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ABSTRACT

Continuous glucose monitoring (CGM) enables near-continuous measurement of
glucose trends, offering detailed insight into metabolic health. However, existing
CGM-based metrics (e.g., time in range, glucose management indicator) only par-
tially capture the complexities of glycemic variability. In this work, we present
GluFormer, a generative foundation model employing self-supervised represen-
tation learning on over 10 million CGM measurements from 10,812 participants
without a known diabetes diagnosis. By predicting future tokens in an autore-
gressive fashion, GluFormer learns latent representations that generalize across
19 additional cohorts (n = 6,044) with differing devices, ethnicities, and clin-
ical contexts (from prediabetes and gestational diabetes to type 1/2 diabetes).
GluFormer outperforms standard CGM metrics in forecasting clinical measures
(e.g., A1c, visceral adipose tissue, and liver function) and in risk stratification for
longer-term outcomes such as incidence of diabetes and cardiovascular mortality.
Beyond single-number CGM summaries, the model generates realistic glucose
curves that align with real-world data, and its performance further improves when
including discrete dietary tokens in a multimodal framework. These findings sug-
gest that large-scale self-supervised learning on continuous physiological signals
can improve our ability to identify and manage metabolic risks, as well as simulate
personalized glycemic trajectories.

1 INTRODUCTION

With the growing accessibility of continuous glucose monitoring (CGM) technologies in both clin-
ical and non-clinical settings, unprecedented volumes of densely sampled glucose data have be-
come available. These rich time-series enable fine-grained representation learning of an individual’s
metabolic state (Battelino et al., 2019; Shilo et al., 2023), yet common CGM metrics such as time
in range or glucose management indicator (GMI) often overlook subtle temporal patterns that may
signal distinct metabolic risks (Broll & Etc., 2021; Bergenstal et al., 2018).

Parallel to these developments in CGM, the realm of self-supervised learning (SSL) has produced
powerful “foundation models” that discover general-purpose representations from large-scale unla-
beled data (Zhou et al., 2023; Saab et al., 2024; Lutsker et al., 2024). These approaches, exemplified
by transformer architectures, have transformed fields like natural language processing (Devlin et al.,
2019), and show promise in clinical and biomedical domains.

Here, we propose GluFormer, a transformer-based SSL model for CGM data. GluFormer is trained
on over 10 million measurements from 10,812 non-diabetic adults, learning generative and latent
representations of glycemic time-series through next-token (autoregressive) prediction. We show
that GluFormer’s learned representations:

1. Generalize effectively to 19 additional datasets from multiple countries, devices, and clini-
cal populations (e.g., gestational diabetes, type 1/2 diabetes).

2. Predict both near-term (0–4 years) and long-term (up to 12 years) clinical endpoints (e.g.,
diabetes onset, cardiovascular mortality) more accurately than conventional CGM sum-
maries such as GMI.

3. Generate synthetic glucose signals whose distributions of clinically relevant CGM metrics
strongly match real patient data, suggesting potential applications in data augmentation or
simulation.

4. Achieve further improvements in generative fidelity when extended to a multimodal form,
adding discrete tokens of dietary intake.

We argue that large-scale representation learning approaches can exploit the rich structure of contin-
uous biosignals, offering a more holistic view of metabolic health than the single-point glucose tests
currently used in routine care. GluFormer highlights the broader possibility of foundation models
for physiological data, with implications for risk stratification and personalized interventions.
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Figure 1: Conceptual overview of GluFormer’s training and capabilities. (A) We first convert
continuous glucose time-series into discrete tokens and train a causal transformer to predict sub-
sequent tokens (autoregressive language modeling). (B) Once trained, GluFormer yields flexible
representations for each individual’s CGM profile, which can be used for downstream tasks like
forecasting clinical measures or identifying risk. (C) GluFormer representations can also be used to
predict outcomes of RCTs. (D) By adding discrete “diet tokens,” a multimodal extension accurately
simulates personalized glycemic responses to foods.

