UNSUPERVISED LEARNING VIA NETWORK-AWARE
EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data clustering, the task of grouping observations according to their similarity, is
a key component of unsupervised learning — with real world applications in di-
verse fields such as biology, medicine, and social science. Often in these fields
the data comes with complex interdependencies between the dimensions of anal-
ysis, for instance the various characteristics and opinions people can have live on
a complex social network. Current clustering methods are ill-suited to tackle this
complexity: deep learning can approximate these dependencies, but not take their
explicit map as the input of the analysis. In this paper, we aim at fixing this blind
spot in the unsupervised learning literature. We can create network-aware em-
beddings by estimating the network distance between numeric node attributes via
the generalized Euclidean distance. Differently from all methods in the literature
that we know of, we do not cluster the nodes of the network, but rather its node
attributes. In our experiments we show that having these network embeddings is
always beneficial for the learning task; that our method scales to large networks;
and that we can actually provide actionable insights in applications in a variety of
fields such as marketing, economics, and political science. Our method is fully
open source and data and code are available to reproduce all results in the paper.

1 INTRODUCTION

Finding patterns in unlabeled data — a task known as unsupervised learning — is useful when we
need to build understanding from data Hastie et al.|(2009). Unsupervised learning includes grouping
observations into clusters according to some criterion represented by a quality or loss function|Gan
et al.| (2020) — data clustering. Applications range from grouping of genes with related expression
patterns in biology Ranade et al.|(2001), finding patterns in tissue images in medicine [Filipovych
et al.[(2011), or segment customers for marketing purposes.

Popular data clustering algorithms include DBSCAN [Ester et al.| (1996), OPTICS |Ankerst et al.
(1999), k-Means, and more. Modern data clustering approaches rely on deep learning and specif-
ically deep neural networks |Aljalbout et al.| (2018); |Aggarwal et al.| (2018)); Pang et al.| (2021));
Ezugwu et al.| (2022), or denoising with autoencoders Nawaz et al.| (2022); Cai et al.| (2022). How-
ever, these approaches work in (deformations of) Euclidean spaces — where dependencies between
the dimensions of the analysis can be learned Mahalanobis| (1936); Xie et al.[(2016) —, but the
problem to be tackled here is fundamentally non-Euclidean Bronstein et al.| (2017). Graph Neural
Networks (GNN) Scarselli et al.| (2008)); Wu et al.|(2022)); Zhou et al.|(2020a)) work in non-Euclidean
settings, and they are the focus of this paper.

To see why, consider product adoption in a social network — with an example in Figure[I] We want to
find product clusters depending on the people who buy them. However, the purchase decision of each
person is influenced by their acquaintances in a complex social network. By using the information
in the social network, we could cluster what could have appeared as otherwise independent vectors.
In Figure[T] products (a) and (b) are clearly related to each other and so are products (c) and (d).

To perform this clustering task we need to generate network-aware embeddings: to use the network’s
topology as the space in which observations live, which is the basis to estimate their similarities and,
ultimately, their clusters. This is the main objective of this paper: to cluster node attributes on a
complex network. We base our solution on previous research that established ways to estimate the

(a) (b) (© (d)

Figure 1: A toy example of product adoption in a social network. Nodes are people, connected to
their friends. Node color determines how strongly they adopt a product (dark = high engagement,
light = low engagement). (a-d) Different products.

distance |Coscia et al.| (2020)); |(Coscial (2020; [2022) and (co)variance (correlation) |Coscial (2021b);
Devriendt et al.|(2022) between numeric node attributes on a complex network.

The contributions of this paper are threefold. First, our problem definition is innovative. GNNs al-
most universally share the assumption that the entities worth analyzing are the nodes of the network,
and that their attributes refer to the same entity as the node. This is not the case here: node attributes
are entities in their own right, and the nodes of the graph represent the dimension of the analysis, not
the observations. As a result, when used in tasks related to clustering, GNNs are mostly used to find
clusters of nodes|Bo et al.|(2020); Tsitsulin et al.| (2020); Bianchi et al.| (2020); [Zhou et al.| (2020b).
GNN-based clustering seeks to find node embeddings [Perozzi et al.| (2014b)); Hamilton et al.[(2017),
but we are interested in finding node attribute embeddings. When node attributes are taken into
account in GNNs, they always serve the purpose of aiding the classification of nodes rather than
clustering the attributes themselves [Perozzi et al.| (2014a); Zhang et al.| (2019); Wang et al.| (2019));
Lin et al.| (2021)); \Cheng et al.|(2021);|Yang et al.| (2023), which is not the objective here.

GNN clustering is an evolution of the classical problem of community discovery [Fortunato| (2010);
Rossetti & Cazabet| (2018)); [Fortunato & Hric| (2016). To the best of our knowledge, there are no
known cases of algorithms dedicated to cluster observations whose dimensions can be mapped on a
complex network structure by using that network structure to generate embeddings. The community
discovery literature shares with GNN clustering the use of node attributes to classify the nodes
Leskovec et al.| (2010); |Yang et al. (2013); [Bothorel et al.| (2015); |Chunaev| (2020) or provide a
ground truth for the communities [Peel et al.|(2017), not to cluster the attributes themselves.

Second, we create a pipeline integrating a distance measure between observations on a graph with a
full data clustering process. To the best of our knowledge, this is the first pipeline directly addressing
the problem we want to study: to cluster node attributes.

Finally, we show in our experimental section that our node attribute clustering pipeline performs bet-
ter than the alternatives on synthetic data and real world data with a ground truth. Having network
embeddings is always beneficial for the learning task and can enhance dimensionality reduction
techniques such as t-distributed Stochastic Neighbor Embedding (tSNE) by providing a more accu-
rate depiction of the complex space in which the observations live. Our network embeddings can
also improve deep learning techniques such as graph autoencoders. We also show that calculating
network embeddings with our technique is scalable and we present a few case studies showing how
our method can be applied in such diverse fields as macroeconomics, politics, and marketing.

