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Abstract

Recently, various video generation methods have been proposed, as diffusion mod-
els demonstrate their superior ability to generate high-quality videos. Specifically,
autoregressive approaches have been suggested to enable the generation of videos
of arbitrary length. However, the methods are not suitable for bounded video
generation, as they generate open-ended videos. Moreover, recent methods for
bounded video generation rely on flipping frames to satisfy the boundary constraint
imposed by the ending frame. However, this approach contradicts the inherent bias
of video models to generate frames in forward direction, limiting the generation
capability. Accordingly, we propose a novel autoregressive approach for bounded
video generation. Specifically, we introduce a context-aware bidirectional denois-
ing method that progressively generates frames in both forward and backward
directions while considering the frame context. Then, we propose a method to
mitigate the context gap between the two directions, to ensure smooth and coherent
transition between the sequences. Experimental results demonstrate the superiority
of our approach over previous methods. Specifically, as our method aligns with
the video model’s forward generation bias, the output videos present more realistic
motion dynamics. Moreover, our method outputs frames with enhanced visual
quality by maintaining a consistent frame length for model input. More results can
be found in our project pag

1 Introduction

Recent advances in video diffusion models have revolutionized the video generation method, achiev-
ing remarkable visual quality and creative flexibility conditioned by text. The proposed video diffusion
models are based on various architectures such as U-Net[2, [3} [10, 24]]and transformers[6} [13 [14].
Both architectures output high-quality videos with enhanced temporal coherence and semantic
alignment. However, they generate an entire video sequence at once, treating the temporal axis as
an additional dimension of the diffusion latent vector. This significantly increases computational
burden, making long video generation challenging. Accordingly, autoregressive approaches have
been suggested, which generate video frames progressively. The methods leverage previous frames as
a conditioning factor for later frames, which is able to generate videos with flexible length. This ap-
proach facilitates long-range dependencies, allowing for consistent motion propagation throughout the
sequence[ 18l 21} 26]. However, training the video model requires extensive computational resources
and access to refined video datasets. To overcome the limitation, training-free methods| 11} 17, [22]]
have recently been proposed to enhance long-range dependencies without requiring enormous training
resources. Despite their advantages, these methods primarily focus on open-ended video generation,
making them unsuitable for bounded video generation.

Thttps://sites.google.com/view/cpag-video
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Bounded video generation refers to the task of
synthesizing a video sequence that adheres to
predefined bounds. This task is essential for
various applications, including video interpola-
tion, video completion, and content extension
while maintaining temporal coherence. Recent
methods[3} 23} [25] proposed to fuse forward and
reversed frames to satisfy the boundary frame
condition. However, existing approaches utilize
frame-flipping techniques, where reversed frames Interdependency
are synthesized by flipping the generated forward
frames. This introduces inherent limitations, as
flipping the output frames encounters the conflict
to the model’s bias to generate frames in forward
direction. For instance, irreversible motions are
generated with unrealistic dynamics, since the method flips output frames to obtain time-reversal
video sequence. Moreover, the methods have constraints on video length, as they fuse sequences of
fixed length. Specifically, the mismatch of input sequence length between the training and inference
limits the model’s generation capability, as suggested in the prior work [[17]].

Forward direction Reversal direction

[ ST - e Y

Figure 1: Concept of the proposed bidirectional
autoregressive approach, addressing context gap.

To address the limitations, we propose a novel autoregressive approach for bounded video generation.
Specifically, as shown in Fig.[T} our method aims to generate coherent bounded video, considering the
interdependency between the two sequences. The proposed method consists of two parts. First, we
suggest a context-aware bidirectional denoising method. Specifically, inspired by Stein Variational
Gradient Descent (SVGD), we present context gradient that exchanges score information with
neighboring frames. Then, we denoise frames by the diffusion steps, scheduled for bidirectional
generation. Second, we propose a method to reduce the context gap between the two directions. To
be specific, a content generated in each direction may diverge unless the interdependency between
the two sequences is explicitly addressed. Accordingly, we mitigate the context gap by the proposed
frame initialization strategy and the mixing of context gradients. Consequently, our method effectively
guides diffusion process to generate videos with improved consistency while satisfying boundary
conditions. Compared to previous methods based on the frame-flipping technique, our method aligns
with the model’s bias when generating frames in reversal direction. As a result, our method generates
videos with more realistic dynamics. Fig. 2] summarizes a main conceptual difference of our work
compared to the previous approach. Our contributions are summarized as follow:

* We suggest a novel bidirectional autoregressive approach for bounded video generation,
which aligns with the video model’s forward generation bias.

