
Context Preserving Autoregressive Frame Generation
for Bounded Video

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recently, various video generation methods have been proposed, as diffusion mod-1

els demonstrate their superior ability to generate high-quality videos. Specifically,2

autoregressive approaches have been suggested to enable the generation of videos3

of arbitrary length. However, the methods are not suitable for bounded video4

generation, as they generate open-ended videos. Moreover, recent methods for5

bounded video generation rely on flipping frames to satisfy the boundary constraint6

imposed by the ending frame. However, this approach contradicts the inherent bias7

of video models to generate frames in forward direction, limiting the generation8

capability. Accordingly, we propose a novel autoregressive approach for bounded9

video generation. Specifically, we introduce a context-aware bidirectional denois-10

ing method that progressively generates frames in both forward and backward11

directions while considering the frame context. Then, we propose a method to12

mitigate the context gap between the two directions, to ensure smooth and coherent13

transition between the sequences. Experimental results demonstrate the superiority14

of our approach over previous methods. Specifically, as our method aligns with15

the video model’s forward generation bias, the output videos present more realistic16

motion dynamics. Moreover, our method outputs frames with enhanced visual17

quality by maintaining a consistent frame length for model input. More results can18

be found in our project page1.19

1 Introduction20

Recent advances in video diffusion models have revolutionized the video generation method, achiev-21

ing remarkable visual quality and creative flexibility conditioned by text. The proposed video diffusion22

models are based on various architectures such as U-Net[2, 3, 10, 24]and transformers[6, 13, 14].23

Both architectures output high-quality videos with enhanced temporal coherence and semantic24

alignment. However, they generate an entire video sequence at once, treating the temporal axis as25

an additional dimension of the diffusion latent vector. This significantly increases computational26

burden, making long video generation challenging. Accordingly, autoregressive approaches have27

been suggested, which generate video frames progressively. The methods leverage previous frames as28

a conditioning factor for later frames, which is able to generate videos with flexible length. This ap-29

proach facilitates long-range dependencies, allowing for consistent motion propagation throughout the30

sequence[18, 21, 26]. However, training the video model requires extensive computational resources31

and access to refined video datasets. To overcome the limitation, training-free methods[11, 17, 22]32

have recently been proposed to enhance long-range dependencies without requiring enormous training33

resources. Despite their advantages, these methods primarily focus on open-ended video generation,34

making them unsuitable for bounded video generation.35

1https://sites.google.com/view/cpag-video
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Figure 1: Concept of the proposed bidirectional
autoregressive approach, addressing context gap.

Bounded video generation refers to the task of36

synthesizing a video sequence that adheres to37

predefined bounds. This task is essential for38

various applications, including video interpola-39

tion, video completion, and content extension40

while maintaining temporal coherence. Recent41

methods[5, 23, 25] proposed to fuse forward and42

reversed frames to satisfy the boundary frame43

condition. However, existing approaches utilize44

frame-flipping techniques, where reversed frames45

are synthesized by flipping the generated forward46

frames. This introduces inherent limitations, as47

flipping the output frames encounters the conflict48

to the model’s bias to generate frames in forward49

direction. For instance, irreversible motions are50

generated with unrealistic dynamics, since the method flips output frames to obtain time-reversal51

video sequence. Moreover, the methods have constraints on video length, as they fuse sequences of52

fixed length. Specifically, the mismatch of input sequence length between the training and inference53

limits the model’s generation capability, as suggested in the prior work [17].54

To address the limitations, we propose a novel autoregressive approach for bounded video generation.55

Specifically, as shown in Fig. 1, our method aims to generate coherent bounded video, considering the56

interdependency between the two sequences. The proposed method consists of two parts. First, we57

suggest a context-aware bidirectional denoising method. Specifically, inspired by Stein Variational58