The code and data to reproduce our results is available as supplementary material and on the wetﬂ
2 METHODOLOGY

2.1 DATA MODEL

The framework, illustrated in Figure 2] needs two main components: a graph G and the set of
observations O we want to classify into clusters.

"[URL redacted for double blind review]

Data Model Graph Autoencoder Distances tSNE Clustering

Figure 2: Our full workflow. Red colors track the flow of the information coming from the graph,
and blue colors track the information coming from the observations.

The graph G = (V, E) is composed by a set of nodes V' and a set of edges E C V' x V. Each
edge is a pair of nodes (u,v) € V. The edges can be weighted, i.e. they can be triples (u, v, w),
with w € R being any non-negative weight. The weight represents the capacity of an edge Coscia
(2021a), meaning that the higher the weight the closer the two connected u, v nodes are. We can
build network embeddings on multi-layer networks (Coscial (2022), networks with multiple different
qualitative types of edges. This means that an edge could be represented by a quadruple (u, v, w,t),
with ¢ € T representing the type (layer) of the edges.

One necessary requirement is that G must have a single connected component: all pair of nodes in
G needs to be reachable via paths through the edges of G. The embeddings cannot be calculated
in networks with disconnected components. We also need the absence of self-loops, i.e. edges
connecting a node to itself. For simplicity, we work with undirected graphs, i.e. (u,v) = (v, u).

As for O this is a set of observations or data points. Each observation o € O is a vector of length
|[V| —ie. itis a node attribute assigning a value for each node v € V. One can consider V as
being the dimensions of each observation in O and G being an object that describes the complex
interdependencies between these dimensions.

2.2 PROBLEM DEFINITION

We now formally define the problem we are intending to solve, as it is different from the classical
approach of graph neural networks and graph clustering.

Definition 1 (Problem Definition). Let G = (V, E) be a connected undirected graph, with V' being
the nodeset and E C V' x V. Let O be a set of numerical vectors of length |V| — the attributes of
the nodes of G. Find the function f : G x O — P returning the partition P such that arg min, § =
f(G,0), é being the function calculating the distance between pairs of observations on G.

In other words, we want to find the partition P of O such that the graph distance § over G of
observations within the same group in P is minimized — excluding trivial solutions that put each
observation in a singleton cluster. This definition hinges on d: the ability to calculate the graph
distances between two 01,02 € O. There are many possible non-trivial options for ¢, and the next
section provides a reasonable one as one of the main contributions of this paper.

2.3 NETWORK DISTANCES

One key step to perform unsupervised learning via clustering is to estimate the distances between the
observations. That is, given observations 0, and o2, we want to have a function d,, ,, quantifying
the distance between them. Sufficiently close observations may be part of the same cluster.

One could get better results by transforming observations in O so that their noisy estimates can be
better handled by ¢ — see Section Here instead we consider the fact that one could choose a
different ¢ function that better conforms to one’s expectation of proximity between observations.
The simplest case is using the Euclidean distance, which assumes that all dimensions used to record
observations in O are independent and equally important. Here, we assume that observations in O
live in a complex space with interdependencies between the dimensions of analysis mapped by a
graph G. If this assumption is correct, then the distance between 01 and 02 needs to take G into
account: to estimate how far two observations are we need to know how to traverse G to move

from the o1 position to the o, position in this complex space. We want to calculate a Generalized
Euclidean (GE) distance, that can take any possible dimension interdependency into account.

Notation-wise, our functions becomes d,, ,.G, since it requires G' to be estimated. For this paper,
do; .00.c¢ 1S based on a solution |Coscial (2020) to the node vector distance problem [Coscia et al.
(2020). In GE, one can use the pseudoinverse Laplacian (L) to calculate the effective resistance
between two arbitrary 0, and oy vectors. The Laplacian matrix is L = D — A, with A being the
adjacency matrix of G and D being the diagonal matrix containing the degrees of the nodes of G:

501,027G = \/(01 - 02)TL+(01 — 02).

Previous work shows that this formula gives a good notion of distance between o, and o, on a
network |Coscial (2020). For instance, it can recover the infection and healing parameters in a
Susceptible-Infected-Recovered (SIR) model by comparing two temporal snapshots of an epidemic.

Calculating L is computationally expensive, in the order of O(|V|?) but we do not need to compute
it explicitly, as we show in Section[3.4f We can also work with multilayer networks — networks with
multiple qualitatively different types of edges Kiveld et al. (2014); Boccaletti et al.| (2014) — by
defining a multilayer L. This is achieved by calculating the Laplacian of the supra-adjacency matrix
Porter| (2018); [Coscial (2022). We can define B as a |V| x |E| incidence matrix telling us which
node is connected to which edge. Then, L = BW BT, with W being the diagonal matrix containing
the weights of each edge e € E. In this case, E can contain both regular intra-layer edges as well as
the inter-layer couplings connecting nodes from one layer to nodes in the other layers.

2.4 CLUSTERING

Following Figure [2] we now describe all remaining components of the framework. Note that, with
the exception of the clustering step, none of the components is strictly speaking mandatory: each
can be removed and we can still cluster the data. However, each step performs a useful function and
has a role in improving the final result — as Section[3.2] shows.

The logical steps are: clean noise and then reduce the dimensions in O to get better-separated clusters
that are easier to find with a classical clustering algorithm. Both steps should use information from
G. For this reason, the first step (cleaning noise) is done via a Graph Autoencoder (GAE) [Kramer
(1991); |[Kipt & Welling| (2016b); and the second step (dimensionality reduction) via tSNE |Van der
Maaten & Hinton| (2008)) using GE as the spatial metric instead of a non-network metric.