* We propose a context gradient which enables to exchange the score information with
neighbor frames, and present a context-aware bidirectional denoising method.

* We explore the context gap between the two directions, and propose a novel method to
mitigate the context gap to generate coherent videos.

* We empirically demonstrate the proposed method, highlighting the effectiveness of our
autoregressive approach for bounded video generation.

2 Related works

2.1 Video diffusion model

Recently, many research work consistently demonstrate the superior ability of the diffusion model for
video generation. [12, 3} 16l [14]]. Moreover, to address the growing demand for long video generation,
various methods have been proposed, including autoregressive approach that enables the generation of
videos of arbitrary length. Specifically, [21} 26] proposed to obtain autoregressive models by training
with designed objective. However, by the excessive resources for training models, training-free
methods have been proposed. Gen-L-Video[22] proposes temporal co-denoising, which uses the
average of multiple predictions to generate one frame. FreeNoise[l7]] suggests a novel temporal
attention matrix to retain long-range correlation. FIFO[11] proposes iterative diagonal denoising
to generate video frames in autoregressive manner. Specifically, FIFO suggests latent partitioning
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Figure 2: Comparison of our method with previous approach. (a) Proposed autoregressive approach.
(b) Previous methods based on flipping frames to generate reversal sequence.

and lookahead denoising to reduce the training-inference gap. However, previous methods generate
open-ended videos, which is not suitable for bounded video generation. In this paper, we propose a
novel autoregressive method for bounded video generation, which satisfies the boundary conditions
while allowing the generation of video in arbitrary length.

2.2 Bounded video generation

With the rise of video diffusion models, various methods have been proposed for bounded video
generation. Generative Inbetweening[23]] fine-tunes the projection matrix, and interpolate forward
and reversed frames. Specifically, it generates reversed frames by rotating the self-attention matrix
and flipping the output frames. However, to avoid the computational cost of fine-tuning, training-free
methods have emerged. TRF[3] obtains reversed frames by flipping the generated outputs, and
linearly interpolates with forward frames. Moreover, authors suggest noise injection for smooth
connectivity. ViBiDSmapler[25]] proposed a novel diffusion denoising step that combines forward and
reversal frame generation process. Specifically, the method denoises the frames in forward direction,
and flips the frames to predict noise in reversal direction. Moreover, DDS guidelines[4] is applied to
enforce the boundary condition. However, video models are inherently biased to generate frames in
forward temporal direction, making such approaches misaligned with the model’s natural behavior.
Moreover, they fuse the sequences with fixed length, which constraints the flexibility of video length.
As introduced in [17]], the difference of input frame length degrades the model’s generation capability.
To address the limitation, we propose an autoregressive approach to generate reversed frames by
adding more noise in desired direction. Moreover, our method enables to generate videos of arbitrary
length with consistent input frame length, which is restricted in the previous methods.

3 Main Contribution

3.1 Key observation: Autoregressive reversed frame generation
Generation direction

Previous methods[5, 23| 23] synthesize reversed
videos by flipping frames generated in forward di- - m
rection, which is counter to the model’s bias. To

address the issue, we approach the generation of re- ﬂ
yersed frame in autoregr.essive generqtilon. Specif- e
ically, inspired by the diagonal den.(n'smg[lﬂl 18], o= po—

we explore a reversed diagonal denoising as shown T
in Fig. 3] which applies more noise in the preced- r-1
ing frames. This provides an information of future :
frames to the past frames, enabling the generation of
reversed frame without opposing the model’s inherent
forward-generation bias.

Figure 3: Diffusion time of reversed diagonal

The results demonstrate that the method successfully denoising. Dark colors refer high noise levels.

generates the reversed frames. As shown in Fig.[3]
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Figure 4: Reversed frame generation by the reversed diagonal denoising. The negative numbers
indicate the difference in frame index from the input image.

the motion of the running horse is irreversible, requiring the movement of its legs to align with the
running direction. The method generates a natural motion of a running horse, while satisfying the
boundary condition of the end frame. Similarly, the other irreversible motions are generated with
realistic dynamics, such as air bubbles rising from a scuba diver. Based on this observation, we
propose a novel autoregressive approach for bounded video generation, which aligns with the video
model’s forward-generation bias. More experimental details are provided in Appendix.