Gradient Descent (SVGD), we present context gradient that exchanges score information with59

neighboring frames. Then, we denoise frames by the diffusion steps, scheduled for bidirectional60

generation. Second, we propose a method to reduce the context gap between the two directions. To61

be specific, a content generated in each direction may diverge unless the interdependency between62

the two sequences is explicitly addressed. Accordingly, we mitigate the context gap by the proposed63

frame initialization strategy and the mixing of context gradients. Consequently, our method effectively64

guides diffusion process to generate videos with improved consistency while satisfying boundary65

conditions. Compared to previous methods based on the frame-flipping technique, our method aligns66

with the model’s bias when generating frames in reversal direction. As a result, our method generates67

videos with more realistic dynamics. Fig. 2 summarizes a main conceptual difference of our work68

compared to the previous approach. Our contributions are summarized as follow:69

• We suggest a novel bidirectional autoregressive approach for bounded video generation,70

which aligns with the video model’s forward generation bias.71

• We propose a context gradient which enables to exchange the score information with72

neighbor frames, and present a context-aware bidirectional denoising method.73

• We explore the context gap between the two directions, and propose a novel method to74

mitigate the context gap to generate coherent videos.75

• We empirically demonstrate the proposed method, highlighting the effectiveness of our76

autoregressive approach for bounded video generation.77

2 Related works78

2.1 Video diffusion model79

Recently, many research work consistently demonstrate the superior ability of the diffusion model for80

video generation. [2, 3, 6, 14]. Moreover, to address the growing demand for long video generation,81

various methods have been proposed, including autoregressive approach that enables the generation of82

videos of arbitrary length. Specifically, [21, 26] proposed to obtain autoregressive models by training83

with designed objective. However, by the excessive resources for training models, training-free84

methods have been proposed. Gen-L-Video[22] proposes temporal co-denoising, which uses the85

average of multiple predictions to generate one frame. FreeNoise[17] suggests a novel temporal86

attention matrix to retain long-range correlation. FIFO[11] proposes iterative diagonal denoising87

to generate video frames in autoregressive manner. Specifically, FIFO suggests latent partitioning88
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Figure 2: Comparison of our method with previous approach. (a) Proposed autoregressive approach.
(b) Previous methods based on flipping frames to generate reversal sequence.

and lookahead denoising to reduce the training-inference gap. However, previous methods generate89

open-ended videos, which is not suitable for bounded video generation. In this paper, we propose a90

novel autoregressive method for bounded video generation, which satisfies the boundary conditions91

while allowing the generation of video in arbitrary length.92

2.2 Bounded video generation93

With the rise of video diffusion models, various methods have been proposed for bounded video94

generation. Generative Inbetweening[23] fine-tunes the projection matrix, and interpolate forward95

and reversed frames. Specifically, it generates reversed frames by rotating the self-attention matrix96

and flipping the output frames. However, to avoid the computational cost of fine-tuning, training-free97

methods have emerged. TRF[5] obtains reversed frames by flipping the generated outputs, and98

linearly interpolates with forward frames. Moreover, authors suggest noise injection for smooth99

connectivity. ViBiDSmapler[25] proposed a novel diffusion denoising step that combines forward and100

reversal frame generation process. Specifically, the method denoises the frames in forward direction,101

and flips the frames to predict noise in reversal direction. Moreover, DDS guidelines[4] is applied to102

enforce the boundary condition. However, video models are inherently biased to generate frames in103

forward temporal direction, making such approaches misaligned with the model’s natural behavior.104

Moreover, they fuse the sequences with fixed length, which constraints the flexibility of video length.105

As introduced in [17], the difference of input frame length degrades the model’s generation capability.106

To address the limitation, we propose an autoregressive approach to generate reversed frames by107

adding more noise in desired direction. Moreover, our method enables to generate videos of arbitrary108

length with consistent input frame length, which is restricted in the previous methods.109

3 Main Contribution110

3.1 Key observation: Autoregressive reversed frame generation111

Figure 3: Diffusion time of reversed diagonal
denoising. Dark colors refer high noise levels.

Previous methods[5, 23, 25] synthesize reversed112

videos by flipping frames generated in forward di-113

rection, which is counter to the model’s bias. To114

address the issue, we approach the generation of re-115

versed frame in autoregressive generation. Specif-116

ically, inspired by the diagonal denoising[11, 18],117

we explore a reversed diagonal denoising as shown118

in Fig. 3, which applies more noise in the preced-119

ing frames. This provides an information of future120

frames to the past frames, enabling the generation of121

reversed frame without opposing the model’s inherent122

forward-generation bias.123

The results demonstrate that the method successfully124

generates the reversed frames. As shown in Fig. 3,125
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Figure 4: Reversed frame generation by the reversed diagonal denoising. The negative numbers
indicate the difference in frame index from the input image.