2 RELATED WORK

Representation Learning in Health.
Self-supervised learning has rapidly expanded in biomedical fields, from analyzing large-scale
pathology images (Zhou et al., 2023) and wearables data (Yuan et al., 2023), to structured clini-
cal records. By focusing on tasks like next-token prediction or masked data reconstruction, these
methods discover domain-relevant features without relying on labor-intensive labeling.
Limitations of Existing CGM Metrics: While CGM data can reveal glycemic patterns, clinicians
often rely on summary statistics (e.g., GMI, time in range), which may not fully capture inter-day
variability or early markers of metabolic deterioration (Broll & Etc., 2021). Traditional CGM anal-
yses also offer limited capacity for generative modeling or for transferring to new populations.
Transformers for Time Series: Transformer architectures excel at capturing long-range dependen-
cies (Vaswani et al., 2017), making them well-suited for multi-day CGM. Several prior works show
success applying transformers to continuous signals by discretizing them into tokens (like words in
NLP) and then learning next-token prediction (van den Oord et al., 2016a; Rabanser et al., 2023).
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3 METHODS

3.1 DATA AND PARTICIPANTS

HPP Training Dataset. We constructed our core training set from a large cohort of 10,812 adults
who wore Abbott Freestyle Libre CGM devices for approximately two weeks, capturing glucose
measurements every 15-minutes. The vast majority of individuals had no diabetes diagnosis at
enrollment. Following standard removal of first day measurements (due to device warm-up adjust-
ments) and linear interpolation for rare missing data, the final set exceeded 10 million glucose values
(Shilo et al., 2021).

3.2 TOKENIZATION OF CGM VALUES

We adopt a discretization strategy that maps continuous glucose readings into integer tokens, draw-
ing on research indicating that binning real-valued signals can improve forecasting by regularizing
inputs, enhancing robustness, and aligning with transformer vocabulary mechanisms (van den Oord
et al., 2016a; Rabanser et al., 2023; Ansari et al., 2024). Specifically, glucose values from 40–
500 mg/dL are uniformly split into 460 possible bins, yielding a vocabulary of size 460. Each CGM
sample can thus contain up to 1,200 tokens, representing about 10–12 days of measurements, and
shorter sequences are padded with a special <MASK> token. During training, we apply a causal
mask to ensure that each token only attends to preceding tokens, enabling autoregressive next-token
prediction. This token-based representation trades away some continuous detail, but can often yield
better generalization. Indeed, beyond CGM, discretization has benefited generative models in do-
mains such as audio (van den Oord et al., 2016a) and images (van den Oord et al., 2016b), where
binning or quantization helps stabilize training and simplifies modeling.

3.3 MODEL ARCHITECTURE AND TRAINING

Transformer Configuration: GluFormer is a 16-layer causal transformer with hidden size 1024,
feedforward dimension 2048, and 16 attention heads (Vaswani et al., 2017). We process sequences
of up to 1,200 glucose tokens, predicting the next token at each time step.
Self-Supervised Objective: We train GluFormer autoregressively via cross-entropy loss over the
next-token distribution. Formally, we minimize: L = −

∑T
t=1 logP (xt | x<t). where xt is the

token at time t. This objective forces the model to learn a representation that captures glycemic
patterns over many days.

3.4 GENERATING EMBEDDINGS

In our approach, each CGM sample is represented as a sequence of 1,200 glucose tokens (after
tokenizing and possibly padding shorter sequences). We pass this entire sequence through the pre-
trained transformer, producing a 1,024-dimensional hidden state for each token at the final layer.
Because some CGM traces may have fewer than 1,200 valid measurements, we first remove hidden
states corresponding to any padded <MASK> tokens. We then apply max-pooling over time, which
means that for each of the 1,024 dimensions, we select the maximum value across all remaining
token positions. Formally, if {h1,h2, . . . ,hT } denotes the set of final-layer hidden states for a se-
quence of length T ≤ 1200, then our single-sample embedding is: e = max1≤t≤T ht, where the
max is taken element-wise across the T vectors.

This final embedding vector e ∈ R1024 serves as a learned, self-supervised summary of the entire
CGM sequence. It can then be used as input to downstream models for classification or regression
tasks, for instance to predict a clinical measure (e.g., A1C) or the likelihood of disease onset. Be-
cause the transformer learns to capture temporal dependencies among all tokens, pooling over the
hidden states emphasizes the most salient features in the sequence and creates a single, fixed-size
representation for each CGM sample.