2.4.1 CLEANING NOISE

An autoencoder (AE) creates embeddings generated with a deep neural network formed by an en-
coder and a decoder. Since for the hidden layers we use graph convolution Kipf & Welling| (2016a)
on G, the AE is actually a GAE. Our choice of graph convolution for the hidden layers — both en-
coder and decoder — is the GraphSAGE Hamilton et al.| (2017) operator, with SoftSign activation
function and a sigmoid normalization of the last layer of the decoder. The autoencoder is trained via
backpropagation using cross entropy loss. We could use different activation functions, and different
graph convolution approaches — for instance Graph Attention Networks|Velickovic et al.|(2017). We
picked our components as they are the ones performing the best in our validation.

2.4.2 DIMENSIONALITY REDUCTION

tSNE creates shallow embeddings and works best when reducing to a low number of dimensions
— here we set it to two. We could apply tSNE directly to the GAE output. However that would
mean that tSNE is seeking for the best representation of the data in an Euclidean space, which is
not appropriate because we know the dimensions of our observations are related to each other in G.
Luckily, the tSNE algorithm is agnostic to the function used to calculate the distance between two
observations. We can provide our GE function as the metric over which tSNE operates.

The role of GE is to take the complex interdependencies between dimensions expressed by the graph
G into account for tSNE. In this way, tSNE can optimize cluster separation in the complex space

defined by G. If the real clusters of O are correlated with G’s topology, using GE instead of any
other metric space will lead to a significant performance increase.

2.4.3 CLUSTER DETECTION

The last step is to perform the clustering itself. We choose DBSCAN [Ester et al.| (1996) due to its
simplicity, low time-complexity, and ability to find non-convex clusters of arbitrary shapes.

When refer to the full framework as GAE+GE+tSNE. If we do not perform the noise cleaning step,
then our framework becomes GE+tSNE. We can also use an Euclidean space to perform tSNE,
skipping the GE step and obtaining GAE+tSNE.

DBSCAN also needs to define in which metric space to operate — just like tSNE. So one could use
the GE metric space here as well. However, this cannot be done if we performed dimensionality
reduction with tSNE, because GE can only work on the original dimensions in G. For this reason,
a GAE+GE+SNE+GE is impossible. One could make a GAE+GE framework, skipping tSNE and
using GE directly in DBSCAN. However, in Section3.2] we show that the synergy between GE and
tSNE is strong and it is the factor that drives the performance.

Some of the components of our framework could be swapped with others, to maximize the perfor-
mance in specific settings. For instance, one could replace the GAE to clean noise with a generative
adversarial network |Creswell et al.| (2018), or tSNE to reduce dimensionality with principal com-
ponent analysis (PCA) or non-negative matrix factorization, or the DBSCAN clustering step with
OPTICS, k-Means or any other specialized clustering technique. However, this is not a relevant
dimension of analysis for this paper, because none of these alternative components could replace the
network embeddings we provide with GE, which is the fundamental contribution of this paper, and
this is why we do not test how much, e.g., using PCA instead of tSNE can improve the performance.

3 EXPERIMENTS

3.1 SETUP

To contextualize the performance of our framework in a network-aware clustering, we perform our
validation tests in two-steps. First, we investigate the performance of each method in isolation. The
methods we consider are either the various parts of our framework, or potential alternative methods.
To sum them up, the isolated components/baselines are (clusters are always extracted via DBSCAN):

* Baseline: clusters O using an Euclidean space (no network information, no O preprocess).
* GE: clusters O using the GE space.
» tSNE: clusters O by first reducing each observation to two dimensions using tSNE.

* N2V: clusters O multiplied by the node embeddings obtained from node2vec [Grover &
Leskovec| (2016) (we set p = ¢ = 1, making this equivalent to DeepWalk |Perozzi et al.
(2014b), since different p and g values did not lead to significantly different results).

* GAE: clusters O, after passing it through our graph autoencoder, described in Section [2.4]

Since these methods can be combined in a larger framework, as we do in Section @], in the second
step we do so. In practice, the second step is an ablation study where we investigate the effect of
removing each component from the framework. Since GAE is the method performing the best in
isolation, it is taken as the baseline for the second step. We aim to see that specifically the removal
of the GE component should have a negative impact on performance.

3.2 VALIDATION WITH SYNTHETIC DATA

In this section we create synthetic networks in which the data clusters are obvious and we test the
ability of our pipeline to recover them.

We create a stochastic blockmodel network (SBM) with | K'| communities, each containing 50 nodes.
The average degree of the nodes in the SBM is equal to 20. Each node has, on average d,,; connec-
tions pointing outside its own cluster and 20 — d,,,; connections pointing to inside the cluster. Each

Baseline == GE == tSNE ==N2V ==GAE == GE+tSNE GAE+tSNE N2V+tSNE GAE+GE+tSNE

1 e 1 — T 1 T 11—
08| 4 08 08| 4 08 —\—_\
—
L i 0.6 /\/— 0.6 /\/—
_ 06 _ 06 s H
z z T o4 < 04
0.4 4 0.4)
02 [E| 0.2
02 [1 0.2
8 0 ol v v
o L - o L L L L L 05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
0 05 1 15 2 25 3 0o 05 1 15 2 25 3
dout dout
o o
(b) () ()]
e e e e 1T 11—
~
08 08 f 1 08
- _ osp _ 06 /\/\ - 06 /\/\
= = = =
2 2 2 2
04t 04 1 04t
02 = 0.2 = 02
° - ol v ° . ol v
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
] I 10]
(e) ® (€9) (h)

Figure 3: The AMI score (y axis) of the various methods (line color). Average performance as the
line, standard deviation as the shaded area. x-axis from left to right increases: (a-b) observation
noise o; (c-d) network connections noise d,,;; (e-f) node count |V|; (g-h) observation number |O|.

observation o is a vector of length |V| = 50| K| and corresponds with a k, € K community in the
graph. The values in o are extracted from two random uniform distributions. The values correspond-
ing to nodes that belongs to k, comes from a random uniform in the domain [.5 : 1[, while values
corresponding to nodes from outside k, come from the domain [0 : .5[. Therefore, we expect that O
has | K| natural clusters C, with each ¢ € C' corresponding to a k € K — we can therefore evaluate
the clustering performance via the Adjusted Mutual Information (AMI) |Vinh et al.| (2009) between
the clusters we obtain and the pre-planted communities of the network. To estimate how resilient to
noise the methods are, we apply a gaussian noise to each o, coming from a normal distribution with
average zero and standard deviation o. The higher the o the more noise there is and the performance
of the clustering methods should decrease accordingly.