the motion of the running horse is irreversible, requiring the movement of its legs to align with the126

running direction. The method generates a natural motion of a running horse, while satisfying the127

boundary condition of the end frame. Similarly, the other irreversible motions are generated with128

realistic dynamics, such as air bubbles rising from a scuba diver. Based on this observation, we129

propose a novel autoregressive approach for bounded video generation, which aligns with the video130

model’s forward-generation bias. More experimental details are provided in Appendix.131

3.2 Main method132

3.2.1 Context-aware bidirectional autoregressive denoising133

Figure 5: (a) Update of index set X ,Y . (b)
Accumulation of the gradient ∆zX ,∆zY

We introduce context-aware denoising method,134

inspired by Stein Variational Gradient De-135

scent (SVGD) [12, 15]. Specifically, SVGD136

provides the gradient for particle x to approximate137

target distribution p as follows:138

∆x = Ex′∼q(x′)[k(x, x
′)∇x′ log p(x′) +∇x′k(x, x′)]

(1)

For known distribution q, and positive definite ker-139

nel k. The SVGD provides a direction toward high-140

density region using the other particles x′, preventing141

collapse by pushing each other with the second term.142

We suggest context-aware gradient, inspired by143

SVGD. For the video generation, closely located frames should exchange the score update more than144

the far one. Accordingly, we set q as the distribution of preceding frames in the same diffusion time145

step. Moreover, we exclude the second term, as the video model already prevents the collapse. For146

the DDIM where zt =
√
αtẑ +

√
1− αtϵ, we present the gradient for forward direction, ∆zX , in147

clean manifold as follows:148

∆zX (i) :=
∑
j<i

g(i, j)∆ẑj (2)

where i and j are frame indices, g is monotonic decreasing function for the frame distance, and ∆ẑj149

is the predicted update of preceding frames zj in clean manifold. The gradient for reverse direction150

∆zY is defined in similar way. For implementation, we update the gradients by moving average151

that satisfies g, as shown in Fig. 5. Thereby, ∆ẑ captures contextual information for each time step.152

Additionally, we apply DDS[25] to the frame for input context, to satisfy the boundary condition.153

Then, we set time schedule to generate frames in both directions in autoregressive manner. As154

illustrated in Fig. 5, we add more noise in the direction of the generation, which is inspired by155

previous method[11, 18]. Specifically, the model ϕ denoises the sequence {zf}Ff=1, where each156

frame zf has different diffusion time τ(f) as follows:157

τ(f) = max{f + (T − lCTX), T} (3)

zf,τ−1 = ϕ({zf,τ}Ff=1, {τ(f)}Ff=1) (4)
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Figure 6: Overall diagram of proposed context-aware bidirectional generation. We extract the context
gradient ∆zX ,∆zY from each sequence, and utilize them to generate the new frames.

where f is frame index, F is input frame length of model, lCTX is the length of input context, and158

T is maximum number of time. Here, we denote a set of indices for each sequence as X and Y ,159

respectively. X and Y are updated for each denoising step by removing the index of fully denoised160

frame and adding the index of new frame. If there are no new frames to add, we apply lookahead161

denoising[11]. We provide details for the denoising process in the Appendix.162

3.2.2 Reducing context gap for coherent video163

In the proposed bidirectional generation method, main challenge becomes to address context gap164

between the forward and reversed frames. Specifically, as each direction retains its own frame context,165

discrete transition emerges in the middle when the two sequences are combined to generate bounded166

video. Hence, the interdependency between the two directions should be considered to generate167

coherent video. Accordingly, we propose a method for a smooth transition between the two sequences.168