3.2 Main method

3.2.1 Context-aware bidirectional autoregressive denoising

We introduce context-aware denoising method, x Y
inspired by Stein Variational Gradient De-
scent (SVGD) [12, [13]. Specifically, SVGD
provides the gradient for particle = to approximate (a)
target distribution p as follows: ) -
Az = Ez’qu(a:’) [k(xa x,)vx/ logp(x/) + vx’k(xv :El)]

ey
For known distribution ¢, and positive definite ker- —_ —
nel k. The SVGD provides a direction toward high- Accumulate Az Accumulate Azy

density region using the other particles z’, preventing

collapse by pushing each other with the second term. Figure 3: (a) Update of index set &, . (b)

Accumulation of the gradient Azxy, Azy
We suggest context-aware gradient, inspired by

SVGD. For the video generation, closely located frames should exchange the score update more than
the far one. Accordingly, we set g as the distribution of preceding frames in the same diffusion time
step. Moreover, we exclude the second term, as the video model already prevents the collapse. For
the DDIM where z; = \/a;2 + /1 — o€, we present the gradient for forward direction, Azy, in
clean manifold as follows:

Azx(i) =) g(i,§) A% )
Jj<i
where ¢ and j are frame indices, g is monotonic decreasing function for the frame distance, and AZ;
is the predicted update of preceding frames z; in clean manifold. The gradient for reverse direction
Azy is defined in similar way. For implementation, we update the gradients by moving average
that satisfies g, as shown in Fig.[5] Thereby, AZ captures contextual information for each time step.
Additionally, we apply DDS[23] to the frame for input context, to satisfy the boundary condition.

Then, we set time schedule to generate frames in both directions in autoregressive manner. As
illustrated in Fig. [5] we add more noise in the direction of the generation, which is inspired by
previous method[[11} [18]]. Specifically, the model ¢ denoises the sequence {zf}Jlle, where each

frame zy has different diffusion time 7( f) as follows:

T(f) = max{f + (T — lCTX)> T} (3)
21 = 0z Y A7)} =) 4)
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Figure 6: Overall diagram of proposed context-aware bidirectional generation. We extract the context
gradient Azy, Azy from each sequence, and utilize them to generate the new frames.

where f is frame index, F’ is input frame length of model, /o7 x is the length of input context, and
T is maximum number of time. Here, we denote a set of indices for each sequence as X and ),
respectively. X’ and ) are updated for each denoising step by removing the index of fully denoised
frame and adding the index of new frame. If there are no new frames to add, we apply lookahead
denoising[[T1]]. We provide details for the denoising process in the Appendix.

3.2.2 Reducing context gap for coherent video

In the proposed bidirectional generation method, main challenge becomes to address context gap
between the forward and reversed frames. Specifically, as each direction retains its own frame context,
discrete transition emerges in the middle when the two sequences are combined to generate bounded
video. Hence, the interdependency between the two directions should be considered to generate
coherent video. Accordingly, we propose a method for a smooth transition between the two sequences.
Specifically, we propose the method for frame initialization, and the context gradient to guide frames
to consider the context in global perspective. For clarity, in this section, we denote the diffusion
vector z as x for forward direction, and y for the backward direction. First, we design the mixing
ratio R(4, j) which determines the ratio of information exchange between the two sequences in global
view. Similarly, we define the frame kernel k(i, j) to consider local context. Then, we initialize x;
using the predicted of frames in set X', ), as follows:

Eia=0=r) Y k@i, m)Em+r Y k(i,n)jn Q)
mex ney
z; ~ N(Zi—1,07) Q)

for maximum noise level o, mixing ratio r = R(4, j) and frame kernel k. Likewise, #J; is sampled in
similar way. It is simple, but effective, as the interpolation in the noisy manifold results the semantic
interpolation in clean manifold(8] [T9]. Next, we suggest a context gradient which provides a
guidance considering the global context. Following the linearity of equation (2), we obtain the context
gradient as:

AZ; = (1 —r)Azxy +rAzy (7
Ag; = (1—-r)Azy +rAzy )

which provides guidance to each frame during diffusion process. To clarify our method, we present
pseudo code in Algorithm I]
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Algorithm 1 Autoregressive generation for bounded video

