields a reselection period of T = LT for327

each layer. The asynchronous design ensures that328

at any step, there is exactly one decoder layer calcu-329

lating I(·), U(·) and one rewarming, which greatly330

reduces additional GPU memory overheads for331

importance score calculation. We also implement a332

learning rate rewarm-up to further enhance training333

stability. Formally, the learning rate at step t is:334

lr(t) =

{
t−(kL+l)T

T · lr(t) if C
lr(t) otherwise

(8)335

The condition C is t ∈ [(kL + l)T, (kL + l +336

1)T ) and t > Tw , where Tw is the warmup dura-337

tion. Figure 4 illustrates the timelines of impor-338

tance calculation and the learning rate rewarming339

across layers, with re-localization sandwiched be-340

tween them.341

3.3.1 Faster Implementation (LoSiA-Pro)342

Through subnet fine-tuning, LoSiA can further mit-343

igate activation storage and backward latency. The344

gradient for the subnet S can be factorized as:345

∂L
∂WS

=
∂L
∂W

[XS , :][:, YS ]

= (xT [XS , :])(
∂L
∂y

[:, YS ]) = L̃SR̃S

(9)346

Noticing L̃S ∈ Rnp×bs, R̃S ∈ Rbs×mp, the input 347

activation storage is reduced by a factor p, while 348

the computational complexity of gradient calcula- 349

tion is reduced from O(nmbs) to O(nmbsp2). We 350

named the method LoSiA-Pro, a refined equiva- 351

lent implementation of LoSiA. It offers a 27.6% 352

latency reduction compared to LoRA with GRADI- 353

ENT CHECK-POINTING, while reducing 13.4GB 354

GPU memory consumption compared to LoSiA 355

training without GRADIENT CHECK-POINTING. 356

4 Experiments 357

We evaluate LoSiA across a broad range of model 358

scales and datasets, conducting rigorous compar- 359

isons with common baselines. On both domain- 360

specific and common-sense reasoning tasks, the 361

method demonstrates robust performance with sig- 362

nificantly reduced training overheads. The exper- 363

iments highlight that LoSiA effectively promotes 364

both training efficiency and task proficiency. 365

4.1 Experimental Setup 366

Datasets Models are trained on downstream 367

tasks in the domains of mathematics, coding, and 368

general capabilities. Specifically, training sets are 369

sampled by 50,000 random entries from Meta- 370

MathQA, Magicoder, and Alpaca-GPT4, respec- 371

tively. The GSM8K, MBPP, and MMLU bench- 372

mark are for testing. Additionally, we also com- 373

pared LoSiA with baseline methods on eight com- 374

mon sense reasoning tasks. More details regarding 375

the datasets can be found in the Appendix. 376

Implementation Details We employ Gemma 2B, 377

LLaMA-2 7B, and LLaMA-2 13B as the back- 378

bone models. The effectiveness of LoSiA is evalu- 379

ated against parameter-efficient fine-tuning (PEFT) 380

baselines, namely LoRA, DoRA, PiSSA, and Ga- 381

Lore. For control of consistency in memory con- 382

sumption, the rank r of LoRA, DoRA, and PiSSA 383

is set to 64. For GaLore, the gradient projection 384

rank R is set to 512 with the full projection strategy. 385

In the case of LoSiA, the rank factor p is set to 1
8 . 386

The learning rate is 6×10−5 for MetaMathQA and 387

5× 10−5 for the rest, with time slots T of 100 for 388

MetaMathQA and 150 for the rest. 389

Additionally, both GaLore and LoSiA incorpo- 390

rate the output layer into the fine-tuning process. 391

Dimension reduction factor p0 is set to 1
64 for 392

Gemma 2B, 1
8 for LLaMA-2 7B, and 1 for LLaMA- 393

2 13B in LoSiA. The PEFT modules are applied to 394

all linear layers within the transformer. The train- 395
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Table 1: Comparison of PEFT Methods Across Models on Domain-Specific Tasks. Accuracy is reported, alongside
with memory consumption (GB), maximum per-task training time (h). The numbers in parentheses indicate the
training time of LoSiA-Pro, which is a refined and computationally equivalent implementation of LoSiA.