3.5 MULTIMODAL EXTENSION WITH DIETARY TOKENS

Although glucose tokens alone capture broad glycemic trends, real-world trajectories are often
strongly influenced by dietary intake. To better reflect the impact of meals, we extend GluFormer
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into a multimodal model that jointly processes discretized glucose values (glucose tokens) and dis-
crete bins of macronutrients (diet tokens). The diet tokens represent carbohydrates, protein, and
other nutrients consumed at each meal or snack time, interleaved within the same sequence as glu-
cose tokens. Diet Tokenization: We obtain time-stamped food logs (self-reported) and convert each
macronutrient amount (e.g., grams of carbs) into a discrete bin. For example, we might have 15 bins
for carbohydrate amounts, 10 bins for protein amounts, and so forth. We then insert these diet tokens
at the appropriate time steps in the sequence, effectively interleaving them with glucose tokens in
chronological order. Unified Transformer Input: Both types of tokens share a base embedding
dimension (e.g., 1024), but to help the model distinguish modalities, we add a learned “modality
embedding” (glucose vs. dietary). We also incorporate positional (time-of-day, day-of-week) en-
codings to handle the real time differences between consecutive measurements or meals. Training
and Generation: The model still focuses on predicting the next glucose token (cross-entropy loss
computed only over glucose bins), while diet tokens act as contextual input. In generation, we
provide recent CGM data plus dietary tokens as “observed” context. The model autoregressively
predicts future glucose values, factoring in mealtime macronutrient inputs. This design often yields
more accurate capture of postprandial peaks and inter-meal patterns.

As shown in Section 3.11, the multimodal GluFormer significantly improves day-ahead predictions
(lower MAE, higher correlation with real CGM) when dietary data is available. This framework can
also be extended to incorporate other behavioral or sensor inputs (e.g., physical activity, sleep) in
future work.

3.6 EXTERNAL DATASETS AND GENERALIZATION

While GluFormer is trained on a large, mostly non-diabetic cohort, we sought to test whether its
embeddings and generative capabilities transfer to more diverse populations. Accordingly, we as-
sembled 19 additional datasets (total n = 6,044) that include participants from multiple continents,
various CGM devices, and different glycemic conditions, as summarized in Table 1 (see Supple-
mentary). Each external cohort was preprocessed by applying the same binning scheme for glucose
tokens (i.e., the 40–500 mg/dL range split into 460 discrete bins) so that the new data could be
directly ingested by our pretrained GluFormer. We then generated 1,024-d embeddings for each
participant’s CGM sequence and used these embeddings to predict various clinical outcomes rele-
vant to each dataset’s phenotype (e.g., A1c, or future changes in glucose tolerance). This uniform
pipeline allows us to systematically evaluate how well GluFormer representations extend across
device types, populations, and disease states.

3.7 LEARNED REPRESENTATIONS STRATIFY GLYCEMIC RISK

Figure 1 provides an overview of the training pipeline. We first asked whether the GluFormer embed-
dings capture clinically relevant differences in CGM data. To visualize the internal representation
space, we used UMAP projections (McInnes et al., 2018) (Figure 2)

Figure 2: UMAP visu-
alizations of GluFormer
embeddings and coloring
by independently collected
glycemic health parame-
ters.

Notably, these projections show smooth gradients aligned with important clinical markers such as:
Fasting glucose: The typical glucose level after an overnight fast, which can signal underlying
insulin resistance. Postprandial Glucose Response: The glucose rise following meals, often in-
dicative of beta-cell function and insulin response. Day-to-day glycemic fluctuations: The degree
to which an individual’s glucose levels vary from one day to the next, reflecting overall metabolic
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resilience or instability.
These observations suggest that GluFormer’s representation space differentiates between diverse,
clinically significant glycemic profiles in an unsupervised manner.