Specifically, we propose the method for frame initialization, and the context gradient to guide frames169

to consider the context in global perspective. For clarity, in this section, we denote the diffusion170

vector z as x for forward direction, and y for the backward direction. First, we design the mixing171

ratio R(i, j) which determines the ratio of information exchange between the two sequences in global172

view. Similarly, we define the frame kernel k(i, j) to consider local context. Then, we initialize xi173

using the predicted of frames in set X ,Y , as follows:174

x̃i−1 = (1− r)
∑
m∈X

k(i,m)x̂m + r
∑
n∈Y

k(i, n)ŷn (5)

xi ∼ N (x̃i−1, σT ) (6)

for maximum noise level σT , mixing ratio r = R(i, j) and frame kernel k. Likewise, ŷj is sampled in175

similar way. It is simple, but effective, as the interpolation in the noisy manifold results the semantic176

interpolation in clean manifold[8, 16, 19]. Next, we suggest a context gradient which provides a177

guidance considering the global context. Following the linearity of equation (2), we obtain the context178

gradient as:179

∆x̃i = (1− r)∆zX + r∆zY (7)
∆ỹj = (1− r)∆zY + r∆zX (8)

which provides guidance to each frame during diffusion process. To clarify our method, we present180

pseudo code in Algorithm 1.181
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Algorithm 1 Autoregressive generation for bounded video
Input: Forward set X , reverse set Y , frame latents {zf}Lf=0

Output: Denoised latents {zf}L−1
f=1 , updated X , Y

// Bounded diagonal desnoising //
1: Get time steps {τf}Lf=0

2: For i ∈ X , predict {ẑi} = ϕ({zi}, {τ(i)}) using ∆z̃i
3: For j ∈ Y , predict {ẑj} = ϕ({zj}, {τ(j)}) using ∆z̃j
4: Update τ(f)

// Initialization of next frames i′, j′ //
5: Get cX =

∑
m∈X k(i′,m)ẑm, cY =

∑
n∈Y k(j′, n)ẑn and r = R(i′, j′)

6: z̃i′−1 = (1− r) cX + r cY
7: z̃j′+1 = (1− r) cY + r cX
8: Sample zi′ ∼ N (z̃i′−1, σT ) and zj′ ∼ N (z̃j′+1, σT )
9: Update gradients ∆zX ,∆zY by moving average

10: Add new indices: X .add(i′) , Y .add(j′)
11: if min τ(f) = 0 then
12: Output frames: z0, zL
13: Delete indices: X .remove(0), Y .remove(L)

4 Experimental Results182

4.1 Implementation Details183

Our method requires an initial set of frames for input context, as we progressively generates video184

frames. In our experiment, we generate a short video, and use it as an initial context. Our code is185

based on the official implementation of FIFO 2. We compare our method with previous training-free186

methods. First, we compare our method with FIFO[11], a state-of-art autoregressive method. Then,187

we select TRF[5] and ViBiDSampler[25] which are recent methods for bounded video generation.188

Specifically, we adjust the input frame length for TRF and ViBiDSampler, as the methods generates189

whole frames at once, which are not the autoregressive manner. For the experiment of the bounded190

video generation, we conducted experiments for two tasks, where the first task is generation of191

looped video by identical bound, and the second task is the generation of smooth video by the two192

bounds[5]. We randomly create 200 prompts by GPT-4[1] for each task. We utilized the publicly193

release videocrafter2 [3] model for the experiments. The experiments are conducted by H100 GPUs.194

For the comparison, we evaluate the videos in three aspects, temporal consistency, visual quality and195

boundary satisfaction. We selected Temporal Flickering, Background Consistency in VBench [9] to196

evaluate temporal smoothness, and FVD[20] and FID[7] to compare perceptual quality of frames.197

For boundary satisfaction, we calculate mean absolute error (MAE) of frames in pixel space. More198

details can be found in the Appendix.199

4.2 Bounded video generation200

We present the result of bounded video generation in Fig. 7, which demonstrates the superiority of our201

method compared to the previous methods. First, for the experiment on identical bound, our method202

successfully generates the looping video with high visual quality, while satisfying the input bounds.203

Specifically, our method generates the detailed and realistic motion, such as splashing water and204

natural movement of heron flapping the wings. In case of FIFO[11], the method results open-ended205

video, which fails to satisfy the bound. In contrast, TRF[5] generates bounded videos following206

the input bound. However, the output shows blurry texture and motion. Specifically, the texture of207

splashing water and the motion of the wings become overly smooth. ViBiDSampler[25] outputs208

finer details than TRF, but still blurry compared to our method. Here, the degradation in visual209

quality arises from a mismatch of input sequence length used for training and inference, also shown210

in previous work[17]. In contrast, our approach maintains the consistent length by autoregressive211

approach, effectively avoiding the degradation.212

2https://github.com/jjihwan/FIFO-Diffusion_public
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Figure 7: Main result of bounded video generation. (a) Looped video generation by identical bound.
(b) Bounded video generation conditioned on two bounds, distinct start and end frames.