Input: Forward set X, reverse set )V, frame latents {z f}f:o
Output: Denoised latents {z f}l;z_ll, updated X, Y
// Bounded diagonal desnoising //

1: Get time steps {7} %_,

2: Fori € X, predict {Ij%z} = ¢({zi}, {7(2)}) using Az;
3: Forj € Y, predict {2;} = ¢({z;},{7(4)}) using AZ;
4: Update 7(f)

// Tnitialization of next frames i’, j' //

5: Getex = 3, cx k(@ ,m)2m, ey = 3, oy, k(§', 1) 20 and r = R(i', j")
6: Zy 1 =(1—7r)cx +recy

70 Zigi=01—-r)ey+rex

8: Sample z;; ~ N (Z;_1,07) and zjs ~ N (Zjr41,07)
9: Update gradients Azx, Azy by moving average
10: Add new indices: X.add(i’) , J.add(j")
11: if min 7(f) = 0 then
12: Output frames: 2o, 21,
13: Delete indices: X'.remove(0), ).remove(L)

4 Experimental Results

4.1 Implementation Details

Our method requires an initial set of frames for input context, as we progressively generates video
frames. In our experiment, we generate a short video, and use it as an initial context. Our code is
based on the official implementation of FIFO[l We compare our method with previous training-free
methods. First, we compare our method with FIFO[[11], a state-of-art autoregressive method. Then,
we select TRF[S] and ViBiDSampler[25]] which are recent methods for bounded video generation.
Specifically, we adjust the input frame length for TRF and ViBiDSampler, as the methods generates
whole frames at once, which are not the autoregressive manner. For the experiment of the bounded
video generation, we conducted experiments for two tasks, where the first task is generation of
looped video by identical bound, and the second task is the generation of smooth video by the two
bounds[5]]. We randomly create 200 prompts by GPT-4[1] for each task. We utilized the publicly
release videocrafter2 [3]] model for the experiments. The experiments are conducted by H100 GPUs.
For the comparison, we evaluate the videos in three aspects, temporal consistency, visual quality and
boundary satisfaction. We selected Temporal Flickering, Background Consistency in VBench [9] to
evaluate temporal smoothness, and FVD[20] and FID[7] to compare perceptual quality of frames.
For boundary satisfaction, we calculate mean absolute error (MAE) of frames in pixel space. More
details can be found in the Appendix.

4.2 Bounded video generation

We present the result of bounded video generation in Fig. [/} which demonstrates the superiority of our
method compared to the previous methods. First, for the experiment on identical bound, our method
successfully generates the looping video with high visual quality, while satisfying the input bounds.
Specifically, our method generates the detailed and realistic motion, such as splashing water and
natural movement of heron flapping the wings. In case of FIFO[L1], the method results open-ended
video, which fails to satisfy the bound. In contrast, TRF[5] generates bounded videos following
the input bound. However, the output shows blurry texture and motion. Specifically, the texture of
splashing water and the motion of the wings become overly smooth. ViBiDSampler[25] outputs
finer details than TREF, but still blurry compared to our method. Here, the degradation in visual
quality arises from a mismatch of input sequence length used for training and inference, also shown
in previous work[[17]]. In contrast, our approach maintains the consistent length by autoregressive
approach, effectively avoiding the degradation.

*https://github.com/jjihwan/FIFO-Diffusion_public
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Figure 7: Main result of bounded video generation. (a) Looped video generation by identical bound.
(b) Bounded video generation conditioned on two bounds, distinct start and end frames.

Table 1: Quantitative comparison for bounded video generation. Our method successfully generate
bounded video with enhanced visual quality.

Temporal Consistency Visual quality Boundary satisfaction
Fﬁ‘zg?;? A C]f)?lcsli‘if:‘;‘i‘;dT FVDig|l FID|  MAE(Loop) MAE(Start)  MAE(End)
TRF 0.957 0.966 591.44 52.75 0.066 0.137 0.122
ViBiD 0.952 0.967 429.28 35.59 0.074 0.139 0.114
FIFO 0934~ 0961 386.72° 3028 0202 0.152 =~ 0235
Ours 0957 0969 39376 3161 0076 0.097 0101