A key question is whether these embeddings can stratify individuals by risk for adverse glycemic
outcomes. In individuals whose baseline lab tests indicated prediabetes (HbA1c 5.7–6.4%), we used
a simple linear model on top of GluFormer embeddings to produce a continuous “predicted A1c”
score from multi-day CGM. Grouping participants by quartiles of this predicted A1c revealed a
striking pattern: over a two-year follow-up, those in the top quartile showed substantially greater in-
creases in actual blood-measured HbA1c compared to the bottom quartile. By contrast, grouping the
same individuals by their baseline lab A1c measurement alone failed to separate those who would
progress from those who would not. This indicates that multi-day CGM data (summarized in Glu-
Former embeddings) offers a richer signal for identifying who is likely to deteriorate metabolically
than does a single blood HbA1c measurement (Keshet et al., 2023).

We further evaluated this observation in a larger, longer follow-up setting: a 12-year cohort study
of 580 adults (Gude et al., 2017) that tracked both new-onset diabetes and cardiovascular mortality.
Figure 3 summarizes our findings. Again, we took CGM for each person and derived an “predicted
A1c” estimate from GluFormer representations. We then stratified participants into quartiles by
this predicted A1c and compared long-term outcomes. The top quartile (highest predicted A1c)
accounted for ∼ 65% of all new diabetes cases and ∼ 69% of cardiovascular deaths during the 12-
year period. By contrast, stratifying by baseline lab A1c showed almost no separation in outcomes.

Figure 3: GluFormer-derived
A1c Outperforms Measured
(blood) A1c for Future Risk.
(A) Among 337 prediabetic indi-
viduals (baseline A1c 5.7–6.4%)
in the HPP cohort, stratifying by
GluFormer-predicted A1c quar-
tiles reveals significantly different
2-year A1c changes (p¡0.001):
the top quartile (red) increases by
+0.18 whereas the bottom quartile
(gray) decreases by –0.13. By con-
trast, quartiles based on measured
A1c alone show no significant
difference. (B) Kaplan–Meier
analysis in 580 adults from AEGIS
over 12 years shows that the top
quartile of GluFormer-predicted
A1c has markedly higher diabetes
incidence and cardiovascular mor-
tality than lower quartiles, whereas
measured A1c quartiles do not
significantly separate outcomes.
The bar plots indicate that 65.8%
of diabetes cases and 69.2% of
cardiovascular deaths occur in
the GluFormer top quartile versus
minimal events in the bottom
quartile.

3.8 PREDICTING CLINICAL MEASURES AND RISK

We first assessed how well GluFormer embeddings forecasted clinical metrics either measured at
the time of CGM or several years later. Simple ridge or logistic regressions on these embeddings
outperformed standard CGM summaries (GMI, time in range) across a range of outcomes:
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• A1c and Glucose Levels: Even in non-diabetic and prediabetic ranges, GluFormer better
predicted both current and future blood glucose measures, capturing nuanced glycemic
fluctuations.

• Visceral Adipose Tissue, Liver Enzymes, Renal Function, etc.: Embeddings correlated
more strongly with these metabolic markers than conventional summaries, suggesting that
the model discovers clinically relevant signals beyond short-term glycemia.

• Long-Horizon Events: In a 12-year follow-up of 580 adults, the top quartile of
GluFormer-derived A1c predictions captured ∼ 66% of diabetes diagnoses and ∼ 69%
of cardiovascular deaths, whereas standard A1c or GMI quartiles showed weaker stratifi-
cation.

We also performed decision-curve and survival analyses that consistently showed superior perfor-
mance of GluFormer embeddings vs. standard CGM metrics.

Figure 4: Improved clinical predictions via GluFormer embeddings. (A) Example: Predicting
various metabolic measures (A1c, fasting glucose, visceral adipose tissue, systolic blood pressure)
at the time of CGM. GluFormer-based regressions (blue) yield higher correlation with ground truth
than GMI-based (red). (B) Similarly, at a two-year horizon, GluFormer continues to provide stronger
performance, reflecting its ability to embed more stable and predictive signals from multi-day CGM
data. Error bars represent standard deviation across multiple runs.