Table 1: Quantitative comparison for bounded video generation. Our method successfully generate
bounded video with enhanced visual quality.

Temporal Consistency Visual quality Boundary satisfaction
Temporal Background

FV D16 ↓ FID ↓ MAE(Loop) MAE(Start) MAE(End)Flickering ↑ Consistency ↑
TRF 0.957 0.966 591.44 52.75 0.066 0.137 0.122
ViBiD 0.952 0.967 429.28 35.59 0.074 0.139 0.114
FIFO 0.934 0.961 386.72 30.28 0.202 0.152 0.235
Ours 0.957 0.969 393.76 31.61 0.076 0.097 0.101

Second, for the experiment for two bounds, our method also outperforms the other method in terms213

both of visual quality and boundary satisfaction. Our method shows detailed texture for both object214

and background, specifically the texture of leaves in jungle and the splashing water. Moreover, our215

method successfully generate frames in between two bounds with enhanced temporal consistency. On216

the contrary, FIFO fails to satisfy the ending bound, as it generates frames autoregressively without217

any constraints. In case of TRF, the result satisfies the bounds, maintaining the temporal coherent218

7



Figure 8: Comparison of irreversible motions in single bounded video with 50 frames. Numbers in
the images indicate frame index. We present a typical irreversible motion, movement firework flares.

Figure 9: Ablation study for video length. We observe the deviation of context according to the
length of video.

between the frames. However, the frames demonstrate low visual quality with smoothed texture,219

which is coherent result for looped video generation. Moreover, the method fails to generate the220

realistic motion of tiger. Likewise, ViBiDSampler results frames with better visual quality and motion221

than TRF, but worse than the proposed method. Both previous methods suffers from degraded visual222

quality due to the difference in input sequence length between training and inference. In contrast,223

the proposed autoregressive approach avoids the degradation by allowing the consistent input length.224

Overall, the results in both experiments demonstrates the superiority of our method.225

Further, we provide quantitative comparison in Table 1. Compared to FIFO, our method outputs226

enhanced temporal consistency by considering the frame context. Moreover, boundary conditions are227

satisfied in our method, which is not in FIFO. Compared to TRF and ViBiDSampler, our method228

outputs better visual quality and boundary satisfaction.229

4.3 Discussion230

4.3.1 Irreversible motion231

Our method leverages the video model’s bias when generating the reversed frames, whereas the232

previous methods are counter to the bias by flipping the frame. To support the claim, we present233

empirical evidence in Fig. 8. Specifically, we compare the frames near the end of video with234

irreversible motion, the flares in firework. Our method successfully generates the natural fading of235

firework flares. Whereas, TRF and ViBiDSampler output unnatural shrinkage of the flares, which are236

reversed dynamics. The results demonstrate the superiority of the proposed approach in generating237

realistic motions compared to the previous approach.238

4.3.2 Video length239

Our method generates frames in an autoregressive manner, enabling the generation of bounded videos240

of arbitrary length. However, as the video length increases, the generated frames gradually deviate241

from initial boundary frames. Accordingly, we further explore the deviation of context as the length242

of video increases. As shown in Fig. 9, we conduct the ablation study on video lengths for looped243

video generation. In the case of a short video with 20 frames, the generated frames maintain the244

initial context of input image, preserving the background and overall scene. However, for a longer245

video with 100 frames, a gradual shift in context is observed. Specifically, as the frames progress, the246

dancing couple dominates the scene where the stage gradually changes with the emerge of focused247
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Figure 10: Output frames to explore context gap. Abrupt change between intermediate frames is
observed in the middle of video caused by the context gap. Red rectangle highlights the discontinuity.

lighting. Despite the deviation, the frames gradually reconstructs the original scene in the end. The248

results demonstrate that generation of long video accompanies the contextual shifts by the weakened249

long-range dependency. Additionally, it is notable that our method successfully generates a coherent250

bounded video even in the presence of the deviation.251

4.3.3 Context gap252

Figure 11: MAE between frames. Gray region
indicates the input bound frames.