We investigate performance across different values of noise in the observations (o), noise in the
network structure (dy¢), size of the network (|V'|), and number of observations (|O|). For each
experiment we change the focus parameter keeping the others to their default values, which are:
o =1,dout = 2, |V| = 200, |O| = 300. We repeat each experiment for 10 independent runs and
we report average and standard deviation of the results.

We start by analyzing the effect of noise in the observations (¢). We start from Figure 3a] showing
the results with each method in isolation. First, all methods vastly outperform the baseline: in
this network setting, not knowing about the underlying network and assuming that dimensions are
unrelated leads to poor performance. The only exception is when o = 0: if there is no noise at all,
the network information is irrelevant. However, this is a wildly unrealistic scenario.

Second, the method performing by far better than anything else is GAE. As expected, performing
embeddings with a deep graph neural network is the current state of the art.

Finally, all other methods (tSNE, GE, and N2V) perform roughly in the same class. N2V has a
slight edge, showing how even shallow graph embeddings are well performing. However, tSNE
dimensionality reduction is powerful enough to be on par performance with other network-aware
methods, even if it does not consider any network information at all.

We now move to the second step (Figure Bb), testing our composite framework. We replicate the
GAE performance, to contextualize between the two analysis. For high levels of noise, there is
no large difference between the various methods, with the full GAE+GE+tSNE framework ranking
first. However, if noise is not strong enough to completely swamp the signal in O, then the best
performing method is actually the combination of GE with tSNE. This is a genuine synergy between
the two methods, because adding the GAE to them lowers performance, and the GAE+tSNE method
is strictly lower than GAE+GE+tSNE. In this scenario, the GE component is fundamental to achieve
optimal performance, unless high levels of noise make GAE+GE+tSNE the preferred option.

We now analyze what happens when the communities in G become less well defined, i.e. the
expected degree of a node pointing outside its community (d,,;) grows. This will make the clusters
harder to find. In the first step (Figure [3¢), we see that the methods that do not take the network as
input (baseline, tSNE) are not affect, as expected. GAE is also resilient to network noise. Both N2V
and our GE instead are affected by the weakening of communities.

Moving to the second step (Figure [3d), once again, GE+tSNE is the preferred method: GAE does
not give a significant contribution to the full framework (GAE+GE+tSNE) and the GE component
is necessary — as GAE+tSNE is inferior to GE+tSNE , just like we observed in the previous test.

What if the underlying network grows? This is normally not a problem when clustering nodes — at
least for methods that do not have a resolution limit|Fortunato & Barthelemy|(2007) — however here
this is a problem. The reason is because we are not clustering nodes, but observations that live in a
network. The nodes of the network represent the dimensions of the space in which these observation
live. As a consequence, a larger network will lead to a harder clustering tasks, because it is harder
to cluster high dimensional data than low dimensional one.

Figure shows this principle, as we increase |V'|. tSNE’s performance degrades even if it does not
take G into account, because a higher |V'| means more dimensions that need to be summarized. All
methods degrade their performance: N2V does not get as much information out of its random walks
on the overall structure, and GAE has more dimensions to handle in the encoding-decoding layers.

The sole exception is our GE method, which is indifferent to |V'| and offers constant performance.
While this is not useful for smaller networks, it gets more and more significant as |V'| grows. As
a result, Figure [3__f] shows that GE+tSNE is by far the best method, which is even more relevant
considering that most real world networks tend to be large. GAE dominates the method when
introduced and so the full framework’s performance degrades with larger networks.

A final question centers on the effect of the number of observations |O)|. It is possible that increasing
the size of O improves performance, as the methods have more and more data to identify the latent
patterns. However, in this case neither Figure [3g| nor Figure [3h| show an appreciable difference for
each method as |O|. The ranking of the composite frameworks in the second step is maintained,
with GE+tSNE performing best overall — a constant across all tests that we run.

In Appendix B we sum up the tests quantitatively, showing how GE+tSNE is the preferred approach.

3.3 VALIDATION WITH REAL WORLD DATA

We use real world data with ground truth to validate the performance of the network embeddings
with unknown and noisy data generation processes. We use two case studies using the Trade Atlas
and the Little Sis datasets. Since all methods except Baseline and GE have random fluctuations, we
repeat the experiments 25 times and we show the distribution of the resulting performances.

3.3.1 TRADE ATLAS

The data originates from the United Nations Comtrade datasets. We obtained it through the Har-
vard dataverse jat Harvard University| (2019). After the data cleaning procedure discussed in the
Appendix, we obtain G as a simple undirected network connecting two countries with the total trade
volume in either direction across all traded products. Each vector in O is a product and the values in
the vector are the amount exported by each country for this product. To deal with the highly skewed
nature of this data, we take the logarithm of export values and we standardize it.

We can use the network embeddings to cluster O using the information in G. The objective is to
reconstruct the product category, under the assumption that countries specialize their productive
activities according to the knowledge they have, which is more easily transferred across products in
the same macro category — this is the base of economic complexity theory Hausmann et al.|(2014).

From Figure [fa] we can see that GAE works extremely poorly, perhaps because the relationship be-
tween the node attributes and the graph structure is non-linear and too complex. GE network embed-
dings, by themselves, are underwhelming, actually performing on par with the baseline. However,
using them to provide the embeddings to calculate tSNE provides a significant performance boost to
tSNE alone, showing their effectiveness when combined with dimensionality reduction techniques.