213 Second, for the experiment for two bounds, our method also outperforms the other method in terms
214 both of visual quality and boundary satisfaction. Our method shows detailed texture for both object
215 and background, specifically the texture of leaves in jungle and the splashing water. Moreover, our
216 method successfully generate frames in between two bounds with enhanced temporal consistency. On
217 the contrary, FIFO fails to satisfy the ending bound, as it generates frames autoregressively without
218 any constraints. In case of TREF, the result satisfies the bounds, maintaining the temporal coherent
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Figure 9: Ablation study for video length. We observe the deviation of context according to the
length of video.

between the frames. However, the frames demonstrate low visual quality with smoothed texture,
which is coherent result for looped video generation. Moreover, the method fails to generate the
realistic motion of tiger. Likewise, ViBiDSampler results frames with better visual quality and motion
than TRF, but worse than the proposed method. Both previous methods suffers from degraded visual
quality due to the difference in input sequence length between training and inference. In contrast,
the proposed autoregressive approach avoids the degradation by allowing the consistent input length.
Overall, the results in both experiments demonstrates the superiority of our method.

Further, we provide quantitative comparison in Table [T Compared to FIFO, our method outputs
enhanced temporal consistency by considering the frame context. Moreover, boundary conditions are
satisfied in our method, which is not in FIFO. Compared to TRF and ViBiDSampler, our method
outputs better visual quality and boundary satisfaction.

4.3 Discussion
4.3.1 Irreversible motion

Our method leverages the video model’s bias when generating the reversed frames, whereas the
previous methods are counter to the bias by flipping the frame. To support the claim, we present
empirical evidence in Fig. [8] Specifically, we compare the frames near the end of video with
irreversible motion, the flares in firework. Our method successfully generates the natural fading of
firework flares. Whereas, TRF and ViBiDSampler output unnatural shrinkage of the flares, which are
reversed dynamics. The results demonstrate the superiority of the proposed approach in generating
realistic motions compared to the previous approach.

4.3.2 Video length

Our method generates frames in an autoregressive manner, enabling the generation of bounded videos
of arbitrary length. However, as the video length increases, the generated frames gradually deviate
from initial boundary frames. Accordingly, we further explore the deviation of context as the length
of video increases. As shown in Fig. |9, we conduct the ablation study on video lengths for looped
video generation. In the case of a short video with 20 frames, the generated frames maintain the
initial context of input image, preserving the background and overall scene. However, for a longer
video with 100 frames, a gradual shift in context is observed. Specifically, as the frames progress, the
dancing couple dominates the scene where the stage gradually changes with the emerge of focused
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Figure 10: Output frames to explore context gap. Abrupt change between intermediate frames is
observed in the middle of video caused by the context gap. Red rectangle highlights the discontinuity.

lighting. Despite the deviation, the frames gradually reconstructs the original scene in the end. The
results demonstrate that generation of long video accompanies the contextual shifts by the weakened
long-range dependency. Additionally, it is notable that our method successfully generates a coherent
bounded video even in the presence of the deviation.

4.3.3 Context gap

To evaluate the effectiveness of the proposed pyrs

method, we conduct an ablation study exploring the . /\ /\

context gap in the output video with single bound.  Mapn® o 7 /\\//\ 2\
We compare our method with two variants, one with- o1 \’\—/\/ ‘
out consideration of global context (‘Without mix- 03 ' ‘ 7

ing’) and another using a naive combination of diffu-  \yiout 0.2 A
sion time schedules for forward and backward gen-  mixing \_\V‘—J_/ S
eration (‘Naive AR’). Compared to Naive AR, the N 1 | |
consideration of context improves temporal consis- 03
tency in both directions, as shown in Fig. How- gy 92
ever, a discontinuity emerges in the middle, where 01 W
the transition occurs between the sequences. This 5 10 55 36 0 =)
is caused by the context gap of the two directions, Frame index

leading to abrupt changes in motion and background.
In contrast, our method successfully resolves the dis-
continuity, showing the consistent video frames.

Figure 11: MAE between frames. Gray region
indicates the input bound frames.

For the quantitative comparison, we measure mean absolute error (MAE) between intermediate
frames. As shown in Fig. [T} three videos shows similar trends of MAE in gray region, as they follow
the given bound. However, each method shows distinct tendency after the bound. Considering the
context enhances the temporal consistency, lowering the MAE. However, a large peak emerges in
the middle, which indicates the context gap between the two directions. When the mixing is applied,
the peak is removed, which indicates a smooth transition. The results demonstrate that our method
successfully outputs coherent bounded video, effectively mitigating the context gap.