Model Method Mem(GB) Time(h)
GSM8K MBPP MMLU

Avg.
5-shot 0-shot,CoT Pass@1 Pass@10 0-shot,PPL 5-shot,GEN

Gemma 2B

FFT 50.1 11.0 46.4 50.4 33.0 43.4 36.1 37.0 41.05

LoRA 36.1 15.0 35.7 41.1 26.0 36.6 34.9 31.2 34.25

PiSSA 36.1 14.9 38.5 46.5 26.4 39.0 33.8 32.6 36.13

DoRA 37.3 29.8 39.7 43.0 31.4 43.2 36.2 37.1 38.43

GaLore 37.5 14.2 39.3 44.7 31.6 42.6 36.6 35.5 38.38

LoSiA (-Pro) 36.9 10.3 (9.4) 42.8 49.7 30.7 43.0 37.5 37.4 40.18

LLaMA 2-7B

FFT 64.1 27.5 46.6 46.9 29.9 40.2 45.2 42.5 41.88

LoRA 23.7 33.3 42.9 46.7 26.0 37.8 42.3 37.3 38.83

PiSSA 23.7 33.1 43.5 46.2 26.8 36.6 42.7 38.5 39.05

DoRA 24.2 68.3 45.0 47.2 26.0 34.4 44.1 36.7 38.90

GaLore 23.7 39.6 42.2 45.3 28.0 39.0 43.1 41.2 39.80

LoSiA (-Pro) 21.9 26.1 (21.8) 44.7 46.7 28.4 39.4 45.0 41.5 40.95

LLaMA 2-13B

FFT-8Bit 77.1 53.0 61.2 55.7 35.7 43.2 53.6 56.2 50.93

LoRA 36.9 56.0 58.6 56.4 34.1 44.8 52.6 53.7 50.03

PiSSA 36.9 55.5 53.4 55.2 34.5 44.8 52.0 48.8 48.11

LoSiA (-Pro) 36.9 46.5 (38.6) 59.0 54.0 34.9 48.2 53.1 55.7 50.82
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Figure 5: Overheads Comparison of PEFT methods
training with and without Gradient Check-Pointing
(GC). Taking training arguments in Table 1 as example.

ing batch size is set to 4, the warm-up ratio is set to396

0.1 and the model is trained by 3 epochs. For train-397

ing stability, the backbone model are in precision of398

BF16 and low-rank modules are upcasted to FP32.399
2 All of the experiments are conducted on single400

NVIDIA A800 80GB GPU. Further details (includ-401

ing implementation details for common-sense rea-402

soning tasks) can be found in Appendix A.3.403

4.2 Main Results404

Table 1 presents the performance of LoSiA405

compared to baseline methods across Gemma-2B,406

LLaMA2-7B, and LLaMA2-13B models. For407

GSM8K, we report 0-shot Chain-of-Thought408

(CoT) and 5-shot accuracy to reveal the model’s409

reasoning capability and few-shot prompting410

2Trained with LLaMA-Factory (Zheng et al., 2024). Up-
casting to FP32 only costs an additional 0.6GB of memory
and trains faster than BF16 in practice.

performance. For MBPP, we report the Pass@1 411

and Pass@10 metrics. For MMLU, we report both 412

5-shot generation and perplexity-based results. 413

The metrics are intended to measure the quality of 414

generation and knowledge proficiency, respectively. 415

Table 2 shows results on common-sense reasoning 416

tasks, extracting the option with minimum 417

perplexity and reporting ACC metric following 418

lm-evaluation-harness. The test setup provides a 419

robust measure of intrinsic knowledge acquisition. 420

LoSiA effectively reserves knowledge LoSiA 421

demonstrates superior knowledge retention, as evi- 422

denced by perplexity-based evaluations. It outper- 423

forms LoRA by 2.48% on commonsense reasoning 424

tasks and maintains an average 1.93% improve- 425

ment on MMLU (0-shot, PPL). Unlike low-rank 426

methods, LoSiA’s sparse, high-rank fine-tuning 427

approach enables localized knowledge retention 428

while shifting likelihood toward correct answers. 429

LoSiA demonstrates superior performance in 430

generalization In domain-specific tasks, LoSiA 431

achieves average improvements of 1.75%, 1.15%, 432

and 0.79% compared to the best baseline, respec- 433

tively. High-rank update methods such as GaLore 434

also exhibit relatively stable performance. The 435

method shows its strength in problem-solving met- 436

rics (GSM8K, MBPP Pass@1, and MMLU 5-shot), 437

suggesting that LoSiA provides strong generaliza- 438
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Table 2: Comparison of PEFT Methods on Commen-Sense Reasoning Tasks, using LLaMA-2 7B as the backbone
model. Evaluations are PPL-based in lm-evaluation-harness and we report the ACC metric.

Method Mem(GB) Time(h) ARC-C ARC-E HellaSwag Winogrande PIQA OBQA SIQA BoolQ Avg.