Baseline

== GE

= tSNE

w— N2V

0.3

0.25 -

Method

(a)

AMI

== GAE

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
()

== GE+tSNE

GAE+tSNE

0

T SR N N S S
AMI

Method

(b

0.2

0.18
0.16 -
0.14
0.12 -
0.1
0.08 -
0.06
0.04 -
0.02 -

N2V+tSNE

GAE+GE+tSNE

0

8

Method

(©

Figure 4: The AMI score (y axis) for the different methods (x axis and color). The boxplots show
the 10th, 25th, 75th, and 90th percentile, along with the average performance. We sort the methods
left to right in ascending average performance order. (a) Trade Atlas, (b) Little Sis, (c) Tivoli.

3.3.2 LITTLE SIS

For this validation, we want to infer a politician’s ideology by looking at the social network of their
political donors. The data originates from LittleSisLittleSis| (2022)) a nonprofit organization tracking
family, social, and work links between worldwide elite people. We perform several rounds of data
cleaning, which are described in the Appendix. We end up with a social network G of political
donors with 529 nodes and 871 edges. In O, each observation is a member of the current US
Congress. The values in their vectors are the amount they received in campaign donations from each
of the 529 donors in G.

In this case, the ideology is represented by their party affiliation — either Republican or Democrat
— which we can use for validation (how well can our cluster reconstruct the US Congress parties?).
Figure [b] shows the result. Once more, GE by itself performs on par only with the Euclidean
baseline — which is to say, close to zero AMI. Among all the isolated methods, GAE has the best
average performance, but it is highly erratic: it can return highly aligned (AMI > 0.3) or highly
misaligned (AMI ~ 0) clusters depending on random fluctuations.

This is where our GE network embeddings can help. Combining GAE with tSNE alone improves
the average performance, but retains the erratic behavior. Instead, if we add the GE space to the
tSNE embeddings and GAE, we obtain the highest average (and maximum) performance, with a
much reduced variance.

3.3.3 TIvVOLI

For our application, we focus on the task of product recommendations to customers. The data comes
from the amusement park Tivoli: G is a network of rides connected by weighted edges counting how
many people holding a given pass rode on both (Figure [AT). Pass information composes O, which
is a vector of how many times each pass checked in a given ride — details on data cleaning are in the
Appendix. Each pass has a type — regular, school, children, etc — which is our ground truth. The
objective is to find clusters of passes aligned with their type. If successful, it means we can infer
the type a pass behavior corresponds to, meaning we can create new product bundles and suggest to
new customers the best product upgrade they should purchase, given their behavior in the park so
far.

Figure4c|shows the result. Again, the best performing method is the GE when combined with tSNE,
showing that we can get better recommendations for pass purchases to customers.

3.4 EFFICIENCY

Calculating the network-aware embeddings via GE can scale to large networks. There is no need to
calculate L™ explicitly. One can estimate the distance between two node attribute vectors by using
Laplacian solvers |Spielman & Teng| (2004)); [Koutis et al.| (2011); Spielman & Teng (2014), which
brings the time complexity of the method down to near linear time regime — in number of nodes.

102 10! T

T
y ~ x078

10!
100
101
102
1073

104

10—5 L L L L 10—2 L L
102 103 104 10° 108 108 107 108

VI [E|

(@) (b)

Figure 5: The runtimes (y axis) for benchmark networks of growing sizes (x axis). Actual runtimes
in bright red, best fit in dark red.

To show this, we perform two experiments. We specifically use the gaussian elimination Laplacian
solver Kyng & Sachdeva (2016), but the difference in runtime with other solvers is negligible. We
create a benchmark using stochastic blockmodels as we did for the experiments in Section [3.2] We
use a Julia implementation and run the experiments on a Intel Xeon W-11955M CPU at 2.60GHz.

First, we fix the number of clusters and average degree to 4 and we create larger and larger SBMs
in number of nodes — from 100 to 2, 000, 000. Figure[5] shows the result. From Figure [5a] we have
confirmation that the runtime grows faster than |V|, but decisively less than |V |2. Given the data we
have, the best empirical fit of the runtime scaling is O(|V|}-31).

We also fix |V| = 50, 000 and test the effect on the runtime of having denser and denser network, by
increasing | E|. From Figure[Sb] we see that the runtime is actually sublinear in terms of |E|. Given
the data we have, the best empirical fit of the runtime scaling is O(|E|*7®)

Note that using the Laplacian solvers is not necessarily the best option. It is advisable to do so only
for large networks of, say, |V| > 10,000. Below that size, it might be a better idea to actually
calculate L™ and cache it. Since L is the same for any given G, if G is small but there are many
attributes for which one wants to calculate their GE distances, then re-using L™ would be faster than
using the Laplacian solvers.

4 CONCLUSIONS

We introduce a new way to perform data clustering. Specifically, we create the notion of network
embeddings: to create embedding of node attributes. In this scenario, the observations are values
attached to nodes, and the underlying graph determines the relationships between the dimensions of
analysis. This is a new type of unsupervised learning that has hitherto received little attention.

In the paper we show how to calculate network embeddings using effective resistance and the gen-
eralized Euclidean distance. We use these embeddings in a pipeline that cleans node attribute data
via a graph autoencoder, performs dimensionality reduction using tSNE, and finally detects clusters
of node attributes using DBSCAN. Experiments show that the network embeddings, by themselves,
are not particularly useful, reaching performances achievable with tSNE without any notion of the
underlying graph. However, when combined in the larger pipeline, they lead to significant improve-
ments in performance over the state of the art. These improvements are consistent across various
analytic scenarios. Our case studies point at a number of potentially interesting applications of this
new data clustering problem and technique.

Potentially, this is the first step in the creation of a new sub-branch of data clustering. Future works
include: the refinement of the pipeline, by optimizing each of its components; the exploration of
new ways of calculating network embeddings, using other generalized network distances techniques
Coscia et al.|(2020); and new applications, deepening the exploration of our case studies with domain
experts, who can interpret and contextualize our results.