5 Conclusion

We proposed a novel bidirectional autoregressive approach for bounded video generation. First, we
suggest context-aware autoregressive denoising which generates frames in both forward and reversed
directions, effectively leveraging the video model’s forward generation bias. Moreover, we introduce
the context gradient to capture the contextual information of frames. Then, we propose a novel
method, to reduce the context gap between the two directions. Our method is capable of generating
bounded videos of arbitrary length while satisfying the boundary conditions. Experimental results
verify the outperformance of our method compared to the related methods. Moreover, we present
inherent limitation of previous approach by comparing the results for irreversible motion. We further
conduct the ablation studies to validate the effectiveness of each component in our method.
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A Additional results

We provide additional results for both identical bound and dynamic bound in Fig.[T2]and Fig.[I3] Our
method successfully generates the bounded video with high quality while satisfying the boundary
condition.

B Experimental settings

B.1 Key observation

We present autoregressive reversed frame generation as key observation in the main paper. The
implementation of the experiment is based on the publicly released code of FIFqﬂ which generates
open-ended video in forward direction by autoregressive manner. Accordingly, the hyperparameters
are identical to the baseline. For the experiment to generate the reverse direction, we reversed two
key components in FIFO[11]], the time schedule and a direction of lookahead denoising. We utilized
publicly released video model, videocrafter2[3]]. The experiments are conducted by H100 GPUs.
The text conditions for the Figure [d]in main paper are "A dark knight riding horse in glass land" and
"scubar diver exploring the shipwreck underwater”, which are selected to visualize the successful
generation of irreversible motions in reversed direction.

B.2 Proposed method

We follow the experimental setting of TRF[S]] which suggests three categories for bounded video
generation task. Specifically, for single bound task, we generate a video conditioned on a text
prompt and set as the bound. For two bound task, following ‘Dynamic Bound’ in TRF, we sample
frames from the generated video with moving object. For the prompts in Fig.[/|in main paper, we
used "Cinematic photo of a heron taking off in slow motion from still water" for single bound, and
"Cinematic photo of a tiger charging through dense jungle in a monsoon, leaves and water flying with
each step" for two bounds.

Hyperparameters

Our implementation is based on implementation of FIFO. Hence, we share the hyperparameters and
settings with the baseline. DDIM[19] schedule with 64 inference steps is utilized. The length of
videos is 50 frames, unless specified. We defined the frame kernel k(¢, j) and mixing ratio R(i, j) as
gaussian kernel. Specifically, each function is defined as follows:

k(i, j) = exexp{—(i — )%/} 9)
R(i,j) = Arcrexp{—(i — 5)*/Lyr} (10)

where vk, VR, Ar are the hyperparameter, L is the total length of video sequence. cj and cp are
the normalizing constant. In our method, each parameters are set as v, = 16,vg = 4, A\g = 0.5.
Specifically, k(i, 7) has a length of 16 and is normalized so that the sum of each element becomes
one. The weight to update Az by moving average is set as 0.6 for single bound, and 0.8 for two
bounds.

Evaluation metric

We evaluate videos in three different perspective, which are temporal consistency, visual quality
of frames and satisfaction of the given boundary. To evaluate the temporal consistency, we utilize
the temporal flickering and background consistency suggested in VBench[9]], which calculate the
difference between frames in mean absolute error(MAE) using pixel values and CLIP features,
respectively. Specifically, in both metrics, higher value indicates more smoothness in video, where
the maximum value is 1.

To evaluate the visual quality, we present F'V D14[17, 20] and FID[7]. Specifically, following the
previous work|[[17]], we compare the output with input context of 16 frames, sampling the 16 frames
in the generated video. For FID, we calculate the metric between the input bound frames and the
output frames. We calculate the metric using 400 generated videos, where the prompts are randomly
generated by GPT-4[1]].