LoRA 19.46 10.0 50.28 79.71 59.86 73.88 79.33 55.00 56.86 88.07 67.87

PiSSA 19.18 10.4 51.19 79.80 62.36 77.74 80.41 56.60 59.88 87.71 69.46

DoRA 20.42 25.6 51.71 79.34 59.86 79.24 79.98 59.60 59.57 88.04 69.67

GaLore 18.24 16.7 48.63 79.97 60.07 76.24 80.09 56.80 56.65 82.60 67.63

LoSiA 18.68 9.2 52.22 80.26 65.05 77.19 81.50 61.40 61.05 84.13 70.35

tion capabilities by applying learned knowledge439

to address various problems. Notably, while per-440

forming comparable to Full-Parameter Fine-Tuning441

(FFT) with only 0.64% of degradation in aver-442

age, LoSiA significantly reduces computational443

resources, highlighting its practical efficiency.444

LoSiA and LoSiA-Pro greatly improve training445

efficiency Figure 5 compares the training over-446

heads of various PEFT methods. Contrast to base-447

lines such as DoRA which incur significant addi-448

tional FLOPs, LoSiA shows superior efficiency in449

both training time and memory usage. By eliminat-450

ing extra matrix multiplication operations, LoSiA451

achieves faster training speeds. Its refined imple-452

ment, LoSiA-Pro, further compresses activation453

storage by at least 22.8GB (w GC) and reduce the454

training time up to 34% (w/o GC) compared to455

LoRA by saving and computing on partial activa-456

tions. A detailed training latency and GPU memory457

measurement is in Appendix A.4.458

4.3 Ablation Study459

This section assesses the functionality of sensitiv-460

ity importance-aware localization, asynchronous461

mechanism, and re-warmups, alongside with ro-462

bustness analysis of LoSiA. We present compre-463

hensive ablation studies in Table 3 and training dy-464

namics in Figure 6. Additional robustness tests for465

rank factor selection are provided in the Appendix.466

Table 3: Ablation Study of LoSiA on GSM8K and
MMLU, using LLaMA-2 7B as the backbone.

Model GSM8K MMLU Avg.

Vanilla LoSiA 44.66 44.95 44.81

Synchronous
Localization (SL)

42.76 44.13 43.45

Gradient-based
Localization (GL)

43.00 44.88 43.94

w/o Warm-up
during Selection (WDS)

38.06 44.21 41.14

w FFT lm_head
(FFTO)

43.96 44.32 44.14

#0K #10K #20K #30K #40K
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ra
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LoSiA
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#27.5K
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#32.5K
#35.0K

Figure 6: Loss Curves of Baselines and LoSiA Variants,
training on MetaMathQA and Alpaca-GPT4.

Asynchronous mechanism yields more stable 467

training Variant SL refers to using a synchronous 468

layer-wise localization mechanism. However, it 469

causes loss fluctuation, destabilizes later training, 470

and degenerate the model performance by 1.36% 471

in average, while asynchronous updates produce 472

more stable loss curves. 473

Sensitivity-based Importance versus Gradient- 474

based Importance Variant GL uses absolute gra- 475

dients as the importance score. On MMLU, its per- 476

formance remains comparable but is biased toward 477

Humanities tasks (see Table 11), while its accuracy 478

on GSM8K drops by 1.66%. Sensitivity-based 479

scores, which aggregate multi-sample information, 480

are more effective to capture general patterns in lin- 481

ear layers compared to biased gradients. However, 482

gradient-based LoSiA exhibits promising results. 483

In practice, the storage of I(·), U(·) (about 1GB 484

memory occupation on LLaMA-2 7B) can be elim- 485

inated using gradient-based importance if needed. 486

Further discussion is provided in Appendix A.2.2. 487

Effect of rewarming and full fine-tuning the out- 488

put layer The variant w/o WDS, which omits 489

rewarm-ups, introduces instability of the loss, leads 490

to under-fitting and ultimately impairs final perfor- 491

mance. w FFTO fully fine-tunes the output layer, 492
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shows a performance comparable to LoSiA with493

additional trainable parameters. It highlights the494

effectiveness of extracting tunable subnets on the495

output layer in LoSiA. In permissible GPU memory496

constraints, fully training the output layer shows497

promising performance and is also recommended.498

Table 4: Robustness of Time Slot T Across a Series of
Data Scales. Trained by MetaMathQA and evaluated by
GSM8K on LLaMA-2 7B.

Method @30K @50K @70K
LoRA 41.39 42.86 44.58

T LoSiA

25 42.99 43.37 42.07
50 42.91 42.46 42.15
75 41.09 44.05 47.46
100 40.49 44.66 46.17
125 39.88 42.23 45.19
150 39.12 40.41 42.84

Robustness across varying data scales and time499

slot lengths Table 4 assesses the performance of500

LoSiA across different training data scales. LoSiA501

consistently outperforms LoRA, demonstrating502

stability and robustness. Furthermore, the optimal503

time slot T is positively correlated with the size504

of training set, while LoSiA shows transcendent505

performance within a reasonable range of T .506

4.4 Analysis507

Selection Distribution We analyze the core sub-508

net selection frequency of neurons in Figure 7. The509

frequently selected neurons remain similar under510

different rank factor p, while smaller p produces511

more concentrated distribution patterns. This in-512

dicates that LoSiA effectively identifies and opti-513

mizes critical neurons with limited training budgets,514

while simultaneously adjusting marginal parame-515

ters to further enhance generalization capability.516

Reduce Intruder Dimensions Low-rank fine-517

tuning methods often introduce intruder dimen-518

sions (Shuttleworth et al., 2024b), resulting in spec-519

tral discrepancies between the fine-tuned and the520

pre-trained weights. This diminishes the adaptabil-521

ity of LoRA in sequential learning. Figure 8 il-522

lustrates the cosine similarity between the Top-500523

singular vectors of the trained matrices and those of524

the original weights. Both LoRA and DoRA exhibit525

dimensional shifts due to their low-rank structures,526

whereas LoSiA demonstrates higher similarity and527

dimensional stability comparable to FFT.528

To evaluate LoSiA’s efficacy in continual learn-529

ing, we perform sequential fine-tuning on Hel-530

0

10

0 1000 2000 3000 4000
# Input Neurons

0

10

0 1000 2000 3000 4000
# Output Neurons

Fr
eq

ue
nc

y p
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1 8
p

=
1 2

Figure 7: Selected Frequency Distributions of Neurons
in Core Subnets. Sorted frequencies are ploted in black.
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200
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0 100 200 300 400