To evaluate the effectiveness of the proposed253

method, we conduct an ablation study exploring the254

context gap in the output video with single bound.255

We compare our method with two variants, one with-256

out consideration of global context (‘Without mix-257

ing’) and another using a naive combination of diffu-258

sion time schedules for forward and backward gen-259

eration (‘Naive AR’). Compared to Naive AR, the260

consideration of context improves temporal consis-261

tency in both directions, as shown in Fig. 10. How-262

ever, a discontinuity emerges in the middle, where263

the transition occurs between the sequences. This264

is caused by the context gap of the two directions,265

leading to abrupt changes in motion and background.266

In contrast, our method successfully resolves the dis-267

continuity, showing the consistent video frames.268

For the quantitative comparison, we measure mean absolute error (MAE) between intermediate269

frames. As shown in Fig. 11, three videos shows similar trends of MAE in gray region, as they follow270

the given bound. However, each method shows distinct tendency after the bound. Considering the271

context enhances the temporal consistency, lowering the MAE. However, a large peak emerges in272

the middle, which indicates the context gap between the two directions. When the mixing is applied,273

the peak is removed, which indicates a smooth transition. The results demonstrate that our method274

successfully outputs coherent bounded video, effectively mitigating the context gap.275

5 Conclusion276

We proposed a novel bidirectional autoregressive approach for bounded video generation. First, we277

suggest context-aware autoregressive denoising which generates frames in both forward and reversed278

directions, effectively leveraging the video model’s forward generation bias. Moreover, we introduce279

the context gradient to capture the contextual information of frames. Then, we propose a novel280

method, to reduce the context gap between the two directions. Our method is capable of generating281

bounded videos of arbitrary length while satisfying the boundary conditions. Experimental results282

verify the outperformance of our method compared to the related methods. Moreover, we present283

inherent limitation of previous approach by comparing the results for irreversible motion. We further284

conduct the ablation studies to validate the effectiveness of each component in our method.285
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A Additional results358

We provide additional results for both identical bound and dynamic bound in Fig. 12 and Fig. 13. Our359

method successfully generates the bounded video with high quality while satisfying the boundary360

condition.361

B Experimental settings362

B.1 Key observation363

We present autoregressive reversed frame generation as key observation in the main paper. The364

implementation of the experiment is based on the publicly released code of FIFO3, which generates365

open-ended video in forward direction by autoregressive manner. Accordingly, the hyperparameters366

are identical to the baseline. For the experiment to generate the reverse direction, we reversed two367

key components in FIFO[11], the time schedule and a direction of lookahead denoising. We utilized368

publicly released video model, videocrafter2[3]. The experiments are conducted by H100 GPUs.369

The text conditions for the Figure 4 in main paper are "A dark knight riding horse in glass land" and370

"scubar diver exploring the shipwreck underwater", which are selected to visualize the successful371

generation of irreversible motions in reversed direction.372

B.2 Proposed method373

We follow the experimental setting of TRF[5] which suggests three categories for bounded video374

generation task. Specifically, for single bound task, we generate a video conditioned on a text375

prompt and set as the bound. For two bound task, following ‘Dynamic Bound’ in TRF, we sample376

frames from the generated video with moving object. For the prompts in Fig. 7 in main paper, we377

used "Cinematic photo of a heron taking off in slow motion from still water" for single bound, and378

"Cinematic photo of a tiger charging through dense jungle in a monsoon, leaves and water flying with379

each step" for two bounds.380

Hyperparameters381

Our implementation is based on implementation of FIFO. Hence, we share the hyperparameters and382

settings with the baseline. DDIM[19] schedule with 64 inference steps is utilized. The length of383

videos is 50 frames, unless specified. We defined the frame kernel k(i, j) and mixing ratio R(i, j) as384

gaussian kernel. Specifically, each function is defined as follows:385

k(i, j) = ck exp{−(i− j)2/γk} (9)

R(i, j) = λRcR exp{−(i− j)2/LγR} (10)

where γk, γR, λR are the hyperparameter, L is the total length of video sequence. ck and cR are386

the normalizing constant. In our method, each parameters are set as γk = 16, γR = 4, λR = 0.5.387