*https://github.com/jjihwan/FIFO-Diffusion_public
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Figure 12: Additional result for looped video with identical bound.The selected frame indices are {0,
12,25, 37,49}

To evaluate the boundary satisfaction, we simply calculated the MAE difference of frames in pixel
space. Specifically, for the looped video with single bound, we calculate the MAE between the first
frame and the last frame. In case of bounded video with two different bounds, we calculate the MAE
for the start condition, as the difference between the last context frame and the first generated frame.
For instance, the last context frame is 16 and the other one is 17, for the input context length of 16 in
the generated video. Then, we obtain the MAE for end condition, as the difference between the last
frame of generated video and the first frame of the end context. The values are normalized with the
maximum pixel value, 255. Lower value indicates better boundary satisfaction.
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Figure 13: Additional result for looped video with dynamic bound. The selected frame indices are {4,
19, 34, 49}

C Denoising process

C.1 Inference stages

Our method has three different phases for video generation, since the sequence length gradually
shortens as generated frames are removed from both sides. We provide a detailed explanation of each
phase.

Phase 1: No overlaps between A" and )

In this phase, we consistently add new frames to each set, X and ). The new frames are initialized
by the mixing of frame predictions, as described in the main paper. If the size of X and ) exceed the
model’s input frame length, lookahead denoising is applied independently to each side. We do not
alternate the direction of lookahead denoising in this phase.

Phase 2: No more new frames
In this phase, there is no more new frame to initialize. Now, we apply alternating lookahead
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Figure 14: Lookahead denoising in both forward and reverse direction for bounded video generation.
In our method, we apply the lookahead denoising only once for each denoising step, alternating the
direction for each diffusion step.

denoising suggested in Section|D} to denoise the sequence while considering the generation bias for
both directions.

Phase 3: Sequence shorter than model input size

In this phase, lookahead denoising is no longer applied, as the sequence can be denoised without the
latent partitioning. Generated frames are not removed from the sequence. Instead, they are input to
the model along with the remaining noisy frames, to provide the model an additional information.
The generated frames are not updated, as they already completed the diffusion generation process.

D Lookahead denoising

We utilized lookahead denoising along with the latent partitioning to make noise prediction be more
accurate, as suggested in the previous method, FIFO. Specifically, as shown forward paritions in
Fig.[I4] the sequence is separated by several partitions to reduce the noise level difference between
the intermediate frames. Moreover, lookahead denoising is utilize to further improve the accuracy of
noise prediction, as the model predicts the noise, considering the cleaner frames.

For bounded video generation in our work, we utilize lookahead denoising in both the forward and
reverse directions. Specifically, as illustrated in Fig. [T4] we alternate the direction of lookahead
denoising at each step of the diffusion process. Lookahead denoising impose the generation bias to
align frames with the respect of direction of denoising. By leveraging both directions, our method
improves the temporal consistency of the generated bounded video.

E Limitations and Potential negative impact

Our method preserves the context to generate coherent bounded video by the mixing strategy.
Therefore, if there is big content difference between the bounds, the output video may presents
degraded transition between the two sequences. For the social impact, as most of generative methods
share, the video generation by the proposed work may induce a social disinformation by creating
realistic fake videos. Moreover, there is risk of generating videos with harmful contents.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper clarifies the contribution of our research in the abstract and the
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We present the discussion on the limitation in Section [E]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include any theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We present detailed experimental settings in Section[d.T|and Section [B]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We provide pseudo code in Section [3.2and detailed settings in Section [B] to
support the reproducibility of our method. In case of code, we will release it publicly after
the acceptance, due to the internal rules regarding on intellectual property of our institution.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide details in experimental settings in Section .| and Section [B]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not presented, as it requires large computational resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We clarify the type of GPUs for the experiment in Section[4.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the discussion on the societial impacts in Section [E]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: Our work do not release any data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credited and clarified the licenses of the models in section 4.1]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: After acceptance, we will provide the documented details when we release the
code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our experiments are not related to human subject.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our experiments are not related to human subject.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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759 16. Declaration of LLLM usage

760 Question: Does the paper describe the usage of LLMs if it is an important, original, or
761 non-standard component of the core methods in this research? Note that if the LLM is used
762 only for writing, editing, or formatting purposes and does not impact the core methodology,
763 scientific rigorousness, or originality of the research, declaration is not required.

764 Answer: [Yes]

765 Justification: As our method is targeting for text-conditioned video generation, we employ
766 LLM to randomly generate the motion instructions, as clarified in section {.1]

767 Guidelines:

768 * The answer NA means that the core method development in this research does not
769 involve LLMs as any important, original, or non-standard components.

770 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
771 for what should or should not be described.
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