3.9 PERFORMANCE ON EXTERNAL COHORTS

To test out-of-distribution generalizability, we evaluated GluFormer embeddings on 19 external co-
horts (Section 3.6). Figure 6 highlights that for numerous clinical endpoints (e.g., future changes
in A1c, organ function biomarkers, or risk classifications), simple linear models on GluFormer em-
beddings generally matched or exceeded the performance of conventional CGM-based measures.
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These cohorts varied widely in location, device, sample size, and disease phenotype, suggesting that
the token-based representation learned from healthy populations can still robustly transfer to other
contexts.

3.10 GENERATIVE MODELING OF CGM

Because GluFormer is trained autoregressively, it can also sample plausible CGM trajectories. We
tested its ability to generate day-scale glucose curves given some initial context (e.g., the prior day’s
data). Figure 7 shows that synthetic curves preserve individualized metrics such as mean glucose,
time in range, and glucose variability, with correlation of r = 0.80–0.98 between real vs. generated
composite measures.

3.11 MULTIMODAL EXTENSION USING DIETARY TOKENS

To better model diet-induced glycemic excursions, we extended GluFormer to a multimodal variant
that ingests both glucose tokens and binned macronutrient tokens (carbohydrates, protein, etc.). The
model’s next-token objective still focuses on predicting glucose tokens, but it can attend to dietary
tokens as additional context. Including diet tokens improved day-ahead CGM generation accuracy,
raising correlation from ∼0.22 to ∼0.50. Figure 5 illustrates how the multimodal approach captures
postprandial glucose spikes more accuratly.

Figure 5: Impact of Dietary Data on GluFormer Model Performance. A. Comparison of Pear-
son correlation A.1 and mean absolute error (MAE) A.2 between the original and generated CGM
data, with and without the inclusion of dietary data. Scatter plots show the improvements in cor-
relation and MAE when dietary data is included, indicated by the majority of points falling above
the diagonal line on correlation, and below on MAE metrics. B. Box plots summarizing the overall
performance, showing the average correlation B.1 and MAE B.2 across all test participants, for 5
different random seeds (used for generation) with lower MAE and higher correlation for models
including dietary data. C. Time series plots demonstrating glucose level predictions for two exam-
ple participants C.1 and C.2. The observed CGM data (blue line) is compared to data generated
with dietary tokens (green line) and without dietary tokens (orange line). Red bars indicate times
of dietary events, highlighting the model’s improved performance in capturing glucose spikes when
dietary information is included.
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4 DISCUSSION AND CONCLUSION

We introduced GluFormer, a transformer-based foundation model for CGM data that learns powerful
latent representations of glycemic patterns via next-token prediction. Trained on a large sample
of predominantly healthy adults, GluFormer successfully generalizes to external datasets including
type 1/2 diabetes, gestational diabetes, and prediabetes populations. Its embeddings exceed standard
CGM summaries in predicting diverse clinical outcomes—from near-term metabolic measures to
12-year follow-up events such as diabetes onset and cardiovascular mortality.

The ability to synthesize realistic CGM signals opens up possibilities for data simulation, while
the multimodal variant incorporating dietary tokens offers more accurate modeling of postpran-
dial changes. By leveraging principles from natural language processing and discretizing contin-
uous time-series data, GluFormer underscores the promise of large-scale self-supervised learning
in metabolic health. Future directions include incorporating additional sensors (activity, sleep), ex-
panding to other populations, and exploring interpretability tools to further integrate CGM-based
modeling into routine clinical care.

Limitations. Our training data, though large, focuses on mostly non-diabetic adults. Some device
types and advanced T1DM populations are underrepresented. In addition, self-reported dietary logs
may contain inaccuracies. Lastly, we have not performed a formal prospective intervention trial to
see whether GluFormer-based predictions meaningfully improve clinical outcomes when integrated
into treatment decisions.

Despite these caveats, our findings suggest that large-scale, token-based transformers can learn ro-
bust models of glycemic health that generalize across device types and diverse clinical contexts—a
first step toward comprehensive foundation models of continuous biosignals.