Specifically, k(i, j) has a length of 16 and is normalized so that the sum of each element becomes388

one. The weight to update ∆z by moving average is set as 0.6 for single bound, and 0.8 for two389

bounds.390

Evaluation metric391

We evaluate videos in three different perspective, which are temporal consistency, visual quality392

of frames and satisfaction of the given boundary. To evaluate the temporal consistency, we utilize393

the temporal flickering and background consistency suggested in VBench[9], which calculate the394

difference between frames in mean absolute error(MAE) using pixel values and CLIP features,395

respectively. Specifically, in both metrics, higher value indicates more smoothness in video, where396

the maximum value is 1.397

To evaluate the visual quality, we present FV D16[17, 20] and FID[7]. Specifically, following the398

previous work[17], we compare the output with input context of 16 frames, sampling the 16 frames399

in the generated video. For FID, we calculate the metric between the input bound frames and the400

output frames. We calculate the metric using 400 generated videos, where the prompts are randomly401

generated by GPT-4[1].402

3https://github.com/jjihwan/FIFO-Diffusion_public
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Figure 12: Additional result for looped video with identical bound.The selected frame indices are {0,
12, 25, 37, 49}

To evaluate the boundary satisfaction, we simply calculated the MAE difference of frames in pixel403

space. Specifically, for the looped video with single bound, we calculate the MAE between the first404

frame and the last frame. In case of bounded video with two different bounds, we calculate the MAE405

for the start condition, as the difference between the last context frame and the first generated frame.406

For instance, the last context frame is 16 and the other one is 17, for the input context length of 16 in407

the generated video. Then, we obtain the MAE for end condition, as the difference between the last408

frame of generated video and the first frame of the end context. The values are normalized with the409

maximum pixel value, 255. Lower value indicates better boundary satisfaction.410
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Figure 13: Additional result for looped video with dynamic bound. The selected frame indices are {4,
19, 34, 49}

C Denoising process411

C.1 Inference stages412

Our method has three different phases for video generation, since the sequence length gradually413

shortens as generated frames are removed from both sides. We provide a detailed explanation of each414

phase.415

Phase 1: No overlaps between X and Y416

In this phase, we consistently add new frames to each set, X and Y . The new frames are initialized417

by the mixing of frame predictions, as described in the main paper. If the size of X and Y exceed the418

model’s input frame length, lookahead denoising is applied independently to each side. We do not419

alternate the direction of lookahead denoising in this phase.420

421

Phase 2: No more new frames422

In this phase, there is no more new frame to initialize. Now, we apply alternating lookahead423
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Figure 14: Lookahead denoising in both forward and reverse direction for bounded video generation.
In our method, we apply the lookahead denoising only once for each denoising step, alternating the
direction for each diffusion step.

denoising suggested in Section D, to denoise the sequence while considering the generation bias for424

both directions.425

426

Phase 3: Sequence shorter than model input size427

In this phase, lookahead denoising is no longer applied, as the sequence can be denoised without the428

latent partitioning. Generated frames are not removed from the sequence. Instead, they are input to429

the model along with the remaining noisy frames, to provide the model an additional information.430

The generated frames are not updated, as they already completed the diffusion generation process.431

D Lookahead denoising432

We utilized lookahead denoising along with the latent partitioning to make noise prediction be more433

accurate, as suggested in the previous method, FIFO. Specifically, as shown forward paritions in434

Fig. 14, the sequence is separated by several partitions to reduce the noise level difference between435

the intermediate frames. Moreover, lookahead denoising is utilize to further improve the accuracy of436

noise prediction, as the model predicts the noise, considering the cleaner frames.437

For bounded video generation in our work, we utilize lookahead denoising in both the forward and438

reverse directions. Specifically, as illustrated in Fig. 14, we alternate the direction of lookahead439

denoising at each step of the diffusion process. Lookahead denoising impose the generation bias to440

align frames with the respect of direction of denoising. By leveraging both directions, our method441

improves the temporal consistency of the generated bounded video.442

E Limitations and Potential negative impact443

Our method preserves the context to generate coherent bounded video by the mixing strategy.444

Therefore, if there is big content difference between the bounds, the output video may presents445

degraded transition between the two sequences. For the social impact, as most of generative methods446

share, the video generation by the proposed work may induce a social disinformation by creating447

realistic fake videos. Moreover, there is risk of generating videos with harmful contents.448
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Answer: [Yes]453
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Guidelines:456
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals464

are not attained by the paper.465

2. Limitations466

Question: Does the paper discuss the limitations of the work performed by the authors?467