DoRA

0 100 200 300 400

LoSiA

10 2

10 1

100

Figure 8: Similarities of Top-500 Largest Singular Vec-
tors between Pre- and Post-Fine-Tuning Weights.

laswag, PiQA, BoolQ, SiQA, and Winogrande 531

datasets on LLaMA-2 7B. We employs Average 532

Performance (AP) (Chaudhry et al., 2018), Forward 533

Transfer (FWT) (Lopez-Paz and Ranzato, 2017), 534

and Backward Transfer (BWT) (Ke and Liu, 2023) 535

to assess overall performance, knowledge transfer 536

ability from previous tasks to current task, and level 537

of forgetting, respectively. Details of the metrics 538

and experiments are provided in A.3.4. 539

Table 5: Results of Continue Learning with Sequential
PEFTs on Five Commen-Sense Reasoning Tasks.

Method AP(↑) FWT(↑) BWT(↑)

Seq-LoRA 66.62 1.46 −8.04
Seq-LoSiA 70.48 −0.20 −3.54

The results in Table 5 demonstrate that LoSiA 540

outperforms LoRA in mitigating forgetting with 541

4.5% in BWT and achieves a 3.86% improvement 542

in average performance of sequential fine-tuning. 543

This aligns with our hypothesis that LoSiA exhibits 544

stronger robustness in continue learning, indicating 545

that our method can adapt to more diverse applica- 546

tion scenarios than existing baselines. 547

5 Conclusion 548

We present LoSiA, a novel PEFT framework that 549

dynamically identifies and optimizes core sub- 550

networks. Through sensitivity-based localization, 551

asynchronous re-selection, and efficient high-rank 552

adaptation, LoSiA achieves high throughput and 553

low activation overhead. Extensive experiments 554

show that LoSiA outperforms baselines on domain- 555

specific and common-sense reasoning tasks while 556

reducing forgetting. We hope that our work will 557

inspire future research to further explore the 558

intrinsic substructures in supervised fine-tuning. 559
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6 Limitation560

The innovative design of locating and optimizing561

sub-networks enables LoSiA to demonstrate out-562

standing advantages in terms of efficiency and per-563

formance. This work preliminarily validates the ef-564

fectiveness of fine-tuning focused on substructures,565

yet there remains considerable room for further566

exploration and improvement. The effectiveness567

in scenarios such as multi-tasking, vision, and for-568

mat alignment remains unclear. As for the method,569

the subnet localization in LoSiA is relatively rigid,570

and may still fail to precisely capture all critical571

neuron connections. More flexible and accurate572

approaches for the location of substructures, such573

as dynamically adjusting the rank factor for various574

layers, could further enhance performance.575

Furthermore, while LoSiA can be conveniently576

integrated with other training platforms, additional577

efforts are required to improve its usability in578

real-world production scenarios. Currently, our579

work aims to provide individuals and small en-580

terprises with a highly efficient single-GPU fine-581

tuning method, but the workflow could be further582

extended to multi-GPU environments. Moreover,583

to accommodate diverse datasets and practical de-584

ployment conditions, automated time slot selection585

mechanisms warrant further investigation.586
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A Appendix883

A.1 Derivations and Proofs884

A.1.1 Proof for Formula 1885

On a batch B composed of M samples, the MSE886

Loss between full fine-tuning (produces model f )887

and training with parameter set P (produces model888

f ′) is given by:889

LMSE =
∥y − y′∥2F

M
=
∥Wx−W ′x∥2F

M
(10)890

≤
∥W −W ′∥2F ∥x∥2F

M
(11)891

SGD In SGD optimizer, suppose learning rate is892

η, the difference in fine-tuned parameter is:893

W −W ′ = −η1(i,j)̸∈P · ∇W0L(B) (12)894

It derives a upper bound for the MSE Loss:895

LMSE ≤ η2
∥1(i,j) ̸∈P · ∇W0L(B)∥2F ∥x∥2F

M
(13)896

The result suggests that maximizing the sum of897

∇W0L(B)ij where (i, j) ∈ P ideally tightens the898

approximate error of training on subset.899

AdamW In AdamW optimizer, at training step900

t, the first-order momentum Mt and second-order901

momentum Vt are calculated by:902

Gt =∇WL(Bt) (14)903

Mt =β1Mt−1 + (1− β1)Gt (15)904

Vt =β2Vt−1 + (1− β2)G
2
t (16)905

G̃t =
Mt√
Vt + ϵ

(17)906

Similarly, since W −W ′ = −η1(i,j) ̸∈P · G̃t, we907

analysis relationship between G̃t and Gt:908

∂(G̃t)
2

∂Gt
=2Mt[

(1− β1)Vt

V 2
t

− (1− β2)GtMt

V 2
t

]