REPRODUCIBILITY STATEMENT

All code and data necessary to reproduce the main results of the paper are publicly available as
supplementary materials for this paper and at [URL redacted for double blind review]. This includes
everything needed to reproduce all subfigures from Figures [3] 4] and[5]

REFERENCES
Charu C Aggarwal et al. Neural networks and deep learning. Springer, 10(978):3, 2018.

Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel Cremers. Clus-
tering with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jorg Sander. Optics: Ordering points
to identify the clustering structure. ACM Sigmod record, 28(2):49-60, 1999.

The Growth Lab at Harvard University. International Trade Data (SITC, Rev. 2), 2019. URL
https://doi.org/10.7910/DVN/H8SFD2.

Dany Bahar, Ricardo Hausmann, and Cesar A Hidalgo. Neighbors and the evolution of the compar-
ative advantage of nations: Evidence of international knowledge diffusion? Journal of Interna-
tional Economics, 92(1):111-123, 2014.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International conference on machine learning, pp. 874—883.
PMLR, 2020.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In Proceedings of the web conference 2020, pp. 1400-1410, 2020.

Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesus Gémez-Gardenes,
Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin. The structure and
dynamics of multilayer networks. Physics reports, 544(1):1-122, 2014.

Cécile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Micenkova. Clustering attributed
graphs: models, measures and methods. Network Science, 3(3):408—444, 2015.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18—42,
2017.

Jinyu Cai, Shiping Wang, Chaoyang Xu, and Wenzhong Guo. Unsupervised deep clustering via
contractive feature representation and focal loss. Pattern Recognition, 123:108386, 2022.

Jiafeng Cheng, Qianqian Wang, Zhigiang Tao, Deyan Xie, and Quanxue Gao. Multi-view attribute
graph convolution networks for clustering. In Proceedings of the twenty-ninth international con-
ference on international joint conferences on artificial intelligence, pp. 2973-2979, 2021.

Petr Chunaev. Community detection in node-attributed social networks: a survey. Computer Science
Review, 37:100286, 2020.

Michele Coscia. Generalized euclidean measure to estimate network distances. In Proceedings of
the International AAAI Conference on Web and Social Media, volume 14, pp. 119-129, 2020.

Michele Coscia. The atlas for the aspiring network scientist. arXiv preprint arXiv:2101.00863,
2021a.

Michele Coscia. Pearson correlations on complex networks. Journal of Complex Networks, 9(6):
cnab036, 2021b.

Michele Coscia. Generalized euclidean measure to estimate distances on multilayer networks. ACM
Transactions on Knowledge Discovery from Data (TKDD), 16(6):1-22, 2022.

10

https://doi.org/10.7910/DVN/H8SFD2

Michele Coscia and Frank MH Neffke. Network backboning with noisy data. In 2017 IEEE 33rd
international conference on data engineering (ICDE), pp. 425-436. IEEE, 2017.

Michele Coscia, Andres Gomez-Lievano, James Mcnerney, and Frank Neffke. The node vector
distance problem in complex networks. ACM Computing Surveys (CSUR), 53(6):1-27, 2020.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE signal processing magazine, 35
(1):53-65, 2018.

Karel Devriendt, Samuel Martin-Gutierrez, and Renaud Lambiotte. Variance and covariance of
distributions on graphs. SIAM Review, 64(2):343-359, 2022.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226-231, 1996.

Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abualigah, Jeffery O Agushaka,
Christopher I Eke, and Andronicus A Akinyelu. A comprehensive survey of clustering algo-
rithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research
prospects. Engineering Applications of Artificial Intelligence, 110:104743, 2022.

Roman Filipovych, Susan M Resnick, and Christos Davatzikos. Semi-supervised cluster analysis of
imaging data. Neurolmage, 54(3):2185-2197, 2011.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75-174, 2010.

Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceedings of
the national academy of sciences, 104(1):36-41, 2007.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics reports,
659:1-44, 2016.

Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering: theory, algorithms, and applications.
SIAM, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855-864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Ricardo Hausmann, César A Hidalgo, Sebastian Bustos, Michele Coscia, and Alexander Simoes.
The atlas of economic complexity: Mapping paths to prosperity. Mit Press, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Mikko Kiveld, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A
Porter. Multilayer networks. Journal of complex networks, 2(3):203-271, 2014.

Ioannis Koutis, Gary L Miller, and Richard Peng. A nearly-m log n time solver for sdd linear
systems. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 590—
598. IEEE, 2011.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233-243, 1991.

11

Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast, sparse,
and simple. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 573-582. IEEE, 2016.

Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison of algorithms for net-
work community detection. In Proceedings of the 19th international conference on World wide
web, pp. 631-640, 2010.

Zhiping Lin, Zhao Kang, Lizong Zhang, and Ling Tian. Multi-view attributed graph clustering.
IEEE Transactions on knowledge and data engineering, 2021.

LittleSis. Littlesis is a free database detailing the connections between powerful people and orga-
nizations, 2022. Data retrieved from https://littlesis.org/bulk_data. Last update
date Nov 15th, 2022.

PC Mahalanobis. On the generalized distance in statistics. National Institute of Science of India,
1936.

Marriam Nawaz, Zahid Mehmood, Tahira Nazir, Rizwan Ali Naqvi, Amjad Rehman, Munwar Igbal,
and Tanzila Saba. Skin cancer detection from dermoscopic images using deep learning and fuzzy
k-means clustering. Microscopy research and technique, 85(1):339-351, 2022.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1-38, 2021.

Leto Peel, Daniel B Larremore, and Aaron Clauset. The ground truth about metadata and community
detection in networks. Science advances, 3(5):¢1602548, 2017.

Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sanchez, and Emmanuel Miiller. Focused cluster-
ing and outlier detection in large attributed graphs. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 1346-1355, 2014a.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701-710, 2014b.

Keith T Poole and Howard Rosenthal. Congress: A political-economic history of roll call voting.
Oxford University Press, USA, 2000.