Answer: [Yes]468

Justification: We present the discussion on the limitation in Section E.469

Guidelines:470

• The answer NA means that the paper has no limitation while the answer No means that471

the paper has limitations, but those are not discussed in the paper.472

• The authors are encouraged to create a separate "Limitations" section in their paper.473

• The paper should point out any strong assumptions and how robust the results are to474

violations of these assumptions (e.g., independence assumptions, noiseless settings,475

model well-specification, asymptotic approximations only holding locally). The authors476

should reflect on how these assumptions might be violated in practice and what the477

implications would be.478

• The authors should reflect on the scope of the claims made, e.g., if the approach was479

only tested on a few datasets or with a few runs. In general, empirical results often480

depend on implicit assumptions, which should be articulated.481

• The authors should reflect on the factors that influence the performance of the approach.482

For example, a facial recognition algorithm may perform poorly when image resolution483

is low or images are taken in low lighting. Or a speech-to-text system might not be484

used reliably to provide closed captions for online lectures because it fails to handle485

technical jargon.486

• The authors should discuss the computational efficiency of the proposed algorithms487

and how they scale with dataset size.488

• If applicable, the authors should discuss possible limitations of their approach to489

address problems of privacy and fairness.490

• While the authors might fear that complete honesty about limitations might be used by491

reviewers as grounds for rejection, a worse outcome might be that reviewers discover492
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4. Experimental result reproducibility513
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perimental results of the paper to the extent that it affects the main claims and/or conclusions515

of the paper (regardless of whether the code and data are provided or not)?516

Answer: [Yes]517
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dataset, or provide access to the model. In general. releasing code and data is often530

one good way to accomplish this, but reproducibility can also be provided via detailed531

instructions for how to replicate the results, access to a hosted model (e.g., in the case532
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either be a way to access this model for reproducing the results or a way to reproduce543
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17



Answer: [No]555

Justification: We provide pseudo code in Section 3.2 and detailed settings in Section B, to556

support the reproducibility of our method. In case of code, we will release it publicly after557

the acceptance, due to the internal rules regarding on intellectual property of our institution.558

Guidelines:559

• The answer NA means that paper does not include experiments requiring code.560

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/561

public/guides/CodeSubmissionPolicy) for more details.562

• While we encourage the release of code and data, we understand that this might not be563

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not564

including code, unless this is central to the contribution (e.g., for a new open-source565

benchmark).566

• The instructions should contain the exact command and environment needed to run to567

reproduce the results. See the NeurIPS code and data submission guidelines (https:568

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.569

• The authors should provide instructions on data access and preparation, including how570
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Question: For each experiment, does the paper provide sufficient information on the com-618
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Answer: [Yes]621
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deviation from the Code of Ethics.640
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• The conference expects that many papers will be foundational research and not tied656
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image generators, or scraped datasets)?674

Answer: [No]675

Justification: Our work do not release any data or models.676

Guidelines:677

• The answer NA means that the paper poses no such risks.678

• Released models that have a high risk for misuse or dual-use should be released with679

necessary safeguards to allow for controlled use of the model, for example by requiring680

that users adhere to usage guidelines or restrictions to access the model or implementing681

safety filters.682

• Datasets that have been scraped from the Internet could pose safety risks. The authors683

should describe how they avoided releasing unsafe images.684

• We recognize that providing effective safeguards is challenging, and many papers do685

not require this, but we encourage authors to take this into account and make a best686

faith effort.687
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• The answer NA means that the paper does not involve crowdsourcing nor research with749

human subjects.750
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16. Declaration of LLM usage759

Question: Does the paper describe the usage of LLMs if it is an important, original, or760

non-standard component of the core methods in this research? Note that if the LLM is used761

only for writing, editing, or formatting purposes and does not impact the core methodology,762

scientific rigorousness, or originality of the research, declaration is not required.763

Answer: [Yes]764

Justification: As our method is targeting for text-conditioned video generation, we employ765

LLM to randomly generate the motion instructions, as clarified in section 4.1.766

Guidelines:767

• The answer NA means that the core method development in this research does not768

involve LLMs as any important, original, or non-standard components.769

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)770

for what should or should not be described.771
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