(18)909

Suppose Mt > 0, when Gt < (1−β1)Vt

(1−β2)Mt
,910

∂(G̃t)2

∂Gt
> 0. In practice, the typical settings911

are β1 = 0.9, β2 = 0.999. Therefore, when912

Gt < 102 Vt
Mt

, G̃t increases with Gt, effectively913

covering a broad range of non-stationary optimiza-914

tion scenarios.915

A.1.2 Proof for Formula 3 916

The foundational work was established by LeCun 917

et al. (1989) and Kirkpatrick et al. (2016). How- 918

ever, for real-time importance calculation during 919

training, approximations is necessary and is de- 920

rived bellow. Element-wise importance score I(·) 921

is formulated as: 922

I(Wk) =|∆L(D)| = |L(D)− LWk=0(D)|

=|∂L
T (D)

∂Wk
Wk −

1

2
W T

k HkkWk

+ o(W 2
k )|

(19) 923

where H donates the Hessian matrix. It is compu- 924

tational intensive for Hessian calculation, we there- 925

fore use fisher information matrix F for diagonal 926

elements instead: 927

Fkk =−Hkk = −Ep(θ|D)[
∂2L(θ,D)

∂2θk
|θ=θ∗ ]

≈− E(x,y)∼D[(
∂L(θ, x, y)

∂θk
|θ=θ∗)

2]

(20)

928

Approximating the expectation by dataset D based 929

on Monte Carlo Method, it derives: 930

I(Wk) =|
∂L(D)
∂Wk

Wk + o(W 2
k )

−
∑

(x,y)∈D

1

2|D|
(
∂L(x, y)
∂Wk

)2W 2
k |

(21) 931

During training, the dataset D is processed in 932

batches Bi, and the batch gradient is calculated as 933

∇WL(Bi) = 1
M

∑M
j=1∇WL(Bij). To avoid cal- 934

culating the gradients separately for each sample in 935

the batch, we approximate
∑

(x,y)∈Bi

1
M (∂L(x,y)∂Wk

)2 936

to the term (

∑
(x,y)∈Bi

∂L(x,y)
∂Wk

M )2. To analyze errors, 937

assume g = ∂L(x,y)
∂Wk

∼ G, we have: 938

∆ =| 1
M

M∑
j=1

g2j − (

∑M
i=1 gj
M

)2|

=
1

M

M∑
i=1

g2j − (

∑M
j=1 gj

M
)2

≤(max gj −min gj)
2

4
= O(g2)

(22) 939

The approximation errors are bounded. We take 940

the following for importance estimation: 941

Ii = |
∂L(Bi)
∂Wk

Wk−
1

2
(

∑
j
∂L(Bij)
∂Wk

M
Wk)

2+o(W 2
k )|

(23) 942
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A.1.3 Maximizing Formula 7 is NP-Hard943

Task Given an arbitrary matrix An×m, select944

ñ (ñ ≤ n) rows XS and m̃ (m̃ ≤ m) columns YS ,945

to maximize the sum
∑

i∈XS

∑
j∈YS

Aij .946

Lemma (The Maximum Clique Problem is NP-947

Complete) Given an undirected graph G = (V,E),948

where:949

• V is a set of vertices,950

• E ⊆ V × V is a set of edges,951

a clique C ⊆ V is a subset of vertices such that952

every two distinct vertices in C are adjacent, i.e.,953

∀u, v ∈ C , u ̸= v ⇒ (u, v) ∈ E.954

The Maximum Clique Problem (MCP) seeks a955

clique of maximum cardinality in G. The prob-956

lem is NP-complete, meaning:957

• It is NP: a candidate solution can be verified958

in polynomial time, and959

• It is NP-Hard: any problem in NP can be960

reduced to it in polynomial time.961

Proof Construct a special form of An×n as the962

adjacent matrix of graph G with larger values on963

diagonal maximum, that is:964

Auv =


1 if (u, v) ∈ E,

n2 + 1 if u = v

0 otherwise

965

Then, MCP can be reduced to the task in polyno-966

mial time following the algorithm:967

• Enumerate k in descending order n, n−1 . . . 1968

• Solve the task with ñ = m̃ = k969

• If the optimal solution equals to (n2 + k)k,970

then there exist a clique C = XS of size k,971

terminate.972

Therefore, a NP-Complete problem can be re-973

duced to the task in polynomial time, which yields974

the conclusion that the task is NP-Hard.975

A.2 Further Observations976

A.2.1 Gradient Magnitude Distribution977

To investigate the universality of the sparse sub-978

network structure for large gradients, we analyze979

gradient magnitude distributions across different980

layers, as shown in Figure 9. Both Gradients of981

the Self-Attention and MLP modules exhibits the982

consistent structure of core subnets.983

A.2.2 Gradient- or Sensitivity-Based 984

0 10 20 30 40 50 60 70
Masking Percentage (%)

30

40

50

60

70

80

A
C

C

Random
Gradient-Based
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Vanilla

Figure 10: ARC-E Accuracy under Different Masking
Percentage. Linear layers in the 10-th to the 25-th de-
coder layer of LLaMA-2 7B are masked with gradient-
based and sensitivity-based subnet selection strategies.