Mason A Porter. What is... a multilayer network. Notices of the AMS, 65(11):1419-1423, 2018.

Koustubh Ranade, Mau-Song Chang, Chih-Tai Ting, Dee Pei, Chin-Fu Hsiao, Michael Olivier,
Robert Pesich, Joan Hebert, Yii-Der I Chen, Victor J Dzau, et al. High-throughput genotyping
with single nucleotide polymorphisms. Genome Research, 11(7):1262-1268, 2001.

Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: a survey. ACM
computing surveys (CSUR), 51(2):1-37, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pp. 81-90, 2004.

Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and
Applications, 35(3):835-885, 2014.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Miiller. Graph clustering with graph
neural networks. arXiv preprint arXiv:2006.16904, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

12

https://littlesis.org/bulk_data

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10-48550, 2017.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th annual international
conference on machine learning, pp. 1073-1080, 2009.

Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed graph
clustering: A deep attentional embedding approach. arXiv preprint arXiv:1906.06532, 2019.

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: foundation,
frontiers and applications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4840—4841, 2022.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478-487. PMLR, 2016.

Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in networks with node
attributes. In 2013 IEEE 13th international conference on data mining, pp. 1151-1156. IEEE,
2013.

Shuigiao Yang, Sunny Verma, Borui Cai, Jiaojiao Jiang, Kun Yu, Fang Chen, and Shui Yu. Varia-
tional co-embedding learning for attributed network clustering. Knowledge-Based Systems, 270:
110530, 2023.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heteroge-
neous graph neural network. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 793-803, 2019.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. Al open, 1:57-81, 2020a.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in neural information
processing systems, 33:4917-4928, 2020b.

A DATA CLEANING

A.1 TRADE ATLAS

In this dataset, exporters connect to importers, recording the value of each good (SITC classification)
traded each year. We filter out countries and products below a minimum trade volume threshold. We
select data from 1993 until 2013, keeping only countries that appear exporting/importing at least
one product in each observed year. We project over the time dimension, resulting in an exporter-
importer-product tripartite network summing all trade links in the 1993-2013 period, to smooth
out fluctuations. Our final dataset connects 160 exporters/importers through the 699 products they
traded.

A.2 LITTLE SIS

To create a meaningful G network, we select a set of valid donors, which will be the nodes of G.
To be a valid donor, an entity (which can be a person or an organization) must have donated at least
1,000 USD dollars to an elected member of the current (118th) US Congress. This donation must
be marked as “current” in the LittleSis data, or it has to be relatively recent — in 2020 or later. This
gives us a set of 1,376 potential donors.

We derive the edges of G in a two-step procedure. First, if two donors have a family (father, mother,
brother, etc) or social (spouse, friend, etc) link, we connect them. This generates 725 edges. Second,
two donors can be connected if they have a significant amount of indirect relationships: sitting on the
board for the same companies, being partners in the same ventures, etc. We only consider the edges

13

vini@gana

: .
Fatamo@@ha (viid) veter@iiierne oyrek@seten
Hyod@iviet Pa@en
pen L@orage
Ti‘k Drag.dene
Mo.1en
Had.erne L@s
SKa.den Tompi@rmet
Villa {@dera RUts nen Aslv.men FY‘.‘el
Det G . Tam Hmm.klbel =
usnkl. sellen
\ stier@met

‘ n

''''' atamo B (Famil
i \ salloff@noen Ka.e”
Svmgt.se[li

Figure Al: The network from the Tivoli dataset. Node size is proportional to the number of cus-
tomers taking the ride. Edge size and color is proportional to the number of customers taking both
rides (dark = high number, bright = low number).

that have a statistically significant weight, using the noise corrected backboning method |Coscia &
Neffke|(2017) — which is especially designed for exactly this type of data, with discrete edge weights
representing counts. This results in 300 additional edges.

Finally, since we can only calculate network embeddings on a connected graph, we select G’s giant
connected component. This results in a G with 529 nodes (donors) and 871 edges.

A.3 TIvoLIl

In this dataset, the graph G connects rides in the amusement park, with weighted edges counting
how many passes checked in on both rides. We have data on 34 rides — which is the number of nodes
in the network. The total number of passes from which we generate the network is 629k. We again
establish significance using the noise corrected backboning method |Coscia & Neffke|(2017). After
filtering, G contains 244 edges, which implies high density.

From Figure [AT] we can see that there is an interesting cluster structure. This is informative, as
the cluster on the right is predominantly composed by rides targeted to young children. The edge
weights are broadly distributed, so that using the weight information should help in exploiting the
topology of the network.

For O we sample around 600 passes. Each o € O is a vector telling how many times a given pass
checked in on a given ride. The label we want to predict is the type of the pass — a tour pass, a
premium tour pass, a kids ticket, etc. The sample is made randomly, but representatively of the
different pass types, so that the relative popularity of each pass type is respected. For instance, if %
of the passes are regular tour passes in the data, then % of the passes sampled are of the regular
type. We need to drop four pass categories that are not popular enough to be included in the sample,
leaving us with a total of seven categories to predict.

B SUMMARY PERFORMANCE

We sum up the validation from Section [3.2] in Table [AT] which shows how GE+tSNE is the best
approach across all dimensions. GE+tSNE is the preferred method to cluster observations of node
attributes on a network. This is true for all observation counts |O|, network sizes |V'|, and network
community noise levels d,,;. GE+tSNE is only matched by the state of the art (GAE) for high levels
of noise in the observations (o). In those cases, GAE could be preferred, although we would argue
that the GE+tSNE approach is simpler, as it does not require deep learning.