MEANINGFULNESS STATEMENT

“Meaningful representations of life” should capture the hidden but predictive aspects of physiolog-
ical signals that matter for human health, while generalizing to varied populations. GluFormer’s
foundation model approach to CGM data exemplifies this: it uncovers subtle glycemic patterns that
foreshadow significant outcomes (e.g., diabetes onset, cardiovascular events). By aligning with real-
world eating behaviors and inter-day variability, it yields individual-level embeddings that extend
beyond basic summary metrics. We envision that similar token-based, self-supervised strategies can
be applied to other continuous biosignals, ultimately providing cohesive, personalized windows into
complex metabolic processes and informing interventions tailored to each patient’s unique biology.
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A SUPPLEMENTARY FIGURES

Figure 6: Generalizing across diverse external
cohorts. We grouped participants by cohort (hor-
izontal axis) and measured Pearson correlations
for selected clinical outcomes. Bars compare GMI
(red) to GluFormer embeddings (blue). Even for
patient populations with type 1/2 diabetes, gesta-
tional diabetes, or obesity, and even when using
different CGM devices, GluFormer typically out-
performs or ties GMI.
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Figure 7: GluFormer generates realistic day-to-day CGM signals. (A) Representative examples
from three individuals comparing true CGM profiles (black) vs. three generated trajectories (col-
ored). Although exact alignment may vary, generated curves preserve overall patterns. (B) Radar
plots show strong agreement between real and generated CGM metrics, e.g. for time in range, hyper-
glycemia, mean glucose, etc. (C) Across an entire validation set, we find high correlation (r > 0.8)
between real vs. generated composite scores.

Figure 8: Longitudinal RCT outcome prediction using GluFormer embeddings. (Top) Pearson
correlations for various post-intervention measures (A1c, waist circumference, body fat, etc.) in
three clinical trials when predicting with GluFormer representations (blue) vs. GMI (red). Including
a binary variable for the intervention arm, GluFormer’s CGM embeddings consistently yield higher
correlation. (Bottom) Additional validation on multiple open-access trials with distinct study popu-
lations, again showing that the learned embeddings can forecast future A1c or other endpoints more
accurately than standard CGM metrics.
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Figure 9: Evaluation of GluFormer’s Representations.A. B. UMAP visualization of CGM repre-
sentation from our model. Here we show how the representations relate to 2 clinical measurements
not seen by the model during training. A. Plot shows a UMAP colored by Postprandial Glucose
Response (PPGR), showing that UMAP dimension 1 captures the diversity in PPGR. Low PPGR
values appear on the right, progressing to high PPGR on the left. B. Plot, colored by fasting glu-
cose levels obtained from blood tests, shows that UMAP dimension 2 captures the range of fasting
glucose levels, with lower levels on the right and higher levels on the left. These visualizations pro-
vide insights into how different clinical measures, crucial in endocrinology, could be associated with
the learned CGM representations. C. A comparison of intra-participant and inter-participant cosine
distances of CGM representations of the HPP. The “Intra Distances” (blue box plot) shows the dis-
tribution of cosine distances between representations of the same participant across different days
(with no overlap), reflecting day-to-day variability in the individual’s data. The “Inter Distances”
(orange box plot) shows the distribution of distances between representations from different partici-
pants, showing variation across individuals. There is an overlap in inter, intra-participant embedding
distances meaning that there are some instances of participants who are very similar and some who
are highly variable. The significant difference between the two, indicated by three asterisks, was
tested using the Mann-Whitney test. D. A plot of the effectiveness of different models in predicting
HbA1C

B IMPLEMENTATION DETAILS

For reproducibility, we provide code and hyperparameters in our GitHub repository. Briefly, the
standard AdamW optimizer is used, with a 3 × 10−5 base learning rate. We train on 8 GPUs
(batch size 256) for up to 100 epochs. For generation tasks, we use beam search or temperature
sampling. Additional ablation experiments on tokenization choices, discrete vocabulary size, and
pooling methods are provided in the repository.
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C SUMMARY OF THE 19 EXTERNAL DATASET

Table 1: Summary of the 19 external datasets.

Characteristic Description
Geography Israel, Australia, the United States, China, and Europe
CGM Devices Dexcom, Medtronic iPro2, Abbott Libre (including different gener-

ations), etc.
Glycemic Conditions Type 1/2 diabetes, gestational diabetes, prediabetes, obesity, and

non-diabetic controls
Study Designs Randomized clinical trials, observational cohorts, and prospective

follow-up studies (up to 12 years)
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