Figure 10 presents the performance on ARC-E 985

across varying masking percentages. The gradient- 986

based approach identifies the subnet based on mag- 987

nitude of gradients while masking the remaining 988

parameters. Among importance scoring strategies, 989

the sensitivity-based approach, which is adopted 990

by LoSiA, exhibits stronger robustness in higher 991

masking ratios. However, tuning hyperparameters 992

β1, β2 in the EMA of sensitivity-based importance 993

calculation may result in marginal return for LoSiA, 994

as evidenced by the minimal performance gap be- 995

tween the refined and unrefined selection methods. 996

A.3 Experiments Details 997

A.3.1 Domain Specific Tasks 998

We randomly sample 50K data from open-source 999

training datasets: MetaMathQA (Yu et al., 2023), 1000

Magicoder (Wei et al., 2023) and Alpaca-GPT4 1001

(Peng et al., 2023), and evaluate fine-tuned mod- 1002

els on GSM8K (Cobbe et al., 2021), MBPP 1003

(Austin et al., 2021) and MMLU (Hendrycks et al., 1004

2021b,a), respectively. Evaluations are conducted 1005

using lm-evaluation-harness (Gao et al., 2024), 1006

with baseline implementations from LLaMA- 1007

Factory (Zheng et al., 2024). 1008

Table 6 shows the hyperparameters for fine- 1009

tuning LLaMA-2 7B on MetaMathQA. We fol- 1010

low the commonly used configurations for base- 1011

lines, while aligning GPU memory consumptions. 1012

For LoSiA, the hyperparameters for each task and 1013

model are listed in Table 7. Rank factor p is set 1014

to 1
8 , and the gradient dimension of lm_head is 1015

compressed to a fraction by po. Time slot T and 1016

learning rate may various across tasks. All experi- 1017

ments are conducted with single run on a NVIDIA 1018

A800-80GB GPU and CentOS 7 on x86-64 CPUs. 1019

Pytorch version is 2.4.1. 1020
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Figure 9: Gradient Magnitude Distribution on LLaMA-2 7B for Different Decoder Layers and Modules. Purple
curve: row/column gradient sums. Orange curve: smoothed neuron selecting frequency. Best selection strategy for
each layers (Row2Column/Column2Row) are record in the title of subplots.
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Table 6: Hyperparameter Configurations of Fine-Tuning LLaMA-2 7B on MetaMathQA. Note that β1, β2 are EMA
smoothing factors in sensitivity-based importance calculation, and are fixed across all experiments. p and po are
dimension factors determining the shape of core subnets. T of LoSiA refers to the time slot between re-selections.

LoRA/DoRA PiSSA GaLore LoSiA

Optimizer AdamW

Epochs 3

Batch Size 4

LR 2e− 4 1e− 4 1e− 4 6e− 5

Cutoff Length 2048

Warm-up Ratio 0.1

Rank Related r = 64 r = 512 p = 1
8 , po =

1
8

Scale Related α = 128 α = 2.0 -

Period Related - T = 200 T = 100

Others - Full Proj β1 = β2 = 0.85

Implement Layer
proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj

proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj,

lm_head

Table 7: Hyperparameter Configurations of LoSiA across different tasks and models.

Datasets MetaMathQA Magicoder Alpaca-GPT4

LR 6e− 5 5e− 5 5e− 5

Time Slot T 100 150 150

Rank Factor p 1
8

Models Gemma-2B LLaMA-2 7B LLaMA-2 13B

Vocabulary Size 256, 000 32, 000 32, 000

Dimension Factor po 1
64

1
8 1

A.3.2 Common-Sense Reasoning Tasks1021

Table 8: Datasets of Common-Sense Reasoning.

Datasets #Train #Test Task Type

ARC-C(Clark et al., 2018) 1,120 1,170 Q & A

ARC-E (Clark et al., 2018) 2,250 2,380 Q & A

HellaSwag (Zellers et al., 2019) 39,905 10,042 Sentence Completion

Winogrande (ai2, 2019) 9,248 1,267 Fill the Blank

PIQA (Bisk et al., 2020) 16,100 1,840 Q & A

OBQA (Mihaylov et al., 2018) 4,957 500 Q & A

SIQA (Sap et al., 2019) 33,410 1,954 Q & A

BoolQ (Clark et al., 2019) 9,427 3,270 Text Classification

The datasets of common-sense reasoning tasks are1022

presented in Table 8, while corresponding hyper-1023

parameters detailed in Table 9. The GPU memory1024

usage remain aligned. For each PEFT baselines, 1025

searches in learning rate are performed. 1026

We report the accuracy metric evaluated by lm- 1027

evaluation-harness, which selects answers based 1028

on minimal perplexity. This approach mitigates 1029

the sensitivity of models to input phrasing variants, 1030

thereby enabling a more reliable measurement of 1031

the implicit knowledge encoded within the models. 1032

A.3.3 Rank Factor Robustness 1033

To evaluate the impact of the rank factor p, which 1034

determines the scale of the core subnets, we 1035

conduct an ablation study on MetaMathQA. The 1036

results demonstrate LoSiA’s robustness across 1037

various subnet scales. Note that p = 1/16 may 1038
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Table 9: Hyperparameter Configurations of Fine-Tuning LLaMA-2 7B on Common-Sense Reasoning Datasets.