14

Method o dout V| |O]
Baseline 0.155 0.022 0.019 0.023
GE 0.278 0.226 0.189 0.219
tSNE 0.290 0.268 0.196 0.243
N2V 0.301 0322 0.238 0.328
GAE 0.442 0.605 0.449 0.603
GE+tSNE 0.514 0.853 0.823 0.871
GAE+GE+tSNE | 0.503 0.734 0.534 0.728
GAE+tSNE 0.487 0.696 0.517 0.707
N2V+tSNE 0.511 0.814 0.661 0.811

Table Al: The average performance of each method in Figure

(a) (b) (©

Figure A2: Some of the clusters we found on the Product Space. Nodes are products, edges connect
products co-appearing frequently in the same export baskets. Node color is the average export
volume for the countries in a given cluster.

C ADDITIONAL APPLICATIONS

C.1 MACROECONOMICS

In Section We show, during validation, how network embeddings can be used to reconstruct the
SITC classification of products traded in the world’s economy. It follows that network embeddings
can generate a new product classification, rather than reconstructing the already existing one. In this
section, we showcase that network embeddings can also solve the orthogonal problem: to classify
countries according to what they export.

To do so, we use as GG our reconstruction of the Product Space: a network connecting products if
they are co-exported in significant amounts by the same countries [Hausmann et al.[(2014). Rather
than using the original Product Space topology, we calculate our own using the network backboning
method, since we need it to focus only on the products and the time period we consider in this paper.
In this scenario, each observation in O is the total export basked of a country in the 1993-2013
period. Clusters in O highlight groups of countries with similar export baskets that occupy related
areas of the Product Space.

The clusters we find need validation from human experts to gauge their usefulness, since here we
do not have a ground truth for automatic validation. We discuss a few examples from Figure [AZ]
showcasing how our results could be used in macroeconomics.

Figure [AZa] shows cluster #2, which is composed by countries such as United Arab Emirates, Iraq,
Kuwait, Saudi Arabia, and so on. The figure shows the extreme concentration in export volume in a
handful of products: SITCs 333 (oil) and 341 (gas). We can contrast cluster #2 with cluster #17 in
Figure @ Cluster #17 is more diversified. It includes economies such as Germany, the UK, and
the USA. They occupy most of the Product Space, with diverse top exporter products such as SITCs
541 (pharmaceuticals), 781 (cars), and 776 (electronics).

15

Det Gyldneggdn

g - veterffihie
(%0 g -
T THR for
1A
2 DeMElyvénde.
e iy

\ fert
r\e‘-

rsifflen 10"

NAE ’\\ T TN ’\\
RS o RS
() (b) ©

Figure A3: Same legend as Figure Node color is determined by how much the ride is used in a
given cluster (red = above average, yellow = average, blue = below average).

Not all diversified countries fit the same mold, as they can focus on different areas of the Product
Space. An example is cluster #13 (Figure [A2c): it includes other large economies such as China,
Malaysia, Thailand, and so on. While diversified, this cluster is particularly strong in specific areas
of the Product Space, its top products being 776 (electronics), 752 (computer and parts), and 764
(telecommunication equipment).

Finally, note that clusters tend to be clustered geographically because neighbors tend to specialize in
the same products and have knowledge spillovers with their neighbors Bahar et al.|(2014). However,
not all clusters follow this logic if there are strong similarities that transcend geography. An example
is cluster #19 (not depicted) which groups Israel and Singapore, which combines the strengths of
cluster #17 (being strong on pharmaceuticals) and cluster #13 (being strong in telecommunication
equipment).

C.2 POLITICAL IDEOLOGY

In Section [3.3|we validate network embeddings by calculating the AMI between the clusters we can
extract with them and party memberships. Using the full GAE+GE+tSNE framework we can obtain
relatively high AGI values (> 0.4), which means there are still several representatives that are mis-
aligned. Here we zoom into these “errors” to see whether they actually carry valuable information
that is not captured by party membership.

While validating the entirety of the clusters requires a large expertise in political science, we can use
two cases to exemplify the values of the clustering “mistakes”.

The first is that of Henry Cuellar, who is the lone Democrat in an otherwise pure Republican cluster.
This should not be a surprise, because Cuellar is considered one of the most conservative Democrats
and he is part of the Blue Dog caucus, representing the center-right in the Democratic Party whose
members are mostly elected in Republican-leaning districts. In fact, Cuellar is a representative from
Texas, a traditionally Republican state. With a NOMINATE score |[Poole & Rosenthal (2000) of
—0.228, Cuellar is considered more conservative than 92% of Democrats currently in Congres

The converse case is that of Glenn Thompson, a rare Republican in an overwhelmingly Democrat
cluster. Thompson has a NOMINATE score of 0.322, making him more liberal than 88% of Repub-
licanﬂ Just like Cuellar, Thompson is part of one of the most moderate caucuses of his party: the
Republican Governance Group.

C.3 CUSTOMER SEGMENTATION

Figure [A3] shows some of the clusters we can extract from the Tivoli data with our method. Figure
[A34]is cluster #1, which is the most populated. It comprises the “standard” visit to Tivoli, which
happens to put together regular passes with “Mini” passes geared towards younger people. Clusters
#2 and #3 (Figures [A3Db] and [A3b) shows a more specialized interest to several rides outside the
cluster on the right. One potential insight, is that currently customers are using regular passes and
“Mini” passes in similar ways that are lumped together in the same cluster, which might point at the
need to differentiate these offers more.

Zhttps://voteview.com/person/20533/henry-cuellar
*https://voteview.com/person/20946/glenn—-thompson

16

https://voteview.com/person/20533/henry-cuellar
https://voteview.com/person/20946/glenn-thompson

	Introduction
	Methodology
	Data Model
	Problem Definition
	Network Distances
	Clustering
	Cleaning Noise
	Dimensionality Reduction
	Cluster Detection

	Experiments
	Setup
	Validation with Synthetic Data
	Validation with Real World Data
	Trade Atlas
	Little Sis
	Tivoli

	Efficiency

	Conclusions
	Data Cleaning
	Trade Atlas
	Little Sis
	Tivoli

	Summary Performance
	Additional Applications
	Macroeconomics
	Political Ideology
	Customer Segmentation