LoRA/DoRA PiSSA GaLore LoSiA

Optimizer AdamW

Epochs 3

Batch Size 16

LR {1e− 4, 2e− 4} {5e− 5, 1e− 4} {1e− 4, 2e− 4} {5e− 5, 1e− 4}

Cutoff Length 256

Warm-up Ratio 0.1

Rank Related r = 64 r = 512 p = 1
8 , po = 1

Scale Related α = 128 α = 2.0 -

Period Related - T = 200 T = 50

Others - Full Proj β1 = β2 = 0.85

Implement Layer
proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj

proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj,

lm_head

be relatively small for effective subnet fine-tuning,1039

while increasing computational budget boosts the1040

performance.

Table 10: Rank Factor Robustness on GSM8K

Model 1/16 1/8 1/4 1/2

Gemma-2B 37.53 42.84 45.03 45.64

LLaMA-2 7B 40.64 44.66 46.02 48.45

1041

Table 11: The Detail of Ablation Study on MMLU. Note
that the variant GL surpasses LoSiA on Humanities but
shows performance drop on the rest of domains.

Model MMLU
Humanities Other Social S STEM Avg.

Sensitivity-based
Localization (LoSiA)

41.70 52.23 50.89 36.82 44.95

Gradient-based
Localization (GL)

42.64 51.41 50.62 36.22 44.88

A.3.4 Continue Learning1042

To examine whether reduction of intruder dimen-1043

sions in LoSiA mitigates forgetting in continue1044

learning, we sequentially adapt LLaMA-2 7B1045

through five common-sense reasoning tasks by the1046

order HellaSwag, PIQA, BoolQ, SIQA and Wino-1047

grande. Learning rate for LoRA is 1e− 4 and for1048

LoSiA is 5e− 5. The remaining hyperparameters1049

are consistent with Table 9. LoRA modules are1050

merged into the backbone before subsequent task1051

adaptation.1052

Suppose the model learn sequentially on N tasks.1053

Let Pi,j denote the ACC on task j after training on1054

task i. Following Zhao et al. (2024b), we formulate 1055

the metrics (AP, FWT and BWT) as bellow: 1056

Average Performance: AP = 1
N

∑N
i=1 PN,i 1057

Forward Transfer: The metric measures the 1058

transferability of learned knowledge from previous 1059

tasks to a new task. FWT = 1
N

∑N
i=1(Pi,i − P0,i), 1060

where P0,i is the performance of individually train- 1061

ing task i. 1062

Backward Transfer: The metric evaluates the 1063

impact of learning later tasks on the model’s per- 1064

formance on an earlier task, that is BWT = 1065
1

N−1

∑N−1
i=1 (PN,i − Pi,i). 1066

Table 12 shows the detailed result during se- 1067

quential adaptation. After continuing learning 1068

through all tasks, Seq-LoSiA outperforms Seq- 1069

LoRA across all benchmarks, highlighting its effi- 1070

ciency in forgetting mitigating. 1071

A.4 Resources Measurement 1072

Figure 11 and 12 shows the memory and train- 1073

ing time overheads for different PEFT methods on 1074

LLaMA-2 7B. With GRADIENT CHECKPOINTING, 1075

LoSiA and LoSiA-Pro display lower latency than 1076

low-rank methods across all ranks. 1077

When disables GRADIENT CHECKPOINTING, 1078

LoSiA-Pro significantly reduces activation storage 1079

by at least 26% and supports 70% additonal train- 1080

ing context length under consistent GPU memory 1081

constraints compared to LoRA. 1082

A.4.1 Memory Estimate 1083

Consider a model with L decoder layers, each con- 1084

taining K tunable matrices. The model use b-bit 1085
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Table 12: Details of Performances on Continue Learning Five Common-Sense Reasoning Tasks. The column stands
for training order, while the label "ST" indicates the result in single-tasking training.

Method Task (#1) HellaS (#2) PIQA (#3) BoolQ (#4) SIQA (#5) WinoG ST

Seq-LoRA

HellaSwag 59.86 55.64 59.10 57.86 54.36 59.86

PIQA 76.01 80.52 77.86 78.73 77.64 79.33

BoolQ 77.80 73.27 86.30 80.12 75.93 88.07

SIQA 45.80 47.80 45.85 59.52 46.11 56.86

Winogrande 64.25 68.35 68.82 69.93 79.08 73.88

Seq-LoSiA

HellaSwag 63.72 61.89 61.11 60.37 56.43 63.72

PIQA 78.29 79.49 79.82 79.38 77.75 81.50

BoolQ 77.52 70.76 83.24 82.54 81.99 84.13

SIQA 47.80 48.26 48.26 59.93 56.04 61.05

Winogrande 68.51 67.88 68.51 71.82 80.19 77.19
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Figure 11: GPU Memory Usage and Training Latency
Comparison W GRADIENT CHECKPOINTING

precision storage, with hidden dimension d and1086

vocabulary size V . Table 13 shows GPU memory1087

consumption details of LoRA, GaLore and LoSiA.1088

Table 13: Comparison of Memory Consumptions. Cells
in green highlight the components that may notably
lower than other methods, while in red highlight the
components that may cause relatively large memory
consumption.

LoRA GaLore LoSiA

Update Rank r R pd

#Trainable 2LKrdb LKR2b+ V db LKd2p2b+V dpob

#Optimizer 4LKrdb 2(LKR2b+ V db) 2(LKd2p2b+ V dpob)

#Gradient 2LKrdb max{d2b, V db} max{d2b, V db}

#Auxiliary 2LKrdb 2LKRdb 2Kd2b

#Total 8LKrdb
2(LKR2b+ V db)
+max{d2b, V db}

+2LKRdb

2(LKd2p2b+ V dpob)
+max{d2b, V db}

+2Kd2b

For optimizers like AdamW, LoSiA reduces the1089
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Figure 12: GPU Memory Usage and Training Latency
Comparison W/O GRADIENT CHECKPOINTING

gradient dimension of the output layer to a fraction 1090

po, while GaLore performs full fine-tuning on the 1091

output layer of shape d × V . Both GaLore and 1092

LoSiA utilize per-layer weight update techniques 1093

for gradient computation. In contrast, basic LORA 1094

implementations require collecting all gradients 1095

after backward propagation. The reduced mem- 1096

ory overhead of gradient storage allows GaLore 1097

and LoSiA to fully train the lm_head in LLaMA-2 1098

models. 1099

In terms of auxiliary parameters, GaLore re- 1100

quires storing down- and up-projection matrices. 1101

Since R is typically high-rank, GaLore’s auxiliary 1102

parameters can be significantly larger than those of 1103

other methods. 1104

For LoSiA, auxiliary parameters are used to com- 1105

pute the importance scores (U(·) and I(·)). If 1106

gradient-based importance scoring is adopted, this 1107

component can be completely eliminated. 1108

Regarding total memory consumption, increas- 1109

ing the rank in LoRA and GaLore incurs substan- 1110

tial overhead. However, in LoSiA, only the term 1111
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2(LKd2p2b + V dpob) scales with rank factor p,1112

resulting in a more efficient memory footprint.1113

Table 14: Details of Trainable Parameters for LoRA and
LoSiA under Different Hyperparameter Configurations
on LLaMA-2 7B.

LoRA
Rank r 16 64 256 1024

#Trainable 40.0M 160.0M 640.0M 2560.0M
Mem(GB) 22.33 23.72 28.42 63.90

LoSiA
Factor p 1/16 1/8 1/4 1/2

Update Rank r 256 512 1024 2048

po = 1/8

#Trainable 42.8M 122.1M 439.3M 1700.8M
Mem(GB) 21.84 21.87 22.73 28.73

po = 1

#Trainable 158.0M 238.9M 562.2M 1855.7M
Mem(GB) 22.24 22.84 23.37 28.98

A.4.2 Latency Measurement1114

We measure the training latency (µs / token) fine-1115

tuning with different PEFT methods on LLaMA-21116

7B, and the results are shown in Table 15. The1117

experiments are conducted with cutoff_len = 20481118

and batch _size = 4.1119

Table 15: Comparison of Training Latency on LLaMA-
2 7B. Latencies are reported in measuerments of µs per
token, training with FLASH-ATTENTION 2 (Dao, 2023).

Forward Backward Other Total

w Gradient Check-Pointing

LoRAr=64 74.0 264.0 0 338.0

DoRAr=64 104.2 552.2 0 656.4

GaLoreR=512 70.1 227.5
140.1

(574s / 500 step)
437.7

LoSiAp= 1
8

70.0 (-5.6%) 220.4 (-16.5%) 0 290.4 (-14.1%)

LoSiA-Prop= 1
8

71.4 (-3.5%) 173.4 (-34.3%) 0 244.8 (-27.6%)

w/o Gradient Check-Pointing

LoRAr=64 Out of Memory

LoSiAp= 1
8

70.0 (-5.6%) 146.5 (-44.5%) 0 216.5 (-35.1%)

LoSiA-Prop= 1
8

71.4 (-3.5%) 102.4 (-61.3%) 0 173.8 (-49.6%)

While demonstrating superior performance1120

among existing baselines, LoSiA reduces training1121

latency by 14.1% compared to LoRA, 55.8% com-1122

pared to DoRA. The acceleration is mainly due1123

to the elimination of low-rank matrix multiplica-1124

tion. Specifically, during backward propagation1125

with GRADIENT CHECKPOINTING, the produc-1126

tion of low-rank matrices introduces significant1127

overhead for activation recomputation and gradient1128

calculation. Note that LoRA can avoid gradient1129

calculations on backbone weights, but this requires1130

specialized implementations and introduces a large 1131

coefficient of computational complexity. 1132

For LoSiA-Pro, the computational complexity 1133

remains the same as LoSiA during the forward pass, 1134

but it only requires storing a proportion p of the 1135

input activations of the linear layers. During the 1136

backward pass, LoSiA-Pro reduces the computa- 1137

tional cost to p2 relative to full gradient computa- 1138

tion, which significantly lowers the latency of back- 1139

ward propagation. This results in highly efficient 1140

training and lower GPU memory consumption. 1141
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